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THE CLASS GROUP OF DEDEKIND DOMAINS 

BY 

C. R.  LEEDHAM-GREEN 

Abstract. A new proof is given of Claborn's theorem, namely that every abelian 
group is the class group of a Dedekind domain. A variation of the proof shows that 
the Dedekind domain can be constructed to be a quadratic extension of a principal 
ideal ring; a Dedekind domain is also constructed that is unrelated in a certain sense 
to any principal ideal ring. 

Introduction. Claborn proved in [2] that every abelian group is the class group 
of some Dedekind domain. In $1 a new proof is given which is based on a naive 
geometrical construction. In $2 the construction is embellished to show that the 
Dedekind domain can appear as a quadratic extension of a principal ideal ring; a 
Dedekind domain is also constructed which is unrelated to any principal ideal ring; 
for precise statements see Theorems 2.1 and 2.3. The last result answers a problem 
due to Claborn [I]. 

1. Every abelian group is a class group. A well-known characterisation of a 
Dedekind domain as an intersection of valuation rings will be used. A valuation 
on a field F will mean a normalized exponential valuation; that is to say a homo- 
morphism v of the multiplicative group of F onto the integers under + satisfying 
u(a +b) 2 min {ua, vb), with the convention vO =co.In the notation of Weiss [3] an 
ordinary arithmeticfield is a field Fand a nonempty family {up I P E A) of valuations 
of F satisfying 

(1.1) Va E F, vpa 2 0 for almost all P E A;  
(1.2) VP,#P,EA, 3 a ~ F s . t .up,(a-1)Ll;  u p , a 2 1 ; V P ~ A ,  vpa20 .  
Then D ={a E F / VP E A, v,a 2 0) is a Dedekind domain. Denoting again by P 

the set {a I a E D, vpa >0), P is a prime ideal of D and every nonzero prime ideal of 
D is of this form; so A freely generates the group of (fractional) ideals of D. The 
field of fractions of D is clearly F. 

The class groups of the Dedekind domains we shall construct appear as follows. 
The generators, or prime ideals, will correspond to certain points in an affine 
plane, and the relators will correspond to the algebraic curves in that plane; a 
generator will occur with multiplicity n in the relator corresponding to a given 
curve if the curve passes through the corresponding point with multiplicity n. We 
shall therefore need 
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LEMMA1.1. Let K be a perfect infinite field, R be an algebraic closure of K, and A 
be an afine plane over x.Let A be a set of cardinal less than that of K,  ( P A  / X E -4) 
be a family of points in A pairwise nonconjtigate ouer K, and {n, / h E A) be a family 
of nonnegative integers, nearly all zero. Then there is an algebraic curve C in A, 
defined and irreducible ooer K, which, for all h in 11,passes through PA with nzulti- 
plicity exactly n,. (Two points are coizjugate over K i f  some autolnorphism of R ocer 
K takes one point to the other.) 

Proof. The algebraic curves in A which are defined over K and, for all X in L\, 
pass through P, with multiplicity a t  least n, form a projective space over K ;  and 
for any m L O  those of degree a t  most nz form a finite-dimensional subspace T,. 
For each A, the algebraic curves which pass through P,  with multiplicity a t  least 
n,+ 1 and for all p pass through P, with multiplicity a t  least n, form a subspace 
TmAof T,. The curves in T ,  which are reducible over K form a subvariety V ,  of T,. 
I t  is not hard to verify that, for nz large enough, TmAand V,  are proper subvarieties 
of T,. Since A is of cardinal less than the (infinite) cardinal of K, it follows that, 
for nz large enough, there is a curve C in T ,  which does not lie in (U,,, T,,) u V,. 

The next result reduces the construction to the selection of a suitable family of 
points in an afine plane. 

