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10. Almost Dedekind Domains 413
11. Infinite Integral Closure 416

Chapter 21. Structure of Overrings 425
1. Flatness of Overrings 426
2. Overrings of Prüfer Domains 428
3. Overrings of Dedekind Domains 430
4. Repleteness in Dedekind domains 434
5. Every commutative group is a class group 440

Chapter 22. Krull Domains 445
1. Families of Valuations 445
2. Essential Valuations 449
3. Integral Closure 452

Bibliography 455





Introduction

1. What is Commutative Algebra?

Commutative algebra is the study of commutative rings and attendant structures,
especially ideals and modules.

This is the only possible short answer I can think of, but it is not completely sat-
isfying. We might as well say that Hamlet, Prince of Denmark is about a fictional
royal family in late medieval Denmark and especially about the crown prince, whose
father (i.e., the King) has recently died and whose father’s brother has married the
prince’s mother (i.e., the Queen). Informative, but not the whole story!

2. Why study Commutative Algebra?

What are the intellectual reasons for studying any subject of pure mathematics? I
can think of two:

I. Commutative algebra is a necessary and/or useful prerequisite for the study
of other fields of mathematics in which we are interested.

II. We find commutative algebra to be intrinsically interesting and we want to
learn more. Perhaps we even wish to discover new results in this area.

Most beginning students of commutative algebra can relate to the first reason:
they need, or are told they need, to learn some commutative algebra for their study
of other subjects. If so, they are likely being told correctly: commutative algebra
has come to occupy a remarkably central role in modern pure mathematics, per-
haps second only to category theory in its ubiquitousness, but in a different way.
Category theory provides a common language and builds bridges between different
areas of mathematics: it is something like a circulatory system. Commutative al-
gebra provides core results and structures that other results and structures draw
upon are overlayed upon: it is something like a skeleton.

The branch of mathematics that draws most of all upon commutative algebra for
its structural integrity is algebraic geometry, the study of geometric properties of
manifolds and singular spaces which arise as solution sets to systems of polynomial
equations. There is a hard lesson here: in the 19th century algebraic geometry split
off from complex function theory and differential geometry as its own discipline
and then burgeoned dramatically at the turn of the century. But by 1920 or so
the practitioners of the subject had found their way into territory in which “purely
geometric” reasoning led to serious errors. In particular they had been making
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10 INTRODUCTION

arguments about how algebraic varieties behave generically, but they lacked the
technology to even give a precise meaning to the term. Thus the subject eventually
became invertebrate and began to collapse under its own weight. Then (starting
in about 1930) came a heroic shoring up process in which the foundations of the
subject were recast with commutative algebraic methods at the core. This was
done, several times over and in several different ways, by Zariski, Weil, Serre and
Grothendieck, among others. For the last 60 years it has been impossible to deeply
study algebraic geometry without knowing commutative algebra – a lot of commu-
tative algebra. (More than is contained in these notes!)

The other branch of mathematics that draws upon commutative algebra in an es-
sential way is algebraic number theory. One sees this from the beginning in that the
Fundamental Theorem of Arithmetic is the assertion that the ring Z is a unique
factorization domain (UFD), a basic commutative algebraic concept. Moreover
number theory was one of the historical sources of the subject. Notably the con-
cept of Dedekind domain came from Dedekind’s number-theoretic investigations.
At the student level, algebraic number theory does not embrace commutative al-
gebra as early or as thoroughly as algebraic geometry. This seems to me to be
a pedagogical mistake: although one can do a good amount of algebraic number
theory without explicit reliance on commutative algebra, this seems to come at the
expense of not properly explaining what is going on. A modicum of commutative
algebra greatly enriches the study of algebraic number theory: it clarifies it, gener-
alizes it and (I believe) makes it more interesting.

The interplay among number theory, algebraic geometry and commutative alge-
bra flows in all directions. What Grothendieck did in the 1960s (with important
contributions from Chevalley, Serre and others) was to create a single field of math-
ematics that encompassed commutative algebra, classical algebraic geometry and
algebraic number theory: the theory of schemes. As a result, most contemporary
number theorists are also partly commutative algebraists and partly algebraic ge-
ometers: we call this cosmopolitan take on the subject arithmetic geometry.

There are other areas of mathematics that draw upon commutative algebra in
important ways. To mention some which will show up in later in these notes:

 Differential topology: vector bundles on a compact base.
 General topology.
 Invariant theory.
 Order theory.

3. What distinguishes this text

The most straightforward raison d’être for a commutative algebra text would be to
provide a foundation for the subjects of algebraic geometry, arithmetic geometry
and algebraic number theory. The bad news is that this task – even, restricted to
providing foundations for the single, seminal text of Hartshorne [Ha] – is dauntingly
large. The good news is that this has nevertheless been achieved some time ago by
David Eisenbud (a leading contemporary expert on the interface of commutative
algebra and algebraic geometry) in his text [Ei]. This work is highly recommended.
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It is 797 pages long, so contains enough material for many courses in the subject.
It would be folly to try to improve upon Eisenbud’s work here, and I certainly have
not tried.

The other standard commutative algebra texts are those by Atiyah-Macdonald
[AM] and by Matsumura [M]. Any reader who is halfway serious in their study of
commutative algebra should have access to all of [AM], [M] and [Ei] and consult
them frequently. While the current text does not rely on them in the logical sense,
I am – at best – a part time commutative algebraist, and much of what I know
comes from these texts. (Reading only “derivative” sources is rarely a good idea.)
On the other hand, precisely because there are three standard excellent texts I have
at times allowed my choice of topics to be much less standard.

The topics covered in Atiyah-Macdonald’s text in particular have become a de
facto standard for a first course in commutative algebra. Here are the chapter
titles from [AM]: 1. Rings and Ideals 2. Modules 3. Rings and Modules of Frac-
tions 4. Primary Decomposition 5. Integral Dependence and Valuations 6. Chain
Conditions 7. Noetherian Rings 8. Artin Rings 9. Discrete Valuation Rings and
Dedekind Domains 10. Completions 11. Dimension Theory. The text is 126 pages,
and a substantial portion of the text is devoted to exercises, making [AM] one of
the most amenable to student study graduate level mathematics texts I have ever
seen. The exercises are especially attractive: some are easy, some are very chal-
lenging, and they treat both core topics and side attractions.

Much of the present text covers the material of the first nine chapters of [AM]
but with a more leisurely, detailed exposition. Many exercises in [AM] appear as
proved results here. To give a specific example, Boolean rings appear in Exercises
1.11, 1.23, 1.24, 1.25, 3.28 of [AM], in which in particular proofs of the Stone
Representation Theorem and Stone Duality Theorems are sketched. In this text
Chapter 9 is devoted to Boolean rings, including proofs of these two results. The
failure to cover completions and basic dimension theory in this text would be un-
forgivable were it not the case that [AM] covers it so nicely.

Let us also compare to [M]. Here we treat the material of the first 12 sections
of [M] except §8 (Completion and the Artin-Rees Lemma) as well as some material
from §20 (UFDs). This is less than one third of the material covered in [M].

4. More on the contents

As mentioned above, one of the distinguishing features of this text – and one of the
things which makes it much lengthier compared to the portions of [AM] and [M]
that cover the same material – is that we digress to include many “applications” to
other parts of mathematics. At one point I had the idea that every section of “core
material” should be followed by a section giving applications. This conceit was not
fully feasible, but there are still some entire sections devoted to applications (gen-
erally characterized by making contact with topics outside of commutative algebra
by their relative independence from the rest of the text):

 §2 on Galois connections.
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 §6 on vector bundles and Swan’s Theorem.
 §9 on Boolean rings, Boolean spaces and Stone Duality.

As for significant parts of sections, we have:

 §5.2 on rings of continuous functions.
 §5.3 on rings of holomorphic functions.
 §11.3 on the real Nullstellensatz.
 §11.4 on the combinatorial Nullstellensatz.
 §11.5 on the finite field Nullstellensatz.
 §11.6 on Terjanian’s Nullstellensatz.
 §13.6 on Hochster’s Theorem.
 §14.6 on invariant theory and the Shephard-Todd-Chevalley Theorem.
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CHAPTER 1

Commutative Rings

1. Fixing terminology

We are interested in studying properties of commutative rings with unity.

By a general algebra R, we mean a triple pR,�, �q where R is a set endowed
with a binary operation � : R�RÑ R – called addition – and a binary operation
� : R�RÑ R – called multiplication – satisfying the following:

(CG) pR,�q is a commutative group,

(D) For all a, b, c P R, pa� bq � c � a � c� b � c, a � pb� cq � a � b� a � c.

For at least fifty years, there has been agreement that in order for an algebra
to be a ring, it must satisfy the additional axiom of associativity of multiplication:

(AM) For all a, b, c P R, a � pb � cq � pa � bq � c.

A general algebra that satisfies (AM) will be called simply an algebra. A similar
convention that is prevalent in the literature is the use of the term nonassociative
algebra to mean what we have called a general algebra: i.e., a not necessarily
associative algebra.

A ring R is said to be with unity if there exists a multiplicative identity, i.e.,
an element e of R such that for all a P R we have e � a � a � e � a. If e and e1

are two such elements, then e � e � e1 � e1. In other words, if a unity exists, it is
unique, and we will denote it by 1.

A ring R is commutative if for all x, y P R, x � y � y � x.

In these notes we will be (almost) always working in the category of commuta-
tive rings with unity. In a sense which will shortly be made precise, this means
that the identity 1 is regarded as part of the structure of a ring and must therefore
be preserved by all homomorphisms.

Probably it would be more natural to study the class of possibly non-commutative
rings with unity, since, as we will see, many of the fundamental constructions of
rings give rise, in general, to non-commutative rings. But if the restriction to
commutative rings (with unity!) is an artifice, it is a very useful one, since two
of the most fundamental notions in the theory, that of ideal and module, become
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14 1. COMMUTATIVE RINGS

significantly different and more complicated in the non-commutative case. It is
nevertheless true that many individual results have simple analogues in the non-
commutative case. But it does not seem necessary to carry along the extra general-
ity of non-commutative rings; rather, when one is interested in the non-commutative
case, one can simply remark “Proposition X.Y holds for (left) R-modules over a
noncommutative ring R.”

Notation: Generally we shall abbreviate x � y to xy. Moreover, we usually do
not use different symbols to denote the operations of addition and multiplication
in different rings: it will be seen that this leads to simplicity rather than confusion.

For a ring R, we put

R :� Rzt0u
to be the set of nonzero elements of R. If for all x, y P R we have xy P R we
say that R is a domain. (The older, and still popular terminology is “integral
domain.” However, on the one hand the word integral does not have any indepen-
dent meaning here, and on the other hand later in this text we will define integral
extensions of rings, a distinct concept. So we will stick to just “domain.”)

Group of units: Let R be a ring with unity. An element x P R is said to be a
unit if there exists an element y such that xy � yx � 1.

convention on exercises: Throughout the exercises, a “ring” means a com-
mutative ring unless explicit mention is made to the contrary. Some but not all of
the results in the exercises still hold for non-commutative rings, and it is left to the
interested reader to explore this.

Exercise 1.1.

a) Show: if x is a unit, the element y with xy � yx � 1 is unique, denoted
x�1.

b) Show: if x is a unit, so is x�1.
c) Show that, for all x, y P R, xy is a unit ðñ x and y are both units.
d) Show: the units form a group, denoted R�, under multiplication.

Remark 1. For elements x, y in a non-commutative ring R, if x and y are units
so is xy, but the converse need not hold. (Thus Exercise 1.1c) is an instance of a
result in which commutativity is essential.) Nevertheless this is enough to deduce
that in any ring the units R� form a group...which is not necessarily commutative.

Example 1.1 (Zero ring). Our rings come with two distinguished elements, the
additive identity 0 and the multiplicative identity 1. Suppose that 0 � 1. Then for
x P R, x � 1 � x � 0 � x, whereas in any ring 0 � x � p0 � 0q � x � 0 � x � 0 � x, so
0 � x � 0. In other words, if 0 � 1, then this is the only element in the ring. It is
clear that for any one element set R � t0u, 0 � 0 � 0 � 0 � 0 endows R with the
structure of a ring. We call this ring the zero ring.

The zero ring exhibits some strange behavior, such that it must be explicitly ex-
cluded in many results. For instance, the zero element is a unit in the zero ring,
which is obviously not the case in any nonzero ring. A nonzero ring in which every
nonzero element is a unit is called a division ring. A commutative division ring
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is called a field.

Let R and S be rings. A homomorphism f : RÑ S is a function such that:

(HOM1) For all x, y P R, fpx� yq � fpxq � fpyq.
(HOM2) For all x, y P R, fpxyq � fpxqfpyq.
(HOM3) fp1q � 1.

We observe that (HOM1) implies fp0q � fp0 � 0q � fp0q � fp0q, so fp0q � 0.
Thus we do not need to explcitly include fp0q � 0 in the definition of a group
homomorphism. For the multiplicative identity however, this argument only shows
that if fp1q is a unit, then fp1q � 1. Therefore, if we did not require (HOM3), then
for instance the map f : R Ñ R, fpxq � 0 for all x, would be a homomorphism,
and we do not want this.

Exercise 1.2. Suppose R and S are rings, and let f : R Ñ S be a map
satisfying (HOM1) and (HOM2). Show that f is a homomorphism of rings (i.e.,
satisfies also fp1q � 1) if and only if fp1q P S�.
A homomorphism f : R Ñ S is an isomorphism if there exists a homomorphism
g : S Ñ R such that: for all x P R, gpfpxqq � x; and for all y P S, fpgpyqq � y.

Exercise 1.3. Let f : RÑ S be a homomorphism of rings. Show the following
are equivalent:

(i) f is a bijection.
(ii) f is an isomorphism.

In many algebra texts, an isomorphism of rings (or groups, etc.) is defined to be
a bijective homomorphism, but this gives the wrong idea of what an isomorphism
should be in other mathematical contexts (e.g. for topological spaces). Rather,
having defined the notion of a morphism of any kind, one defines isomorphism in
the way we have above.

Exercise 1.4.

a) Suppose R and S are both rings on a set containing exactly one element.
Show that there is a unique ring isomorphism from R to S. (This is a
triviality, but explains why are we able to speak of the zero ring, rather
than simply the zero ring associated to one element set. We will therefore
denote the zero ring just by 0.)

b) Show that any ring R admits a unique homomorphism to the zero ring.
One says that the zero ring is the final object in the category of rings.

Exercise 1.5. Show: for a not-necessarily-commutative-ring S there exists a
unique homomorphism from the ring Z of integers to S. (Thus Z is the initial
object in the category of not-necessarily-commutative-rings. It follows immediately
that it is also the initial object in the category of rings.)

A subring R of a ring S is a subset R of S such that

(SR1) 1 P R.
(SR2) For all r, s P R, r � s P R, r � s P R, and rs P R.
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Here (SR2) expresses that the subset R is an algebra under the operations of addi-
tion and multiplication defined on S. Working, as we are, with rings with unity, we
have to be a bit more careful: in the presence of (SR2) but not (SR1) it is possible
that R either does not have a multiplicative identity or, more subtly, that it has a
multiplicative identity which is not the element 1 P S.

An example of the first phenomenon is S � Z, R � 2Z. An example of the
second is S � Z, R � 0. A more interesting example is S � Z � Z – i.e., the set
of all ordered pairs px, yq, x, y P Z with px1, y1q � px2, y2q � px1 � x2, y1 � y2q,
px1, y1q � px2, y2q � px1x2, y1y2q – and R � tp0, yq | y P Zu. Then with the induced
addition and multiplication from S, R is isomorphic to the ring Z and the element
p0, 1q serves as a multiplicative identity on R which is different from the (always
unique) multiplicative identity 1S � p1, 1q, so according to our conventions R is not
a subring of S.

Notice that if R is a subring of S, the inclusion map R ãÑ S is an injective homo-
morphism of rings. Conversely, if ι : R ãÑ S is an injective ring homomorphism,
then R � ιpRq and ιpRq is a subring of S, so essentially we may use ι to view R
as a subring of S. The only proviso here is that this certainly depends on ι: in
general there may be other injective homomorphisms ι : R ãÑ S which realize R as
a different subset of S, hence a different subring.

2. Adjoining elements

Let ι : R ãÑ S be an injective ring homomorphism. As above, let us use ι to view
R as a subring of S; we also say that S is an extension ring of R and write S{R
for this (note: this has nothing to do with cosets or quotients!) We wish now to
consider rings T such that R � T � S; such a ring T might be called a subexten-
sion of S{R or an intermediate ring.

For ι : R ãÑ S as above, let X � txiu be a subset of S. Then the partially
ordered set of all subrings of S containing R and X is nonempty (since S is in it)
and contains a bottom element, given (as usual!) by taking the intersection of all
of its elements. We call this the ring obtained by adjoining the elements of X to
R. In the commutative case, we denote this ring by Rrtxius, for reasons that will
become more clear when we discuss polynomial rings in §5.4.

Example 1.2. Take R � Z, S � C. Then Zris � Zr?�1s is the smallest
subring of C containing (Z and)

?�1.
Example 1.3. Take R � Z, S � Q, let P be any set of prime numbers, and

put X � t 1pupPP . Then there is a subring ZP :� Zrt 1pupPP s of Q.

Exercise 1.6. Let P, Q be two sets of prime numbers. Show the following are
equivalent:

(i) ZP � ZQ.
(ii) ZP � ZQ.
(iii) P � Q.

Exercise 1.7. Show: every subring of Q is of the form ZP for some P.
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The adjunction process R ÞÑ RrXs is defined only relative to some extension ring
S of R, although the notation hides this. In fact, one of the recurrent themes of the
subject is the expression of the adjunction process in a way which depends only on
R itself. In the first example, this is achieved by identifying

?�1 with its minimal
polynomial t2 � 1 and replacing Zr?�1s with the quotient ring Zrts{pt2 � 1q. The
second example will eventually be turned around: we will be able to give an inde-
pendent definition of ZP as a certain “ring of fractions” formed from Z and then Q
will be the ring of fractions obtained by taking P to be the set of all prime numbers.

Nevertheless, the existence of such turnabouts should not cause us to forget that
adjunction is relative to an extension; indeed forgetting this can lead to serious
trouble. For instance, if 3

?
2 is the unique real cube root of 2 and ζ3 is a primitive

cube root of unity, then the three complex numbers with cube 2 are z1 � 3
?
2,

z2 � 3
?
2ζ3 and z3 � 3

?
2ζ23 . Each of the rings Qrz1s, Qrz2s, Qrz3s is isomorphic to

the ring Qrts{pt3 � 2q, so all three are isomorphic to each other. But they are not
the same ring: on the one hand Qrz1s is contained in R and the other two are not.
More seriously Qrz1, z2, z3s � Qr 3

?
2, ζ3s, which strictly contains any one of Qrz1s,

Qrz2s and Qrz3s.

3. Ideals and quotient rings

Let f : RÑ S be a homomorphism of rings, and put

I � f�1p0q � tx P R | fpxq � 0u.
In particular f is a homomorphism of commutative groups pR,�q Ñ pS,�q, I is a
subgroup of pR,�q. Moreover, it enjoys both of the following properties:

(LI) For all j P I and x P R, xj P I.
(RI) For all i P I and y P R, iy P I.

Indeed,

fpxjq � fpxqfpjq � fpxq � 0 � 0 � 0 � fpyq � fpiqfpyq � fpiyq.
In general, let R be a ring. An ideal is a subset I � R which is a subgroup of
pR,�q (in particular, 0 P I) and that satisfies (LI) and (RI).

Theorem 1.4. Let R be a ring, and let I be a subgroup of pR,�q.
The following are equivalent:

(i) The group I is an ideal of R.
(ii) There is a ring structure on the quotient group R{I making the additive

homomorphism RÑ R{I into a homomorphism of rings.

When these conditions hold, the ring structure on R{I in (ii) is unique, and R{I
is called the quotient of R by the ideal I.

Proof. Consider the group homomorphism q : R Ñ R{I. If we wish R{I to
be a ring in such a way so that q is a ring homomorphism, we need

px� Iqpy � Iq � qpxqqpyq � qpxyq � pxy � Iq.
This shows that there is only one possible ring structure, and the only question is
whether it is well-defined. For this we need that for all i, j P I, px� iqpy� jq�xy �
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xj � iy � ij P I. Evidently this holds for all x, y, i, j if and only if (LI) and (RI)
both hold. □

Remark: If R is commutative, then of course there is no difference between (LI) and
(RI). For a non-commutative ring R, an additive subgroup I satisfying condition
(LI) but not necessarily (RI) (resp. (RI) but not necessarily (LI)) is called a left
ideal (resp. a right ideal). Often one says two-sided ideal to emphasize that
(LI) and (RI) both hold. Much of the additional complexity of the non-commutative
theory comes from the need to distinguish between left, right and two-sided ideals.

We do not wish to discuss such complexities here, so henceforth in this section
we assume (except in exercises, when indicated) that our rings are commutative.

Example 1.5. In R � Z, for any integer n, consider the subset pnq � nZ �
tnx | x P Zu of all multiples of n. This is easily seen to be an ideal.1 The quotient
Z{nZ is the ring of integers modulo n.

An ideal I � R is called proper.

Exercise 1.8. Let R be a ring and I an ideal of R. Show: the following are
equivalent:

(i) I XR� � H.
(ii) I � R.

Exercise 1.9.

a) Let R be a commutative ring. Show that R is a field if and only if R has
exactly two ideals, 0 and R.

b) Let R be a not necessarily commutative ring. Show the following are
equivalent:
(i) The only one-sided ideals of R are 0 and R.
(ii) R is a division ring.

c) For a field k and an integer n ¡ 1, show that the matrix ring Mnpkq has
no two-sided ideals but is not a division ring.

Exercise 1.10. Some contemporary undergraduate algebra texts define the fi-
nite ring Z{nZ in a different and apparently simpler way: put Zn � t0, 1, . . . , n�1u.
For any integer x, there is a unique integer k such that x�kn P Zn. Define a func-
tion mod n : ZÑ Zn by mod npxq :� x� kn. We then define � and � on Zn by
x� y :� mod npx� yq, xy � mod npxyq. Thus we have avoided any mention of
ideals, equivalence classes, quotients, etc. Is this actually simpler? (Hint: how do
we know that Zn satisfies the ring axioms?)

For any commutative ring R and any element y P R, the subset pyq � yR � txy | x P
Ru is an ideal of R. Such ideals are called principal. A principal ideal ring is
a commutative ring in which each ideal is principal.

Exercise 1.11.

a) The intersection of any family of (left, right or two-sided) ideals in a not-
necessarily-commutative-ring is a (left, right or two-sided) ideal.

1If this is not known and/or obvious to the reader, these notes will probably be too brisk.
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b) Let tIiu be a set of ideals in the commutative ring R. Show that
�
i Ii has

the following property: for any ideal J of R such that J � Ii for all i,
J � �i I.

Let R be a ring and S a subset of R. There is then a smallest ideal of R containing
S, namely

�
Ii, where Ii are all the ideals of R containing S. We call this the

ideal generated by S. This is a “top-down” description; as usual, there is a
complementary “bottom-up” description that is not quite as clean but often more
useful. Namely, put

xSy :� t
¸
risi | ri P R, si P Su

i.e., the set of all finite sums of an element of R times an element of S. In practice,
when S � tx1, . . . , xnu is finite, we write xx1, . . . , xny instead of xtx1, . . . , xnuy.

Proposition 1.6. For a subset S of a commutative ring R, the set xSy is an
ideal, the intersection of all ideals containing S.

Exercise 1.12. Prove Proposition 1.6.

When S is a subset of R such that I � xSy, we say S is a set of generators for
I. In general the same ideal will have many (most often infinitely many) sets of
generators. Just above we defined for each x P R the principal ideal pxq. This is
also the ideal xx rangle, i.e., the least ideal of R that contains x. In any ring, the
zero ideal 0 � x0y and the entire ring R � x1y are principal. For x P R, we tend to
denote the principal ideal generated by x as either Rx or pxq rather than xxy.

Exercise 1.13. Let R be a ring. For elements x, y P R we say that x and y
are associates if there is a unit u P R� such that y � ux.

a) Show: being associates is an equivalence relation on R.
b) Show: if x and y are associates, then pxq � pyq.
c) Show: if R is a domain and for x, y P R we have pxq � pyq, then x and y

are associates.
d) Find a ring R and elements x and y such that pxq � pyq, but x and y are

not associates.
(Suggestions: take R � CpR,Rq to be the the ring of continuous functions
f : R Ñ R under pointwise addition and multiplication. One can take f1
and f2 to be piecewise linear functions with |f1| � |f2| and such that each
vanishes on r�1, 1s.)

An ideal I is finitely generated if...it admits a finite set of generators.2

Stop and think for a moment: do you know an example of an ideal that is not
finitely generated? You may well find that you do not. It turns out that there is a
very large class of rings – including most or all of the rings you are likely to meet
in undergraduate algebra – for which every ideal is finitely generated. A ring R
in which every ideal is finitely generated is called Noetherian. This is probably
the single most important class of rings, as we will come to appreciate slowly but
surely over the course of these notes.

Exercise 1.14. Let R be a ring.

2Well, obviously. Nevertheless this definition is so critically important that it would have
been a disservice to omit it.
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a) For ideals I and J of R, define I � J � ti� j | i P I, j P Ju. Show that
I � J � xI Y Jy is the smallest ideal containing both I and J .

b) Extend part a) to any finite number of ideals I1, . . . , In.
c) Suppose tIiu is a set of ideals of I. Give an explicit description of the

ideal xIiy.
The preceding considerations show that the collection of all ideals of a commutative
ring R, partially ordered by inclusion, form a complete lattice.

If I is an ideal in the ring R, then there is a correspondence between ideals J
of R containing I and ideals of the quotient ring R{I, exactly as in the case of a
normal subgroup of a group:

Theorem 1.7. (Correspondence Theorem) Let I be an ideal of a ring R, and
denote the quotient map R Ñ R{I by q. Let IpRq be the lattice of ideals of R,
IIpRq be the sublattice of ideals containing I and IpR{Iq the lattice of ideals of the
quotient ring R{I. Define maps

Φ : IpRq Ñ IpR{Iq, J ÞÑ pI � Jq{I,
Ψ : IpR{Iq Ñ IpRq, J ÞÑ q�1pJq.

Then Ψ �ΦpJq � I �J and Φ �ΨpJq � J . In particular Ψ induces an isomorphism
of lattices from IpR{Iq to IIpRq.

Proof. For all the abstraction, the proof is almost trivial. For J P IpRq, we
check that ΨpΦpJqq � ΨpJ � I pmod Iqq � tx P R | x� I P J � Iu � J � I P IIpRq.
Similarly, for J P IpR{Iq, we have ΦpΨpJqq � J . □

Remark: In fancier language, the pair pΦ,Ψq give an isotone Galois connection
between the partially ordered sets IpRq and IpR{Iq. The associated closure oper-
ator Φ � Ψ on IpR{Iq is the identity, whereas the closure operator Ψ � Φ on IpRq
carries each ideal J to the smallest ideal containing both J and I.3

The Correspondence Theorem will be our constant companion. As is common,
we will often use the map Ψ to identify the sets IpR{Iq and IIpRq.

Exercise 1.15. Let I be an ideal of R and tJiu be a set of ideals of R. Show:
Φ preserves suprema and Ψ preserves infima:

ΦpxJiyq � xΦpJiqy
and

Ψp
£
Jiq �

£
ΨpJiq.

