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6. Ultraproducts and ultrapowers in model theory

6.1. Filters and ultrafilters.

A filter F on a set X is a nonempty family of nonempty subsets of X satisfy-
ing the following properties:

(F1) A1, A2 ∈ F =⇒ A1 ∩A2 ∈ F , and
(F2) A1 ∈ F , A2 ⊃ A1 =⇒ A2 ∈ F .

That is, a filter is a family of nonempty subsets that is stable under finite in-
tersections and passage to supersets.

Example 6.1: For ∅ ̸= Y ⊂ X, define FY = {A ⊂ X | Y ⊂ A} to be the fam-
ily of all subsets of X containing the fixed nonempty subset Y . This is a filter.
Such filters are called principal.

Example 6.2: Let X be an infinite set. A subset Y ⊂ X is said to be cofinite
if X \ Y is finite. The collection of all cofinite subsets of X is a nonprincipal filter,
the Fréchet filter.

A filter F on a set X is free if
∩

A∈F A = ∅.

Exercise 6.3: Let F be a free filter on X.
a) Show that F is not principal.
b) Show that F contains the Fréchet filter.
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Exercise 6.4: a) Let {Fi}i∈I be an indexed family of filters on X. Show that
F =

∩
i∈I Fi is a filter, indeed the largest filter which is contained in each Fi.

b) Let X be a set with at least two elements. Exhibit filters F1 and F2 on X such
that there is no filter F containing both F1 and F2.

The collection of all filters on a set X is partially ordered under containment.
By Exercise 6.4a), this poset contains arbitrary joins – i.e., any collection of filters
admits a greatest lower bound; on the other hand, Exercise 6.4b) shows that when
|X| > 1 the poset of filters on X is not directed. If F1 ⊂ F2 we say that F2 refines
F1 or is a finer filter than F1.

Definition: An ultrafilter on X is a maximal element in the poset of filters on
X, i.e., a filter which is not properly contained in any other filter on X.

The following is probably the single most important property of ultrafilters.

Theorem 1. Let F be a filter on X.
a) F is an ultrafilter iff: for all Y ⊂ X, exactly one of Y,X \ Y lies in F .

Proof. Let F be an ultrafilter on X and Y ⊂ X. Suppose first that for all A ∈ F ,
(A ∩ Y ) ̸= ∅. Let F ′ = {A ∩ Y | A ∈ F} and let F ′ be the collection of all subset
of X containing at least one element of F ′. It is easy to see that F ′ is a filter on
X which contains F . Since F is an ultrafilter, we must have F = F ′ and thus
Y = X ∩ Y ∈ F ′ = F . Now suppose that there exists A ∈ F such that A ∩ Y = ∅.
Equivalently, A ⊂ X \ Y and since A ∈ F , X \ Y ∈ F .
Now suppose that F is a filter on X which, given any subset of X, contains as
an element either that subset or its complement. Suppose F ′ is a filter properly
containing F , so that there exists some subset Y ∈ F ′\F . But thenX\Y ∈ F ′ ⊂ F
so that F ′ contains both Y andX\Y and thus contains their intersection, the empty
set: contradiction. �
Corollary 2. Let F be an ultrafilter on X, let A ∈ F , and let A1, A2 be subsets of
X such that A1 ∪A2 = A. Then at least one of A1 and A2 lies in F .

Proof. Assume not. Then by Theorem 1, both X \ A1 and X \ A2 lie in F , and
hence so does

(X \A1) ∩ (X \A2) = X \ (A1 ∪A2) = X \A.
Thus F contains both A and its complement X \A, contradiction. �
Corollary 3. Let F be an ultrafilter on X. Then the following are equivalent:
(i) F is not free.
(ii) F is principal.
(iii) There exists x ∈ X such that F is the collection of all subsets containing x.