PROPOSITION1.2. Let K be a perfect field and A be an afine plane with coordznates 
s and t orer an algebraic closure of K. Let { P A  I X E ,I)be a family of points of A, 
pairwise nonconjugate over K, such that no algebraic curve (oz'er K )  passes through an 
infinite number of thesepoints. Let D be the subset of K(s, t )  consisting of all elements 
f /g wheref ,  g in K[s,  t ]  are such that the multiplicity o f f  at P is not less than the 
(possibly zero) multiplicity of g at P. Then D is a Dedekind clornain containing 

t I. 
Moreocer, if %(.I)is the p e e  abelian group on .A, and if (C ,  / i E I )  is the set of 

algebraic curves in A defined and irreducible ooer K, then the class group of D is  
isomorphic to '11(A) divided orit by the relators {I,,,n,,h I i E I )  where n,, is the 
multiplicity of C, at PA. 

Proof. For fixed h in and any f in K[s,  t ] ,  let c, f be the multiplicity off at PA. 
Then z., extends uniquely to a valuation of K(s, t )  which we also denote by z lA.  

Then for the first statement it is enough to prove that K(s, t ) ,  together with 
{zx / h E A), is an ordinary arithmetic field. Condition (1.1) is satisfied since every 
algebraic curve passes through only a finite number of the points PA.Now let A, p 

be distinct elements of Since PA and P, are riot conjugate over K, there is an 
element f of K[s7 t ]  which defines a curve passing through PAbut not through P,. 
Clearly we may choose f such that f(P,) = 1. Then v,f 2 1, z),( f - 1 )  2 1, and for all 
v in A, v, f 2 0. Thus condition (1.2) is satisfied and D is a Dedekind domain whose 
ideal group is naturally isomorphic to &[(A). 
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The group of principal ideals of D is generated by those ideals which are generated 
by an irreducible element f of K[s,  t ] .  f defines a curve C,, i E I ;  and the corre- 
sponding ideal is mapped by the above isomorphism to I,,,(t.,f)A in Bt(.2). But 
cAf is the multiplicity rz,, of C,at PA.This proves the last statement of the proposition. 

The coefficients of the above relators are all positive integers. We will thus need 

LEMMA1.3. Let G be an abelian group and A be an infinite cardinal not less than 
the cardinal of G. Then G can be presented as the quotient of a free abelian group on h 
generators dicided out by A distinct nontri~:ial relators, each of which is a sum of 
nonnegatice multipIes of the free generators. 

Proof. G can certainly be presented as a quotient of a free abelian group of rank 
at most A divided out by at most 12 relators. Each relator will be of the form p -9, 
where p and q are sums of nonnegative multiples of the free generators. For each 
relator p -q, introduce a new free generator x, and replace the relator p -q by p +.u 
and q+ x. In this way G can be expressed as the quotient of a free abelian group of 
rank at most 11divided out by at most '1 relators, all of the required form. To 
ensure that there are exactly free generators and A relators, add .I new generators 
and include them among the relators. 

We now give our proof of Claborn's theorem. The proof can be simplified 
slightly by assuming that K is algebraically closed, in which case problems of 
conjugacy no longer arise; however the more general case will be of interest when 
we indicate how the Dedekind domain can arise as a quadratic extension of a 
principal ideal ring. 

THEOREM1.4. Let K be an infinite perfect field and G be an abelian group of 
cardinal not greater than that of K. Let s, t be algebraicallj~ independent over K. 
Then there is a Dedekitzd domain D containiizg K[s,  t ]  with Jielcl offiactions K(s, t )  
and class group isomorphic to G. 