4. The monoid of ideals of R

Let I and J be ideals of the ring R. The product ideal IJ is the least ideal
containing all elements of the form xy for x P I and y P J . It is easy to see that

IJ � t
¸
xiyi | xi P I, yi P Ju

is precisely the set of all finite sums of such products. Recall that we have written
IpRq for the lattice of all ideals of R. Then pI, Jq ÞÑ IJ gives a binary operation
on IpRq, the ideal product.

3This point of view will be explored in more detail in §2.
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Exercise 1.16. Show: IpRq under the ideal product is a commutative monoid,
with identity element R and absorbing element the p0q ideal of R.4
If you are given a commutative monoid M , then invariably the property you are
hoping it has is cancellation: for all x, y, z P M , xz � yz ùñ x � y.5 For
example, if R is a ring, then the set R of nonzero elements of R is cancellative if
and only if R is a domain. In pR, �q 0 is an absorbing element, so we remove it to
get a hope of cancellativity.

Exercise 1.17.

a) Let M be a cancellative monoid of cardinality greater than one. Show: M
does not have any absorbing elements.

b) Let R be a ring that is not the zero ring. Show: the monoid IpRq is not
cancellative.

In light of the previous exercise, for a domain R we define IpRq to be the monoid
of nonzero ideals of R under multiplication.

Warning: Just because R is a domain, IpRq need not be cancellative!

Exercise 1.18. Let R � Zr?�3s, and let p2 � x1�
?�3, 1�?�3y.

a) Show: #R{p2q � 4 and R{p2 � Z{2Z.
b) Show: p22 � p2 � p2q.
c) Conclude: IpRq is not cancellative.

Exercise 1.19. Let R be a PID. Show: IpRq is cancellative.

Exercise 1.20. Show: for a commutative monoid M , the following are equiv-
alent:

(i) The monoid M is cancellative.
(ii) There is a commutative group G and an injective monoid homomorphism

ι :M ãÑ G.

Exercise 1.21. Let M be a commutative monoid. A group completion of
M consists of a commutative group GpMq and a monoid homomorphism c : M Ñ
GpMq that is universal for monoid homomorphisms into a commutative group.
That is, for any commutative group G and monoid homomorphism f : M Ñ G,
there is a unique homomorphism of groups F : GpMq Ñ G such that f � F � c.

a) Show: any two group completions are isomorphic.
b) Show: any commutative monoid has a group completion.
c) Show: a commutative monoid injects into its group completion if and only

if it is cancellative.

5. Pushing and pulling ideals

Let f : R Ñ S be a homomorphism of commutative rings. We can use f to trans-
port ideals from R to S and also to transport ideals from S to R.

More precisely, for I an ideal of R, consider fpIq as a subset of S.

Exercise 1.22.

4An element z of a monoid M is called absorbing if for all x P M , zx � xz � z.
5Well, obviously this is an exaggeration, but you would be surprised how often it is true.
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a) Give an example to show that fpIq need not be an ideal of S.
b) Suppose f is surjective. Show: fpIq is an ideal of S.

Nevertheless we can consider the ideal it generates: we define

f�pIq � xfpIqy,
and we call f�pIq the pushforward of I to S.

Similarly, let J be an ideal of S, and consider its complete preimage in R, i.e.,
f�1pJq � tx P R | fpxq P Ju. As you are probably already aware, preimages have
much nicer algebraic properties than direct images, and indeed f�1pJq is necessar-
ily an ideal of R. We denote it by f�pJq and call it the pullback of J to R.

Suppose that I is an ideal of R, S � R{I and f : R Ñ R{I is the quotient
map. In this case, pushforwards and pullbacks were studied in detail in Theorem
1.7. In this case f� : IpSq ãÑ IpRq is an injection, which allows us to view the
lattice of ideals of S as a sublattice of the lattice of ideals of R. Moreover we have
a push-pull formula: for all ideals J of R,

f�f�J � J � I
and also a pull-push formula: for all ideals J of R{I,

f�f�J � J.

These formulas are extremely useful at all points in the study of ring theory. More
generally, whenever one meets a homomorphism f : R Ñ S of rings (or better, a
certain class of homomorphisms), it is fruitful to ask about properties of f� and
f�: in particular, is f� necessarily injective, or surjective? Can we identify the
composite maps f�f� and/or f�f�?

In these notes, the most satisfying and important answers will come for local-
izations and integral extensions.

6. Maximal and prime ideals

An ideal m of R is maximal if it is proper and there is no proper ideal of R strictly
containing m. An ideal p of R is prime if for all x, y P R, xy P p implies x P p or
y P p or both.

Exercise 1.23. For an ideal I in a ring R, show: the following are equivalent:

(i) The ideal I is maximal.
(ii) The ring R{I is a field.

Exercise 1.24. For an ideal I in a ring R, show: the following are equivalent:

(i) The ideal I is prime.
(ii) The ring R{p is a domain.

Exercise 1.25. Show: maximal ideals are prime.

Exercise 1.26. Let f : RÑ S be a homomorphism of rings.

a) Let I be a prime ideal of R. Show: f�I need not be a prime ideal of S.
b) Let J be a prime ideal of S. Show: f�J is a prime ideal of R.
c) Let J be a maximal ideal of S. Show: f�J need not be maximal in R.
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If I and J are ideals of a ring R, we define the colon ideal6

pI : Jq � tx P R | xJ � Iu.
Exercise 1.27. Show: pI : Jq is indeed an ideal of R.

7. Products of rings

Let R1 and R2 be rngs. The Cartesian product R1�R2 has the structure of a ring
with “componentwise” addition and multiplication:

pr1, r2q � ps1, s2q :� pr1 � s1, r2 � s2q.
pr1, r2q � ps1, s2q :� pr1s1, r2s2q.

Exercise 1.28.

a) Show: R1�R2 is commutative if and only if both R1 and R2 are commu-
tative.

b) Show: R1�R2 has a multiplciative identity if and only if both R1 and R2

do, in which case 1 :� p1, e1q is the identity of R1 �R2.

As for any Cartesian product, R1 �R2 comes equipped with its projections

π1 : R1 �R2 Ñ R1, | pr1, r2q ÞÑ r1

π2 : R1 �R2 Ñ R2, | pr1, r2q ÞÑ r2.

The Cartesian product X1 �X2 of sets X1 and X2 satisfies the following universal
property: for any set Z and any maps f1 : Z Ñ X1, f2 : Z Ñ X2, there exists a
unique map f : Z Ñ X1 �X2 such that f1 � π1 � f , f2 � π2 � f . The Cartesian
product R1�R2 satisfies the analogous universal property in the category of rings.

Exercise 1.29. For rings R1, R2, S and ring homomorphisms fi : S Ñ Ri,
there exists a unique homomorphism of rings f : S Ñ R1�R2 such that fi � πi �f .
So the Cartesian product of R1 and R2 is also the product in the categorical sense.

As with sets, we can equally well take the Cartesian product over an arbitrary
indexed family of rings: if tRiuiPI is a family of rings, their Cartesian product±
iPI Ri becomes a ring under coordinatewise addition and multiplication, and sat-

isfies the universal property of the product. Details are left to the reader.

It is natural to ask whether the category of rings has a direct sum as well. In
other words, given rings R1 and R2 we are looking for a ring R together with
ring homomorphisms ιi : Ri Ñ R such that for any ring S and homomorphisms
fi : Ri Ñ S, there exists a unique homomorphism f : RÑ S such that fi � f � ιi.
We recall that in the category of commutative groups, the Cartesian product group
G1 � G2 also the categorical direct sum, with ι1 : g ÞÑ pg, 0q and ι2 : g ÞÑ p0, gq.
Since each ring has in particular the structure of a commutative group, it is nat-
ural to wonder whether the same might hold true for rings. However, the map
ι1 : R1 Ñ R1 � R2 does not preserve the multiplicative identity (unless R2 � 0),
so is not a homomorphism of rings when identities are present. Moreover, even

6The terminology is unpleasant and is generally avoided as much as possible. One should
think of pI : Jq as being something like the “ideal quotient” I{J (which of course has no formal

meaning). Its uses will gradually become clear.
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in the category of algebras, in order to satisfy the universal property on the un-
derlying additive subgroups, the homomorphism f is uniquely determined to be
pr1, r2q ÞÑ f1pr1q � f2pr2q, and it is easily checked that this generally does not
preserve the product.

Remark 2. The category of rings does have categorical direct sums: for rings
R1 and R2, the universal property of the direct sum is satisfied by the tensor product
R1 bZ R2.

Now returning to the case of commutative rings, let us consider the ideal structure
of the product R � R1 �R2. If I1 is an ideal of R1, then I1 � t0u � tpi, 0q | i P Iu
is an ideal of the product; moreover the quotient R{pI1 � t0u is isomorphic to
R1{I1 � R2. Similarly, if I2 is an ideal, t0u � I2 is an ideal of R2. Finally, if I1 is
an ideal of R1 and I2 is an ideal of R2, then

I1 � I2 :� tpi1, i2q |i1 P I1, i2 P I2u
is an ideal of R. In fact we have already found all the ideals of the product ring:

Proposition 1.8. Let R1 and R2 be commutative rings, and let I be an ideal of
R :� R1 �R2. For i � 1, 2, put Ii :� πipIq. Then for i � 1, 2 we have that πipIq is
an ideal of Ri and I � π1pIq�π2pIq. Then I � I1�I2 � tpi1, i2q | i1 P I1, i2 P I2u.

Proof. Since πi : R1 � R2 Ñ Ri is a surjective ring homomorphism, by
Exercise 1.22b) we have that πipIq is an ideal of Ri, and thus π1pIq � π2pIq is an
ideal of R1 �R2.

For any subset S of a Cartesian product X1 �X2 we have S � π1pSq � π2pSq,
so certainly

I � π1pIq � π2pIq.
The reverse inclusion certainly does not hold in general for subsets of Cartesian
products, but it does hold here: if x P π1pIq then there is px, yq P I and then
px, 0q � px, yq � p1, 0q P I. Similarly we get that if y P π2pIq then p0, yq P I, so
px, yq � px, 0q � p0, yq P I � I � I. □

Another way to express the result is that, corresponding to a decomposition R �
R1 �R2, we get a decomposition IpRq � IpR1q � IpR2q.

Let us call a commutative ring R disconnected if there exists nonzero rings
R1, R2 such that R � R1 � R2, and connected otherwise.7 If R is discon-
nected, then choosing such an isomorphism φ, we may put I1 � φ�1pR1 � t0uq
and I2 � φ�1pt0u�R2q. Evidently I1 and I2 are ideals of R such that I1XI2 � t0u
and I1 � I2 � R. Conversely, if in a ring R we can find a pair of ideals I1, I2 with
these properties then it will follow from the Chinese Remainder Theorem (Theo-
rem 4.22) that the natural map Φ : R Ñ R{I2 � R{I1, r ÞÑ pr � I2, r � I1q is an
isomorphism.

Now Φ restricted to I1 induces an isomorphism of groups onto R{I2 (and similarly
with the roles of I1 and I2 reversed). We therefore have a distinguished element
of I1, e1 :� Φ�1p1q. This element e1 is an identity for the multiplication on R re-
stricted to I1; in particular e21 � e1; such an element is called an idempotent. In

7We will see later that there is a topological space SpecR associated to every ring, and SpecR
is a disconnected topological space if and only if R can be written as a nontrivial product of rings
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any ring the elements 0 and 1 are idempotents, called trivial; since e1 � Φ�1p1, 0q –
and not the preimage of p0, 0q or of p1, 1q – e1 is a nontrivial idempotent. Thus
a nontrivial decomposition of a ring implies the presence of nontrivial idempotents.

The converse is also true:

Proposition 1.9. Suppose R is a ring and e is a nontrivial idempotent element
of R: e2 � e but e � 0, 1. Put I1 � Re and I2 � Rp1 � eq. Then I1 and I2 are
ideals of R such that I1 X I2 � 0 and R � I1 � I2, and therefore R � R{I1 �R{I2
is a nontrivial decomposition of R.

Exercise 1.30. Prove Proposition 1.9.

Exercise 1.31. Generalize the preceding discussion to decompositions into a
finite number of factors: R � R1 � � � � �Rn.

8. A cheatsheet

Let R be a commutative ring. Here are some terms that we will analyze in lov-
ing detail later, but would like to be able to mention in passing whenever necessary.

R is a domain if xy � 0 ùñ x � 0 or y � 0.

An ideal p of R is prime if the quotient ring R{p is a domain. Equivalently, p
is an ideal such that xy P p ùñ x P p or y P p.

An ideal m of R is maximal if it is proper – i.e., not R itself – and not strictly
contained in any larger proper ideal. Equivalently, m is an ideal such that the quo-
tient ring R{m is a field.

R is Noetherian if it satisfies any of the following equivalent conditions:8

(i) For any nonempty set S of ideals of R, there exists I P S that is not
properly contained in any J P S.

(ii) There is no infinite sequence of ideals I1 � I2 � . . . in R.
(iii) Every ideal of R is finitely generated.

R is Artinian (or sometimes, an Artin ring) if the partially ordered set of ideals
of R satisfies the descending chain condition: there is no infinite sequence of ideals
I1 � I2 � . . ..

Let R � S be an inclusion of rings. We say that s P S is integral over R if
there are a0, . . . , an�1 P R such that

sn � an�1s
n�1 � . . .� a1s� a0 � 0.

We say that S is integral over R if every element of S is integral over R. This is
the appropriate generalization to rings of the notion of an algebraic field extension.
We will study integral elements and extensions, um, extensively in § 14, but there
is one easy result that we will need earlier, so we give it now.

Proposition 1.10. Let R � S be an integral extension of domains. If S is a
field then R is a field.

8See Theorem 8.24 for a proof of their equivalence.
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Proof. Let α P R. Then α�1 is integral over R: there are ai P R such that

α�n � an�1α
�n�1 � . . .� a1α�1 � a0.

Multiplying through by αn�1 gives

α�1 � an�1 � an�2α� . . .� a1αn�2 � a0αn�1 P R. □



CHAPTER 2

Galois Connections

1. The basic formalism

Let pX,¤q be a partially ordered set. We denote by X_ the order dual of X: it
has the same underlying set as X but the inverse order relation: x ¨ y ðñ y ¤ x.

Let pX,¤q and pY,¤q be partially ordered sets. A map f : X Ñ Y is isotone
(or order-preserving) if for all x1, x2 P X, x1 ¤ x2 ùñ fpx1q ¤ fpx2q; f is
antitone (or order-reversing) if for all x1, x2 P X, x1 ¤ x2 ùñ fpx1q ¥ fpx2q.

Exercise 2.1. Let X,Y, Z be partially ordered sets, and let f : X Ñ Y , g :
Y Ñ Z be functions. Show:

a) If f and g are isotone, then g � f is isotone.
b) If f and g are antitone, then g � f is isotone.
c) If one of f and g is isotone and the other is antitone, then g�f is antitone.

Let pX,¤q and pY,¤q be partially ordered sets. An antitone Galois connection
between X and Y is a pair of maps Φ : X Ñ Y and Ψ : Y Ñ X such that:

(GC1) Φ and Ψ are both antitone maps, and
(GC2) For all x P X and all y P Y , x ¤ Ψpyq ðñ y ¤ Φpxq.

There is a pleasant symmetry in the definition: if pΦ,Ψq is a Galois connection
between X and Y , then pΨ,Φq is a Galois connection between Y and X.

Exercise 2.2. Let pX,¤q be a partially ordered set. Let f : X Ñ X be an
antitone map such that

@x P X, x ¤ fpfpxqq.
Show: pf, fq is a Galois connection between X and X.

If pX,¤q is a partially ordered set, then a mapping f : X Ñ X is called a closure
operator if it satisfies all of the following properties:

(C1) For all x P X, x ¤ fpxq.
(C2) For all x1, x2 P X, x1 ¤ x2 ùñ fpx1q ¤ fpx2q.
(C3) For all x P X, fpfpxqq � fpxq.

Proposition 2.1. The mapping Ψ �Φ is a closure operator on pX,¤q and the
mapping Φ �Ψ is a closure operator on pY,¤q.

Proof. By symmetry, it is enough to consider the mapping x ÞÑ ΨpΦpxqq on
X. If x1 ¤ x2, then since both Φ and Ψ are antitone, we have Φpx1q ¥ Φpx2q and
thus ΨpΦpx1qq ¤ ΨpΦpx1qq: (C2).

27
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For x P X, Φpxq ¥ Φpxq, and by (GC2) this implies x ¤ ΨpΦpxqq: (C1).
Finally, for x P X, applying (C1) to the element ΨpΦpxqq of X gives

ΨpΦpxqq ¤ ΨpΦpΨpΦpxqqqq.
Conversely, we have

ΨpΦpxqq ¤ ΨpΦpxqq,
so by (GC2)

ΦpΨpΦpxqq ¥ Φpxq,
and applying the order-reversing map Ψ gives

ΨpΦpΨpΦpxqqqq ¤ ΨpΦpxqq.
Thus

ΨpΦpxqq � ΨpΦpΨpΦpxqqq.
□

Corollary 2.2. Φ and Ψ satisfy the following tridempotence properties:

a) For all x P X, ΦΨΦx � Φx.
b) For all y P X, ΨΦΨy � Ψy.

Proof. By symmetry, it suffices to prove a). Since Φ�Ψ is a closure operator,
ΦΨΦx ¥ Φx. Moreover, since Ψ �Φ is a closure operator, ΨΦx ¥ x, and since Φ is
antitone, ΦΨΦx ¤ Φx. So ΦΨΦx � Φx. □

Proposition 2.3. Let pΦ,Ψq be a Galois connection between partially ordered
sets X and Y . Let X � ΨpΦpXqq and Y � ΨpΦpY qq. Then:

a) X and Y are precisely the subsets of closed elements of X and Y respec-
tively.

b) We have ΦpXq � Y and ΨpY q � X.
c) Φ : X Ñ Y and Ψ : Y Ñ X are mutually inverse bijections.

Proof. a) If x � ΨpΦpxqq then x P X. Conversely, if x P X, then x � ΨpΦpx1qq
for some x1 P X, so

ΨpΦpxqqq � ΨpΦpΨpΦpx1qqqq � ΨpΦpx1qq � x,

so X is closed.
b) This is just a reformulation of Corollary 2.2.
c) If x P X and y P Y , then ΨpΦpxqq � x and ΨpΦpyqq � y. □

We speak of the mutually inverse antitone bijections Φ : X Ñ Y and Ψ : Y Ñ X
as the Galois correspondence induced by the Galois connection pΦ,Ψq.

Example 2.4. Let K{F be a field extension, and G a subgroup of AutpK{F q.
Then there is a Galois connection between the set of subextensions of K{F and the
set of subgroups of G, given by

Φ : LÑ GL � tσ P G | σx � x @x P Lu,
Ψ : H Ñ KH � tx P K | σx � x @σ P Hu.

Having established the basic results, we will now generally abbreviate the closure
operators Ψ � Φ and Φ �Ψ to x ÞÑ x and y ÞÑ y.
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2. Lattice properties

Recall that a partially ordered set X is a lattice if for all x1, x2 P X, there is a
greatest lower bound x1^x2 and a least upper bound x1_x2. A partially ordered
set is a complete lattice if for every subset A of X, the greatest lower bound

�
A

and the least upper bound
�
A both exist.

Lemma 2.5. Let pX,Y,Φ,Ψq be a Galois connection.

a) If X and Y are both lattices, then for all x1, x2 P X, we have

Φpx1 _ x2q � Φpx1q ^ Φpx2q.
b) If X and Y are both complete lattices, then for all subsets A � X, we

have

Φp
ª

Aq �
©

ΦpAq.

Proof. We will prove part a) and leave the proof of part b) as an exercise.
For y P Y , we have y ¤ Φpx1 _ x2q if only if x1 _ x2 ¤ Ψpyq if and only

if xi ¤ Ψpyq for i � 1, 2 if and only if y ¤ Φpxiq for i � 1, 2 if and only if
y ¤ Φpx1q ^ Φpx2q. □

Exercise 2.3. Prove Lemma 2.5b).

Unfortunately, in a Galois connection pX,Y,Φ,Ψq in which X and Y are lattices,
we need not have

@x1, x2 P X, Φpx1 ^ x2q � Φpx1q _ Φpx2q,
even if X and Y are complete lattices. The following counterexample was commu-
nicated anonymously [msegc].

Example 2.6. We consider a partially ordered set X with five elements, called
0, a, b, c, 1. We define the partial ordering as follows: 0 is the bottom element (i.e.,
less than every other element) and 1 is the top element (i.e., greater than every
other element); the ordering restricted to ta, b, cu is given by a, b ¤ c. This is a
complete lattice. We define f : X Ñ X by

fp0q � 1, fpaq � b, fpbq � a, fpcq � fp1q � 0.

Using Exercise 2.2 it is almost immediate to see that pf, fq is a Galois connection
from X to X. However, we have

fpaq _ fpbq � b_ a � c   1 � fp0q � fpa^ bq.
Complete lattices also intervene in this subject in the following way.

Proposition 2.7. Let A be a set and let X � p2A,�q be the power set of A,
partially ordered by inclusion. Let c : X Ñ X be a closure operator. Then the
collection cpXq of closed subsets of A forms a complete lattice, with

�
S � �BPS B

and
�
S � cp�BPS Bq.

Exercise 2.4. Prove Proposition 2.7.
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3. Examples of Antitone Galois Connections

Example 2.8. (Indiscretion) Let pX,¤q, pY,¤q be partially ordered sets with
top elements TX , TY . Define Φ : X Ñ Y , x ÞÑ TY and Ψ : Y Ñ X, y ÞÑ TX . Then
pX,Y,Φ,Ψq is a Galois connection. The induced closure operators are “indiscrete”:
they send every element of X (resp. Y ) to the top element TX (resp. TY ).

Example 2.9. (Perfection) Let pX,¤q and pY,¤q be anti-isomorphic par-
tially ordered sets, i.e., suppose that there exists a bijection Φ : X Ñ Y with
x1 ¤ x2 ðñ Φpx2q ¤ Φpx1q. Then the inverse map Ψ : Y Ñ X satisfies
y1 ¤ y2 ðñ Ψpy2q ¤ Ψpy1q. Moreover, for x P X, y P Y , x ¤ Ψpyq ðñ y �
ΨpΦpyqq ¤ Φpxq, so pX,Y,Φ,Ψq is a Galois connection. Then X � X and Y � Y .
As we saw above, the converse also holds: if X � X and Y � Y then Φ and Ψ are
mutually inverse bijections. Such a Galois connection is called perfect.1

Example 2.10. (Trope-Namer) Let L{K be a field extension. Let X be the set
of all subextensions M of L{K, i.e., fields usch that K �M � L, partially ordered
under inclusion. Let Y be the set of all subgroups of AutpL{Kq, partially ordered
under inclusion. Define Φ : X Ñ Y and Ψ : Y Ñ X as follows:

ΦpLq :� AutpM{Lq and ΨpHq :� LH :� tx P L | @σ P H,σpxq � xu.
It is immediate that Φ and Ψ are antitone. For all M P X and H P Y we have

M ¤ ΨpHq ðñ M � LH

ðñ @x PM, @σ P H,σpxq � x ðñ
H � AutpL{Mq ðñ ΦpMq ¤ H.

So far we have introduced the formalism of Galois theory but not the content. The
content is the assertion that if L{K is normal, separable and of finite degree, then
the Galois connection pΦ,Ψq is perfect. By the way, the converse of this is also
true: if for a field extension L{K the Galois connection pΦ,Ψq is perfect, then L{K
is normal, separable and of finite degree. We leave this to the interested reader as
a nontrivial field-theoretic exercise.

The remaining examples of this section make use of some important ring-
theoretic concepts that will be treated in more detail later on in the text.

Example 2.11. Let R be a commutative ring. Let X be the set of all ideals of
R and Y � 2SpecR the power set of the set of prime ideals of R. For I P X, put

ΦpIq � V pIq � tp P SpecR | I � pu.
For V P Y , put

ΨpV q �
£
pPV

p.

1There is a small paradox here: in purely order-theoretic terms this example is not any

more interesting than the previous one. But in practice given two partially ordered sets it is
infinitely more useful to have a pair of mutually inverse antitone maps running between them than

the trivial operators of the previous example. The paradox already shows up in the distinction

between indiscrete spaces and discrete spaces: although neither topology looks more interesting
than the other, the discrete topology is natural and useful (as we shall see...) whereas the indiscrete

topology entirely deserves its alternate name “trivial”.
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The maps Φ and Ψ are antitone, and for I P X , V P Y,

(1) I � ΨpV q ðñ I �
£
pPV

p ðñ @p P V, I � p ðñ V � ΦpIq,

so pΦ,Ψq is a Galois connection. Then X consists of all ideals which can be written
as the intersection of a family of prime ideals. For all I P X,

I �
£
p�I

p � rad I � tx P R |Dn P Z� xn P Iu;

that is, the induced closure operation on X takes any ideal to its radical rpIq. In
particular X consists precisely of the radical ideals.

It is not so easy to describe the closure operator on Y or even the subset Y
explicitly, but there is still something nice to say. Since:

(2) V pp0qq � SpecR, V pRq � ∅,

(3) V pI1q Y V pI2q � V pI1I2q,

(4)
£
αPA

V pIαq � V p
¸
αPA

Iαq,

the elements of Y are the closed subsets for a topology, the Zariski topology.

Example 2.12. Take R and X as above, but now let S be any set of ideals of
R and put Y � 2S. For I P X, put

ΦpIq � V pIq � ts P S | I � su
and for V P Y, put

ΨpV q �
£
sPV

s.

Once again Φ and Ψ are antitone maps and (1) holds, so we get a Galois connection.
The associated closure operation on X is

I ÞÑ I �
£
sPS

s.

The relation (4) holds for any S, and the relation (2) holds so long as R R S. The
verification of (3) for R � SpecR uses the fact that a prime ideal p contains I1I2
if and only if it contains I1 or I2, so as long as S � SpecS, Y � tV pIq | I P Xu
are the closed subsets for a topology on S. This is indeed the topology S inherits as
a subspace of SpecR, so we call it the (relative) Zariski topology.

Various particular choices of S � SpecR have been considered. Of these the
most important is certainly S � MaxSpecR, the set of all maximal ideals of R. In
this case, X consists of all ideals that can be written as the intersection of some
family of maximal ideals. Such ideals are necessarily radical, but in a general ring
not all radical ideals are obtained in this way. Observe that in a general ring every
radical ideal is the intersection of the maximal ideals containing it if and only if
every prime ideal is the intersection of maximal ideals containing it; a ring satisfying
these equivalent conditions is called a Jacobson ring.
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Example 2.13. Let k be a field and put R � krt1, . . . , tns. Then R is a Jacob-
son ring (Proposition 11.3).

Suppose that k is algebraically closed. Then Zariski’s Lemma assumes a stronger
form: for all m P MaxSpecR, the k-algebra R{m is equal to k. Let q : RÑ R{m � k
be the quotient map, and for 1 ¤ i ¤ n, put xi � qptiq and x � px1, . . . , xnq. It
follows that m contains the ideal mx � xt1�x1, . . . , tn�xny, and since mx is maxi-
mal, m � mx. This gives the following description of the Galois connection between
the set X of ideals of R and Y � 2MaxSpecR, Hilbert’s Nullstellensatz:

(i) Maximal ideals of R are canonically in bijection with n-tuples of points of
k, i.e., with points of affine n-space An{k.