Proof. The imlications (iii) =⇒ (ii) =⇒ (i) clearly hold (for arbitrary filters).
Suppose that F is not free, i.e., there exists x ∈

∩
A∈F A. Then X \ {x} is not an

element of F , so by Theorem 1 we have {x} ∈ F , so that F is the principal filter
on the singleton set {x}. �
Remark: There exist (non ultra)filters which are neither free nor principal, for
instance the filter {{0},R} on R. But no matter.
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Proposition 4. a) For a family A of nonempty subsets of a set X, the following
are equivalent:
(i) I has the finite intersection property: if A1, . . . , An ∈ I, then

∩n
i=1Ai ̸= ∅.

(ii) There exists a filter F ⊃ A.
A family F satisfying these equivalent conditions is called a filter subbase.1

b) For any filter subbase A, there is a unique minimal filter F containing A, called
the filter generated by A.

Proof. a) Certainly the finite intersection property (f.i.p., for short) is necessary
for A to extend to a filter. Conversely, given a family of sets A satisfying f.i.p.,
we build the filter it generates in much the same way that we build the topology
generated by a subbase. Namely, let F be the family of all finite intersections of
elements of A,2 and let F be the family of all subsets of X containing some element
of F . It is easy to check that F is a filter.
b) Every filter G containing every element of A must contain all supersets of all
finite intersections of elements of A, so the filter F constructed in part a) above is
the unique minimal filter containing A. �

Exercise 6.5: Let F1 and F2 be two filters on a set X. Show that the following are
equivalent:
(i) For all A ∈ F1 and all B ∈ F2, A ∩B ̸= ∅.
(ii) The set F1 ∪ F2 satisfies the finite intersection condition.
(iii) There exists a filter F containing both F1 and F2.
When these equivalent conditions are satisfied, we say that the filters F1 and F2

are compatible. This should be thought of in analogy to the situation of ideals I1
and I2 such that the ideal I1 + I2 is proper.

The next result collects some further properties of filters, indeed exactly those
that we will need for our model-theoretic applications.

Proposition 5.
a) Let F be a filter on X. Then there exists an ultrafilter containing F .
b) Any infinite set admits a nonprincipal ultrafilter. Indeed, let Y ⊂ X with Y
infinite. Then there exists a nonprincipal ultrafilter F on X such that Y ∈ F .

Proof. a) It is easy to see that the union of a chain of filters on X is a filter on X.
Therefore Zorn’s Lemma applies to give a maximal element in the poset of filters
containing a given filter F , i.e., an ultrafilter containing F .
b) Let F0 be the Fréchet filter (of cofinite subsets of X), and let FY = {A ⊂
X | A ⊃ Y } be the principal filter on Y . Since Y is infinite, if B ⊂ X is any
cofinite set, Y ∩ B ̸= ∅. It follows that the filters F0 and FY are compatible in
the sense of Exercise 6.5, so there exists an ultrafilter F containing both of them.
Since F contains the Fréchet filter, it is nonprincipal. �

Exercise 6.6 (harder; not used later): Show that in fact, for any infinite set X, the

number of nonprincipal ultrafilters on X is 22
|X|

.

1One also has the notion of a filter base. But we won’t use it, so let’s skip the definition.
2This would be a filter base, had we defined such a thing. (Sorry!)
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6.2. Filters in Topology: An Advertisement.

The night before giving the lecture on ultrafilters and ultraproducts, it occurred to
me that ultrafilters might not be part of the working vocabulary of my audience.
So I sent out an email advising them to book up on them a little bit and providing
a link to some notes on general topology. At the lecture itself, I found out that
indeed most of my audience had not studied filters before.3

So here is a quick précis of the use of filters and ultrafilters in topology. For
more details, please see [GT, Ch. II, §5].

Let f : X → Y be a function and F a filter on X. Then the family of subsets
{f(A) | A ∈ F} of Y satisfies the finite intersection condition, so is the subbase for
a unique filter on Y , which we denote f(F).

Let X be a topological space and x a point of X. Then the set Nx of neigh-
borhoods of x, i.e., of subsets N of x such that x lies in the interior of N , is a filter
on X. It is the principal ultrafilter Fx iff x is an isolated point of X.