Proof. The idea of the proof is as follows. Using Proposition 1.2 it is enough to 
find a suitable set of points in an affine plane over I?. Given a presentation of G as 
in Lemma 1.3, points are chosen to correspond to the given generators, and Lemma 
1.1 is used to find curves which will produce relators. Unfortunately all the other 
irreducible algebraic curves passing through the given points will also produce 
relators, so further points are introduced which give generators whose sole purpose 
is to kill these unwanted relators. Points and curves corresponding to the given 
generators and relators will be called inciustrious, and those whose sole purpose is 
to kill each other off will be called otiose. We now begin the formal proof. Let h 
be the least ordinal with cardinal equal to that of K. By Lemma 1.3, G may be 
represented as the quotient of the free abelian group '21(11) on 12 by distinct non- 
trivial relators r,, p E 12, where r, =CAE,n,,A, nu^2 0 for all p, A, and n,,=O 
allnost always. In this way both the generators and relators have been well ordered, 
but we only use the ordering of the former. If, for some p, h is the largest element of 
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A such that n,, > 0 call h the leading term of r,. Now let R be an  algebraic closure 
of K, and A be the affine plane over R with coordinates s and t .  Then the algebraic 
curves in A which are defined and irreducible over K may be indexed as {CA/ h E 11). 

For each p in A we shall construct, by transfinite induction, a subset %', of {C,) 
and a pair of points P,, Q, in A such that 

(i) P, and Q, are not conjugate to each other over K;  
(ii) neither P, nor Q, is conjugate over K to P, or Q,  for any v < p ;  
(iii) neither P, nor Q, lies on any curve contained in U,,, V, ;  
(iv) no curve of degree n which passes through n2+ 1 of the points P,, Q,, 

v < p, passes through P, or Q,; 
(v) V ,  is obtained by adjoining to lJ,<, %', 

(a) the first irreducible curve, C,,,, say, which is not already contained in 

Uv<,V,, and 
(b) for every relator r, with leading term p an irreducible curve C,,,, which 

passes through P,  with multiplicity exactly n,, for all v 5 p, and passes through no 
point Q,  for v 5 p ;  

(vi) Q, is a simple point of C,,,,. 
The points P, and curves C,,,, will be industrious while Q, and C,,,, will be 

otiose. Condition (iii) ensures that once a relator has been dealt with it does not 
subsequently change. Condition (iv) ensures that no curve (in particular no C,,,,) 
passes through infinitely many of the points PA, QA. If A is countable this has 
already been ensured by (iii). Condition (v)(a) ensures that every irreducible curve 
appears in V ,  for p large enough; observe that the curves adjoined in (v) do not 
already lie in U,,, V ,  since they pass through P, or Q,, and that C,,,, is not 
among the C,,,, since it passes through Q,. 

To check that the construction is possible, suppose that for all v < p, P,, Q,, and 
V ,  have been chosen to satisfy the above conditions. C,,,, is determined by (v)(a). 
Now choose P, and Q,. Condition (vi) reduces the choice of Q, to the A simple 
points of C,,,,. Since the cardinal of p is less than that of A, conditions (ii) and (iii) 
exclude less than A of these points. Since, by Bezout's theorem, there is at  most one 
irreducible curve of degree n through n2+ 1 given points of A,  the points excluded 
by condition (iv) lie on less than A irreducible curves, and so again less than A of 
the simple points of C,,,, are excluded. Thus there are A possible choices for Q,, 
and similarly for P,, which satisfy (ii), (iii), (iv) and (vi), and so P, and Q, can be 
chosen to satisfy these conditions and not be conjugate over K (condition (i)). 
Finally, the curves C,,,, may be chosen to satisfy (v)(b) by Lemma 1.1. 

Now apply Proposition 1.2 with { P A )replaced by { P A )u {QA).I t  follows from 
the above remarks that the hypotheses of the proposition are satisfied and so a 
Dedekind domain D is obtained. The points PA and QA may be regarded as 
generators of the class group of D, relators being supplied as in Proposition 2.2 by 
the irreducible curves in A.  By (iii) and (v)(b), the relator defined by an industrious 
curve C,(,, only involves generators PA whereas the relator defined by an  otiose 
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curve C,(,, involves Q, with multiplicity one and no Q , for v > p. I t  follows that the 
otiose points and curves d o  indeed kill each other off, and we are left with a class 
group with the given presentation. 