(ii) The closure operation on ideals takes I to its radical ideal rad I.
(iii) The closure operation on subsets of An coincides with topological closure

with respect to the Zariski topology, i.e., the topology on An for which the
closed subsets are the intersections of the zero sets of polynomial functions.

Example 2.14. Let K be a field, let X � 2K , let RSpecK be the set of orderings
on K, and let Y � 2RSpecK . Let H : X Ñ Y by

S ÞÑ HpSq � tP P RSpecK | @x P S x ¡P 0u.
Let Ψ : Y Ñ X by

T ÞÑ ΨpT q � tx P RSpecK |@P P T x ¡P 0u.
Then pX,Y,H,Ψq is a Galois connection.

The set RSpecK carries a natural topology. Namely, we may view any ordering

P as an element of t�1uK�

: P : x P K� ÞÑ �1 if P pxq ¡ 0 and �1 is P pxq   0.

Giving t�1u the discrete topology and t�1uK�

, it is a compact (by Tychonoff’s
Theorem) zero-dimensional space, hence a Boolean space in the sense of §9.5. It

is easy to see that RSpecK embeds in t�1uK�

as a closed subspace, and therefore
RSpecK is itself a Boolean space.

Example 2.15. Let L be a language, let X be the set of L-theories, and let Y
be the class of all classes C of L-structures, partially ordered by inclusion.2 For a
theory T , let ΦpT q � CT be the class of all models of T , whereas for a class C, we
define ΨpCq to be the collection of all sentences φ such that for all X P C, X |ù φ.

4. Antitone Galois Connections Decorticated: Relations

Example: Let S and T be sets, and let R � S�T be a relation between S and T .
As is traditional, we use the notation xRy for px, yq P R. For A � S and y P T , we
let us write ARy if xRy for all x P A; and dually, for x P S and B � T , let us write
xRB if xRy for all y P B. Finally, for A � S, B � T , let us write ARB if xRy for
all x P A and all y P B.

Let X � p2S ,�q, Y � p2T ,�q. For A � S and B � T , we put

ΦRpAq � ty P T |ARyu,
ΨRpBq � tx P S |xRBu.

2Here we are cheating a bit by taking instead of a partially ordered set, a partially ordered
class. We leave it to the interested reader to devise a remedy.
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We claim that GR � pX,Y,ΦR,ΨRq is a Galois connection. Indeed, it is immediate
that ΦR and ΨR are both antitone maps; moreover, for all A � S, B � T we have

A � ΨRpBq ðñ ARB ðñ B � ΦRpAq.
Remarkably, this example includes most of the Galois connections above. Indeed:

 In Example 2.2, take X to be 2K and Y � 2AutpK{F q. The induced Galois
connection is the one associated to the relation gx � x on K �AutpK{F q.
 In Example 2.5, take X to be 2R. The induced Galois connection is the one
associated to the relation x P p on R� SpecR. Similarly for Examples 2.7 and 2.8.
 The Galois connection of Example 2.8 is the one associated to the relation x P P
on K � RSpecK.
 The Galois connection of Example 2.9 is the one associated to the relation X |ù φ.

Theorem 2.16. Let S and T be sets, let X � p2S ,�q, Y � p2S ,�q, and let
G � pX,Y,Φ,Ψq be any Galois connection. Define a relation R � S � T by xRy if
y P Φptxuq. Then G � GR.

Proof. Note first that X and Y are complete lattices, so Lemma 2.5b) applies.
Indeed, for A � S, A � �xPAtxu �

�
xPAtxu, so

ΦpAq �
£
xPA

Φptxuq �
£
xPA
ty P T | xRyu � ty P T | ARyu � ΦRpAq.

Moreover, since G is a Galois connection we have txu � Ψptyuq ðñ tyu �
Φptxuq ðñ xRy. Thus for B � T , B � �yPBtyu �

�
yPBtyu, so

ΨpBq �
£
yPB

Ψptyuq �
£
yPA
tx P S | xRyu � tx P S | xRBu � ΨRpBq. □

For any partially ordered set pX,¤q, a downset is a subset Y � X such that for
all x1, x2 P X, if x2 P Y and x1 ¤ x2 then x1 P Y . Let DpXq be the collection of
all downsets of X, viewed as a subset of p2X ,�q. To each x P X we may associate
the principal downset dpxq � ty P X | y ¤ xu. The map d : X Ñ DpXq is an
order embedding; composing this with the inclusion DpXq � 2X we see that every
partially ordered set embeds into a power set lattice.

Let G � pX,Y,Φ,Ψq be a Galois connection with X and Y complete lattices.
Then we may extend G to a Galois conection between 2X and 2Y as follows: for A �
X, put ΦpAq � �tΦpxquxPA, and simialrly for B � Y , put ΨpBq � �tΨpyquyPB .
Thus every Galois connection between complete lattices may be viewed as the Galois
connection induced by a relation between sets.

5. Isotone Galois Connections

Let pX,¤q and pY,¤q be partially ordered sets. An isotone Galois connection
between X and Y is a pair of maps Φ : X Ñ Y and Ψ : Y Ñ X such that:

(IGC1) Φ and Ψ are both isotone maps, and
(IGC2) For all x P X and all y P Y , Φpxq ¤ y ðñ x ¤ Ψpyq.

In contrast to the antitone case, this time there is an asymmetry between Φ and
Ψ. We call Φ the lower adjoint and Ψ the upper adjoint.
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At the abstract level, the concepts of antitone and isotone Galois connection are
manifestly equivalent.

Exercise 2.5. Let X,Y be partially ordered sets, and let Φ : X Ñ Y , Ψ : Y Ñ
X be functions.

a) Show: pΦ,Ψq is an antitone Galois connection between X and Y if and
only if pΦ,Ψq is an isotone Galois connection between X_ and Y .

b) Show: pΦ,Ψq is an antitone Galois connection between X and Y if and
only if pΨ,Φq is an isotone Galois connection between Y _ and X.

If pX,¤q is a partially ordered set, then a mapping f : X Ñ X is called an interior
operator if it satisfies all of the following properties:

(I1) For all x P X, x ¥ fpxq.
(C2) For all x1, x2 P X, x1 ¤ x2 ùñ fpx1q ¤ fpx2q.
(C3) For all x P X, fpfpxqq � fpxq.

Exercise 2.6. Let pX,¤q be a partially ordered set, and let f : X Ñ X be a
function. Show: f is a closure operator if and only if f : X_ Ñ X_ is an interior
operator.

Proposition 2.17. Let pΦ,Ψq be an isotone Galois connection. Then Ψ �Φ is
an interior operator on pX,¤q, and Φ �Ψ is a closure operator on pY,¤q.

Proof. By Exercise 2.5, pΦ,Ψq is an antitone Galois connection between X_

and Y , so by Proposition 2.1, Φ�Ψ is a closure operator on Y and Ψ�Φ is a closure
operator on X_ and thus, by Exercise 2.6, an interior operator on X. □

6. Examples of Isotone Galois Connections

Example (Galois connection of a function): Let f : S Ñ T be a function. Let
X � p2S ,�q and Y � p2T ,�q. For A � S and B � T , put

f�pSq � fpSq � tfpsq | s P Su, f�pT q � f�1pBq � ts P S | fpsq P Bu.
Exercise 2.7. a) Show: pf�, f�q is an isotone Galois connection be-

tween 2T and 2S.
b) Show that the interior operator f� �f� : B � T ÞÑ BXfpSq. In particular

the Galois connection is left perfect if and only if f is surjective.
c) Show that the Galois connection is right perfect – i.e., f�f�A � A for

all A � S – if and only if f is injective.
d) Interpret this isotone Galois connection in terms of the “universal” anti-

tone Galois connection of §2.4.

Example 2.18. (Galois Connection of a Ring Homomorphism): Let f : RÑ S
be a homomorphism of rings, and let IpRq and IpSq be the lattices of ideals of R
and S. In §1.5 we defined a pushforward map

f� : IpRq Ñ IpSq, f�pIq � xfpIqy
and a pullback map

f� : IpSq Ñ IpRq, f�pJq � f�1pJq.
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Proposition 2.19. The maps pf�, f�q give an isotone Galois connection be-
tween IpSq and IpT q.

Exercise 2.8. Prove Proposition 2.19.





CHAPTER 3

Modules

1. Basic definitions

Suppose pM,�q is a commutative group. For any m P M and any integer n, one
can make sense of n  m. If n is a positive integer, this means m � � � � � m (n
times); if n � 0 it means 0, and if n is negative, then n m � �p�nq m. Thus we
have defined a function  : Z �M Ñ M that enjoys the following properties: for
all n, n1, n2 P Z, m, m1, m2 PM , we have

(ZMOD1) 1 m � m.
(ZMOD2) n  pm1 �m2q � n m1 � n m2.
(ZMOD3) pn1 � n2q m � n1 m� n2 m.
(ZMOD4) pn1n2q m � n1  pn2 mq

It should be clear that this is some kind of ring-theoretic analogue of a group
action on a set. In fact, consider the slightly more general construction of a monoid
pM, �q acting on a set S: that is, for all n1, n2 PM and s P S, we require 1  s � s
and pn1n2q  s � n1  pn2  sq.

For a group action G on S, each function g : S Ñ S is a bijection. For monoidal
actions, this need not hold for all elements: e.g. taking the natural multiplication
action of M � pZ, �q on S � Z, we find that 0 : Z Ñ t0u is neither injective nor
surjective, �1 : ZÑ Z is bijective, and for |n| ¡ 1, n : ZÑ Z is injective but not
surjective.

Exercise 3.1. Let  : M � S Ñ S be a monoidal action on a set. Let M� be
the group of units of M : that is, the subset of elements x P M for which there is
y P M such that xy � yx � 1. Show: for each u P M�, the map u : S Ñ S is a
bijection.

Then the above “action” of Z on a commutative groupM is in particular a monoidal
action of pZ, �q on the set M . But it is more: M has an additive structure, and
(ZMOD2) asserts that for each n P Z, n respects this structure – i.e., is a homomor-
phism of groups; also (ZMOD3) is a compatibility between the additive structure
on Z and the additive structure on M .

These axioms can be restated in a much more compact form. For a commuta-
tive group M , an endomorphism of M is just a group homomorphism from M
to itself: f : M Ñ M . We write EndpMq for the set of all endomorphisms of
M . But EndpMq has lots of additional structure: for f, g P EndpMq we define
f � g P EndpMq by

pf � gqpmq :� fpmq � gpmq,
37
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i.e., pointwise addition. We can also define f � g P EndpMq by composition:

pf � gqpmq :� fpgpmqq.
Proposition 3.1. For any commutative group M , the set EndpMq of group

endomorphisms of M , endowed with pointwise addition and multiplication by com-
position, has the structure of a ring.

Exercise 3.2. Prove Proposition 3.1.

Exercise 3.3. Show: EndpZq � Z, and for any n P Z, EndpZ{nZq � Z{nZ.
(More precisely, find canonical isomorphisms.)

These simple examples are potentially misleading: we did not say that the multi-
plication was commutative, and of course there is no reason to expect composition
of functions to be commutative.

Exercise 3.4.

a) Show: EndpZ{2Z ` Z{2Zq � M2pZ{2Zq, the (noncommutative!) ring of
2� 2 matrices with Z{2Z-coefficients.

b) IfM is a commutative group and n P Z�, show EndpMnq �MnpEndpMqq.
Now observe that the statement that the action of Z on M satisfes (ZMOD1)
through (ZMOD4) is equivalent to the following much more succinct statement:

For any commutative group M , the map n P Z ÞÑ pnq : M Ñ M is a homo-
morphism of rings ZÑ EndpMq.

This generalizes very cleanly: if R is any ring (not necessarily commuative) and
M is a commutative group, a homomorphism  : RÑ EndpMq will satisfy: for all
r P R, m,m1,m2 PM :

(LRMOD1) 1 m � m.
(LRMOD2) r  pm1 �m2q � r m1 � r m2.
(LRMOD3) pr1 � r2q m � r1 m� r2 m.
(LRMOD4) pr1r2q m � r1  pr2 mq.

The terminology here is that such a homomorphism r ÞÑ prq is a left R-module
structure on the commutative group M .

What then is a right R-module structure on M? The pithy version is that
it is a ring homomorphism from Rop, the opposite ring of R to EndpMq. This defi-
nition makes clear (only?) that if R is commutative, there is no difference between
left and right R-module structures. Since our interest is in the commutative case,
we may therefore not worry too much. But for the record:

Exercise 3.5. Show: a homomorphism Rop Ñ EndpMq is equivalent to a
mapping  :M �RÑM satisfying

m  1 � m,

pm1 �m2q  r � m1  r �m2  r,
m  pr1 � r2q � m  r1 �m  r2,
m  pr1r2q � pm  r1q  r2.
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As usual for multiplicative notation, we will generally suppress the bullet, writing
rm for left R-modules and mr for right R-modules.

The calculus of left and right actions is at the same time confusing and some-
what miraculous: it is a somewhat disturbing example of a purely lexicographical
convention that has – or looks like it has – actual mathematical content. Especially,
suppose we have a commutative group M and two rings R and S, such that M si-
multaneously has the structure of a left R-module and a right S-module. Thus we
wish to entertain expressions such as rms for m P M , r P R, s P S. But as stands
this expression is ambiguous: it could mean either

pr mq  s
or

r  pm  sq.
We say that M is an R-S bimodule if both of these expressions agree. Here
is what is strange about this: lexicographically, it is an associativity condition.
But “really” it is a commutativity condition: it expresses the fact that for all
r P R, s P S, prq�psq � psq�prq: every endomorphism coming from an element
of R commutes with every endomorphism coming from an element of S. Thus for
instance:

Exercise 3.6. Show: any ring R is naturally an R�R-bimodule.

We will not deal with bimodules further in these notes. In fact, when we say R-
module at all, it will be understood to mean a left R-module, and again, since we
shall only be talking about commutative rings soon enough, the distinction between
left and right need not be made at all.

For M a left R-module, we define its annihilator

annpMq � tr P R | @m PM, rm � 0u.
Equivalently, annpMq is the set of all r such that r� � 0 P EndpMq, so that it is
precisely the kernel of the associated ring homomorphism RÑ EndpMq. It follows
that annpMq is an ideal of R (note: two-sided, in the noncommutative case). If
m PM , we put

annpmq :� tr P R | rm � 0u.
Then annpmq is a left ideal of R. To see that it need not be an ideal in general,
consider the case R � M2pF q is the ring of 2� 2 matrices over a field F . Then R
naturally acts on F 2 by viewing the elements as column vectors. The annihilator
of p1, 0q is

I :�
�

0 b
0 d

�
.

Then I is a left ideal but not a right ideal of M2pF q. In fact, for any n P Z� the
ring MnpF q of n � n matrices over a field is simple: it has no nonzero, proper
two-sided ideals.

Exercise 3.7. Let R be a commutative ring, and let M be a left R-module.
Let R � R �M be the relation in which pr,mq P R if and only if rm � 0. This
defines an antitone Galois connection from 2R to 2M .
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a) Show: let X be the set of ideals of R and let Y be the set of R-submodules
of M , both partially ordered under inclusion. Show: the relation restricts
to an antitone Galois connection pΦ : X Ñ Y,Ψ : Y Ñ Xq.

b) Show: ΨpMq � annM and for all m PM , Ψptmuq � annm.

A left R-module M is faithful if annpMq � 0. Explicitly, this means that for all
0 � r P R, there exists m PM such that rm � 0.

Exercise 3.8. Let M be an R-module. Show that M has the natural structure
of a faithful R{ annpMq-module.

Definition: Let M be a left R-module. A submodule of M is a subgroup N
of pM,�q such that RN � N . The following result is extremely easy and all-
important:

Theorem 3.2. Let R be a ring. The left R-submodules of R are precisely the
left ideals of R.

Exercise 3.9. Prove Theorem 3.2.

Definition: Let M and N be left R-modules. A homomorphism of R-modules is
a homomorphism of commutative groups f : M Ñ N such that for all r P R, m P
M, n P N , fprmq � rfpmq.

Exercise 3.10.

a) Define an isomorphism of R-modules in the correct way, i.e., not as a
bijective homomorphism of R-modules.

b) Show: a homomorphism of R-modules is an isomorphism if and only if it
is bijective.

If N is a submodule of a left R-module M , then the quotient group M{N has
a natural R-module structure. More precisely, there is a unique left R-module
structure on M{N such that the quotient map M Ñ M{N is a homomorphism of
R-modules.

Exercise 3.11. Let I be a two-sided ideal of the not-necessarily-commutative
ring R, so the quotient ring R{I has the structure of a left R-module. Show:

annpR{Iq � I.

In particular, every two-sided ideal of R occurs as the annihilator of a left R-module.

Exercise 3.12.

a) Let R be a ring and tMiuiPI a family of R-modules. Consider the com-
mutative group M � ÀiPIMi. Show that putting rpmiq � prmiq makes
R into an R-module. Show that the usual inclusion map ιi : Mi Ñ M is
a homomorphism of R-modules.

b) Show: for any R-module N and R-module maps fi :Mi Ñ N , there exists
a unique R-module map f : M Ñ N such that fi � f � ιi for all i P I.
Thus M satisfies the universal mapping property of the direct sum.

As a matter of notation, for n P Z�, Rn :�Àn
i�1R, R

0 � 0.

Exercise 3.13. Work out the analogue of Exercise 3.12 for direct products.
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Exercise 3.14. a) Suppose M is an R-module and S is a subset of
M . Show that the intersection of all R-submodules of M containing
S is an R-submodule, and is contained in every R-submodule that con-
tains S. We call it the R-submodule generated by S and denote it by
xSy. If S � tx1, . . . , xnu is finite, we usually write xx1, ..., xny instead of
xtx1, . . . , xnuy.

b) If S � tsiuiPI , show that the R-module generated by S is the set of all
sums

°
iPJ risi, where J is a finite subset of S.

An R-module M is cyclic (or monogenic) if M � xxy for some x P X.

Exercise 3.15. Show: for an R-module M , the following are equivalent:

(i) M � R{ annpMq.
(ii) M is cyclic.

Exercise 3.16. Suppose k is a field. Show: the terms “k-module” and “vector
space over k” are synonymous.

One can therefore view the theory of R-modules as a generalization of vector spaces
to arbitrary rings. But really this is something like a zeroth order approximation
of the truth: for a general ring R, the theory of R-modules is incomparably richer
than the theory of vector spaces over a field. There are two explanations for this.
First, even when working with very simple R-modules such as Rn, the usual linear
algebra notions of linear independence, span and basis remain meaningful, but be-
have in unfamiliar ways:

Call a subset S of an R-module M linearly independent if for every finite
subset m1, . . . ,mn of S and any r1, . . . , rn P R, r1m1 � . . . � rnmn � 0 implies
r1 � . . . � rn � 0. Say that S spans R if the R-submodule generated by S is R,
and finally a basis for an R-module is a subset that is both linearly independent
and spanning. For example, for any set I, the R-module

À
iR has a basis ei.

In linear algebra – i.e., when R is a field – every R-module has a basis.1 How-
ever the situation is quite different over a general ring:

Theorem 3.3. a) Let M be an R-module. Suppose that S � R is a
basis. Then M is isomorphic as an R-module to

À
sPS R.

b) Let S be any set, and consider the R-module RS :� ÀsPS R. For each
s P S, let es P

À
sPS R be the element whose s-coordinate is 1 and all of

whose other coordinates are 0. Then set tesusPS is a basis for RS.

Exercise 3.17. Prove Theorem 3.3.

A module that has a basis – so, by the theorem, admits an isomorphism to
À

sPS R
for some index set S – is called free.

Exercise 3.18. Show: a nonzero free R-module is faithful.

Let us examine the case of modules over R � Z, i.e., of commutative groups. Here
the term free commutative group is synonymous with “free Z-module”. Needless
to say (right?), not all commutative groups are free: for any integer n ¡ 1, Z{nZ

1This uses, and is in fact equivalent to, the Axiom of Choice, but the special case that any
vector space with a finite spanning set has a basis does not.
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is not free, since it has nonzero annihilator nZ. Thus Z{nZ does not have a basis
as a Z-module, and indeed has no nonempty linearly independent subsets!

Proposition 3.4. For a commutative ring R, the following are equivalent:

(i) Every R-module is free.
(ii) The ring R is a field.

Proof. As discussed above, (ii) ùñ (i) is a fundamental theorem of linear
algebra, so we need only concern ourselves with the converse. But if R is not a field,
then there exists a nonzero proper ideal I, and then R{I is a nontrivial R-module
with 0 � I � annpR{Iq, so by Exercise 3.18 R{I is not free. □

Remark: If R is a not-necessarily-commutative ring such that every left R-module
is free, then the above argument shows R has no nonzero proper twosided ideals,
so is what is called a simple ring. But a noncommutative simple ring may still
admit a nonfree module. For instance, let k be a field and take R � M2pkq, the
2 � 2 matrix ring over k. Then k ` k is a left R-module that is not free. How-
ever, suppose R is a ring with no proper nontrivial one-sided ideals. Then R is a
division ring – i.e., every nonzero element of R is a unit – and every R-module is free.

In linear algebra – i.e., when R is a field – every linearly independent subset of
an R-module can be extended to a basis. Over a general ring this does not hold
even for free R-modules. For instance, take R � M � Z. A moment’s thought
reveals that the only two bases are t1u and t�1u, whereas the linearly independent
sets are precisely the singleton sets tnu as n ranges over the nonzero integers.

Note well the form of Proposition 3.4: we assume that R is a commutative ring for
which R-modules satisfy some nice property, and we deduce a result on the struc-
ture of R. Such “inverse problems” have a broad appeal throughout mathematics
and provide one of the major motivations for studying modules above and beyond
their linear algebraic origins. We will see other such characterizations later on.

2. Finitely presented modules

One of the major differences between commutative groups and noncommutative
groups is that a subgroup N of a finitely generated commutative group M remains
finitely generated, and indeed, the minimal number of generators of the subgroup
N cannot exceed the minimal number of generators of M , whereas this is not true
for nonabelian groups: e.g. the free group of rank 2 has as subgroups free groups
of every rank 0 ¤ r ¤ ℵ0. (For instance, the commutator subgroup is not finitely
generated.)

Since a commutative group is a Z-module and every R-module has an underlying
commutative group structure, one might well expect the situation for R-modules to
be similar to that of commutative groups. We will see later that this is true in many
but not all cases: an R-module is called Noetherian if all of its submodules are
finitely generated. Certainly a Noetherian module is itself finitely generated. The
basic fact here – which we will prove in §8.7 – is a partial converse: if the ring R
is Noetherian, any finitely generated R-module is Noetherian. We can already see
that the Noetherianity of R is necessary: if R is not Noetherian, then by definition
there exists an ideal I of R that is not finitely generated, and this is nothing else
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than a non-finitely generated R-submodule of R (that is itself generated by the sin-
gle element 1.) Thus the aforementioned fact about subgroups of finitely generated
commutative groups being finitely generated holds because Z is a Noetherian ring.

When R is not Noetherian, it becomes necessary to impose stronger conditions
than finite generation on modules. One such condition indeed comes from group
theory: recall that a group G is finitely presented if it is isomorphic to the quo-
tient of a finitely generated free group F by the least normal subgroup N generated
by a finite subset x1, . . . , xm of F .

Proposition 3.5. For a finitely generated R-module M , the following are
equivalent:

(i) There are non-negative integers m,n and an exact sequence

Rm Ñ Rn ÑM Ñ 0.

(ii) M is the quotient of a finitely generated free R-module by a finitely gen-
erated submodule.

A module M satisfying these equivalent conditions is said to be finitely presented.

Proof. (i) ùñ (ii) is immediate. Conversely, let M � Rn{N where N is
finitely generated. Then there exists a surjection Rm Ñ N and thus the sequence

Rm Ñ Rn ÑM Ñ 0

is exact. □

Proposition 3.6. Let

0Ñ K
ψÑ N

ϕÑM Ñ 0

be a short exact sequence of R-modules, with M finitely presented and N finitely
generated. Then K is finitely generated.

Proof. (Matsumura) By definition of finitely presented, we can place M in
an exact sequence

(5) Rm Ñ Rn
fÑM Ñ 0

for some m,n P N. For 1 ¤ i ¤ n, let ei be the ith standard basis element of M ,
let mi � fpeiq be the image in M , and choose ni P N any element in ϕ�1pmiq.
Then there is a unique R-module homomorphism α : Rn Ñ N given by αpeiq � ni,
that restricts to an R-module homomorphism β : Bm Ñ K. Altogether we get a
commutative diagram

Rm ÝÑ Rn
fÝÑM ÝÑ 0

0 ÝÑ K
ψÝÑ N

ϕÝÑM.

The rest of the proof is essentially a diagram chase. Suppose N � xξ1, . . . , ξkyR,
and choose v1, . . . , vk P Rn such that ϕpξiq � fpviq. Put

ξ1i � ξi � αpviq.
Then φpξ1iq � 0, so there exist unique ηi P K such that

ξ1i � ψpηiq.
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We claim that K is generated as an R-module by βpRmq and η1, . . . , ηk and thus
is finitely generated. Indeed, for η P K, there are r1, . . . , rk P R such that

ψpηq �
¸
i

riξi.

Then
ψpη �

¸
i

riηiq �
¸
i

ripξi � ξ1iq � αp
¸
i

riviq.

Since
0 � ϕpαp

¸
i

riviqq � fp
¸
i

riviq,

we may write
°
i rivi � gpuq with u P Rm. Then

ψpβpuqq � αpgpuqq � αp
¸
i

riviq � ψpη �
¸
i

riηiq.

Since ψ is injective, we conclude

η � βpuq �
¸
i

riηi. □

Exercise 3.19. Let 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 be a short exact sequence of
R-modules.

a) Show: if M 1 and M2 are both finitely presented, so is M .
b) Show: if M is finitely presented and M 1 is finitely generated, then M2 is

finitely presented.

A stronger condition still is the following: an R-module M is coherent if it is
finitely generated and every finitely generated submodule is finitely presented. Ev-
idently coherent implies finitely presented implies finitely generated, and all three
coincide over a Noetherian ring. The significance of coherence lies in the following:

Theorem 3.7. Let R be a not-necessarily-commutative ring.

a) The category of all left R-modules is an abelian category.
b) The category of all coherent left R-modules is an abelian category.
c) In particular, if R is left Noetherian, the category of all finitely generated

left R-modules is an abelian category.
d) There exists a commutative ring R for which the category of all finitely

generated (left) R-modules is not abelian.

We will make absolutely no future use of this result, so we omit the proof here: the
reader may consult e.g. https://stacks.math.columbia.edu/tag/0AZ5. Nev-
ertheless we hope that it will be of some use to students of algebraic geometry:
for instance, it explains why in some algebraic geometry texts coherent sheaves of
OX -modules on a scheme X are defined only for Noetherian schemes.

3. Torsion and torsionfree modules

Let R be a domain, and let M be an R-module. An element x P M is said to be
torsion if there exists 0 � a P R such that ax � 0. Equivalently, the annihilator
annpxq � ta P R | ax � 0u is a nonzero ideal of R. We define M rtorss to be the set
of all torsion elements of M . It is immediate to see that M rtorss is a submodule
of M . We say that M is a torsion R-module if M � M rtorss and that M is
torsionfree if M rtorss � 0.
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Exercise 3.20. Let 0ÑM1 ÑM ÑM2 Ñ 0 be an exact sequence.

a) Show that if M is torsion, so are M1 and M2.
b) If M1 and M2 are torsion modules, must M be torsion?
c) Show that if M is torsionfree, show that so is M1, but M2 need not be.
d) If M1 and M2 are torsionfree, must M be torsionfree?