A filter F on X is said to converge to x if F ⊃ Nx, i.e., if every neighbor-
hood of x lies in F . We write F → x. Again, for a trivial example, note that the
principal ultrafilter Fx converges to x no matter what the topology on X is. We
say that a filter converges if it converges to at least one point. (If X is Hausdorff,
a filter converges to at most one point.)

A point x ∈ X is said to be a limit point of a filter F if the filters Nx and
F are compatible, i.e., are simultaneously contained in some filter. In other words,
x is a limit point of F if every neighborhood of x meets every element A ∈ F .

With these definitions, get a theory of convergence via filters paralleling that of
sequences in a metrizable (or first countable) space. Here some of the most impor-
tant tenets of this theory.

Theorem 6.
a) Let X be a topological space. The closure of a subset A of X is the set of all
x ∈ X such that there exists a filter F on X with A ∈ F and F → x.
b) Let X and Y be topological spaces and f : X → Y be a map of sets. Then f is
continuous iff: for all x ∈ X and all filters F on X, F → x iff f(F) → f(x).
c) Let X =

∏
iXi be a product of spaces and πi : X → Xi be the projection map,

F a filter on X and x = (xi) ∈ X. Then F → x iff for all i ∈ I, πi(F) → xi.
d) A space X is quasi-compact iff every ultrafilter on X converges.

Each of these statements is straightforward to prove. And they have a nonitrivial
consequence.

Exercise 6.7: Deduce from Theorem 6 Tychonoff’s theorem, that a product X =

3I had thought that they were covered in a standard undergraduate topology course. In
retrospect, I think they were not covered in my undergraduate topology course (which used
Munkres’ book, as many such courses do) and indeed I may have learned about them for the first
time when I started studying model theory in late 2002.
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iXi of nonempty spaces if quasi-compact iff each factor Xi is quasi-compact.

There are of course many proofs of Tychonoff’s theorem, but this one has the
merit of making the result look completely evident and natural.

6.3. Ultraproducts and Los’ Theorem.

The notion of a product of structures is a fundamental one in mathematics. For
instance, one has the product of sets, groups, rings, topological spaces, schemes. . .
For many (but not all) of these products, the unifying theme is a certain universal
mapping property.

Suppose we have a family {Xi}i∈I of models of a theory T . It would be nice,
wouldn’t it, to be able to define some kind of product model X =

∏
iXi? (This is

not much in the way of motivation, but we will soon see just how nice it would be!)
Unfortunately, this only works halfway: we may define a product of L-structures,
but the product of models of a theory T need not be a model of T .

Indeed, let L be a language and {Xi} a family of L-structures. Put X =
∏

iXi,
the Cartesian product. We may endow X with an L-structure, as follows: for every
constant symbol c ∈ L, we put cX =

∏
i cXi . For every n-ary function symbol

f ∈ L, we define fX to be the evident function from (
∏

iXi)
n →

∏
iXi, i.e., the

one whose i-coordinate is fXi . Similarly, for every n-ary relation symbol R ∈ L, we
define RX as the product relation, i.e.,

∏
iRXi ⊂

∏
iX

n
i = (

∏
iXi)

n.

Exercise 6.8: If you know and care about such things, show that the product we
have defined satisfies the universal mapping property in the sense of category theory.

Thus for instance, if L is the language of rings, we may take a product of rings. For
example, take I to be the set of prime numbers and for p ∈ I, put Ri = Fp. Then
the product

∏
i Fp is again an L-structure (and even a ring). However, suppose T

is the theory of fields. Then each Fp is a model of T but the product certainly is
not: it is not even a domain.

All this is remedied by passing to a certain quotient of the direct product. To
do this, we need an extra ingredient – the crazy part. Namely, we “choose” an
ultrafilter F on the index set I. Then, we define the relation ∼F on the Cartesian
product X =

∏
iXi by {xi} ∼F {yi} iff the set of indices i ∈ I such that xi = yi is

an element of F . We define the ultraproductX =
∏

F Xi to be the quotient X̃/F .