As a final remark, the group of units of D is easily calculated. The presentation 
of G chosen at  the beginning of the proof gives an  exact sequence 0 -t X - t  Y 
-t Z -t G -t 0, where Z is the free abelian group on the given generators and Y is 
the free abelian group on the given relators. Then the group of units of D is iso- 
morphic to the direct product of the multiplicative group of K with X. Of course 
the presentation may be chosen so that X i s  trivial. 

2. Relations with principal ideal rings. After some prefatory remarks about 
extensions of Dedekind domains we prove first that every abelian group is the 
class group of a quadratic extension of a principal ideal ring. 

If L,  with a set of valuations {u, / P E A), is an  ordinary arithmetic field, and M 
is a finite algebraic extension of L, then M, with the set of all extensions to M of the 
valuations up, is an  ordinary arithmetic field; and if 0, and 0 ,are the correspond- 
ing Dedekind domains then O,, is the integral closure of 0, in M. The problem is 
to arrange matters so that 0, is a principal ideal ring, 0 , has pre-assigned class 
group, and M is a quadratic extension of L. Let K be a quadratic extension of F ;  
and to simplify matters slightly, suppose that K is algebraically closed (so that K 
is of characteristic zero and F is real-closed). Take L and M above to be F(s, t )  
and K(s, t )  respectively. F(s, t )  may be made into an  ordinary arithmetic field as in 
$1 by selecting a suitable set of points in an affine plane A over K, distinct points 
being nonconjugate over F. If v is the valuation of F(s, t )  corresponding to a point 
P in A,  the extensions of v to K(s, t)  correspond to P and its conjugate P'.Bear in 
mind that since every curve defined over F which passes through one of P and P' 
will also pass through the other, P and P' define the same valuation of F(s, t), 
but different valuations of K(s, t )  unless of course P=P1.Observe also that since K 
is a separable extension of F no prime ramifies; this comes down to the fact that 
given any point P in A there is a curve defined over F which passes through P 
with multiplicity one. 

THEOREM2.1. Let G be an abelian group. Then there is a principal ideal ring 0 
withJieId of fractions L, and a quadratic extension M of L, such that the integral 
closure of 0 in M has class group G. 

Proof. L and M will be F(s, t)  and K(s, t )  with F and K as above, and D, the 
integral closure of 0 in M,  will be constructed along the lines of the proof of 
Theorem 1.4. When D is constructed, 0=D n F(s, t )  is also determined. There are 
two main adjustments to be made to the earlier proof. Firstly, whenever a point in 
A is chosen so must its conjugate over F. Secondly, one must ensure that the class 
group of 0 will be trivial. This will come about from the fact that conjugate points 
over Fdefine the same valuation of F(s, t), so pairs of generators become equated. 
However, relators arising from curves that are not defined over F will be lost. To  
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avoid duplication only one of each pair of conjugate points will be used at  first, the 
conjugates being added later. Instead of adding in an industrious and an otiose 
point at  the pth stage of the construction, whenever C,,,, is not defined over F 
only an otiose point will be introduced, and whenever C,,,, is defined over F only 
an industrious point will be introduced, its conjugate supplying the required otiose 
point. For this reason it will be convenient to use the same letter for each kind of 
point. We now begin the formal proof; conjugacy will always be over F. Let Fbe a 
real-closed field with cardinal at least as great as the cardinal of G, and A be the 
least ordinal of that cardinal. Let A be the affine plane over an algebraic closure K 
of Fwith coordinates s and t .  Index the algebraic curves in A which are defined and 
irreducible over K as {C, I X E A). A strictly increasing function u :  A -t A will be 
defined below with the property that every curve in A that is defined over F and 
irreducible over K is of the form C,,,, for some y E A. Let I? be the subset of A 
consisting of elements y such that C,,,, is defined over F. Then I? is of the same 
cardinal as A, and G may be represented, as in Lemma 1.3, as the quotient of a free 
abelian group on I? by distinct nontrivial relators r,, p E A, where r,=z,,, n,,y, 
and n,, 2 0 for all p, y. For each p in A we shall construct, by transfinite induction, 

of {C,) and a point P, in A such that 
(i) the coefficients of P, do not both lie in F ;  