Proposition 3.8. Let R be a domain and M an R-module.

a) The quotient M{M rtorss is torsionfree.
b) If M is finitely generated, the following are equivalent:

(i) M embeds in a finitely generated free R-module.
(ii) M is torsionfree.

Proof. a) Put N � M{M rtorss, and let x P N be such that there exists
0 � a P R with ax � 0. Let x be any lift of x to M ; then there exists t P M rtorss
such that ax � t. By definition of torsion, there exists a1 P R such that a1t � 0, so
a1ax � a1t � 0. Since R is a domain, a1a is nonzero, so x PM rtorss and x � 0.
b) (i) ùñ (ii) is very easy: free modules are torsionfree and submodules of
torsionfree modules are torsionfree.
(ii) ùñ (i): We may assume M � 0. Let M � xx1, . . . , xry with r ¥ 1 and all the
xi are nonzero. Further, after reordering the xi’s if necessary, there exists a unique
s, 1 ¤ s ¤ r, such that tx1, . . . , xsu is linearly independent over R but for all i with
s   i ¤ r, tx1, . . . xs, xiu is linearly dependent over R. Then F � xx1, . . . , xsy � Rs,
so we are done if s � r. If s   r, then for each i ¡ s there exists 0 � ai P R
such that aixi P F . Put a � ±s i¤r ai: then aM � F . Let ras : M Ñ M denote
multiplication by a. SinceM is torsionfree, ras is injective hence gives an R-module
isomorphism from M to a submodule of the finitely generated free module F . □

Exercise 3.21. Show: the torsionfree Z-module pQ,�q is not isomorphic to a
submodule of any finitely generated free Z-module.
(Thus – even for very nice rings! – the hypothesis of finite generation is necessary
in Proposition 3.8.)

4. Tensor and Hom

4.1. Tensor products.

We assume that the reader has some prior familiarity with tensor products, say
of vector spaces and/or of abelian groups. The first is an instance of tensor prod-
ucts of k-modules, for some field k, and the second is an instance of tensor products
of Z-modules. We want to give a general definition of M bR N , where M and N
are two R-modules.

There are two ways to view the tensor product construction: as a solution to a
universal mapping problem, and as a generators and relations construction. They
are quite complementary, so it is a matter of taste as to which one takes as “the”
definition. So we will follow our taste by introducing the mapping problem first:

Suppose M , N , P are R-modules. By an R-bilinear map f : M � N Ñ P we
mean a function that is separately R-linear in each variable: for all m P M , the
mapping n ÞÑ fpm,nq is R-linear, and for each n P N , the mapping m ÞÑ fpm,nq is
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R-linear. Now consider all pairs pT, ιq, where T is an R-module and ι :M �N Ñ T
is an R-bilinear map. A morphism from pT, ιq to pT 1, ι1q will be an R-module homo-
morphism h : T Ñ T 1 such that ι1 � h � ι. By definition, a tensor product M bRN
is an initial object in this category: i.e., it comes equipped with an R-bilinear map
M �N ÑM bR N such that any R-bilinear map f :M �N Ñ P factors through
it. As usual, the initial object of a category is unique up to unique isomorphism
provided it exists.

As for the existence, we fall back on the generators and relations construction.
Namely, we begin with the free R-module F whose basis is M �N , and we write
the basis elements (purely formally) as m b n. We then take the quotient by the
submodule generated by the following relations R:

px� x1q b y � xb y � x1 b y,

xb py � y1q � xb y � xb y1,
paxq b y � apxb yq,
xb payq � apxb yq.

It is then easy to see that the quotient map M �N Ñ F {N satisfies all the prop-
erties of a tensor product (details left to the reader).

Note that the general element of M bRN is not a single element of the form xb y
but rather a finite sum of such elements. (Indeed, from the free R-module, every
element can be represented by a finite R-linear combination of elements of the form
xb y, but the last two defining relations in the tensor product allow us to change
ripxbyq to either prixqby or xbpriyq.) Of course, this representation of an element
of the tensor product need not be (and will never be, except in trivial cases) unique.

One can also take the tensor product of R-algebras: if R is a (commutative!) ring
and A and B are commutative R-algebras, then on the tensor product AbR B we
have a naturally defined product, induced by pa1 b b1q � pa2 b b2q :� pa1a2 b b1b2q.
We have to check that this is well-defined, a task that we leave to the reader (or
see [AM, pp. 30-31])). The tensor product of algebras is a powerful tool – e.g.
in the structure theory of finite-dimensional algebras over a field, or in the theory
of linear disjointness of field extensions – and is given misleadingly short shrift in
most elementary treatments.

Base change: Suppose that M is an R-module and f : R Ñ S is a ring homo-
morphism. Then S is in particular an R-module, so that we can form the tensor
product S bR M . This is still an R-module, but it is also an S-module in an
evident way: s  p°i si b miq :�

°
i ssi b mi. This is process is variously called

scalar extension, base extension or base change. Note that this process is
functorial, in the following sense: if f : M Ñ M 1 is an R-algebra homomorphism,
then there exists an induced S-algebra homomorphism S bRM Ñ S bRM 1, given
by sbm ÞÑ sb fpmq.

Exercise 3.22. If M is a finitely generated R-module and f : RÑ S is a ring
homomorphism, then S bRM is a finitely generated S-module.
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Exercise 3.23. Let A and B be rings, M an A-module, P a B-module, and N
an pA,Bq-bimodule. Then M bA N is naturally a B-module, N bB P is naturally
an A-module, and

pM bA Nq bB P �M bA pN bB P q.
Exercise 3.24. Let R be a commutative ring, I an ideal of R and M an R-

module.

a) Show: there is a well-defined R-bilinear map R{I �M Ñ M{IM given
by pr � I,mq ÞÑ rm � I. Thus there is an induced homomorphism of
R-modules

φ : R{I bRM ÑM{IM.

b) Show: φ is an isomorphism of R-modules.

Proposition 3.9. Let R be a commutative ring, M an R-module and tNiuiPI
a directed system of R-modules. Then the R-modules limÝÑpMbNiq and MbplimÝÑNiq
are canonically isomorphic.

Exercise 3.25. Prove Proposition 3.24.

Exercise 3.26. Let M and N be R-modules.

a) Show annM bN � annM � annN .
b) Suppose M and N are cyclic R-modules. Show: M b N is cyclic and

annpM bNq � annM � annN . Equivalently, show that for all ideals I, J
of R we have

R{I bR{J � R{pI � Jq.
c) Deduce: for all m,n P Z we have

Z{mZb Z{nZ � Z{xm,nyZ.
d) Let2 k be a field, let R :� krt2, t3s, M :� krts, I � t2R, N :� R{I. Show:

t3 P annpM{IMqz annM � I � I

and thus

annpM bNq � annM � annN.

5. Projective modules

5.1. Basic equivalences.

Proposition 3.10. For an R-module P , the following are equivalent:

(i) There exists an R-module Q such that P `Q is a free R-module.
(ii) If π :M Ñ N is a surjective R-module homomorphism and φ : P Ñ N is

a homomorphism, then there exists at least one R-module homomorphism
Φ : P ÑM such that φ � π � Φ.

(iii) If π : M Ñ N is a surjection, then the natural map HompP,Mq Ñ
HompP,Nq given by Φ ÞÑ π � Φ is surjective.

(iv) The functor HompP, q is exact.

2This is taken from https://math.stackexchange.com/questions/79538/.
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(v) Every short exact sequence of R-modules

0Ñ N ÑM
qÑ P Ñ 0

splits: there exists an R-module map σ : P ÑM such that q �σ � 1P and
thus an internal direct sum decomposition M � N ` σpP q.

A module satisfying these equivalent conditions is called projective.

Proof. (i) ùñ (ii): Let F � P `Q be a free module. Let tfiu be a free basis
for F and let tpiu be the corresponding generating set for P , where pi is the image
of fi under the natural projection P`QÑ P . Put ni � φppiq. By surjectivity of π,
let mi P π�1pniq. By the freeness of F , there is a unique R-module homomorphism
h : F Ñ M carrying each fi to mi. Pull h back to P via the natural inclusion
P ãÑ F . Then h : P ÑM is such that π � f � φ.
(ii) ùñ (i): As for any R-module, there exists a free R-module F and a surjection
π : F Ñ P . Applying (ii) with N � p and φ : P Ñ N the identity map, we get a
homomorphism Φ : P Ñ F such that π �φ � 1P . It follows that F � ΦpP q`kerpπq
is an internal direct sum decomposition.
(ii) ðñ (iii): (iii) is nothing more than a restatement of (ii), as we leave it to the
reader to check.
(iii) ðñ (iv): To spell out (iv), it says: if

0ÑM 1 ÑM ÑM2 Ñ 0

is a short exact sequence of R-modules, then the corresponding sequence

0Ñ HompP,M 1q Ñ HompP,Mq Ñ HompP,M2q Ñ 0

is exact. Now for any R-module P , the sequence

0Ñ HompP,M 1q Ñ HompP,Mq Ñ HompP,M2q
is exact – i.e., HompP, q is left exact – so (iv) amounts to: for any surjection
M Ñ M2, the corresponding map HompP,Mq Ñ HompP,M2q is surjective, and
this is condition (iii).
(ii) ùñ (v): Given

0Ñ N ÑM Ñ P
qÑ 0,

we apply (ii) to the identity map 1P : P Ñ P and the surjection q : M Ñ P ,
getting a map σ : P ÑM such that q � σ � 1P , so σ is a section as required.
(v) ùñ (i): Choosing a set of generators for P gives rise to a surjective ho-
momorphism q : F Ñ P from a free R-module F to P and thus a short exact
sequence

0Ñ Ker q Ñ F
qÑ P Ñ 0.

By hypothesis, there exists a section σ : P Ñ F and thus an internal direct sum
decomposition F � Kerpqq ` σpP q � Kerpqq ` P . □

Exercise 3.27. Give a direct proof that (v) ùñ (ii) in Proposition 3.10.
(Suggestion: Given the surjection q : M Ñ N and the map π : P Ñ N , form the
short exact sequence 0 Ñ K Ñ M Ñ N Ñ 0 and show that it is mapped to by a
short exact sequence 0Ñ K ÑM �N P Ñ P Ñ 0, where

M �N P � tpx, yq PM � P | qpxq � πpyqu
is the fiber product of M and P over N .)
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Exercise 3.28. Use Proposition 3.10 to show, several times over, that a free
R-module is projective.

Exercise 3.29. Let tMiuiPI be an index family of R-modules. Show that the
direct sum M �ÀiPIMi is projective if and only if each Mi is projective.

Exercise 3.30. a) Show: the tensor product of two free R-modules is
free.

b) Show: the tensor product of two projective R-modules is projective.

Exercise 3.31. Show: a finitely generated projective module is finitely pre-
sented. (Hint: the problem is that over a not-necessarily-Noetherian ring, a sub-
module of a finitely generated module need not be finitely generated. However, a
direct summand of a finitely generated module is always finitely generated: why?)

5.2. Linear algebraic characterization of projective modules.

Let R be a commutative ring, n P Z�, and let P be an element of the (non-
commutative!) ring MnpRq of n� n matrices with entries in R such that P 2 � P .
There are several names for such a matrix. The pure algebraist would call such a
matrix idempotent, for that is the name of an element in any ring that is equal
to its square. A geometrically minded algebraist however may call such a matrix
a projection, the idea being that the corresponding R-module endomorphism of
Rn “projects” Rn onto the submodule P pRnq.

Proposition 3.11. An R-module M is finitely generated and projective if and
only if it is, up to isomorphism, the image of a projection: i.e., if and only if there
exists n P Z� and a matrix P PMnpRq with P � P 2 such that M � P pRnq.

Proof. Suppose first thatM is a finitely generated projectiveR-module. Since
M is finitely generated,, there exists n P Z� and a surjective R-module homorphism
π : Rn ÑM . SinceM is projective, this homomorphism has a section σ :M Ñ Rn,
and we may thus write Rn � σpMq `M 1. Put P � σ � π P EndRpRnq. Then
P pRnq � σpπpRnqq � σpMq �M and

P 2 � σ � pπ � σq � π � σ � 1M � π � σ � π � P.

Conversely, suppose that there exists P P EndRpRnq with P 2 � P and let M �
P pRnq. Then – since P p1�P q � 0 – Rn � P pRnq`p1�P qpRnq, exhibiting P pRnq
as a direct summand of a free module.3 □

5.3. The Dual Basis Lemma.

Proposition 3.12. (Dual Basis Lemma) For an R-module M , the following
are equivalent:

(i) There is an index set I, elements taiuiPI of M and homomorphisms tfi :
M Ñ RuiPI such that for each a PM , ti P I | fipaq � 0u is finite, and

a �
¸
iPI
fipaqai.

(ii) M is projective.

3This part of the proof redeems the pure algebraist: this the decomposition afforded by the
pair of orthogonal idempotents P, 1� P .
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Proof. (i) ùñ (ii): Let F be the free R-module with basis elements teiuiPI ,
and define f : F Ñ M by fpeiq � ai. Then the map ι : M Ñ F given by
ιpaq � °iPI fipaqei is a section of f , so M is a direct summand of F .
(ii) ùñ (i): Let f : F �ÀiPI R Ñ M be an epimorphism from a free R-module
onto M . Since M is projective, there exists a section ι : M ãÑ F . If teiuiPI is the
standard basis of F , then for all a PM , the expression

ιpaq �
¸
iPI
fipaqei

defines the necessary family of functions fi :M Ñ R. □

Exercise 3.32. Let P be a projective R-module. Show: one can can find a
finite index set I satisfying condition (i) of the Dual Basis Lemma if and only if P
is finitely generated.

Exercise 3.33. Let P be a finitely generated projective R-module, so that by
Exercise 3.32 there are a1, . . . , an P P and f1, . . . , fn P P_ such that for all a P P
we have a � °n

i�1 fipaqai. Show: xf1, . . . , fny � P_.

Exercise 3.34. For any R-module M we have a natural map

ιM :M ÑM__, px, fq PM �M_ ÞÑ fpxq P R.
We say that M is torsionless if ιM is an injection and that M is reflexive if ιM
is an isomorphism.

a) Show: a projective module is torsionless.
b) Show: a submodule of a torsionless module is torsionless.
c) Show: a finitely generated free module is reflexive.
d) Show: a finitely generated projective module is reflexive.

5.4. Projective versus free.

Having established some basic facts about projective modules, we should now seek
examples in nature: which modules are projective? By Exercise 3.28 any free mod-
ule is projective. But this surely counts as a not very interesting example! Indeed
the following turns out to be one of the deepest questions of the subject.

Question 1. When is a projective module free?

We want to give examples to show that the answer to Question 1 is not “always”.
But even by giving examples one wades into somewhat deep waters. The following
is the one truly “easy” example of a non-free projective module I know.

Example: Suppose R1 and R2 are nontrivial rings. Then the product R � R1�R2

admits nonfree projective modules. Indeed, let P be the ideal R1 � t0u and Q the
ideal t0u � R2. Since R � P ` Q, P and Q are projective. On the other hand P
cannot be free because taking e :� p0, 1q P R, we have eP � 0, whereas eF � 0 for
any nonzero free R-module F (and of course, Q is not free either for similar reasons).

Question 1 may be construed in various ways. One way is to ask for the class
of rings over which every projective module is free, or over which every finitely gen-
erated projective module is free. I actually do not myself know a complete answer
to this question, but there are many interesting and important special cases.
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Recall the following result from undergraduate algebra.

Theorem 3.13. A finitely generated module over a PID is free if and only if
it is torsionfree.

(We will deduce this result as a consequence of other module-theoretic facts in
Corollary 3.64.) Of course submodules of torsionfree modules are torsionfree, so
projective implies torsionfree. We deduce:

Corollary 3.14. A finitely generated projective module over a PID is free.

Theorem 3.13 does not extend to all torsionfree modules: for instance, the Z-module
Q is torsionfree but not free. However Corollary 3.14 does extend to all modules
over a PID. The proof requires transfinite methods and is given in §3.10.

Recall that a ring R is local if it has a unique maximal ideal. It is convenient
to reserve the notation m for the unique maximal ideal of a local ring and speak of
“the local ring pR,mq”. We want to show that every finitely generated projective
module over a local ring is free. First a few preliminaries.

Let f : R Ñ S be a homomorphism of rings. Then necessarily f induces a ho-
momorphism f� : R� Ñ S� on unit groups: if xy � 1, then fpxqfpyq � fp1q � 1,
so units get mapped to units. But what about the converse: if x P R is such that
fpxq is a unit in S, must x be a unit in R?

It’s a nice idea, but it’s easy to see that this need not be the case. For instance,
let a ¡ 1 be any positive integer. Then a is not a unit of Z, but for each prime
p ¡ a, the image of a in the quotient ring Z{pZ is a unit. Too bad! Let us not give
up so soon: a conjecture may fail, but a definition cannot: say a homomorphism
f : RÑ S of rings is unit-faithful if for all x P R, fpxq P S� ùñ x P R�.

Lemma 3.15. If pR,mq is a local ring, the quotient map q : R Ñ R{m is
unit-faithful.

Proof. An element of any ring is a unit if and only if it is contained in no
maximal ideal, so in a local ring we have R� � Rzm. Moreover, since m is maximal,
R{m is a field. Thus, for x P R,

qpxq P pR{mq� ðñ x R m ðñ x P R�. □

Later we will see a generalization: if J is any ideal contained the Jacobson radical
of R, then q : RÑ R{J is unit-faithful.

Theorem 3.16. A finitely generated projective module over a local ring is free.

Proof. Let P be a finitely generated projective module over the local ring
pR,mq. We may find Q and n P Z� such that P `Q � Rn. Now tensor with R{m:
we get a direct sum decomposition P {mP `Q{mQ � pR{mqn. Since R{m is a field,
all R{m-modules are free. Choose bases tpiu for P {mP and tqju for Q{mQ, and for
all i, j, lift each pi to an element pi of P and each qj to an element qj of Q. Consider
the n � n matrix A with coefficients in R whose columns are p1, . . . , pa, q1, . . . , qb.
The reduction modulo m of A is a matrix over the field R{m whose columns form a
basis for pR{mqn, so its determinant is a unit in pR{mq�. Since detpM pmod mqq �
detpMq pmod mq, Lemma 3.15 implies that detpMq P R�, i.e., M is invertible.
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But this means that its columns are linearly independent. By a consequence of
Nakayama’s Lemma (Corollary 3.44) we have that p1, . . . , pa spans P , so in fact it
forms a basis for P . □

Once again, in Section 3.9 this result will be improved upon: it is a celebrated
theorem of Kaplansky that any projective module over a local ring is free.

Much more interesting is an example of a finitely generated projective, nonfree
module over a domain. Probably the first such examples come from nonprincipal
ideals in rings of integers of number fields with class number greater than 1. To
give such an example with proof of its projectivity this early in the day, we require
a little preparation.4

Two ideals I and J in a ring R are comaximal if I � J � R. More generally,
a family tIiu of ideals in a ring is pairwise comaximal if for all i � j, I � J � R.

Lemma 3.17. Let I, J , K1, . . . ,Kn be ideals in the ring R.

a) We have pI � JqpI X Jq � IJ .
b) If I and J are comaximal, IJ � I X J .
c) If I �Ki � R for all 1 ¤ i ¤ n, then I �K1 � � �Kn � R.

Proof. a) pI � JqpI X Jq � IpI X Jq � JpI X Jq � IJ � IJ � IJ .
b) If I � J � R, the identity of part a) becomes I X J � IJ . Since the converse
inclusion is valid for all I and J , the conclusion follows. c) We go by induction on
n, the case n � 1 being trivial. If n � 2, then for i � 1, 2, let ai P I and bi P Ki be
such that 1 � ai � bi. Then

1 � a1 � a2 � a1a2 � b1b2 P I �K1K2.

Now assume n ¥ 3 and that the result holds for n� 1. By induction,

I �K1 � � �Kn�1 � R.

and by hypothesis I �Kn � R, so by the n � 2 case we have

I �K1 � � �Kn � R. □

Proposition 3.18. Let I and J be comaximal ideals in a domain R, and
consider the R-module map q : I ` J Ñ R given by px, yq ÞÑ x� y. Then:

a) The map q is surjective.
b) We have Kerpqq � tpx,�xq | x P I X Ju, hence is isomorphic as an R-

module to I X J .
c) We have an isomorphism of R-modules

I ` J � IJ `R.
d) Thus if IJ is a principal ideal, I and J are projective modules.

Proof. It is clear that for any ideals I and J , the image of the map q is the
ideal I � J , and we are assuming I � J � R, whence part a).
Part b) is essentially immediate: details are left to the reader.
Combining parts a) and b) we get a short exact sequence

0Ñ I X J Ñ I ` J Ñ RÑ 0.

4Here we wish to acknowledge our indebtedness to K. Conrad: we took our
inspiration for Proposition 3.18 and the following Exercise from Example 3.1 of

http://www.math.uconn.edu/�kconrad/blurbs/linmultialg/splittingmodules.pdf.
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But R is free, hence projective, and thus the sequence splits, giving part c). Finally,
a nonzero principal ideal pxq in a domain R is isomorphic as an R-module to R
itself: indeed, multiplication by x gives the isomorphism R Ñ pxq. So if IJ is
principal, I ` J � R2 and I and J are both direct summands of a free module. □

In particular, if we can find in a domain R two comaximal nonprincipal ideals I
and J with IJ principal, then I and J are finitely generated projective nonfree
R-modules. The following exercise asks you to work through an example.

Exercise 3.35. Let R � Zr?�5s, and put

p1 � x3, 1�
?�5y, p2 � x3, 1�

?�5y.
a) Show that R{p1 � R{p2 � Z{3Z, so p1 and p2 are maximal ideals of R.
b) Show that p1 � p2 � R (or equivalently, that p1 � p2).
c) Show that p1p2 � p3q.
d) Show that neither p1 nor p2 is principal.

(Suggestion: show that if p1 � px � ?�5yq then p2 � px � ?�5yq and
thus there are integers x, y such that x2 � 5y2 � �3.)

e) Conclude that p1 and p2 are (in fact isomorphic) nonfree finitely generated
projective modules over the domain R.

f) Show that p2 is principal, and thus that the class of p in �K0pRq is 2-
torsion.

This construction looks very specific, and the number-theoretically inclined reader
is warmly invited to play around with other quadratic rings and more general rings
of integers of number fields to try to figure out what is really going on. From our
perspective, we will (much later on) gain a deeper understanding of this in terms
of the concepts of invertible ideals, the Picard group and Dedekind domains.

Example 3.19. Let X be a compact space, and let CpXq be the ring of con-
tinuous real-valued functions on X. The basic structure of these rings is studied in
§5.2. Let E Ñ X be a real topological vector bundle over X. Then the group ΓpEq
of global sections is naturally a module over CpXq. In fact it is a finitely generated
projective module, and all finitely generated projective CpXq-modules arise faith-
fully in this way: the global section functor gives a categorical equivalence between
vector bundles on X and finitely generated projective modules over CpXq. This is a
celebrated theorem of R.G. Swan, and Chapter 6 is devoted to giving a self-contained
discussion of it, starting from the definition of a vector bundle. In particular, via
Swan’s Theorem basic results on the tangent bundles of compact manifolds translate
into examples of finitely generated projective modules: for instance, an Euler char-
acteristic argument shows that the tangent bundle of any even-dimensional sphere
S2k is nontrivial, and thus ΓpTS2kq is a finitely generated nonfree CpS2kq-module!
Following Swan, we will show that examples of nonfree projective modules over more
traditional rings like finitely generated R-algebras follow from examples like these.

Example 3.20. Let k be a field and R � krt1, . . . , tns be the polynomial ring
over k in n indeterminates. When n � 1, R is a PID, so indeed every finitely gen-
erated R-module is projective. For n ¡ 1, the situation is much less clear, but the
problem of freeness of finitely generated projective R-modules can be stated geomet-
rically as follows: is any algebraic vector bundle on affine n-space An{k algebraically
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trivial? When k � C, the space An{C � Cn in its usual, Euclidean topology is con-

tractible, which by basic topology implies that any continuous C-vector bundle on
An is (continuously) trivial. Moreover, relatively classical complex variable theory
shows that any holomorphic vector bundle on An is (holomorphically) trivial. But
asking the transition functions and the trivialization to be algebraic – i.e., polyno-
mial functions – is a much more stringent problem. In his landmark 1955 paper
FAC, J.-P. Serre noted that this natural problem remained open for algebraic vec-
tor bundles: he was able to prove only the weaker result that a finitely generated
projective R-module M is stably free – i.e., there exists a finitely generated free
module F such that M `F is free. This became known as Serre’s Conjecture (to
his dismay) and was finally resolved independently in 1976 by D. Quillen [Qu76]
and A. Suslin [Su76]: indeed, every finitely generated projective R-module is free.
Quillen received the Fields Medal in 1978. Fields Medals are not awarded for the
solution of any single problem, but the prize committee writes an official document
describing the work of each winner that they found particularly meritorious. In this
case, it was made clear that Quillen’s resolution of Serre’s Conjecture was one of
the reasons he received the prize. All this for modules over a polynomial ring!

For more information on Serre’s Conjecture, the reader can do no better than to
consult a book of T.Y. Lam [La06].

Exercise 3.36. (K0pRq): From a commutative ring R, we will construct an-
other commutative ring K0pRq whose elements correspond to formal differences of
finite rank projective modules. More precisely:

a) Let M0pRq denote the set of all isomorphism classes of finitely generated
projective modules. For finitely generated projective modules P and Q we
define

rP s � rQs � rP `Qs,
rP s � rQs � rP bQs.

Check that this construction is well-defined on isomorphism classes and
endows M0pRq with the structure of a commutative semiring with unity.
What are the additive and mulitplicative identity elements?

b) Define K0pRq as the Grothendieck group of M0pRq, i.e., as the group
completion of the commutative monoid M0pRq. Convince yourself that
K0pRq has the structure of a semiring. The elements are of the form
rP s � rQs, and we have rP1s � rQ1s � rP2s � rQ2s ðñ there exists a
finitely generated projective R-module M with

P1 `Q2 `M � P2 `Q1 `M.

Thus if P and Q are projective modules, then rP s � rQs in K0pRq if
and only if rP s and rQs are stably isomorphic, i.e., if and only if they
become isomorphic after taking the direct sum with some other finitely
generated projective module M . item[c)] Show: we also have rP s � rQs
if and only if there exists a finitely generated free module Rn such that
P `Rn � Q`Rn. In particular, rP s � r0s � 0 if and only if P is stably
free: there exists a finitely generated free module F such that P ` F is
free.

d) Show that M0pRq is cancellative if and only if every stably free finitely
generated projective module is free.
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e) Find a ring R admitting a finitely generated projectve module which is
stably free but not free.

f) Show that the mapping Rn ÞÑ rRns induces an injective homomorphism of

rings Z Ñ K0pRq. Define K̃0pRq to be the quotient K0pRq{Z. Show that

if R is a PID then K̃0pRq � 0.

6. Injective modules

6.1. Basic equivalences.

Although we will have no use for them in the sequel of these notes, in both commu-
tative and (especially) homological algebra there is an important class of modules
“dual” to the projective modules. They are characterized as follows.