Exercise 6.9: Check that ∼F is indeed an equivalence relation and that the ul-
traporudct

∏
F Xi is indeed an L-structure in a natural way.

So what is going on here? Magic, I say! Actually, there is one case in which
the magic isn’t real: there is a little man behind the curtain.

Proposition 7. Let I be an index set, i0 ∈ I, and let Fi0 be the principal ultrafilter
at i0. Then the ultraproduct

∏
Fi0

Xi is isomorphic to Xi0 .
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Exercise 6.10: Prove Proposition 7.

However, when we restrict to nonprincipal ultrafilters, the magic is quite real.

Example 6.11: Let L be the language of rings, I an index set, F an ultrafilter on I,
for each i ∈ I, let Ri be an integral domain. Then the ultraproduct R =

∏
F Xi is

a domain. Indeed, let x and y be elements of R such that xy = 0. We must show
that x = 0 or y = 0. Represent x by a sequence {xi} and y by a sequence {yi}.
Then, to say that xy = 0 is to say that the set of indices i such that xiyi = 0 lies
in the filter F : let us call this set A. Let A1 be the set of indices i such that xi = 0
and let A2 be the set of indices i such that yi = 0. Since each Ri is a domain, we
have A = A1 ∪ A2. By Corollary 2, we have either A1 ∈ F or A2 ∈ F , that is,
x = 0 or y = 0: qed.

Now let us show that the ultraproduct K =
∏

F Ki of fields is again a field. So,
let 0 ̸= x ∈ K. We need to show that there exists y ∈ K such that xy = 1. Let
{xi} ∈

∏
Ki be any element representing x, and let A ⊂ I be the set of indices

such that xi ̸= 0. Define y to be the element whose i coordinate is: x−1
i if i ∈ A (so

xi is nonzero in the field Ki and thus has an inverse) and 0 otherwise. Then x•y•
has i coordinate 1 for all i ∈ A and 0 otherwise. Hence it is equal to the constant
element 1 on a set of indices which lies in F , so xy = 1 in the quotient. (Note that
we have a lot of leeway in the definition of ybullet – it does not matter at all how
we define it at coordinates not lying in A – but all of these elements become equal
in the quotient.)

Here is a more interesting example. Let F be the ultraproduct of the finite field
Fp. By the above, this is a field. So it has a characteristic – what is it?!?

Case 1: Despite what I said above, it’s instructive to consider the case of a principal
ultrafilter based at a particular prime p0. In this case, the ultraproduct is just Fp0 ,
so of course the characteristic is p0.
Case 2: If F is nonprincipal, we claim that F has characteristic 0. It suffices to
show that for any prime ℓ, 1 + . . . + 1 (ℓ times) is not zero. Well, consider the
diagonal elements x• = ℓ and y• = 0. What does it mean for x• and y• to be
equal in the ultraproduct? It means that the set A of primes p such that ℓ = 0 in
Fp lies in the filter F . But A = {p}, a finite set, which is not an element of any
nonprincipal ultrafilter. Done!

The following result is a vast generalization of these observations. It is often called
the Fundamental Theorem of Ultraproducts. Nor is the proof difficult; rather
it is almost as easy as a proof which proceeds by induction on the complexity of a
formula can be. Since we have, somewhat disreputably, not given such a proof thus
far,4 we present the proof of Los’ Theorem in all its gory detail.

Theorem 8. (Los) Let I be an index set, F an ultrafilter on I, {Xi}i∈I an indexed
family of L-structures, and put X =

∏
F Xi. For any formula ϕ in n unbound

variables and x ∈ Xn,

X |= ϕ(x)) ⇐⇒ {i : Xi |= ϕ(xi))} ∈ F .

4The fact that truth of quantifier-free formulas is preserved by embeddings of structures was
given a somewhat handwavy proof earlier in these notes. What is required to formalize it is
precisely an induction on formula complexity
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Proof. We prove this by an induction on the complexity of the formulas. First
recall that a term is the set of L-terms is the smallest set containing the constant
symbols of L, the variable names {xi}∞i=1, and for each n-ary function, all expres-
sions of the form f(t1, . . . , tn), where the ti’s are terms.