(ii) for all v<p ,  P, is neither equal nor conjugate to P,; 
(iii) neither P, nor its conjugate lies on any curve in U,., g,;  
(iv) no curve of degree n which passes through n2 + 1 of the points P, and their 

conjugates, v < p, passes through P, or its conjugate; 
(v) if the first irreducible curve, C,,,, say, which is neither equal nor conjugate 

to a curve already contained in U,,, %,, is not defined over F, then g, is obtained 
by adjoining C ,,,, to U,,, V,. Also, P, is a simple point of C ,,,, whose conjugate 
does not lie in C,,,,. 

(vi) If C,,,, is defined over F, so that p E I?, then g, is obtained by adjoining to 
U,<, (%?v both C,,,, and, for every relator r ,  with leading term p, an irreducible 
curve C,,,, which passes through P, with multiplicity exactly n,, for all y E r, 
y s p ,  and which passes through no other point P,, v < p, and through the conjugate 
of no point P,, v s p .  Also, P, is a simple point of C,,,,. 

Every curve or its conjugate will appear in V, for p large enough. Moreover no 
curve adjoined in steps (v) and (vi) is conjugate to any curve already in U,,, V,; 
and no two of the curves adjoined in (vi) are conjugate to each other, since C,,,, 
is defined over F, and the curves Co,,, are not defined over F, their conjugates 
passing through no P,,, v 5 p. Thus UASA contains exactly one element of every gA 
conjugacy class of irreducible curves over K. The function CY is clearly increasing and 
has the other property claimed above since the curves C,,,, are not defined over F. 

The above construction can be carried out as in the proof of Theorem 1.4. 
Write the conjugate of a point P or a curve C, as P' or CL. Now apply Proposition 
1.2 with {PA) replaced by {PA)u {PL) and the K of the proposition corresponding 
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to the K here. The hypotheses of the proposition are clearly satisfied and a Dede- 
kind domain D is obtained. The class group of D is generated by elements A, A' 
corresponding to PAand PL, A E A, with relators corresponding to the curves 
C,,,,, C4,z, and their conjugates, p, T E A. If a curve C passes through a point PA, 
then its conjugate passes through PL with the same multiplicity; this holds in 
particular if C is its own conjugate, i.e. if C is defined over F. Using this and the 
fact that A is well ordered, the relators corresponding to C,,,, and Ci,,,, p $ I?, 
can be used to replace the relators corresponding to C,,,,, y E I?, by new relators 
s, satisfying 

(a) only generators 6, a', where 6 E S, 6 5  y, are involved; 
(b) for all 6 5 y, 6 and 6' appear with the same multiplicity; 
(c) y and y' appear with multiplicity 1. 

All generators A, A' and relators corresponding to C,,,,, C;,,,, X $ S, may now be 
ignored. There remain the generators y, y', y E r ,  and relators s,, y E S, r, =2, n,,y, 
and r i  =2, n,,yl, p E A. The relators s, may be used to eliminate the generators y'. 
Bearing in mind the original presentation of G, it must be verified that the relators 
s, and r; do not imply any new relations b-'ween the elements of S.  Suppose then 
that there are integers a,, y E S,  b,, p E A, nearly all zero, such that 2 a,s,+2 bur: 
involves only elements of S. Then by (b) above, 2 a,s, +2 bur; + 2 bur, =0. Thus 
the relation implied on the elements of I' is a consequence of the relations r,=O. 
Hence the class group of D is isomorphic to G. 