Proposition 3.21. For a module E over a ring R, the following are equivalent:

(i) If ι :M Ñ N is an injective R-module homomorphism and φ :M Ñ E is
any homomorphism, there is at least one extension of φ to a homomor-
phism Φ : N Ñ E.

(ii) If M ãÑ N , the natural map HompN,Eq Ñ HompM,Eq is surjective.
(iii) The (contravariant) functor Homp , Eq is exact.
(iv) Each short exact sequence of R-modules

0Ñ E
ιÑM Ñ N Ñ 0

splits: there is an R-module map π : M Ñ E such that π � ι � 1E and
thus an internal direct sum decomposition M � ιpEq ` kerpπq � E `N .

A module satisfying these equivalent conditions is called injective.

Exercise 3.37. Prove Proposition 3.21.

Exercise 3.38. Show: an R-module E is injective if and only if whenever E
is a submodule of a module M , E is a direct summand of M .

Notice that the set of equivalent conditions starts with (ii)! This is to facilitate
direct comparison to Proposition 3.10 on projective modules. Indeed, one should
check that each of the properties (ii) through (v) are duals of the corresponding
properties for projective modules: i.e., they are obtained by reversing all arrows.
The difficulty here with property (i) is that if one literally reverses the arrows in the
definition of free R-module to arrive at a “cofree” R-module, one gets a definition
that is unhelpfully strong: the “cofree R-module on a set X” does not exist when
#X ¡ 1! This can be remedied by giving a more refined definition of cofree module.
For the sake of curiosity, we will give it later on in the exercises, but to the best
of my knowledge, cofree R-modules by any definition do not play the fundamental
role that free R-modules do.

Exercise 3.39. Show: every module over a field is injective.

Exercise 3.40. Show: Z is not an injective Z-module.
(Injectivity is the most important property of modules that is not necessarily satisfied
by free modules.)

Exercise 3.41. Let tMiuiPI be any family of R-modules and putM �±iPIMi.
Show that M is injective if and only if Mi is injective for all i P I.



56 3. MODULES

Exercise 3.42. For a ring R, show the following are equivalent:

(i) The ring R is absolutely projective: every R-module is projective.
(ii) The ring R is absolutely injective: every R-module is injective.

6.2. Baer’s Criterion.

Theorem 3.22. (Baer’s Criterion [Ba40]) For a module E over a ring R, the
following are equivalent:

(i) E is injective.
(ii) For every ideal nonzero I of R, every R-module map φ : I Ñ E extends

to an R-module map Φ : RÑ E.

Proof. (i) ùñ (ii): this is a special case of condition (ii) of Proposition 3.21:
take M � I, N � R.
(ii) ùñ (i): Let M be an R-submodule of N and φ : M Ñ E an R-module map.
We need to show that φ may be extended to N . Now the set P of pairs pN 1, φ1q
with M � N 1 � N and φ : N 1 Ñ E a map extending φ is nonempty and has an
evident partial ordering, with respect to which the union of any chain of elements
in P is again an element of P. So by Zorn’s Lemma, there is a maximal element
φ1 : N 1 Ñ E. Our task is to show that N 1 � N .

Assume not, and choose x P NzN 1. Put

I � pN 1 : xq � tr P R | rx � N 1u;
one checks immediately that I is an ideal of R (a generalization to modules of the
colon ideal we have encountered before). Consider the composite map

I
�xÑ N 1 φÑ E;

by our hypothesis, this extends to a map ψ : R Ñ E. Now put N2 � xN 1, xy and
define5 φ2 : N2 Ñ E by

φ2px1 � rxq � φ1px1q � ψprq.
Thus φ2 is an extension of φ1 to a strictly larger submodule of N than N 1, contra-
dicting maximality. □

Exercise 3.43. Verify that the map φ2 is well-defined.

6.3. Divisible modules.

Recall that a module M over a domain R is divisible if for all r P R the en-
domorphism r : M Ñ M,x ÞÑ rx, is surjective. Further, we define M to be
uniquely divisible if for all r P R, the endomorphism r :M ÑM is a bijection.

Example 3.23. The Z-modules Q and Q{Z are divisible. Q is moreover uniquely
divisible but Q{Z is not.

Exercise 3.44. Show: a divisible module is uniquely divisible if and only if it
is torsionfree.

Exercise 3.45.

a) Show: a quotient of a divisible module is divisible.

5Since N2 need not be the direct sum of N 1 and xxy, one does need to check that φ2 is

well-defined; we ask the reader to do so in an exercise following the proof.
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b) Show: arbitrary direct sums and direct products of divisible modules are
divisible.

Exercise 3.46. Let R be a domain with fraction field K.

a) Show: K is a uniquely divisible R-module.
b) Let M be any R-module. Show that the natural map M Ñ M bR K is

injective if and only if M is torsionfree.
c) Show: for any R-module M , M bR K is uniquely divisible.
d) Show: K{R is divisible but not uniquely divisible.

Exercise 3.47. a) Show: a Z-module is uniquely divisible if and only if
it can be endowed with the compatible structure of a Q-module, and if so
this Q-module structure is unique.

b) Show: a Z-module M is a subgroup of a uniquely divisible divisible Z-
module if and only if it is torsionfree.

Exercise 3.48. For a domain R, show that the following are equivalent:

(i) There is a nonzero finitely generated divisible R-module.
(ii) R is a field.

Proposition 3.24. Let R be a domain and E an R-module.

a) If E is injective, then it is divisible.
b) If E is torsionfree and divisible, then it is injective.
c) If R is a PID and E is divisible, thenit is injective.

Proof. a) Let r P R. For x P E, consider the R-module homomorphism
φ : rRÑ E given by r ÞÑ x. Since E is injective, this extends to an R-module map
φ : RÑ E. Then rφp1q � φpr � 1q � φprq � x, so r is surjective on E.
b) Let I be a nonzero ideal of R and φ : I Ñ E be an R-module map. For each
a P I, there is a unique ea P E such that φpaq � aea. For b P I, we have

baea � bφpaq � φpbaq � aφpbq � abeb;

since E is torsionfree we conclude ea � eb � e, say. Thus we may extend φ to a
map Φ : RÑ E by Φprq � re. Thus E is injective by Baer’s Criterion.
c) As above it is enough to show that given a nonzero ideal I of R, every homomor-
phism φ : I Ñ E extends to a homomorphism R Ñ E. Since R is a PID, we may
write I � xR for x P R. Then, as in part a), one checks that φ extends to Φ if and
only if multiplication by x is surjective on M , which it is since M is divisible. □

By combining Proposition 3.24 with Exercise 3.46, we are able to show an important
special case of the desired fact that every R-module can be realized as a submodule
of an injective module. Namely, ifM is a torsionfree module over a domain R, then
M is a submodule of the uniquely divisible – hence injective – module M bR K.

Exercise 3.49. Let n P Z�.
a) Show: Z{nZ is not a divisible Z-module, hence not an injectivve Z-module.
b) Show: Z{nZ is a divisible Z{nZ-module if and only if n is prime.
c) Show: Z{nZ is an injective Z{nZ-module.

Exercise 3.50. Let R � Zrts and let K be its fraction field. Show: the R-
module K{R is divisible but not injective.

Exercise 3.51. Let R be a domain with fraction field K.
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a) If R � K, show: all R-modules are both injective and projective.
b) If R � K, show: the only R-module that is both projective and injective

is 0.

6.4. Enough injectives.

The idea of this section is to pursue the dual version of the statement “Every
R-module is a quotient of a projective module”: namely we wish to show that
every R-module is a submodule of an injective module. This is a good example
of a statement which remains true upon dualization but becomes more elaborate
to show. The projective version is almost obvious: indeed, we have the stronger
result that every module is a quotient of a free module, and – as we have seen – to
realize M as a quotent of a free R-module is equivalent to simply choosing a set of
generators for M . (But again, if we choose the most obvious definition of “cofree”,
then this statement will be false.)

Let k be a ring, R a k-algebra, M an R-module and N a k-module. Consider
the commutative group HomkpM,Nq. We may endow it with the structure of an
R-module as follows: for r P R and f P HomZpM,Nq, prfqpxq :� fprxq.

Consider the special case k � Z and N � Q{Z of the above construction. It
gives HomZpM,Q{Zq the structure of an R-module, which we denote by M� and
call the Pontrjagin dual of M .6 Because Q{Z is an injective Z-module, the (con-
travariant) functor M ÞÑ M� – or in other words HomZp ,Q{Zq – is exact.7 In
particular, if f : M Ñ N is an R-module map, then f injective implies f� surjec-
tive and f surjective implies f� injective.

As is often the case for “duals”, we have a natural map M Ñ M��: namely
x ÞÑ pf ÞÑ fpxqq.

Lemma 3.25. For any R-module M , the natural map ΨM : M Ñ M�� is
injective.

Proof. Seeking a contradiction, let x PM be such that Ψpxq � 0. Unpacking
the definition, this means that for all f P HomZpM,Q{Zq, fpxq � 0. But since Q{Z
is an injective Z-module, it suffices to find a nontrivial homomorphism ZxÑ Q{Z,
and this is easy: if x has finite order n ¡ 1, we may map x to 1

n , whereas if x has
infinite order we may map it to any nonzero element of Q{Z. □

Lemma 3.26. Every Z-module M can be embedded into an injective Z-module.

Proof. Let I � M be a generating set and let
À

iPI Z Ñ M be the cor-
responding surjection, with kernel K, so M � pÀiPI Zq{K. The natural mapÀ

iPI Z ãÑÀiPI Q induces an injectionM ãÑ pÀiPI Qq{K, and the latter Z-module
is divisible, hence injective since Z is a PID. □

Lemma 3.27. (Injective Production Lemma) Let R be a k-algebra, E an injec-
tive k-module and F a free R-module. Then HomkpF,Eq is an injective R-module.

6Recall that the notation M_ has already been taken: this is the linear dual HomRpM,Rq.
7Here we are using the (obvious) fact that a sequence of R-modules is exact if and only if it

is exact when viewed merely as a sequence of Z-modules.
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Proof. We will show that the functor HomRp ,HomkpF,Eqq is exact. For any
R-module M , the adjointness of b and Hom gives

HomRpM,HomkpF,Eqq � HomkpF bRM,Eq
so we may look at the functor M ÞÑ HomkpF bR M,Eq instead. This is the
composition of the functor M ÞÑ F bRM with the functor N ÞÑ HomkpN,Eq. But
both functors are exact – in the former case a moment’s thought shows this to be
true, and the latter case is one of our defining properties of injective modules. □

Remark: Soon enough we will define a flat R-module to be an R-module N such
that the functor M ÞÑM bR N is exact. Then Lemma 3.27 can be rephrased with
the hypothesis that F is a flat R-module, and (since as we have just seen, free
R-modules are flat) this gives a somewhat more general result.

Theorem 3.28. Every R-module can be embedded into an injective R-module.

Proof. Let M be an R-module. Viewing M as a Z-module, by Lemma 3.26
there is an injective Z-module E1 and a Z-module map φ1 :M ãÑ E1. Further, by
Lemma 3.27, HomZpR,E1q is an injective R-module. Now consider the R-module
map

φ :M Ñ HomZpR,E1q, x ÞÑ pr ÞÑ φ1prxqq.
We claim that φ is a monomorphism into the injective R-module HomZpR,E1q.
Indeed, if φpxq � 0 then for all r P R, φ1prxq � 0. In particular φ1pxq � 0, so since
φ1 is a monomorphism, we conclude x � 0. □

Exercise 3.52. We say a Z-module is cofree if it is of the form F� for a
free Z-module F . Then the proof of Lemma 3.26 gives the stronger statement that
every Z-module can be embedded into a cofree Z-module. Formulate a definition of
cofree R-module so that the proof of Theorem 3.28 gives the stronger statement
that every R-module can be embedded into a cofree R-module. (Hint: remember to
pay attention to the difference between direct sums and direct products.)

6.5. Essential extensions and injective envelopes.

The results of this section are all due to B. Eckmann and A. Schopf [ES53].

Proposition 3.29. For R modules M � N , the following are equivalent:

(i) If X is any nonzero R-submodule of N , then X XM is nonzero.
(ii) If x P N, there exists r P R such that rx PM.
(iii) If φ : N Ñ Y is an R-module map, then φ is injective if and only if φ|M

is injective.

An extension M � N satisfying these equivalent conditions is called essential.

Proof. (i) ùñ (ii): Apply (i) with X � xxy.
(ii) ùñ (iii): Assuming (ii), let φ : N Ñ Y be a homomorphism with φ|M is
injective. It is enough to show that φ is injective. Seeking a contradiction, let
x P N be such that φpxq � 0. By (ii), there exists r P R such that rx P M. But
then by assumption rφpxq � φprxq � 0, so φpxq � 0, contradiction.
(iii) ùñ (i): We go by contraposition. Suppose there exists a nonzero submodule
X of N such that X XM � 0. Then the map φ : N Ñ N{X is not an injection
but its restriction to M is an injection. □
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Proposition 3.30. (Tower Property of Essential Extensions) Let L �M � N
be R-modules. Then L � N is an essential extension if and only if L � M and
M � N are both essential extensions.

Proof. Suppose first that L � N is an essential extension. Then for any
nonzero submodule X of N , we have X X L � 0. In particular this holds for
X � M , so L � M is essential. Moreover, since L � M , X X L � 0 implies
X XM � 0, so M � N is essential. Conversely, suppose L � M and M � N are
both essential, and let X be a nonzero submodule of N . Then X XM is a nonzero
submodule of M and thus pX XMq XL � X XL is a nonzero submodule of L. So
L � N is essential. □

So why are we talking about essential extensions when we are supposed to be talking
about injective modules? The following result explains the connection.

Theorem 3.31. For an R-module M , the following are equivalent:

(i) M is injective.
(ii) M has no proper essential extensions: i.e., if M � N is an essential

extension, then M � N .

Proof. (i) ùñ (ii): Let M be injective and M � N . Then M is a direct
summand of N : there exists M 1 such that M ` M 1 � N . Thus M has zero
intersection withM 1, and by criterion (ii) of Proposition 3.29, we must haveM 1 � 0
and thus M � N .
(ii) ùñ (i): It suffices to show: if N is an R-module and M � N , then M is a
direct summand of N . Now consider the family of submodules M 1 of N with the
property thatMXM 1 � 0. This family is partially ordered by inclusion, nonempty,
and closed under unions of chains, so by Zorn’s Lemma there exists a maximal such
element M 1. Now consider the extension M ãÑ N{M 1: we claim it is essential.
Indeed, if not, there exists x P NzM 1 such that xM 1, xy XM � 0, contradicting
maximality of M 1. But by hypothesis, M has no proper essential extensions: thus
M � N{M 1, i.e., M `M 1 � N and M is a direct summand of N . □

We say that an extension M � N is maximal essential if it is essential and
there is no proper extension N 1 of N such that M � N 1 is essential. Combining
Proposition 3.30 and Theorem 3.31 yields the following important result.

Theorem 3.32. For an essential extensionM � N of R-modules, the following
are equivalent:

(i) M � N is maximal essential.
(ii) N is injective.

Exercise 3.53. To be sure you’re following along, prove Theorem 3.32.

Once again we have a purpose in life – or at least, this subsection of it – we would like
to show that every R-module admits a maximal essential extension and that such
extensions are unique up to isomorphism over M . Moreover, a plausible strategy
of proof is the following: let M be an R-module. By Theorem 3.28 there exists an
extension M � E with E injective. Certainly this extension need not be essential,
but we may seek to construct within it a maximal essential subextension N and
then hope to show that M � E1 is injective.
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Theorem 3.33. Let M be an R-module and M � E an extension with E
injective. Let P be the set of all essential subextensions N of M � E. Then:

a) P contains at least one maximal element.
b) Every maximal element E1 of P is injective.

Proof. The proof of part a) is the usual Zorn’s Lemma argument: what we
need to check is that the union N of any chain tNiu of essential subextensions
is again an essential subextension. Suppose for a contradiction that there exists
a nonzero submodule X of N such that X X M � 0. Choose x P X and put
X 1 � xxy. Then X 1 � tNi for some i and X 1 XM � X XM � 0, contradicting the
essentialness (?!) of the extension M � Ni.
Now let E1 be a maximal essential subextension of M � E. We need to show
that M � E1 is actually a maximal essential extension: so suppose there is an
essential extension E1 � N . Let ι : M � E1 � N be the composite map. It is
a monomorphism, so by the injectivity of E the injection M � E extends to a
homomorphism φ : N Ñ E. But φ|M is an injection and M � N is an essential
extension, so by condition (iii) of Proposition 3.29 this implies that φ itself is an
injection. By maximality of E1 among essential subextensions of M � E we must
have E1 � N . □

For an R-module M , we say that an extension M � E is an injective envelope
(other common name: injective hull) of M if M � E is a maximal essential
extension; equivalently, an essential extension with E injective. Thus Theorem
3.33 shows that any R-module admits an injective envelope.

Proposition 3.34. Let R be a domain with fraction field K. Then R � K is
an injective envelope of R.

Exercise 3.54. Prove Proposition 3.34.
(Suggestion: use the relationship between injective modules and divisible modules.)

Exercise 3.55. More generally, let M be a torsionfree module over a domain
R. Show that M �M bR K is an injective envelope of M .

Let us touch up our characterization of injective envelopes a bit.

Proposition 3.35. (Equivalent Properties of an Injective Envelope) For an
extension M � E of R-modules, the following are equivalent:

(i) M � E is a maximal essential extension.
(ii) M � E is essential and E is injective.
(iii) E is minimal injective over M : there does not exist any proper subexten-

sion M � E1 � E with E1 injective.

Proof. We have already seen that (i) ðñ (ii).
(ii) ùñ (iii): Assume that E is injective and E1 is an injective subextension of
M � E. Since E1 is injective, there exists N � E such that E1`N � E. Moreover,
M X N � E1 X N � 0, so M X N � 0. Since M � E is essential, we must have
N � 0, i.e., E1 � E.
(iii) ùñ (ii): Suppose that M � E is minimal injective. The proof of Theorem
3.33 gives us a subextension E1 of M � E such that E1 is injective and M � E1 is
essential. Thus by minimality E � E1, i.e., M � E is essential. □
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Theorem 3.36. (Uniqueness of Injective Envelopes) Let M be an R-module
and let ι1 : M � E1, ι2 : M � E2 be two injective envelopes of M . Then E1 and
E2 are isomorphic as R-module extensions of M : i.e., there exists an R-module
isomorphism Φ : E1 Ñ E2 such that Φ � ι1 � ι2.

Proof. Since ι1 :M Ñ E1 is a monomorphism and E2 is injective, the map ι2 :
M Ñ E2 extends to a map Φ : E1 Ñ E2 such that Φ � ι1 � ι2. Since the restriction
of Φ to the essential submodule M is a monomorphism, so is Φ. The image ΦpE1q
is an essential subextension of M � E2, so by condition (iii) of Proposition 3.35 we
must have E2 � ΦpE1q. Thus Φ : E1 Ñ E2 is an isomorphism. □

In view of Theorem 3.36, it is reasonable to speak of “the” injective envelope of
M and denote it by M Ñ EpMq. Reasonable, that is, but not ideal: it is not
true that any two injective envelopes are canonically isomorphic.8 Otherwise put,
formation of the injective envelope is not functorial. For more on this in a more
general category-theoretic context, see [AHRT].

Exercise 3.56. Let M be a submodule of an injective module E. Show: E
contains an isomorphic copy of the injective envelope EpMq.

Exercise 3.57. If M � N is an essential extension of modules, then EpMq �
EpNq.

7. Flat modules

Suppose we have a short exact sequence

0ÑM 1 ÑM ÑM2 Ñ 0

of R-modules. If N is any R-module, we can tensor each element of the sequence
with N , getting maps

0ÑM 1 bN ÑM bN ÑM2 bN Ñ 0.

Unfortunately this new sequence need not be exact. It is easy to see that it is right
exact: that is, the piece of the sequence

M 1 bN ÑM bN ÑM2 bN Ñ 0

remains exact. This follows because of the canonical “adjunction” isomorphism

HompM bN,P q � HompM,HompN,P qq
and the left-exactness of the sequence Homp , Y q for all R-modules Y . However,
tensoring an injection need not give an injection. Indeed, consider the exact se-
quence

0Ñ Z r2sÑ Z.
If we tensor this with Z{2Z, we get a sequence

0Ñ Z{2Z r2sÑ Z{2Z,
but now the map Zb Z{2ZÑ Zb Z{2Z takes nb iÑ p2nb iq � nb 2i � 0, so is
not injective.

Definition: A module M over a ring R is flat if the functor N ÞÑ N bR M is

8The situation here is the same as for “the” splitting field of an algebraic field extension or
“the” algebraic closure of a field.
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exact. This means, equivalently, that if M ãÑM 1 then M bN ãÑM 1 bN , or also
that tensoring a short exact sequence with M gives a short exact sequence.

It will probably seem unlikely at first, but in fact this is one of the most important
and useful properties of an R-module.

So, which R-modules are flat?

Proposition 3.37. Let tMiuiPI be a family of R-modules. The following are
equivalent:

(i) For all i, Mi is flat.
(ii) The direct sum M �ÀiMi is flat.

Exercise 3.58. Prove Proposition 3.37.

Proposition 3.38. Let R be a domain. Then flat R-modules are torsionfree.

Proof. We will prove the contrapositive. Suppose that 0 � m P Rrtorss, and
let 0 � r P R be such that rm � 0 Since R is a domain, we have a short exact
sequence

0Ñ R
rrsÑ RÑ R{rRÑ 0

and tensoring it with M gives

0ÑM
rrsÑM ÑM{rM Ñ 0,

but since rm � 0 the first map is not injective. □

Example 3.39. Let k be a field, and let R :� krx, ys, the polynomial ring in
two indeterminates over k. Let I :� xx, yy; then I is a maximal ideal such that
R{I � k. Like every ideal of a domain, I is a torsionfree module. We claim that I
is not flat.9 It suffices to show that the map

φ : I b I Ñ I bR R � I

obtained by tensoring the injection I ãÑ R with I is not an injection. This map is
nothing else than the induced map from the R-bilinear multiplication map I�I Ñ I:
it sends

°n
i�1 ai b bi to

°n
i�1 aibi. Evidently the element

θ :� xb y � y b x
lies in the kernel of φ; the crux of the matter is to show that θ � 0. For this, let

Dx : krx, ys Ñ k � krx, ys{I
by taking the partial derivative with respect to x and then evaluating at p0, 0q and
let

Dy : krx, ys Ñ k � krx, ys{I
by taking the partial derivative with respect to y and then evaluating at p0, 0q. Fi-
nally, put

D : I � I Ñ k, pa, bq ÞÑ DxpaqDypbq.

9Much later we will learn that because I is a prime ideal of height greater than 1 in a
Noetherian ring, it cannot be flat.
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Then D is R-bilinear: e.g. for a, b P I � xx, yy and c, d P krx, ys we have

Dpca, dbq � DxpcaqDypdbq �
�
c
Ba
Bx � a

Bc
Bx

�

d
Bb
By � b

Bd
By


� xx, yy

� cd
Ba
Bx
Bb
By � xx, yy.

So D factors through an R-linear map D : I b I Ñ k. Since

Dpθq � Dpxb y � y b xq � Dppx, yqq � Dppy, xqq � 1� 0 � 1,

it follows that θ � 0.

Proposition 3.40. Projective R-modules are flat.

Proof. A projective R-module is a module P such that there exists P 1 with
P`P 1 � F a free module. Therefore, by Proposition 3.37, it is enough to show that
free modules are flat. By abuse of notation, we will abbreviate the infinite direct
sum of d copies of R as Rd. Since for any R-module M we have M bR Rd � Md,
it follows that tensoring a short exact sequence

0ÑM 1 ÑM ÑM2 Ñ 0

with F � Rd just yields

0Ñ pM 1qd Ñ pMqd Ñ pM2qd Ñ 0.

This is still exact. □

8. Nakayama’s Lemma

8.1. Nakayama’s Lemma.

Proposition 3.41. Let M be a finitely generated R-module, I an ideal of R,
and φ be an R-endomorphism of M such that φpMq � IM . Then φ satisfies an
equation of the form

φn � an�1φ
n�1 � . . .� a1φ� a0 � 0,

with ai P I.
Proof. Let x1, . . . , xn be a set of generators for M as an R-module. Since

each φpxiq P IM , we may write φpxiq �
°
j aijxj , with aij P I. Equivalently, for

all i,
ņ

j�1

pδijφ� aijqxj � 0.

By multiplying on the left by the adjugate of the matrix M � pδijφ� aijq, we get
that detpδijφ�aijq kills each xi, hence is the zero endomorphism ofM . Expanding
out the determinant gives the desired polynomial relation satisfied by φ. □

Exercise 3.59. Some refer to Proposition 3.41 as the Cayley-Hamilton Theo-
rem. Discuss.

Theorem 3.42 (Nakayama’s Lemma). Let R be a ring, J an ideal of R, and
M a finitely generated R-module such that JM �M .

a) There is x P R such that x � 1 pmod Jq and xM � t0u.
b) If moreover J is contained in every maximal ideal of R, then M � t0u.
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Proof. Applying Proposition 3.41 to the identity endomorphism φ � 1M gives
a1, . . . , an�1 P J such that for x :� 1 � a1 � . . . � an�1, we have xM � t0u and
x � 1 pmod Jq, proving part a). If moreover J lies in every maximal ideal m of R,
then x � 1 pmod mq for all maximal ideals m, hence x lies in no maximal ideal of
R. Therefore x is a unit and multiplying xM � t0u by x�1 gives M � t0u. □

Corollary 3.43. Let R be a ring, J an ideal of R which is contained in every
maximal ideal of R, M a finitely generated R-module and N a submodule of M
such that JM �N �M . Then M � N .

Proof. We have JpM{Nq � pJM � Nq{N � M{N . Applying Nakayama’s
Lemma to M{N , we conclude M{N � 0, i.e., N �M . □

Corollary 3.44. Let R be a ring, let J be an ideal of R which is contained
in every maximal ideal of R, and let M be a finitely generated R-module. Let
x1, . . . , xn P M be such that their images in M{JM span M{JM as an R{J-
module. Then the xi’s span M .

Proof. Let N � xx1, . . . , xnyR, and apply Corollary 3.43. □

Corollary 3.45. Let R be a ring, and let J be an ideal that is contained in
every maximal ideal of R. Let M and N be R-modules, with N finitely generated,
and let u : M Ñ N be an R-module map. Suppose that the map uJ : M{JM Ñ
N{JN is surjective. Then u is surjective.

Proof. Apply Nakayama’s Lemma to J and N{M . □

Recall that an element x in a ring R such that x2 � x is called idempotent.
Similarly, an ideal I of R such that I2 � I is called idempotent.

Exercise 3.60. Let R be a ring and I an ideal of R.

a) Suppose I � peq for an idempotent element e. Show that I is idempotent.
b) Give an example of a nonidempotent x such that pxq is idempotent.
c) Is every idempotent ideal generated by some idempotent element?

Corollary 3.46. Let R be a ring, and let I be a finitely generated idempotent
ideal of R. Then there is an idempotent e P R such that I � peq. Thus in a
Noetherian ring every idempotent ideal is generated by an idempotent element.

Exercise 3.61. Prove Corollary 3.46. (Hint: apply Theorem 3.42!)