Step 1: Suppose φ is of the form t1 = t2, where t1 and t2 are terms involving
n variables x1, . . . , xn. For j = 1, 2, put

gj(i) = tj(x1(i), . . . , xn(i)).

Then t1(x1, . . . , xn) = t2(x1, . . . , xn) as elements of X iff the set of i ∈ I such that
t1(x1(i), . . . , xn(i)) = t2(x1(i), . . . , xn(i)) is an element of F . This is Los’ Theorem
in this case!

Step 2: Suppose φ is a relation R(t1, . . . , tn) = R(t). Then R(t1(x), . . . , tn(x))
holds in X iff the tuple (t1(x), . . . , tn(x)) lies in RXn ⊂ Xn iff there exists y =
(y1, . . . , yn) ∈ RXn such that (t1(x), . . . , tn(x)) = (y1, . . . , yn) iff for a set of indices
I which lies in F we have t(xi) = y(i) iff for a set o findices I which lies in F ,
R(t(xi)) ∈ RXi .

Step 3: Suppose Los’ Theorem holds for α and β and φ = α ∧ β. Then φ(x) =
α(x)∧ β(x) holds in X iff both α(x) and β(x) hold in X, iff the sets A1 (resp. A2)
of indices i such that α(xi) (resp. β(xi)) holds in Xi lie in F iff (since F is a filter)
the set A = A1 ∩ A2 of indices i such that both α(xi) and β(xi) hold lies in F iff
the set of indices i such that α(xi) ∧ β(xi) = φ(xi) holds lies in F .

Step 4: Suppose that Los’ Theorem holds for φ(x). Then it also holds for ¬φ(x).
Indeed, ¬φ(x) holds in X iff φ(x) does not hold in X iff the set A of indices i for
which φ(xi) holds in Xi is not in F . But the set A′ of indices i for which ¬φ(xi)
holds in Xi is of course I \ A, and since F is an ultrafilter and A is not in F , A′

must be in F .5

Step 5: Write x = (x1, . . . , xn) and y = (x2, . . . , xn), so x = (x1, y). Suppose
Los’ Theorem holds ψ(x); we show that it also holds for ∃v ψ(v, y).
This time we handle the two implications separately. First suppose that ∃v ψ(v, y)
holds in X. Then for some x = (x1, y) ∈ Xn, ψ(x) holds in X. It follows that the
set A of indices i such that ψ(x(i)) holds in Xi lies in F . Now the set A′ of indices
i such that ∃v ψ(v, y(i)) holds in Xi contains A, so A

′ lies in F .
Conversely, suppose that the set A of indices i such that ∃vψ(v, y(i)) lies in F .

For each such i, choose x1(i) ∈ Xi such that ψ(x1(i), y(i)) holds in Xi; for all other
indices i, define x1(i) arbitrarily. There is then an induced element x1 =

∏
F x1(i)

in the ultraproduct, and then φ(x1, y) holds in X hence so does ∃v ψ(v, y). �

Corollary 9. a) In the setup of Los’ Theorem, let T be an L-theory, and suppose
that each Xi is a model of T . Then X is a model of T .
b) In particular, if for all i, j ∈ I, Xi ≡ Xj, then X ≡ Xi for all i.

Proof. a) This is a very special case of Theorem 8: for each sentence φ ∈ T , the
set of indices i such that φi holds in Xi is the entire index set I, so is certainly an

5Note that this is the only place in the proof where we use that F is an ultrafilter!
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element of F . Thus by Los’ Theorem, φ holds in X. Part b) follows immediately.
�

One way to enforce Xi ≡ Xj for all indices is simply to choose a single model X
of T and take Xi = X for all i. In this case, we abbreviate

∏
F X to XF , and we

say that XF is an ultrapower of X. Thus X ≡ XF , but XF is guaranteed to
be a “sufficiently rich” model of T in a sense that we will not have time to make
precise. But, for example, if X is an algebraically closed field, then any nontrivial
ultrapower of X is an algebraically closed field of infinite transcendence degree.