Now apply Proposition 1.2 again with {PA) of the proposition corresponding to 
{PA) here, but with K replaced by F. The hypotheses of the proposition are again 
satisfied and a Dedekind domain 0 is produced. The curves in A which are defined 
and irreducible over F a r e  either irreducible over K, namely the curves C,,,,, X E r ,  
or split over K into the union of two conjugate subvarieties, either C,,,, u C;,,,, 
A $ S, or C4(A) u CL,A,,A E A. Since the curves Ca ,,,, A E S, and C,,,, u Ci ,,,, X $ S, 
pass through PAwith multiplicity 1 and through no point P,, p *.> A, the correspond- 
ing relators ensure that 0 is a principal ideal ring. Moreover, by the remarks at the 
beginning of the paragraph, D is the integral closure of 0 in K(s, t), and so the 
theorem is proved. 

Our second variation of Theorem 1.4 goes to the opposite extreme. In [4], 
Zariski and Samuel asked whether every Dedekind domain is the integral closure of 
a principal ideal ring in a finite algebraic extensi n of its field of fractions, or, as 
we shall say, is a jn i te  algebraic extension of a principal ideal ring. This was 
answered in the negative by Claborn in [I]; the idea of the counterexample was to 
take a principal ideal ring 0 ,  in fact the rink af rational integers, form a finite 
algebraic extension E of 0 ,  and then consider the ring of fractions D =Es of E 
with respect to a multiplicatively closed subset S of E. Claborn therefore asked in 
[I] whether every Dedekind domain D can be obtained from a principal ideal ring 
by constructing a finite algebraic extension and then forming a ring of fractions. 
Before answering this question, again in the negative, a simple 
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LEMMA2.2. Let E be an algebraic extension of degree n of aprincipal ideal ring 0 ,  
and D be the ring of fractions of E with respect to a multiplicatively closed subset S 
of E. Then the set of prime ideals of D may be partitioned into subsets of at most n 
elements each such that a product of the primes in any subset, with suitable positive 
multiplicities, is a principal ideal. 

Proof. Since the class group of D is obtained from the class group of E by divid- 
ing out by the prime ideals which intersect S, it is sufficient to take the case D = E. 
For every prime p of 0 ,  let Tpbe the set of primes in E dividing pE. Then the sets 
Tpprovide a partitioning as required. 

It  is now easy to prove 

THEOREM2.3. Not euery Dedekind domain D may be constructed as follows. 
Take a principal ideal ring 0 ,  a finite algebraic extension E of 0, and put D = Es, 
the ring of fractions of E with respect to a multiplicatiuely closed set S. 

A finite algebraic extension of a principal ideal ring was defined in the remarks 
before Lemma 2.2. 

Proof. Adjust the construction of the Dedekind domain D in the proof of 
Theorem 1.4 in the following ways. K will be countable and algebraically closed, 
and h will be the natural numbers. At the mth stage m points P,", . . ., P," will be 
constructed; there will be no analogue for qU.Conditions (i) to (vi) will be replaced 
by the requirements that whenever 15 i S m 

(i) P;" lies on no curve C,, k < m ;  
(ii) P," is a simple point on C,. 

As in the proof of Theorem 1.4a Dedekind domain D is obtained. Now let f and g be 
coprime elements of K[s ,  t ]  such that f /g is in D,  and lets be the largest integer such 
that C,  lies in the variety defined byf. Then sinceflg E D,  C, does not lie in the variety 
defined by g for any t 2 s. Now suppose that D arises from an algebraic extension E 
of degree n of a principal ideal ring 0 as in the theorem. Take a partition of the 
primes of D as in Lemma 2.2, and suppose that, in some subset T p  in the partition, 
s is the largest integer such that P," corresponds to a prime in T, for some i. Then 
it follows from the above remarks that the prime corresponding to P; is in Tpfor 
all j, 15j 5 s. But this implies s 5 n,  and hence a contradiction is achieved. 
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