8.2. Hopfian modules.

A group G is Hopfian if every surjective group homomorphism f : G Ñ G is
an isomorphism – equivalently, G is not isomorphic to any of its proper quotients.

This concept has some currency in combinatorial and geometric group theory.
Clearly any finite group is Hopfian. A free group is Hopfian if and only if it is
finitely generated, and more generally a finitely generated residually finite group is
Hopfian. An obvious example of a non-Hopfian group is

±8
i�1G for any nontrivial

group G. A more interesting example is the Baumslag-Solitar group

Bp2, 3q � xx, y | yx2y�1 � x3y.
More generally, let C be a concrete category: that is, Ob C is a class of sets and
for all X,Y P Ob C, HomCpX,Y q � HomSetpX,Y q, i.e., the morphisms between X
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and Y are certain functions from X to Y . We may define an object X in C to be
Hopfian if every surjective endomorphism of X is an isomorphism.

Exercise 3.62.

a) (C. LaRue) Show: any finite object in a concrete category is Hopfian.
b) In the category of sets, the Hopfian objects are precisely the finite sets.

Remark: Our discussion of “Hopfian objects” in categories more general than R-
Mod is not particularly serious or well thought out. So far as I know there is
not a completely agreed upon definition of a Hopfian object, but Martin Branden-
burg has suggested (instead) the following: X P C is Hopfian if every extremal
epimorphism X Ñ X is an isomorphism.

Theorem 3.47. Let R be a ring and M a finitely generated R-module. Then
M is a Hopfian object in the category of R-modules.

Proof. ([M, p. 9]) Let f :M ÑM be a surjective R-module map. We show
f is injective.

There is a unique Rrts-module structure on M extending the given R-module
structure and such that for all m PM, tm � fpmq. Let I � tRrts. By hypothesis
IM �M , so by Nakayama’s Lemma there exists P ptq P Rrts such that

p1� P ptqtqM � 0.

Let y P ker f . Then
0 � p1� P ptqtqy � y � P ptqfpyq � y � P ptq0 � y.

So f is injective. □

Exercise 3.63. Show: pQ,�q is a Hopfian Z-module which is not finitely gen-
erated.

Exercise 3.64. Do there exist Hopfian Z-modules of all cardinalities? (An
affirmative answer was claim in [Ba62], but it was announced in [Ba63] that the
construction is not valid. So far as I know the problem remains open lo these many
years later.)

8.3. A variant.

The results of this section are taken from [DM71, §I.1].

Theorem 3.48 (Nakayama’s Lemma). Let R be a ring, J an ideal of R and
M a finitely generated R-module. the following are equivalent:

(i) J � annM � R.
(ii) JM �M .

Proof. (i) ùñ (ii): The annihilator of M{JM contains J and annM , so it
contains J � annM � R. This means that M{JM � 0 and JM �M .
(ii) ùñ (i): Conversely, suppose M � xm1, . . . ,mny. For 1 ¤ i ¤ n, put
Mi � xmi, . . . ,mny and Mn�1 � 0. We claim that for all 1 ¤ i ¤ n� 1 there exists
ai P J with p1 � aiqM � Mi, and we will prove this by induction on n. We may
take a1 � 0. Having chosen a1, . . . , ai, we have

p1� aiqM � p1� aiqJM � Jp1� aiqM �Mi,
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so there exist aij P J such that

p1� aiqmj �
ņ

j�i
aijmj ,

or
p1� ai � aiiqmi PMi�1.

Thus�
1� p2ai � aii � a2i � aiaiiq

�
M � p1�aiqp1�ai�aiiqM � p1�ai�aiiqMi �Mi�1,

and we may take
ai�1 � 2ai � aii � a2i � aiaii.

So there is an P J such that 1� an P annM , and thus 1 P J � annM . □

Exercise 3.65. Explain why Theorem 3.48 is an equivalent (but nicer?) refor-
mulation of Theorem 3.42a).

Corollary 3.49. Let M be a finitely generated R-module such that mM �M
for all maximal ideals of R. Then M � 0.

Exercise 3.66. Prove Corollary 3.49.

For an R-moduleM , we define its trace ideal to be the ideal T pMq of R generated
by all the images fpMq of R-module maps f PM_ � HomRpM,Rq.

Exercise 3.67. Let R be a ring.

a) Show: T pRq � R.
b) Show: T pM1 `M2q � xT pM1q, T pM2qy.
c) Show: if M is an R-module such that T pMq � R, then M is faithful.

Theorem 3.50. Let P be a projective module, and let T pP q be its trace ideal.

a) We have T pP qP � P , T pP q2 � T pP q and ann T pP q � annP .
b) Suppose that P is moreover finitely generated. Then T pP q is finitely gen-

erated, and R decomposes as a direct product of rings:

R � T pP q � annP.

Proof. a) Let tpai, fiquiPI be as in the Dual Basis Lemma: for all a P P we
have a � °iPI fipaqai. This shows that T pP qP � P . For f P P_ we have

@a P P, fpaq �
¸
iPI
fipaqfpaiq,

which shows that T pP q2 � T pP q. If s P annP and f P P_ then for all a P P we
have sfpaq � fpsaq � 0, so s P ann T pP q. If s P ann T pP q and a P P , then

sa � sp
¸
i

fipaqaiq � 0,

so s P annP .
b) By Exercise 3.32 we may take the index set I to be t1, . . . , nu. We claim that
T pP q is generated by the set tfjpaiqu. By Exercise 3.33 we have P_ � xf1, . . . , fny,
so for f P P_ there are x1, . . . , xn P R such that f � °n

j�1 xjfj , and then for any
a P P we have

fpaq �
ņ

j�1

xjfjpaq �
¸

1¤i,j¤n
xjfipaqfjpaiq.
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Therefore T pP q is a finitely generated idempotent ideal, so by Corollary 3.46 it is
principal and generated by an idempotent element, say e. As with any idempotent
element, this gives us a direct product decomposition

R � eR� p1� eqR � peq � annpeq � T pP q � ann T pP q � T pP q � annP. □

Corollary 3.51. A nonzero finitely generated projective module over a con-
nected ring R (i.e., without idempotents other than 0 and 1) is faithful.

Exercise 3.68. Prove Corollary 3.51.

Corollary 3.52. Let R � S be an extension of rings.

a) We have that R is a direct summand of the R-module S if and only if
T pSq � R.

b) If S is finitely generated an projective as an R-module, then R is a direct
summand of S.

Proof. a) First suppose that we have an R-module decomposition S � R`A.
Then by Exercise 3.67 we have T pSq � T pRq � R.

Now suppose that T pSq � R, so there are elements a1, . . . , an P S and f1, . . . , fn P
S_ such that

°n
i�1 fipaiq � 1. Define ℓ P S_ by

ℓpsq :�
ņ

i�1

fipsaiq.

Then for all r P R we have

ℓprq �
ņ

i�1

fipraiq � r

�
ņ

i�1

fipaiq
�
� r,

so if ι : R ãÑ S is the inclusion map we have ℓ � ι � 1R and thus S � R`Ker ℓ.
b) By Theorem 3.50, we have R � T pSq � annS. Since R is a faithful R-module,
so is the larger R-module S: annS � p0q. Thus T pSq � R, so part a) applies. □

Later on we will study Dedekind domains, and in particular characterize them
as the Noetherian domains for which every finitely generated torsionfree module
is projective. Thus Corollary 3.52 has the following application that is useful in
number theory: let R be a Dedeknd domain, with fraction field K. Let V be a
finite-dimensional K-vector space. An R-order in V is a ring R � O � V such
that O is finitely generated as an R-module. Since O is torsionfree, it then follows
that R is a direct summand of O.

8.4. Applications to modules over local rings.

Lemma 3.53. Let R be a ring and J an ideal which is contained in every
maximal ideal of R, and let M be a finitely presented R-module. Suppose that:

(i) M{JM is a free R{J-module, and
(ii) The canonical map J bRM Ñ JM is injective.

Then M is a free R-module.

Proof. We may choose a family txiuiPI of elements ofM such that the images
inM{JM give a R{J-basis. (SinceM is finitely generated over R,M{JM is finitely
generated over R{J , so the index set I is necessarily finite.) Consider the finitely
generated free R-module L �ÀiPI R, with canonical basis teiu. Let u : LÑM be
the unique R-linear mapping each ei to xi, and let K � kerpuq. Since M is finitely
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presented, by Proposition 3.6 K is finitely generated. We have a commutative
diagram with exact rows:

J bK Ñ J b LÑ J bM Ñ 0

0Ñ K Ñ LÑM Ñ 0,

where each vertical map – a : J bK Ñ K, b : J b LÑ L, c : J bM ÑM – is the
natural multiplication map. Our hypothesis is that the the map J bRM Ñ JM is
injective, so by the Snake Lemma we get an exact sequence

0Ñ cokerpaq Ñ cokerpbq uÑ cokerpcq.
Now observe that cokerpbq � pR{Jq bR L and cokerpcq � pR{Jq bR M , and by
definition the mapping u : LÑM gives, upon passage to the quotient modulo J , a
mapping from one R{J-module basis to another. So u is an isomorphism and thus
cokerpaq � 0, i.e., K{JK � 0. By Nakayama’s Lemma we conclude K � 0, i.e., u
gives an isomorphism from the free module L to M , so M is free. □

We can now prove the following result, which is one that we will build upon in our
future studies of modules over commutative rings.

Theorem 3.54. Let R be a ring with a unique maximal ideal m – i.e., a local
ring. For a finitely presented R-module M , the following are equivalent:

(i) M is free.
(ii) M is projective.
(iii) M is flat.
(iv) The natural map mbRM Ñ mM is an injection.

Proof. Each of the implications (i) ùñ (ii) ùñ (iii) ùñ (iv) is immediate.
Assume (iv). Then, since m is maximal, R{m is a field, so every R{m-module is
free. Therefore Lemma 3.53 applies to complete the proof. □

9. Ordinal Filtrations and Applications

9.1. The Transfinite Dévissage Lemma.

Let M be an R-module. By an ordinal filtration on M we mean an ordinal
number α and for each i ¤ α a submodule Mi of M satisfying all of the following:
(OF1) M0 � 0, Mα �M .
(OF2) For all i, j P α� 1, i ¤ j ùñ Mi �Mj .
(OF3) For all limit ordinals i ¤ α, Mi �

�
j iMj .

So for instance, taking α � ω � t1, 2, 3, . . .u the first infinite ordinal, we recover
the usual notion of an exhaustive filtration by submodules Mn, with the additional
convention that Mω �

�
nPωMn.

For i   α, we call Mi�1{Mi the ith successive quotient. If for a class C of
R-modules each successive quotient lies in C, we say the filtration is of class C.

Define the associated graded module GrpMq �Ài αMi�1{Mi.

Lemma 3.55. (Transfinite Dévissage Lemma) Let M be an R-module and
tMiui¤α an ordinal filtration of M .
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a) Suppose we make the following hypothesis: (DS) For all i   α the sub-
module Mi is a direct summand of Mi�1. Then

M � GrpMq �à
i α

Mi�1{Mi.

b) Hypothesis (DS) holds if each successive quotient Mi�1{Mi is projective.
c) Hypothesis (DS) holds if each Mi is injective.

Exercise 3.69. Prove Lemma 3.55. (Hint: use transfinite induction.)

Corollary 3.56. For an R-module M , the following are equivalent:

(i) M is free.
(ii) M admits an ordinal filtration with successive quotients isomorphic to R.
(iii) M admits an ordinal filtration with free successive quotients.

Proof. (i) ùñ (ii): If M is free, then M �ÀiPI R. By the Well-Ordering
Principle10, I is in bijection with an ordinal α, so we may write M �Ài αR, and
put Mi �

À
j iR.

(ii) ùñ (iii) is immediate.
(iii) ùñ (i) follows from Lemma 3.55 since free modules are projective. □

9.2. Hereditary and semihereditary rings.

An R-module is hereditary if every submodule is projective. (In particular a
hereditary module is projective, and thus the property of being projective is “in-
herited” by its submodules.) We say that a ring R is hereditary if R is a hereditary
R-module, or equivalently every ideal of R is projective as an R-module.

Exercise 3.70. a) Show: every submodule of a hereditary module is
hereditary.

b) Show: the zero module is hereditary.
c) Show: there are nonzero rings R for which the only hereditary R-module

is the zero module.

Example 3.57. A PID is a hereditary ring. Indeed, any nonzero ideal of a
PID R is isomorphic as an R-module to R.

Theorem 3.58.

a) For i P I, let Mi be a hereditary R-module, and let N be an R-submodule
of
À

iPIMi. Then there is for all i P I an R-submodule Hi of Mi such
that N �ÀiPI Hi.

b) For R hereditary and M an R-module, the following are equivalent:
(i) M is isomorphic to to a direct sum of ideals of R.
(ii) M can be embedded in a free R-module.
(iii) M can be embedded in a projective R-module.

Proof. a) Let M � ÀiPI be a direct sum of hereditary modules, and let N
be an R-submodule of M . By the Well-Ordering Principle there is a bijection from
I to some ordinal α, and without loss of generality we may assume M �ÀiPαMi.

10This set-theoretic axiom is equivalent to the Axiom of Choice and also to Zorn’s Lemma.
Our running convention in these notes is to freely use these axioms when necessary.
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For j P α�, put Pj �
À

i j� Mi, so that tMju is an ordinal-indexed chain of

R-submodules of M with final element Pα �M . For each j P α�, put
Nj � N X Pj ,

so tNju is an ordinal filtration on N with Nα � N . Moreover, for all i P α we have
Ni � Ni�1 X Pi and thus

Ni�1{Ni � Ni{pNi�1 X Piq � pNi�1 � Piq{Pi.
Thus Ni�1{Ni is isomorphic to a submodule Hi of Pi�1{Pi � Mi. For i P I, since
Mi is hereditary, so is Hi � Ni�1{Ni. In particular each Ni�1{Ni is projective, and
the Transfinite Dévissage Lemma (Lemma 3.55) applies to show that

N � GrN �à
i α

Ni�1{Ni �
à
iPI

Hi.

b) (i) ùñ (ii): Since an ideal is precisely an R-submodule of a free R-module of
rank 1, this holds over any ring.
(ii) ðñ (iii): Since every projective module is a direct summand of a free R-
module, this also holds over any ring.
(ii) ùñ (i): This follows from part a). □

Corollary 3.59. Let tMiuiPI be a family of R-modules. Then M �ÀiPIMi

is hereditary if and only if Mi is hereditary for all i.

Proof. Suppose each Mi is hereditary, and let N be a submodule of M .
By Theorem 3.58a), there is for all i P I an R-submodule Hi of Mi such that
N �ÀiPI Hi. Each Hi, being a submodule of the hereditary module Mi, is itself
hereditary, hence projective. Thus N is a direct sum of projective modules, hence
projective. Conversely, if M is hereditary, so are all of its submodules Mi. □

Lemma 3.60.

a) (Checking Projectivity With Injectives) Let P be an R-module such that:
for every injective module I, surjection q : I Ñ Q and module map f :
P Ñ Q, there is F : P Ñ I such that q � F � f . Then P is projective.

b) (Checking Injectivity With Projectives) Let I be an R-module such that:
for every projective R-module P , injection ι : S Ñ P and module map
f : S Ñ I, there is F : P Ñ I such that F � ι � f . Then I is injective.

Proof. a) Let 0 Ñ A1 ιÑ A
τÑ A2 Ñ 0 be a short exact sequence of R-

modules, and let f : P Ñ A2 be a module map. Let σ : A Ñ I be an embedding
into an injective module, and consider the following commutative diagram with
exact rows:

0 ÝÝÝÝÑ A1 ιÝÝÝÝÑ A
τÝÝÝÝÑ A2 ÝÝÝÝÑ 0��� ���σ

0 ÝÝÝÝÑ A1 σ�ιÝÝÝÝÑ I
qÝÝÝÝÑ Q ÝÝÝÝÑ 0

Step 1: We claim there is ρ : A2 Ñ Q making the diagram commute.
Proof: This is a routine diagram chase: choose y P A2, lift to x in A, and put
ρpyq � pq � σqpxq. Let us check that this is well-defined: if we chose a different lift
x1 in A, then x� x1 P A1, so pq � σqpx� x1q � 0.
Step 2: By hypothesis, the map ρ � f : P Ñ Q can be lifted to G : P Ñ I. To
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complete the proof it suffices to show GpP q � σpAq. To see this, let x P P and
choose a P A such that τpaq � fpxq. Then

qpGpxqq � ρpfpxqq � ρpτpaqq � qpσpaqq,
so Gpxq � σpaq P Ker q � Impσ � qq. That is, there is a1 P A1 such that σpιpa1qq �
Gpxq � σpaq, so

Gpxq � σpιpa1q � aq P σpAq.
b) This is the dual version of part a), i.e., obtained by reversing all the arrows. The
above proof also dualizes, as we leave it to the reader to check. □

Corollary 3.61. (Cartan-Eilenberg)
For a ring R, the following are equivalent:

(i) R is hereditary.
(ii) Every free R-module is hereditary.
(iii) Every projective R-module is hereditary.
(iv) Every quotient of an injective R-module is injective.

Proof. (i) ùñ (ii) is immediate from Corollary 3.59.
(ii) ùñ (iii): Suppose that every free R-module is hereditary. Then if P is a
projective R-module, P is a submodule of a free module, hence a submodule of a
hereditary module, hence itself hereditary.
(iii) ùñ (i): R is a projective R-module.
(iv) ðñ (iii): Let P 1 be a submodule of a projective R-module P ; call the
inclusion j. We will use Lemma 3.60a) : let I be an injective module, q : I Ñ I 1 a
surjection, and f : P 1 Ñ I 1 a module map. By assumption I 1 is injective, so there
is h : P Ñ I 1 such that h � j � f . Since P is projective, there is k : P Ñ I such
that q � k � h. Then F � k � j : P 1 Ñ I lifts f : q � F � q � k � j � h � j � f .
(iii) ùñ (iv): Using Lemma 3.60b) we may dualize the proof of (iv) ùñ (iii). □

Theorem 3.62. Let R be a a PID and F a free R-module. Then any submodule
M of F is again free, of rank less than or equal to the rank of F . In particular R
is a hereditary ring.

Proof. Let N be a submodule of F � ÀiPI R. By Theorem 3.58b) for all
i P I there is an ideal Ji of R such that N �ÀiPI Ji. Since R is a PID, each Ji is
is a free R-module of rank 0 or 1, so N is free of rank at most #I. □

Corollary 3.63. A projective module over a PID is free.

Corollary 3.64. For a finitely generated module M over a PID R, the folow-
ing are equivalent:

(i) M is free.
(ii) M is torsionfree.

Proof. (i) Over any domain R, a free R-module is torsionfree. (ii) ùñ
(i): Let M be a finitely generated module over a PID. By Proposition 3.8b), M
is a submodule of a finitely generated free R-module. Applying Theorem 3.62 we
deduce that M is free. □

Exercise 3.71. Let R be a ring with the following property: every submodule
of a finitely generated free R-module is free. Show that R is a principal ring (i.e.,
every ideal of R is principal).
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An R-module M is semihereditary if every finitely generated R-submodule N of
M is projective. Thus a Noetherian semihereditary module is hereditary. A ring R
is semihereditary if R is a semihereditary R-module, or equivalently every finitely
generated ideal of R is projective as an R-module.

Example 3.65. A domain in which every finitely generated ideal is principal
is semihereditary. These are called Bézout domains and will be studied later on.

Theorem 3.66. Let tMiuiPI a family of semihereditary R-modules, and let N
be a finitely generated R-submodule of

À
iPIMi. Then for all i P I there is an

R-submodule Hi of Mi such that N �ÀiPI Hi.

Proof. The proof of Theorem 3.58a) goes through verbatim. □

Theorem 3.67. Let R be a domain in which every finitely generated ideal is
principal, and let F be a free R-module. Then any finitely generated submodule N
of F is free, of rank less than or equal to the rank of F .

Proof. One can adapt the proof of Theorem 3.63, using Theorem 3.66 in place
of Theorem 3.58. □

Theorem 3.68. Let R be a domain in which every finitely generated ideal is
principal. Then every finitely generated torsionfree R-module is free.

Proof. The argument is the same as that of Proposition 3.64 (a special case),
using Theorem 3.67 in place of Theorem 3.62. □

Theorem 3.69 (F. Albrecht). Let R be a semihereditary ring, F a free R-
module, and P a finitely generated submodule of F .

a) P is isomorphic to a finite direct sum of finitely generated ideals of R.
b) In particular, P is a finitely generated projective module.
c) If R is a domain with fraction field K and F is free of finite rank n, then

the rank of P – i.e., dimK P bR K – is at most n.

Exercise 3.72. Use Theorem 3.66 to prove Theorem 3.69.

9.3. Big modules.

Lemma 3.70. (Kaplansky) Let R be a ring, and let F be an R-module which
is a direct sum of countably generated submodules: say F �ÀλPΛEλ. Then every
direct summand of F is again a direct sum of countably generated submodules.

Proof. We claim that there is an ordinal filtration tFiui¤α on F satisfying
all of the following properties. (i) For all i   α, Fi�1{Fi is countably generated.
(ii) If Mi � Fi XM, Ni � Fi XN , then Fi �Mi `Ni.
(iii) For each i there is a subset Λi of Λ such that Fi �

À
λPΛi

Λi.
sufficiency of claim: If so, tMiui¤α is an ordinal filtration on M . Moreover,
sinceMi �Mi�1 are both direct summands of F , Mi is a direct summand ofMi�1.
The Transfinite Dévissage Lemma (Lemma 3.55) applies to give

M � GrpMq �à
i α

Mi�1{Mi.

Moreover, for all i   α we have

Fi�1{Fi � pMi�1 `Ni�1q{pMi `Niq �Mi�1{Mi `Ni�1{Ni,
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which shows that each successive quotientMi�1{Mi is countably generated. There-
fore M is a direct sum of countably generated submodules.
proof of claim: We will construct the filtration by transfinite induction. The
base case and the limit ordinal induction step are forced upon us by the definition
of ordinal filtration: we must have F0 � t0u, and for any limit ordinal β ¤ α,
assuming we have defined Fi for all i   β we must have Fβ �

�
i β Fi.

So consider the case of a successor ordinal β � β1 � 1. Let Q1 be any Eλ
which is not contained in Fβ1 . (Otherwise we have Fβ1 � F and we may just define
Fi � F for all β ¤ i ¤ α.) Let x11, x12, . . . be a sequence of generators of Q1, and
decompose x11 into its M - and N -components. Let Q2 be the direct sum of the
finitely many Eλ which are necessary to write both of these components, and let
x21, x22, . . . be a sequence of generators for Q2. Similarly decompose x12 into M
and N components, and let Q3 be the direct sum of the finitely many Eλ needed
to write out these components, and let x31, x32, . . . be a sequence of generators
of Q3. We continue to carry out this procedure for all xij , proceeding accord-
ing to a diagonal enumeration of Z� � Z�: i.e., x11, x12, x21, x13, x22, x31, . . .. Put
Fβ � xFβ1 , txijui,jPZ�yR. This works! □

For a cardinal number κ, we say that a module is κ-generated if it admits a
generating set of cardinality at most κ.

Exercise 3.73. (Warfield) Let κ be an infinite cardinal. Formulate and prove a
version of Lemma 3.70 in which “countably generated” is replaced by “κ-generated”.

Theorem 3.71. (Kaplansky) For a ring R, let Pc be the class of countably
generated projective R-modules. For an R-module M , the following are equivalent:

(i) M admits an ordinal filtration of class Pc.
(ii) M is a direct sum of countably generated projective submodules.
(iii) M is projective.

Proof. (i) ðñ (ii) follows immediately from Lemma 3.55.
(ii) ùñ (iii): any direct sum of projective modules is projective.
(iii) ùñ (ii): If M is projective, let F be a free R-module with F � M `
N . Certainly F is a direct sum of countably generated submodules (indeed, of
singly generated submodules!), so by Lemma 3.70 M is a direct sum of a family of
countably generated submodules, each of which must be projective. □

While pondering the significance of this result, one naturally inquires:

Question 2. Is there a ring R and an R-module M which is not a direct sum
of countably generated submodules?

Theorem 3.72. (Cohen-Kaplansky [CK51], Griffith) For a ring R, the follow-
ing are equivalent:

(i) Every R-module is a direct sum of cyclic (i.e., singly generated) R-modules.
(ii) Every R-module is a direct sum of finitely generated submodules.
(iii) The ring R is an Artinian principal ring.

Building on these results as well as work of Faith andWalker [FW67], R.B. Warfield
Jr. proved the following striking results.

Theorem 3.73. (Warfield [Wa]) Let R be a Noetherian ring which is not a
principal Artinian ring. Then for any cardinal κ, there is a module M with the
following properties:



9. ORDINAL FILTRATIONS AND APPLICATIONS 75

(i) M is not κ-generated.
(ii) Any decomposition of M into the direct sum of nonzero submodules has

only finitely many direct summands.

The hypotheses of Theorem 3.73 apply for instance to the ring Z of integers and
yields, in particular, for any infinite cardinal κ a commutative group M which is
not a direct sum of κ-generated submodules.

Theorem 3.74. (Warfield [Wa]) For a ring R, the following are equivalent:

(i) Every R-module is a direct sum of cyclic submodules.
(ii) There exists a cardinal number κ such that every R-module is a direct sum

of κ-generated submodules.
(iii) R is a principal Artinian ring.

It is natural to wonder whether Theorem 3.73 can be strengthened in the following
way: an R-moduleM is indecomposable if it cannot be expressed as a direct sum
of two nonzero submodules.

Question 3. For which rings R do there exist indecomposable R-modules of
all infinite cardinalities?

However, Question 3 has turned out to be bound up with sophisticated set-theoretic
considerations. Namely, in a 1959 paper [Fu59], L. Fuchs claimed that there exist
indecomposable commutative groups of all infinite cardinalties, thus giving an affir-
mative answer to Question 3 for the ring R � Z. However, it was later observed (by
A.L.S. Corner) that Fuchs’ argument is valid only for cardinals κ less than the first
inaccessible cardinal. Exactly what an inaccessible cardinal is we do not wish to
say, but we mention that the nonexistence of inaccessible cardinals is equiconsistent
with the standard ZFC axioms of set theory (in other words, if the ZFC axioms
are themselves consistent, then ZFC plus the additional axiom that there are no
inaccessible cardinals remains consistent) but that nevertheless set theorists have
reasons to believe in them. See also [Fu74] in which these issues are addressed
and he proves that there is an indecomposable commutative group of any infinite
nonmeasurable cardinality (note: accessible implies nonmeasurable).

Question 4. Is there a ring R and a projective R-module M which is not a
direct sum of finitely generated submodules?

Again the answer is yes. A very elegant example was given by Kaplansky (un-
published, apparently).11 Namely that R be the ring of all real-valued contin-
uous functions on the unit interval r0, 1s, and let I be the ideal of functions
f : r0, 1s Ñ R which vanish near zero: i.e., for which there exists ϵ � ϵpfq ¡ 0
such that f |r0,ϵpfqs � 0.

Exercise 3.74. Show the ideal I defined above gives a projective R-module
which is not the direct sum of finitely generated submodules.
(Suggestions: (i) to show that I is projective, use the Dual Basis Lemma. (ii) A
slick proof of the fact that I is not a direct sum of finitely generated submodules can
be given by Swan’s Theorem using the contractibility of the unit interval.)