Exercise 6.12: Let X be an L-structure and XF an ultrapower. Show that there is a
natural embedding of L-structures ι : X ↪→ XF and this embedding is elementary.

6.4. Proof of Compactness Via Ultraproducts.

Let L be a language and T be a theory such that every finite subset of T has
a model. We wish to show that T has a model. Formerly, we deduced this as an
immediate corollary of Gödel’s Completeness Theorem and the finite character of
syntactic implication. But, aside from using a proof-theoretic result that we are
not going to prove (and is generally regarded as being fundamentally “un-model-
theoretic” in nature), this was a proof by contradiction. Much more impressive
would be the following head-on attack: for each finite subtheory T ′ ⊂ T , let XT ′

be a model of T ′. Then using the XT ′ ’s as data, we construct a model X of T .

Prepare to be impressed!

We may of course assume that T is infinite; otherwise there is nothing to prove.
Let I be the set of finite subtheories of T . For φ ∈ T , let

A(φ) = {T ′ ∈ I | φ ∈ T ′},
and let A = {A(φ)}φ∈T . Evidently A is a nonempty family of nonempty subsets
of I. I claim that moreover A satisfies the finite intersection condition: indeed, for
any φ1, . . . , φn ∈ T ,

n∩
i=1

A(φ) = A(
n∧

i=1

φi) ̸= ∅.

Thus, in the terminology of Proposition 4, A is a filter subbase on I. In other
words, there is some filter containing A and hence some ultrafilter F containing
I. By hypothesis, for each finite T ′ ⊂ T , there exists at least one L-structure
modelling T ′: choose one, and call it XT ′ . Thus XT ′ is a family of L-structures
indexed by the elements of I, and F is an ultrafilter on I. So we may form the
ultraproduct:

X =
∏
F

XT ′ .

We claim that X is a model of T . Indeed, for any φ ∈ T , consider the set J of finite
subtheories T ′ of T such that XT ′ is a model of φ. It is hard to say exactly what
J is (since we chose the models XT ′ “at random”), but certainly J contains each
finite subtheory T ′ such that φ ∈ T ′, since then φ holds in every model of T ′. That
is, J ⊃ A(φ); since A(φ) ∈ F and F is a filter, J ∈ F . We are done by Los’ theorem.
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So the use of ultraproducts gives a quick proof of the Compactness Theorem which,
recall, was originally deduced from Gödel’s Completeness Theorem and the finite
character of syntactic implication. We used the Completeness Theorem and the
finite character of syntactic implication at one other key juncture, namely in the
proof of Ax’s Transfer Principle (Theorem 3.10). We urge every reader to do the
following exercise.

Exercise 6.13: In the proof of Ax’s Transfer Principle, replace all appeals to syn-
tactic considerations by an ultraproduct argument. (Suggestion: use Proposition
5b). That’s what it’s there for!)

This is a typical phenomenon. Indeed, to the best of my knowledge, in the study
of model theory one never needs to use Gödel’s Completeness Theorem but can
always make do with evident ultraproduct-theoretic analogues.

6.5. Characterization theorems involving ultraproducts.

First a result which we could have proven long ago, but is especially appropriate
now that we have proved the Compactness Theorem.

Proposition 10.
a) Let L be a language and T1, T2 be two L-theories. Suppose that for an L-
structure X, X is a model of T1 iff X is not a model of T2. Then T1 and T2 are
finitely axiomatizable.
b) In particular, a class C is finitely axiomatizable iff both C and its negation are
elementary.

Proof. a) We give two proofs, the first using the Compactness Theorem and the
second using ultraproducts as in the proof of the Compactness Theorem. Note that
either way, by symmetry it suffices to prove that T1 is finitely axiomatizable.
First proof: Suppose that T1 is not finitely axiomatizable. In other words, for every
finite subtheory T ′ of T1, there exists an L-structure which is a model of T ′ but
not of T1. By hypothesis, this means that XT ′ is a model of T ′ ∪ T2. But every
finite subset of T := T1 ∪ T2 is contained in some T ′ ∪ T2 for T ′ a finite subset of
T1. Thus the theory T is finitely satisfiable, hence satisfiable by the Compactness
Thorem. But this means that there is a structure X which models both T1 and T2,
contradiction.
Second proof: Again, suppose T1 is not finitely axiomatizable, so that for every
finite subtheory T ′ of T1 there is a model XT ′ of T ′ but not of T1. Again, by our
hypothesis XT ′ is a model of T2. Letting I be the set of finite subtheories of T1,
as in the proof of the compactness theorem, there exists an ultrafilter F on I such
that X =

∏
F XT ′ is a model of T . On the other hand, each XT ′ is a model of

T2, so by Los’s Theorem X is also a model of T2: contradiction. Thus T1 is finitely
axiomatizable. Of course, interchanging the roles of T1 and T2 we get that T2 is
finitely axiomatizable.
b) If C is the class of all models of a finite theory, then certainly it is finitely
axiomatizable and indeed is the class of all models of a single sentence φ. But then
its negation is the class of all models of ¬φ so is also finitely axiomatizable, hence
elementary. The converse follows immediately from part a). �
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Theorem 11. Let C be a class of L-structures.
a) C is elementary iff it is closed under ultraproducts and elementary equivalence.
b) C is finitely axiomatizble iff both C and its negation are closed under ultraproducts
and elementary equivalence.
c) The elementary closure of C – i.e., the least elementary class containing C – is
the class of all L-structures which are elementarily equivalent to some ultraproduct
of elements of C.

Proof. a) It is clear from the definition that an elementary class – i.e., the class of
all models of some L-theory T is closed under elementary equivalence; moreover
that an elementary class is closed under passage to ultraproducts is Corollary 9a).
Conversely, suppose that C is a class which is closed under elementary equivalence
and passage to ultraproducts. We wish to show that C is an elementary class.
Clearly the only candidate theory is the complete theory of C, i.e., the set of all
L-sentences which hold in every element of C. Let X be a model of T . What we
need to show is that X ∈ C. Let Σ be the complete theory of X – so Σ ⊃ T – and
as in the proof of the compactness theorem, let I be the family of all finite subsets
of Σ. For each T ′ = {φ1, . . . , φn} ∈ I, there exists XT ′ ∈ C which is a model of T ′,
for otherwise the sentence ¬(φ1 ∧ . . .∧φn) would belong to T \Σ, a contradiction.
Just as in the proof of the compactness theorem, there exists an ultrafilter F on I
such that the ultraproduct X ′ =

∏
F Xi is a model of T . By hypothesis, X ′ ∈ C.

Moreover, since T is the complete theory of X, this means X ≡ X ′, and thus by
hypothesis X ∈ C.
Part b) follows immediately from part a) together with Proposition 11. The proof
of part c) is similar and left to the reader. �

Theorem 12. (Keisler-Shelah) Let X and Y be L-structures. TFAE:
(i) X ≡ Y .
(ii) There exists an index set I and an ultrafilter F on I such that the ultrapowers
XF and Y F are isomorphic.

This theorem involves delicate set-theoretic considerations. Indeed, it was first
proved by H.J. Keisler in 1961 under the assumption of the Generalized Contin-
uum Hypothesis (GCH) and then unconditionally by S. Shelah in 1972. See e.g.
[CK90, Thm. 6.1.15] for a proof.

Exercise 6.14: By considering a nontrivial ultraproduct of cyclic groups of prime
order, show that the class of simple groups is not an elementary class.

Exercise 6.15 (harder):6 For all n ∈ Z+, we may view Sn as a subgroup of Aut(Z+)
by viewing it as the subgroup of permutations of Z+ which pointwise fix every
integer greater than n. With this convention, define the infinite alternating group
A∞ =

∪∞
n=1An as a subgroup of Aut(Z+).

a) Show that A∞ is a simple group.
b) Show that no nontrivial ultrapower of A∞ is simple.
c) Deduce that the class of simple groups is not closed under elementary equivalence.