Lemma 3.75. LetM be a projective module over the local ring R, and let x PM .
There is a direct summand M 1 of M such that M 1 contains x and M 1 is free.

11Warm thanks to Gjergji Zaimi for bringing this important example to my attention.
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Proof. Let F be a free module with F �M `N . Choose a basis B � tuiuiPI
of F with respect to which the element x of M has the minimal possible number
of nonzero coordinates. Write

x � r1u1 � . . .� rnun, ri P R.
Then for all 1 ¤ i ¤ n, ri R

°
j�iRrj . Indeed, if say rn �

°n�1
i�1 siri, then

x � °n�1
i�1 ripui � siunq, contradicting the minimality of the chosen basis.

Now write ui � yi � zi with yi PM, zi P N , so

(6) x �
¸
i

riui �
¸
i

riyi.

We may write

(7) yi �
ņ

j�1

cijuj � ti,

with ti a linear combination of elements of Bztu1, . . . , unu. Substituting (7) into
(6) and projecting onto M gives the relations

ri �
ņ

j�1

cjirj ,

or equivalently, for all i,

p1� ciiqri �
¸
j�i

cjirj .

If for any i and j, then one of the coefficients of rj in the above equation is a unit
of R, then dividing through by it expresses rj as an R-linear combination of the
other ri’s, which as above is impossible. Therefore, since R is local, each coefficient
must lie in the maximal ideal of R:

@i, 1� cii P m, @i � j, cij P m.
It follows that the determinant of the matrix C � pcijq is congruent to 1 modulo
m, hence invertible: if x P m and 1�x is not invertible, then 1�x � y for y P m, so
1 � y � x P m, contradiction. Therefore replacing u1, . . . , un in B with y1, . . . , yn
still yields a basis of F . It follows that M 1 � xy1, . . . , ynyR is a direct summand of
F hence also of M which is a free module containing x. □

Theorem 3.76. (Kaplansky) Let pR,mq be a local ring, and let P be any
projective R-module. Then P is free.

Proof. Step 1: Since by Theorem 3.71 P is a direct sum of countably gen-
erated projective submodules, we may as well assume that P itself is countably
generated.
Step 2: Suppose M � xtxnu8n�1yR is a countably generated projective module over
the local ring R. By Lemma 3.75, M � F1 `M1 with F1 free containing x1. Note
thatM1 is again projective and is generated by the images tx1nu8n�2 of the elements
xn under the natural projection map M Ñ M1. So reasoning as above, we may
write M2 � F2`M2 with F2 free containing x12. Continuing in this manner, we get

M �
8à
n�1

Fn,

so M is free. □
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Exercise 3.75. Give an example of a (necessarily infinitely generated) module
over a local PID which is flat but not free.

10. Tor and Ext

10.1. Co/chain complexes.

Let R be a ring. A chain complex C of R-modules is a family tCnunPZ of
R-modules together with for all n P Z, an R-module map dn : Cn Ñ Cn�1 such
that for all n, dn�1 � dn � 0. (It is often the case that Cn � 0 for all n   0, but
this is not a required part of the definition.)

An example of a chain complex of R-modules is any long exact sequence. How-
ever, from the perspective of homology theory this is a trivial example in the follow-
ing precise sense: for any chain complex we may define its homology modules:
for all n P Z, we put

HnpCq � Kerpdnq{ Impdn�1q.
Example 3.77. Let X be any topological space. For any ring R, we have the

singular chain complex SpXq: SpXqn � 0 for n   0, and for n ¥ 0, SpXqn is
the free R-module with basis the set of all continuous maps ∆n Ñ X, where ∆n is
the standard n-dimensional simplex. A certain carefully defined alternating sum of
restrictions to faces of ∆n gives rise to a boundary map dn : SpXqn Ñ SpXqn�1,
and the indeed the homology groups of this complex are nothing else than the singular
homology groups HnpX,Rq with coefficients in R.

If C and D are two chain complexes of R-modules, a homomorphism η : C Ñ
D is given by maps ηn : Cn Ñ Dn for all n rendering the following infinite ladder
commutative:

INSERT ME!.

In this way one has evident notions of a monomorphism and epimorphisms
of chain complexes. In fact the chain complexes of R-modules form an abelian
category and thus these notions have a general categorical meaning, but it turns
out they are equivalent to the more concrete naive conditions: η is a monomorphism
if and only if each ηn is injective and is an epiomorphism if and only if each ηn is
surjective.

In particular we may consider a short exact sequence of chain complexes:

0 ÝÑ A ÝÑ B ÝÑ C ÝÑ 0.

Here is the first basic theorem of homological algebra.

Theorem 3.78. Let

0 ÝÑ A
fÝÑ B

gÝÑ C ÝÑ 0

be a short exact sequence of chain complexes of R-modules. Then for all n P Z
there is a natural connecting homomorphism B : HnpCq Ñ Hn�1pAq such that

. . .
gÝÑ Hn�1pCq BÝÑ HnpAq fÑ HnpBq gÝÑ HnpCq BÝÑ Hn�1pAq fÝÑ . . .

is exact.

Proof. No way. See [W, Thm. 1.3.1]. □
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Moreover, the homology modules Hn are functors: if f : C Ñ D is a morphism
of chain complexes, there are induced maps on the homology groups

Hnpfq : HnpCq Ñ HnpDq.
Example 3.79. Let f : X Ñ Y be a continuous map of topological spaces.

Then for any basic n-chain ∆n Ñ X in SpXqn, composition with f gives a basic
n-chain ∆n Ñ Y in SpY qn and thus a homomorphism of chain complexes Spfq :
SpXq Ñ SpY q. There are induced maps on homology, namely the usual maps

Hnpfq : HnpX,Rq Ñ HnpY,Rq.
There is an entirely parallel story for cochain complexes of R-modules, which are
exactly the same as chain complexes but with a different indexing convention: a
cochain complex C consists of for each n P Z� an R-module Cn and a “coboundary
map” dn : Cn Ñ Cn�1. To any cochain complex we get cohomology modules:
for all n P Z, put

HnpCq � Kerpdnq{ Impdn�1q.
The rest of the discussion proceeds in parallel to that of chain complexes (including
the realization of singular cohomology as a special case of this construction).

10.2. Chain homotopies.

Let C, D be two chain complexes, and let f, g : C Ñ D be two homomor-
phisms between them. We say that f and g are chain homotopic if there exist
for all n P Z� R-module maps sn : Cn Ñ Dn�1 such that

fn � gn � dn�1sn � sn�1dn.

The sequence tsnu is called a chain homotopy from f to g.

Exercise 3.76. Show: chain homotopy is an equivalence relation on morphisms
from C to D.

What on earth is going on here? Again topology is a good motivating example: we
say that two maps f, g : X Ñ Y are homotopic if there exists a continuous map
F : X � r0, 1s Ñ Y such that for all x P X, F px, 0q � fpxq and F px, 1q � gpxq.
This is an equivalence relation and is generally denoted by f � g. We then define
two topological spaces to be homotopy equivalent if there exist maps φ : X Ñ Y
and ψ : Y Ñ X such that

ψ � φ � 1X , φ � ψ � 1Y .

(We say that φ : X Ñ Y is a homotopy equivalence if there exists a map ψ as
above.) E.g. a space is contractible if it is homotopy equivalent to a single point.

One of the basic tenets of algebraic topology is that it aspires to study topo-
logical spaces only up to homotopy equivalence. That is, all of the fundamen-
tal invariants of spaces should be the same on homotopy equivalent spaces and
homomorphisms between these invariants induced by homotopic maps should be
identical. Especially, if f : X Ñ Y is a homotopy equivalence, the induced maps
Hnpfq : HnpXq Ñ HnpY q should be isomorphisms. In fact, if f, g : X Ñ Y are ho-
motopic, the induced morphisms Spfq, Spgq : SpXq Ñ SpY q are chain homotopic.
So the following result ensures that the induced maps on homology are equal.

Proposition 3.80. If f, g : C Ñ D are chain homotopic, then for all n P Z,
Hnpfq � Hnpgq.
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Proof. Replacing f and g by f � g and 0, it is enough to assume that there
exists a chain homotopy s from f to the zero map – i.e., for all n fn � dn�1sn �
sn�1dn – and show that f induces the zero map on homology. So take x P HnpCq.
Then x is represented by an element of Cn lying in the kernel of dn, so

fnpxq � dn�1snx� sn�1dnx � dn�1snx� 0 � dn�1snx.

Thus fnpxq lies in the image of dn�1Dn�1 Ñ Dn so represents 0 P HnpDq. □

10.3. Resolutions.

Let M be an R-module. A left resolution of M is an infinite sequence tAiu8i�0

of R-modules, for all n P N an R-module map An�1 Ñ An and an R-module map
A0 ÑM such that the sequence

. . . ÝÑ An�1 Ñ An ÝÑ . . . ÝÑ A1 ÝÑ A0 ÝÑM ÝÑ 0

is exact. By abuse of notation, we often speak of “the resolution A. Dually, a
right resolution of M is an infinite sequence tBiu8i�0 of R-modules, for all n P N
an R-module map Bn Ñ Bn�1 and an R-module map M Ñ B0 such that the
sequence

0 ÝÑM ÝÑ B0 ÝÑ B1 ÝÑ . . . ÝÑ Bn ÝÑ Bn1 . . .

is exact. We speak of “the resolution B”.

A projective resolution of M is a left resolution A such that each An is projec-
tive. A injective resolution of M is a right resolution B such that each Bn is
injective. (Exactly why we are not interested in left injective resolutions and right
projective resolutions will shortly become clear.)

Theorem 3.81. (Existence of resolutions) Let M be an R-module.

a) Since every R-module is the quotient of a projective (indeed, of a free)
module, M admits a projective resolution.

b) Since every R-module can be embedded in an injective module, M admits
an injective resolution.

Proof. a) Choose a projective module P0, a surjection ϵ0 : P0 Ñ M , and
put M0 � kerpϵ0q. Inductively, given Mn�1, we choose a projective module Pn, a
surjection ϵn : Pn Ñ Mn�1, and put Mn � kerpϵ0q. As our map dn : Pn Ñ Pn�1

we take the composite

Pn
ϵnÝÑMn�1

kerpϵn�1qÝÑ Pn�1.

We claim that the resulting sequence

. . . ÝÑ Pn�1 Ñ Pn ÝÑ . . . ÝÑ P1 ÝÑ P0 ÝÑM ÝÑ 0

is exact. It is certainly exact at M . If x P P0 and ϵ0pxq � 0, then x0 P M0.
Lifting x0 via the surjection ϵ1 to x1 P P1, we find d1px1q � ϵ1px1q � x0, so
kerpϵ0q � Impd1q. Conversely, since d1 factors through kerpϵ0q, it is clear that
Impd1q � kerpϵ0q. Exactly the same argument verifies exactness at Pn for each
n ¡ 0, so P is a projective resolution of M .
b) We leave the proof of this part to the reader as an exercise, with the following
comforting remark: the notion of an injective module is obtained from the notion
of a projective module by “reversing all the arrows”, which is the same relationship
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that a left resolution bears to a right resolution. Therefore it should be possible to
prove part b) simply by holding up the proof of part a) to a mirror. (And it is.) □

Theorem 3.82. (Comparison theorem for resolutions)

a) Let P be a projective resolution of the R-module M . Let N be another
R-module and f�1 : M Ñ N be an R-module map. Then for every left
resolution A of N there exists a homomorphism η from the chain complex
P Ñ M Ñ 0 to the chain complex A Ñ N Ñ 0. Moreover η is unique
up to chain homotopy.

b) Let E be an injective resolution of the R-module N . Let M be another
R-module and f 1 : M Ñ N be an R-module map. Then for every right
resolution A ofM there exists a homomorphism η from the chain complex
0 Ñ M Ñ A to the chain complex 0 Ñ N Ñ E. Moreover η is unique
up to chain homotopy.

Proof. See [W, Thms. 2.2.6 and 2.3.7]. □

Exercise 3.77. Let F be a covariant additive functor on the category of R-
modules. Let C and D be two chain complexes of R-modules and f, g : C Ñ D
be two homomorphisms between them.

a) Show: FC and FD are chain complexes and there are induced chain
homomorphisms Ff, Fg : FC Ñ FD.

b) Show: if f and g are chain homotopic, so are Ff and Fg. (Suggestion:
Show that it makes sense to apply F to a chain homotopy s.)

10.4. Derived functors.

Let us consider covariant, additive functors F from the category of R-modules to it-
self. (Recall that additive means that for anyM,N , the induced map HompM,Nq Ñ
HompF pMq, F pNqq is a homomorphism of commutative groups.)

Exercise 3.78. For any additive functor F and any chain complex C of R-
modules, FC is again a chain complex.
(Hint: an additive functor takes the zero homomorphism to the zero homomor-
phism.)

Thus if
0 ÝÑM1 ÝÑM2 ÝÑM3 ÝÑ 0

is a short exact sequence of R-modules, then

0 ÝÑ F pM1q ÝÑ F pM2q ÝÑ F pM3q ÝÑ 0

is necessarily a complex of modules but not necessarily exact: it may have nonzero
homology.

Example 3.83. For any ring R, the functor F pMq � M `M is exact. For
R � Z the functor F pMq �M b Z{2Z is not exact: for instance it takes the short
exact sequence

0 ÝÑ Z �2ÝÑ Z ÝÑ Z{2Z ÝÑ 0

to the complex

0 ÝÑ Z{2Z �2ÝÑ Z{2ZÑ Z{2Z ÝÑ 0,

but multiplication by 2 on Z{2Z is not an injection.
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Although an exact functor is a thing of beauty and usefulness to all, it turns out
that from a homological algebraic point of view, it is the functors which are “half
exact” which are more interesting: they give rise to co/homology theories.

An additive functor F is right exact if for any exact sequence of the form

M1 ÝÑM2 ÝÑM3 ÝÑ 0,

the induced sequence

FM1 ÝÑ FM2 ÝÑ FM3 ÝÑ 0

is again exact. This much was true for the functor F pMq �M bZ{2Z, at least for
the sequence we chose above. In fact this holds for all tensor products.

Proposition 3.84. For any ring R and any R-module N , the functor F pMq �
M bR N is right exact.

Exercise 3.79. Prove Proposition 3.84

We have also the dual notion of an additive functor F being left exact: for any
exact sequence of the form

0ÑM1 ÑM2 ÑM3,

the induced sequence
0Ñ FM1 Ñ FM2 Ñ FM3

is again exact.

We now wish to press our luck a bit by extending this definition to contravari-
ant functors. Here a little abstraction actually makes me less confused, so I will
pass it along to you: we say that a contravariant functor F from the abelian cate-
gory C to the abelian category D is left exact (resp. right exact) if the associated
covariant functor F opp : Copp Ñ D is left exact (resp. right exact). Concretely, a
contravariant functor F from R-modules to R-modules is left exact if every exact
sequence of the form

M1 ÑM2 ÑM3 Ñ 0

is transformed to an exact sequence

0Ñ FM3 Ñ FM2 Ñ FM1.

(And similarly for right exact contravariant functors.)

Proposition 3.85. Let R be a ring and X be an R-module.

a) The functor M ÞÑ HompX,Mq is covariant and left exact.
(Recall that it is exact if and only if X if projective.)

b) The functor M ÞÑ HompM,Xq is contravariant and left exact.
(Recall that it is exact if and only if X is injective.)

Exercise 3.80. Prove Proposition 3.85.

Let F be a right exact additive functor on the category of R-modules. We will
define a sequence tLnF unPN of functors, with L0F � F , called the left derived
functors of F . The idea here is that the left-derived functors quantify the failure
of F to be exact.
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Let M be an R-module. We define all the functors LnF at once, as follows: first
we choose any projective resolution P Ñ M Ñ 0 of M . Second we take away the
M , getting a complex P which is exact except at P0, i.e.,

H0pP q � P0{ ImpP1 Ñ P0q � P0{KerpP0 ÑMq �M,

@n ¡ 0, HnpP q � 0.

Third we apply the functor F getting a new complex FP. And finally, we take
homology of this new complex, defining

pLnF qpMq :� HnpFPq.
Now there is (exactly?) one thing which is relatively clear at this point.

Proposition 3.86. We have pL0F qpMq � FM .

Proof. Since P1 Ñ P0 ÑM Ñ 0 is exact and F is right exact, FP1 Ñ FP0 Ñ
FM Ñ 0 is exact, hence

ImpFP1 Ñ FP0q � KerpFP0 Ñ FMq.
Thus

pL0F qpMq � H0pFPq � KerpFP0 Ñ 0q{ ImpFP1 Ñ FP0q
� FP0{KerpFP0 Ñ FMq � FM.

□

Before saying anything else about the left derived functors LnF , there is an obvious
point to be addressed: how do we know they are well-defined? On the face of it,
they seem to depend upon the chosen projective resolution P of M , which is very
far from being unique. To address this point we need to bring in the Comparison
Theorem for Resolutions (Theorem 3.82). Namely, let P 1

 Ñ M Ñ 0 be any other
projective resolution of M . By Theorem 3.82, there exists a homomorphism of
chain complexes η : P Ñ P 1

 which is unique up to chain homotopy. Interchanging
the roles of P 1

 and P, we get a homomorphism η1 : P 1
 Ñ P. Moreover, the

composition η1 � η is a homomorphism from P to itself, so by the uniqueness η1 � η
is chain homotopic to the identity map on P. Similarly η �η1 is chain homotopic to
the identity map on P 1

, so that η is a chain homotopy equivalence. By Exercise 3.77,
Fη : FP Ñ FP 1

 is a chain homotopy equivalence, and therefore the induced maps
on homology HnpFηq : HnpFPq Ñ HnpFP 1

q are isomorphisms. Thus we have
shown that two different choices of projective resolutions for M lead to canonically
isomorphic modules pLnF qpMq.

Exercise 3.81. Suppose M is projective. Show: for any right exact functor F
and all n ¡ 0, pLnF qpMq � 0.

The next important result shows that a short exact sequence of R-modules induces
a long exact sequence involving the left-derived functors and certain connecting
homomorphisms (which we have not defined and will not define here).

Theorem 3.87. Let

(8) 0 ÝÑM1 ÝÑM2 ÝÑM3 ÝÑ 0

be a short exact sequence of R-modules, and let F be any left exact functor on the
category of R-modules. Then:
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a) There is a long exact sequence
(9)

. . .Ñ pL2F qpM3q BÑ pL1F qpM1q Ñ pL1F qpM2q Ñ pL1F qpM3q BÑ FM1 Ñ FM2 Ñ FM3 Ñ 0.

b) The above construction is functorial in the following sense: if 0 ÝÑ
N1 ÝÑ N2 ÝÑ N3 ÝÑ 0 is another short exact sequence of R-modules
and we have maps Mi Ñ Ni making a “short commutative ladder”, then
there is an induced “long commutative latter” with top row the long exact
sequence associated to the first short exact sequence and the bottom row
the long exact sequence associated to the second short exact sequence.

Proof. See [W, Thm. 2.4.6]. □

Remark: One says that (9) is the long exact homology sequence associated to
the short exact sequence (8).

Now, dually, if F is a right exact functor on the category of R-modules, we may
define right derived functors RnF . Namely, for an R-module M , first choose
an injective resolution 0 Ñ M Ñ E, then take M away to get a cochain com-
plex E, then apply F to get a cochain complex FE, and then finally define
pRnF qpMq � HnpFEq. In this case, a short exact sequence of modules (8) in-
duces a long exact cohomology sequence
(10)

0Ñ FM1 Ñ FM2 Ñ FM3
BÑ pR1F qpM1q Ñ pR1F qpM2q Ñ pR1F qpM3q BÑ pR2F qpM1q . . .

Exercise 3.82. Suppose M is injective. Show: for any left exact functor F
and all n ¡ 0, we have pRnF qpMq � 0.

10.5. Tor.

Let M,N be R-modules, and let F : N Ñ M bR N be the functor “tensor with
M”. Then F is right exact so has left derived functors pLnF q. By definition, for
all n P N,

TornpM,Nq :� pLnF qpNq.
Now un/fortunately the situation is even a little richer than the general case of
left-derived functors discussed above. Namely, the tensor product is really a bi-
functor: i.e., a functor inM as well as in N , additive and covariant in each variable
separately. So suppose we took the right-derived functors of M ÞÑ M bR N and
applied them to M : this would give us TornpN,Mq. So it is natural to ask: how
does TornpM,Nq compare to TornpN,Mq? Since for n � 0 we have that M bR N
is canonically isomorphic to N bR M , it is natural to hope that the Tor functors
are symmetric. And indeed this turns out to be the case.

Theorem 3.88. (Balancing Tor) For any R-modules M and N and all n ¥ 0,
there are natural isomorphisms TornpM,Nq � TornpN,Mq.

Proof. No way. See [W, Thm. 2.7.2]. □

Exercise 3.83. In order to use the Universal Coefficient Theorem (for homol-
ogy) in algebraic topology, one needs to know the values of Tor1pM,Nq for any two
finitely generated Z-modules M and N .

a) Show that for any m,n P Z�, Tor1pZ{mZ,Z{nZq � Z{ gcdpm,nqZ.
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b) Show that for all Z-modules N , Tor1pZ, Nq � 0.
c) Explain how the structure theorem for finitely generated Z-modules reduces

the problem of computation of Tor1pM,Nq for any finitely generated M
and N to the two special cases done in parts a) and b).

Exercise 3.84. Show: the Tor functors commute with direct limits in the sense
that for all n P N, any directed system tMiuiPI of R-modules M and any R-module
N we have a canonical isomorphism

TornplimÝÑ
i

Mi, Nq Ñ limÝÑ
i

TornpMi, Nq.

(Suggestion: the case n � 0 is Proposition 3.9. Use this to show the general case
by brute force: i.e., take a projective resolution of N and track these isomorphisms
through the definition of Torn.)

10.6. Ext.

Let M,N be R-modules, and let F : N Ñ HompM,Nq, so F is covariant and
left exact. By definition, for all n P N,

ExtnpM,Nq � pRnF qpNq.
But again, we have an embarrassment of riches: why didn’t we define the Ext
functors as the right-derived functors of the contravariant left exact functor G :
N Ñ HompN,Mq? Again, we can do this.

Theorem 3.89. (Balancing Ext) Let M and N be R-modules. Define functors
FM : N Ñ HompM,Nq and GN :M Ñ HompM,Nq. Then for all n ¥ 0,

pRnFM qpNq � pRnGN qpMq.
Proof. No way. See [W, Thm. 2.7.6]. □

Exercise 3.85. In order to use the Universal Coefficient Theorem (for coho-
mology) in algebraic topology, one needs to know the values of Ext1pM,Nq for any
two finitely generated Z-modules M and N . Compute them.

Theorem 3.90. a) For an R-module P , the following are equivalent:
(i) P is projective.
(ii) Ext1RpP,Bq � 0 for all R-modules B.

b) For an R-module E, the following are equivalent:
(i) E is injective.
(ii) Ext1RpA,Eq � 0 for all R-modules A.

Exercise 3.86. Prove Theorem 3.100.

Theorem 3.91. a) For a ring R, the following are equivalent:
(i) R is hereditary.
(ii) Every R-module M admits a projective resolution of the form 0 Ñ

P1 Ñ P0 ÑM Ñ 0.
(iii) For all R-modulesM and N and all n ¥ 2, we have ExtnRpM,Nq � 0.

b) The conditions of part a) imply:
(iv) For all R-modules M and N and all n ¥ 2, TornRpM,Nq � 0.

c) If R is Noetherian, then (iv) ùñ (i) and thus all are equivalent.

Exercise 3.87. Prove Theorem 3.101.
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Theorem 3.92. For R-modules A and C, the following are equivalent:

(i) Every short exact sequence 0Ñ AÑ B ÑÑ C Ñ 0 splits.
(ii) Ext1RpC,Aq � 0.

Proof. See e.g. [Ro, Thm. 7.31]. □

11. More on flat modules

Theorem 3.93. (Tensorial Criterion for Flatness) For an R-module M , the
following are equivalent:

(i) The R-module M is flat.
(ii) For every finitely generated ideal I of R the canonical map IbRM Ñ IM

is an isomorphism.

Proof. First note that the canonical map IbRM Ñ IM is always a surjection.
(i) ùñ (ii): if M is flat, then since I ãÑ R, I bR M ãÑ R bR M � M , so

I bRM �Ñ IM .
(ii) ùñ (i): Every ideal of R is the direct limit of its finitely generated subideals,
so it follows from Proposition 3.9 and the exactness of direct limits that IbM ÑM
is injective for all ideals I. Moreover, if N is an R-module and N 1 � N is an R-
submodule, then since N is the direct limit of submodule N 1 � F with F finitely
generated, to show that N 1 bM Ñ N bM is injective we may assume

N � N 1 � xω1, . . . , ωnyR.
We now proceed by dévissage: putting Ni � N 1 � xω1, . . . , ωiyR, it is enough to
show injectivity at each step of the chain

N 1 bM Ñ N1 bM Ñ . . .Ñ N bM,

and further simplifying, it is enough to show that if N � N 1�Rω, then N 1bM ãÑ
N bM . Let I be the “conductor ideal of N{N 1”, i.e., I � tx P R | xω P N 1u, so
that we get a short exact sequence of R-modules

0Ñ N 1 Ñ N Ñ R{I Ñ 0

which gives rise to a long exact homology sequence

. . .Ñ TorR1 pM,R{Iq Ñ N 1 bM Ñ N bM ÑM{IM Ñ 0.

Thus it suffices to prove TorR1 pM,R{Iq � 0. For this we consider the homology
sequence associated to

0Ñ I Ñ RÑ R{I Ñ 0,

namely

. . .Ñ TorR1 pM,Rq � 0Ñ TorR1 pM{R{Iq Ñ I bM ÑM Ñ . . . ,

and from the injectivity of I bM ÑM we deduce TorR1 pM,R{Iq � 0. □

Theorem 3.94. (Homological Criterion for Flatness) For an R-module M ,
the following are equivalent:

(i) The R-module M is flat.

(ii) For every R-module N all i ¡ 0, we have TorRi pM,Nq � 0.

(ii1) For every R-module N , we have TorR1 pM,Nq � 0.

(iii) For every finitely generated ideal I of R, we have TorR1 pM,R{Iq � 0.
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Proof. (i) ùñ (ii): This is a statement about projective resolutions, but
given that it is just about the most basic possible one. Namely, let L Ñ N Ñ 0
be a projective resolution of N . Then

. . .Ñ Ln bM Ñ Ln�1 bM Ñ . . .Ñ L0 bM
is exact, so TorRi pM,Nq � 0 for all i ¡ 0.
(ii) ùñ (ii1) and (ii1) ùñ (iii) are both immediate.
(iii) ùñ (i): For each finitely generated ideal I of R, the short exat sequence

0Ñ I Ñ RÑ R{I Ñ 0

of R-modules induces a long exact sequence in homology, which ends

. . .Ñ TorR1 pM,R{Iq � 0Ñ I bM ÑM ÑM{IM Ñ 0,

i.e., the map I bM Ñ M is injective and thus induces an isomorphism I bM
�Ñ

IM . Using the Tensorial Criterion for Flatness (Theorem 3.93), we conclude M is
flat. □

Corollary 3.95. (Direct limits preserve flatness) Let R be a ring and tMiuiPI
a directed system of flat R-modules. Then M � limÝÑMi is a flat R-module.