6The material for this exercise was furnished by Simon Thomas as an answer to a question on
Math Overflow. Thanks very much to him.
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7. A Glimpse of the Ax-Kochen Theorem

Let d ∈ Z+ and i ∈ R≥0. We say that a field K has property Ci(d) if every degree
d homogeneous polynomial in at least di + 1 variables has a nontrivial zero. It is
clear that this property is equivalent to a sentence φd in the language of fields, so
the class Ci(d) of fields is finitely axiomatizable. We also define a field to be Ci if it
is Ci(d) for every positive number d. This is the conjunction of the infinitely many
sentences φd, so Ci is an elementary class.

Some relatively elementary facts:

a) a field is Ci for some i < 1 iff it is C0 iff it is algebraically closed.
b) A finite field is C1 (Chevalley).
c) If K is Ci and L/K has transcendence degree j, then L is Cj (Tsen-Lang).
d) A complete discretely valued field with algebraically closed residue field is C1

(Lang).
e) The field Fq((t)) is C2 (Lang).
f) If k is Ci, then k((t)) is Ci+1 (Greenberg).

In particular, combining Chevalley and Greenberg, we find that the locally compact
fields of positive characteristic, namely Fq((t)), are C2.

In view of Greenberg’s theorem, it is natural to speculate that a complete dis-
cretely valued field with Ci residue field is Ci+1. The simplest case of this which is
left open by Lang’s theorem is that of p-adic fields. Indeed, it was conjectured by
E. Artin that a p-adic field is C2.

7

Lang’s seminal paper [Lan52] contains the sentence “If the residue field of [the
CDVF] F is finite, it has been conjectured that F is C2. We can prove this only
in the case of power series fields, leaving the question open in the case of p-adic
fields.” This was part of Lang’s thesis work; I can only imagine his consternation at
not being able to prove the p-adic case. Lang and many others tried to prove this
throughout the 50’s and the first half of the 60’s, without success. What was known
is that p-adic fields are C2(2); in other words, a quadratic form over a p-adic field
in at least 5 variables is isotropic. This is part of the classical theory of quadratic
forms over local fields (and is discussed e.g. in the 8410 course notes). It was also
known relatively early on that a cubic form in at least 10 variables has a nontrivial
zero (due, I believe, to Davenport). And that was that!

Quite dramatically, in 1966 Guy Terjanian exhibited an anisotropic (i.e.., with-
out nontrivial zero) quartic form over Q2 in 17 variables [Ter66]. Less well-known
is a 1980 theorem of Terjanian [Ter80]: let d > 2. Then for all primes p with
p(p− 1) | d, there exists an anisotropic degree d form in d2 + 1 variables over Qp.
In particular, for no prime p is Qp C2!

On the other hand, James Ax and Simon Kochen proved in 1965 that p-adic fields
are “almost C2”. More precisely:

7Or so people say; I am not sure if Artin’s conjecture appears in written form.
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Theorem 13. (Ax-Kochen Diophantine Theorem) For every positive integer d,
there exists a constant P (d) such that for all primes p > d, Qp is C2(d).

Note that their proof gives precisely zero information about the constant P (d), but
Terjanian’s work gives some lower bounds on it. To the best of my knowledge, for
d ≥ 4 no explicit upper bounds on P (d) are known.

But this theorem reeks of model theory, and in particular of Ax’s Transfer Principle.
Here is what they actually proved:

Theorem 14. (Ax-Kochen Transfer Principle) Let F be a nonprincipal ultrafil-
ter on the set P of prime numbers. Then the fields

∏
F Qp and

∏
F Fp((t)) are

elementarily equivalent.

Exercise 6.16: Deduce Theorem 13 from Theorem 14. (Again, use Proposition 5b).)

The proof of Theorem comes from a penetrating analysis of the model theory of
Henselian valued fields which is interesting and useful in its own right. (Sample
result: the embedding from a Henselian valued field of characteristic 0 to its com-
pletion is an elementary embedding.) This would be a nice topic for a second
half-course on applied model theory!
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