Proof. For every R-module N , we have

TorR1 plimÝÑMi, Nq � TorR1 pN, limÝÑMiq � limÝÑTorR1 pN,Miq � limÝÑTorR1 pMi, Nq � limÝÑ 0 � 0.

Now apply the Homological Criterion for Flatness. □

Corollary 3.96. For a domain R, the following are equivalent:

(i) Every finitely generated torsionfree R-module is flat.
(ii) Every torsionfree R-module is flat.

Proof. Every submodule of a torsionfree R-module is torsionfree, and every
R-module is the direct limit of its finitely generated submodules. So the result
follows immediately from Proposition 3.95. □

Corollary 3.97. Let 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 be a short exact sequence of
R-modules, with M2 flat. Then M 1 is flat if and only if M is flat.

Exercise 3.88. Use the Homological Criterion of Flatness to prove Corollary
3.97.

Exercise 3.89. In a short exact sequence of R-modules as in Corollary 3.97,
if M 1 and M are flat, must M2 be flat?

Now recall that a finitely generated torsion free module over a PID is free (Propo-
sition 3.64). From this we deduce:

Corollary 3.98. A module over a PID is flat if and only if it is torsionfree.

Exercise 3.90. Let R be a domain and M a torsion R-module. Show that for
all R-modules N and all n ¥ 0, TornpM,Nq is a torsion R-module.

Theorem 3.99. Let R be a PID and let M,N be R-modules.

a) For all n ¥ 2, TornpM,Nq � 0.
b) Tor1pM,Nq is a torsion R-module.
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Proof. a) Choose a free module F0 and a surjection d0 : F0 Ñ N . We have
that F1 � Kerpd0q is free, so we get a finite free resolution of N:

0Ñ F1 Ñ F0 Ñ N Ñ 0.

Therefore we certainly have TornpM,Nq for all M and all n ¥ 2.
b) Let tMiuiPI be the direct system of all finitely generated submodules of M . As
above, we have M � limÝÑMi, so

Tor1pM,Nq � Tor1plimÝÑMi, Nqq � limÝÑTor1pMi, Nq.
By Corollary 3.98, eachMi which is torsionfree is flat, hence Tor1pMi, Nq � 0. Thus
the only possible contribution to limÝÑTor1pMi, Nq comes from torsion modules Mi,
and by Exercise 3.90, Mi torsion implies Tor1pMi, Nq torsion. Thus Tor1pM,Nq is
a direct limit of torsion modules, hence itself a torsion module. □

Theorem 3.100. (Equational Criterion for Flatness) Let M be an R-module.

a) Suppose M is flat, and that we are given r, n P Z�, a matrix A � paijq P
Mr�npRq and elements x1, . . . , xn PM such that

@1 ¤ i ¤ r,
¸
j

aijxj � 0.

Then there are s P Z�, bjk P R and yk PM (for 1 ¤ j ¤ n and 1 ¤ k ¤ s)
such that

@i, k,
¸
j

aijbjk � 0

and

@j, xj �
¸
j

bjkyk.

Thus the solutions in a flat module of a system of linear equations with
R-coefficients can be expressed as a linear combination of solutions of the
system in R.

b) Conversely, if the above conditions hold for a single equation (i.e., with
r � 1), then M is a flat R-module.

Proof. a) Let φ : Rn Ñ Rr be the linear map corresponding to multiplication
by the matrix A and let φM :Mn ÑMr be the same forM , so that φM � φb1M .
Let K � Kerφ. Since M is flat, tensoring with M preserves exact sequences, thus
the sequence

K bRM ιb1Ñ Mn φÑMr

is exact. By our hypothesis we have φM px1, . . . , xnq � 0, so that we may write

px1, . . . , xnq � pιb 1q
�

ş

k�1

βk b yk
�

with βk P K and yk P M . Writing out each βk as an element pb1k, . . . , bnkq P Rn
gives the desired conclusion.
b) We will use the Tensorial Criterion for Flatness to show that M is flat. Let
I � xa1, . . . , any be a finitely generated ideal of R. We may write an arbitrary
element z of I bM as

°n
i�1 ai bmi with mi P M . Let z � °n

i�1 aimi denote the
image of z in IM � M . We want to show that z � 0 implies z � 0, so suppose
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that
°
i aimi � 0. By hypothesis, there exist bij P R and yj P M such that for all

j,
°
i aibij � 0 and for all i, mi �

°
j bijyj . Thus

z �
¸
i

ai bmi �
¸
i

¸
j

aibij b yj �
¸
j

�¸
i

aibij

�
b yj �

¸
j

0b yj � 0.

□

As an application, we can now improve Theorem 3.54 by weakening the hypothesis
of “finite presentation” to the simpler one of “finite generation”.

Theorem 3.101. Let M be a finitely generated flat module over the local ring
pR,mq. Then for all n P Z�, x1, . . . , xn are elements of M such that the images in
R{m are R{m-linearly independent, then x1, . . . , xn are R-linearly independent.

Proof. We go by induction on n. Suppose first that n � 1, in which case
it is sufficient to show that a1 P R, a1x1 � 0 implies a1 � 0. By the Equational
Criterion for Flatness, there exist b1, . . . , bs P R such that abi � 0 for all i and
x1 P

°
i biM . By assumption, x1 does not lie in mM , so that for some i we must

have bi P R�, and then abi � 0 implies a � 0.
Now suppose n ¡ 1, and let a1, . . . , an P R are such that a1x1� . . .�anxn � 0.

Again using the Equational Criterion for Flatness, there are bij P R and y1, . . . , ys P
M such that for all j,

°
aibij � 0 and xi �

°
bijyj . Since the set of generators

is minimal, by Nakayama’s Lemma their images in M{mM must be R{m-linearly
independent. In particular xn R mM , so that at least one bnj is a unit. It follows

that there exist c1, . . . , cn�1 P R such that an �
°n�1
i�1 aici. Therefore

a1px1 � c1xnq � . . .� an�1pxn�1 � cn�1xnq � 0.

The images in M{mM of the n � 1 elements x1 � c1xn, . . . , xn�1 � cn�1xn are
R{m-linearly independent, so by induction a1 � . . . � an�1 � 0. Thus an � 0. □

Theorem 3.102. For a finitely generated module M over a local ring R, the
following are equivalent:

(i) The R-module M is free.
(ii) The R-module M is projective.
(iii) The R-module M is flat.

Proof. For any module over any ring we have (i) ùñ (ii) ùñ (iii). So
suppose that M is a finitely generated flat module over the local ring pR,mq. Let
px1, . . . , xnq be a set of R-module generators for M of minimal cardinality. By
Nakayama’s Lemma the images of x1, . . . , xn in R{m are R{m-linearly independent,
and then Theorem 3.101 implies that x1, . . . , xn is a basis forM as anR-module. □

A ring R is called absolutely flat if every R-module is flat.

Exercise 3.91. Show: a quotient of an absolutely flat ring is absolutely flat.

Proposition 3.103. For a ring R, the following are equivalent:

(i) The ring R is absolutely flat.
(ii) For every principal ideal I of R, I2 � I.
(iii) Every finitely generated ideal of R is a direct summand of R.
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Proof. (i) ùñ (ii): Assume R is absolutely flat, and let I � pxq be a
principal ideal. Tensoring the natural inclusion pxq Ñ R with R{pxq, we get a an
injection pxqbRR{pxq Ñ R{pxq. But this map sends xbr ÞÑ xr�pxq � pxq, so it is
identically zero. Therefore its injectivity implies that 0 � pxqbRR{pxq � pxq{px2q,
so pxq � px2q.

(ii) ùñ (iii): Let x P R. Then x � ax2 for some a P R, so putting e � ax we
have e2 � a2x2 � apax2q � ax � e, so e is idempotent, and peq � pxq. In general,
for any two idempotents e, f , we have xe, fy � pe � f � efq. Hence every finitely
generated ideal is principal, generated by an idempotent element, and thus a direct
summand.

(iii) ùñ (i): Let M be an R-module, and let I be any finitely generated
ideal of R. By assumption, we may choose J such that R � I ` J . Therefore J is
projective, so Tor1pR{I,Mq � Tor1pJ,Mq � 0. By the Homological Criterion for
Flatness, M is flat. □

Exercise 3.92. Show: a (finite or infinite) product of absolutely flat rings is
absolutely flat.

The following striking result came relatively late in the game: it is due indepen-
dently to Govorov [Gov65] and Lazard [La64].

Theorem 3.104. (Govorov-Lazard) For a module M over a ring R, the fol-
lowing are equivalent:

(i) The R-module M is flat.
(ii) There is a directed family tFiuiPI of finitely generated free submodules of

M such that M � limÝÑFi.

Proof. (i) ùñ (ii): Suppose M � limÝÑFi is a direct limit of free modules.
Then in particular M is a direct limit of flat modules, so by Corollary 3.95 M is
flat.
(ii) ùñ (i): see [Ei, Thm. A6.6]. □

11.1. Flat Base Change.

Proposition 3.105. (Stability of flatness under base change) Let M be a flat
R-module, and f : RÑ S a ring homomorphism. Then SbRM is a flat S-module.

Exercise 3.93. Prove Proposition 3.105.

Exercise 3.94. Show: the tensor product of flat R-modules is a flat R-module.

Exercise 3.95. Let R be a nonzero commutative ring, and n,m P N.
a) Show that Rm � Rn if and only if m � n.
b) Suppose that φ : Rm Ñ Rn is a surjective R-module map. Show that

m ¥ n.
c) 12 Suppose that φ : Rm Ñ Rn is an injective R-module map. Show that

m ¤ n.
d) Find a noncommutative ring R for which part a) fails.

Theorem 3.106. (Hom commutes with flat base change) Let S be a flat R-
algebra and M,N R-modules with M finitely presented. Then the canonical map

ΦM : S bR HomRpM,Nq Ñ HomSpM bR S,N bR Sq
12This is actually quite challenging.
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induced by ps, fq ÞÑ pmb tq ÞÑ fpmq b st is an isomorphism.

Proof. (Hochster) It is immediate that ΦR is an isomorphism and that ΦM1`M2
�

ΦM1
`ΦM2

, and thus ΦM is an isomorphism when M is finitely generated free. For
finitely presented M , there is an exact sequence

H Ñ GÑM Ñ 0

with H and G finitely generated free modules. Now we have the following commu-
tative diagram:

0 ÝÑ 0

S bR HomRpM,Nq θMÝÑ HomSpM bR S,N bR Sq
S bR HomRpG,Nq θGÝÑ HomSpGbR S,N bR Sq
S bR HomRpH,Nq θHÝÑ HomSpH bR S,N bR Sq.

The right column is obtained by first applying the exact functor A ÞÑ AbR S and
then applying the right exact cofunctor U ÞÑ HomSpU,N bR Sq, so it is exact.
Similarly, the left column is obtained by first applying the right exact cofunctor
A ÞÑ HomRpA,Nq and then applying the exact (since R is flat) functor A ÞÑ AbRS,
so is exact. Since G and H are finitely generated free, θG and θH are isomorphisms,
and a diagram chase shows that θM is an isomorphism. □

12. Faithful flatness

Proposition 3.107. For an R-module M , the following are equivalent:

(i) For a sequence

(11) N1
αÝÑ N2

βÝÑ N3

of left R-modules to be exact it is necessary and sufficient that

(12) M bR N1
AÝÑM bR N2

BÝÑM bR N3

be exact.
(ii) M is flat and for all nonzero R-modules N , we have M bR N � 0.
(iii) M is flat and for all nonzero R-module maps u : N Ñ N 1,

1M b u :M bR N ÑM bR N 1 is not zero .

(iv) M is flat and for every m P MaxSpecR, mM �M .
(v) M is flat and for every p P SpecR, pM �M .

A module satisfying these equivalent conditions is faithfully flat.

Proof. (i) ùñ (ii): Certainly (i) implies that M is flat. Moreover, if N is
a nonzero R-module such that M b N � 0, then 0 Ñ N Ñ 0 is not exact but its
tensor product with M is exact, contradicting (i).
(ii) ùñ (iii): Let I � Impuq; then M b I � Imp1M b uq. So assuming (ii) and
that I � 0, we conclude Imp1M b uq � 0.
(iii) ùñ (i): Assume (iii). Then, since M is flat, if (11) is exact, so is (12).
Conversely, suppose (12) is exact, and put I � Impαq, K � kerpβq. Then B � A �
1M b pβ � αq � 0, so β � α � 0, or in other words, I � K. We may therefore form
the exact sequence

0Ñ I Ñ K Ñ K{I Ñ 0,
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and tensoring with the flat module M gives an exact sequence

0ÑM b I ÑM bK ÑM bK{I Ñ 0.

But M bK �M b I by hypothesis, so K{I � 0 and I � K.
(ii) ùñ (iv): Let m P MaxSpecR. Then R{m is a nonzero R-module, so by (ii) so
is M bR{m �M{mM , i.e., mM �M .
(iv) ùñ (ii): Assume (iv) holds. Then, since every proper ideal is contained in
a maximal ideal, we have moreover that for all proper ideals I of R, IM � M , or
equivalently M b pR{Iq � 0. But the modules of the form R{I as I ranges over
all proper ideals of R are precisely all the cyclic (a.k.a. monogenic) R-modules, up
to isomorphism. Now if N is any nonzero R-module, choose 0 � x P M and let
N 1 � xxy by the cyclic submodule spanned by x. It follows that M bN 1 � 0. Since
M is flat, N 1 ãÑ N implies M bN 1 ãÑM bN , so M bN � 0.
(iv) ðñ (v): this follows immediately from the proofs of the last two implications,
as we leave it to the reader to check. □

Exercise 3.96. Show: (iv) ðñ (v) in Proposition 3.107.

Corollary 3.108. Let M be a faithfully flat and u : N Ñ N 1 an R-module
map. Then:

a) u is injective if and only if 1M b u :M bN ÑM 1 bN is injective.
b) u is surjective if and only if 1M b u is surjective.
c) u is an isomorphism if and only if 1M b u is an isomorphism.

Exercise 3.97. Deduce Corollary 3.108 from Proposition 3.107.

Exercise 3.98. Use each of the criteria of Proposition 3.107 to show that the
(flat) Z-module Q is not faithfully flat.

Exercise 3.99. Show: a faithfully flat module is faithful and flat, and that –
unfortunately! – a flat, faithful module need not be faithfully flat.

Exercise 3.100. Show: a nonzero free module is faithfully flat but that a
nonzero (even finitely generated) projective module need not be.

Exercise 3.101. Let tMiuiPI be a family of flat R-modules, and put M �À
iPIMi.

a) Suppose that for some i, Mi is faithfully flat. Show that M is faithfully
flat.

b) Give an example where no Mi is faithfully flat yet M is faithfully flat.

Proposition 3.109. Let 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 be a short exact sequence
of R-modules. Suppose M 1 and M2 are flat and that at least one is faithfully flat.
Then M is faithfully flat.

Proof. By Proposition 3.97, M is flat. Now let N be any R-module. Since
M2 is flat, Tor1pM2, Nq � 0 so

0ÑM 1 bN ÑM bN ÑM2 bN Ñ 0

is exact. Thus if M bN � 0 then M 1 bN �M2 bN � 0. Since one of M 1,M2 is
faithfully flat, by criterion (ii) of Proposition 3.107 we have N � 0, and then that
same criterion shows that M is faithfully flat. □
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By a faithfully flat R-algebra, we mean a ring S equipped with a ring homo-
morphism RÑ S making S into a faithfully flat R-module.

Proposition 3.110. Let f : RÑ S be a ring map and M an R-module. Then
M is faithfully flat if and only if M bR S is faithfully flat.

Proof. The key fact is that for any S-module N , we have

pM bR Sq bS N �R M bR N.
With this, the proof becomes straightforward and is left to the reader. □

Exercise 3.102. Complete the proof of Proposition 3.110.

Theorem 3.111. For a flat algebra f : RÑ S, the following are equivalent:

(i) S is faithfully flat over R.
(ii) The map f� : MaxSpecS Ñ MaxSpecR is surjective.
(iii) The map f� : SpecS Ñ SpecR is surjective.

Proof. (i) ðñ (ii): Let m be any maximal ideal of R. Then mS � S
holds if and only if there is a maximal ideal M of S containing mS if and only if
f�pMq � m. The equivalence now follows from criterion (iv) of Proposition 3.107.
(i) ùñ (iii): Let p P SpecR, and let kppq be the fraction field of the domain
R{p. By faithful flatness, S bR kppq is a nonzero kppq-algebra so has a prime

ideal P. Consider the composite map h : R
fÑ S

gÑ S bR kppq. We claim that
g� : SpecpS bR kppqq Ñ SpecR has image precisely tpu. The proof of this result, a
spectral description of the fiber of the morphism f : RÑ S over p, will have to
wait until we have developed the theory of localization in §7.3. Assuming it for now,
we get that g�pPq is a prime ideal of SpecS such that f�g�pPq � pg � fq�pPq � p,
so f� : SpecS Ñ SpecR is surjective.
(iii) ùñ (ii): Let m P MaxSpecR � SpecR. By assumption, the set of prime
ideals P of S such that f�P � m is nonempty. Moreover the union of any chain of
prime ideals pulling back to m is again a prime ideal pulling back to p, so by Zorn’s
Lemma there exists an ideal M which is maximal with respect to the property that
f�M � m. Suppose M is not maximal and let M1 be a maximal ideal properly
containing M. Then by construction f�pM1q properly contains the maximal ideal
m of R, i.e., f�pMq1q � R, contradicting the fact that prime ideals pull back to
prime ideals. So M is indeed maximal in S. □

Proposition 3.112. Let f : R ãÑ S be a ring extension such that S is a
faithfully flat R-module, and let M be an R-module. Then:

a) M is finitely generated if and only if M bR S is finitely generated.
b) M is finitely presented if and only if M bR S is finitely presented.

Proof. Note first that the properties of finite generation and finite presen-
tation are preserved by arbitrary base change f : R Ñ S. So it suffices to prove
that if M bR S is finitely generated (resp. finitely presented), then M is finitely
generated (resp. finitely presented).
a) Since M bR S is finitely generated over S, it has a finite set of S-module gen-
erators of the form xi b 1. Let N � xx1, . . . , xnyR and ι : N ãÑ M the canonical
injection. Then ιS : N bR S Ñ M bR S is an isomorphism, so by faithful flatness
ι was itself an isomorphism and thus M � xx1, . . . , xny is finitely generated.
b) By part a), M is finitely generated over R, so let u : Rn Ñ M be a surjection.
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Since M bR S is finitely presented, the kernel of uS : Sn Ñ M bR S is finitely
generated over S. Since by flatness keruS � pkeruqS , part a) shows that keru is
finitely generated and thus that M is finitely presented. □

Lemma 3.113. Let f : RÑ S be a ring map, and let M,N be R-modules.

a) There is a canonical S-module map

ω : HomRpM,Nq bR S Ñ HomSpM bR S,N bR Sq
such that for all u P HomRpM,Nq, ωpub 1q � ub 1B.

b) If S is flat over R and M is finitely generated, then ω is injective.
c) If S is flat over R and M is finitely presented, then ω is an isomorphism.

Exercise 3.103. Prove Lemma 3.113. (It is not difficult, really, but it is
somewhat technical. Feel free to consult [B, p. 23] for the details.)

Theorem 3.114. (Faithfully flat descent for projective modules) Let f : R ãÑ S
be a faithfully flat ring extension, and let P be an R-module. Then P is finitely
generated and projective if and only if P bR S is finitely generated and projective.

Proof. Begin, once again the implication P finitely generated projective im-
plies P bR S is finitely generated projective holds for any base change. So suppose
P bR S is finitely generated projective. Then P bR S is finitely presented, so by
Proposition 3.112, M is finitely presented. It remains to show thatM is projective.

Let v :M Ñ N be a surjection of R-modules. We wish to show that the natu-
ral map HomRpP,Mq Ñ HomRpP,Nq is surjective. Because of the faithful flatness
of S{R, it is sufficient to show that HomRpP,Mq bR S Ñ HomRpP,Nq bR S is
surjective, and by Lemma 3.113 this holds if and only if

HomSpP bR S,M bR Sq Ñ HomSpP bR S,N bR Sq
is surjective. But this latter map is surjective because M bR S Ñ N bR S is
surjective and the S-module P bR S is projective by assumption. □





CHAPTER 4

First Properties of Ideals in a Commutative Ring

1. Introducing maximal and prime ideals

Consider again the set IpRq of all ideals of R, partially ordered by inclusion. The
maximal element is the ideal R itself, and the minimal element is the ideal p0q.

In general our attitude to the ideal R of R is as follows: although we must grudg-
ingly admit its existence – otherwise, given a subset S of R it would be in general
a difficult question to tell whether the ideal xSy generated by S “exists” (i.e., is
proper) or not – nevertheless we regard it as exceptional and try to ignore it as
much as possible. Because of this we define an ideal I of R to be maximal if it is
maximal among all proper ideals of R, i.e., I � R and there does not exist J such
that I � J � R. That this is a more interesting concept than the literally maximal
ideal R of R is indicated by the following result.

Proposition 4.1. For an ideal I of R, the following are equivalent:

(i) The ideal I is maximal.
(ii) The quotient ring R{I is a field.

Proof. Indeed, R{I is a field if and only if it has precisely two ideals, I and
R, which by the Correspondence Theorem says precisely that there is no proper
ideal strictly containing I. □

Example 4.2. In R � Z, the maximal ideals are those of the form ppq for p a
prime number. The quotient Z{pZ is the finite field of order p.

Does every ring have a maximal ideal? With a single (trivial) exception, the answer
is yes, assuming – as we must, in order to develop the theory as it is used in other
branches of mathematics – suitable transfinite tools.

Proposition 4.3. Let R be a nonzero ring and I a proper ideal of R. Then
there exists a maximal ideal of R containing I.

Proof. Consider the set S of all proper ideals of R containing I, partially
ordered by inclusion. Since I P S, S is nonempty. Moreover the union of a chain
of ideals is an ideal, and the union of a chain of proper ideals is proper (for if 1
were in the union, it would have to lie in one of the ideals of the chain). Therefore
by Zorn’s Lemma we are entitled to a maximal element of S, which is indeed a
maximal ideal of R that contains I. □

Corollary 4.4. A nonzero ring R contains at least one maximal ideal.

Proof. Apply Proposition 4.3 with I � p0q. □

95
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Remark: The zero ring has the disquieting property of having no maximal ideals.

Remark: The appeal to Zorn’s Lemma cannot be avoided, in the sense that Corol-
lary 4.4 implies the Axiom of Choice (AC). In fact, W. Hodges has shown that the
axioms of ZF set theory together with the statement that every UFD (see §15) has
a maximal ideal already implies AC [Ho79].

A proper ideal I of a ring R is prime if xy P I implies x P I or y P I.
Exercise 4.1. Let p be a prime ideal of R.

a) Suppose x1, . . . , xn are elements of R such that x1 � � �xn P p. Then xi P p
for some at least one i.

b) In particular, for x P R and n P Z� we have xn P p, then x P p.
Proposition 4.5. Let f : R Ñ S be a homomorphism of rings, and let J be

an ideal of S.

a) Put f�pJq :� f�1pJq � tx P R | fpxq P Ju. Then f�pJq is an ideal of R.
b) If J is a prime ideal, so is f�pJq.

Exercise 4.2. Prove Proposition 4.5.

Proposition 4.6. For a commutative ring R, the following are equivalent:

(i) If x, y P R are such that xy � 0, then x � 0 or y � 0.
(ii) If 0 � x P R and y, z P R are such that xy � xz, then y � z.

A nontrivial ring satisfying either of these two properties is called a domain.

Proof. Assume (i), and consider xy � xz with x � 0. We have xpy � zq � 0,
and since x � 0, (i) implies y � z � 0, i.e., y � z. Assuming (ii) suppose xy � 0
with x � 0. Then xy � 0 � x � 0, so applying cancellation we get y � 0. □

A zero-divisor in a ring R is an element x such that there exists 0 � y P R with
xy � 0. In particular, in any nontrivial ring the element 0 is a zero-divisor. Thus a
domain is a nontrivial ring in which 0 is the only zero-divisor.1 Property (ii) makes
sense in any commutative monoid and is called cancellation.

Exercise 4.3. Let R be a ring, and let x, y P R be zero-divisors. Show: xy is
a zero-divisor.

The following result of Ganesan [Ga64, Thm. I] is easy to prove but is some-
what surprising.

Theorem 4.7 (Ganesan). Let R be a ring having exactly n zero-divisors for
some integer n ¥ 2. Then #R ¤ n2. In particular, a ring that is not a domain and
has only finitely many zero-divisors must be finite.

Proof. Let z P R be a zero-divisor of R. Then the map

φ : RÑ R, x ÞÑ xz

is an endomorphism of the additive group pR,�q for which every element of both
the kernel and image is a zero-divisor. Since for every group homomorphism f :

1It is a common convention to exclude zero from being a zero-divisor. With this convention,

one can say that a domain is a nontrivial ring without zero-divisors, which is a little cleaner than
“a domain is a nontrivial ring in which 0 is the only zero-divisor.” However, in the further study

of zero-divisors, we think our convention establishes itself as being the better one.
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GÑ H, partitioning G into the set of cosets of its kernel gives the cardinal equality
#G � p#Ker fq � p#fpGqq, the reuslt follows. □

Proposition 4.8. For an ideal I in a ring R, the following are equivalent:

(i) The ideal I is prime.
(ii) The quotient ring R{I is a domain.

Exercise 4.4. Prove Proposition 4.8.

Corollary 4.9. A maximal ideal is prime.

Proof. If I is maximal, R{I is a field, hence a domain, so I is prime. □

Corollary 4.9 is the first instance of a somewhat mysterious meta-principle in ideal
theory: for some property P of ideals in a ring, it is very often the case that an
ideal which is maximal with respect to the satisfaction of property P (i.e., is not
strictly contained in any other ideal satisfying P) must be prime. In the above, we
saw this with P = “proper”. Here is another instance:

Proposition 4.10. (Multiplicative Avoidance) Let R be a ring and S � R.
Suppose: 1 is in S; 0 is not in S; and S is closed under multiplication: S � S � S.
Let IS be the set of ideals of R which are disjoint from S. Then:

a) The set IS is nonempty.
b) Every element of IS is contained in a maximal element of IS.
c) Every maximal element of IS is prime.

Proof. a) p0q P IS . b) Let I P IS . Consider the subset PI of IS consisting of
ideals which contain I. Since I P PI , PI is nonempty; moreover, any chain in PI
has an upper bound, namely the union of all of its elements. Therefore by Zorn’s
Lemma, PI has a maximal element, which is clearly also a maximal element of IS .
c) Let I be a maximal element of IS ; suppose that x, y P R are such that xy P I.
If x is not in I, then xI, xy � I and therefore contains an element s1 of S, say

s1 � i1 � ax.
Similarly, if y is not in I, then we get an element s2 of S of the form

s2 � i2 � by.
But then

s1s2 � i1i2 � pbyqi1 � paxqi2 � pabqxy P I X S,
a contradiction. □

In fact Corollary 4.9 is precisely the special case S � t1u of Proposition 4.10.

If I and J are ideals of R, we define the product IJ to be the ideal generated
by all elements of the form xy with x P I, y P J . Every element of IJ is of the form°n
i�1 xiyi with x1, . . . , xn P I, y1, . . . , yn P J .

The following simple result will be used many times in the sequel.

Proposition 4.11. Let p be a prime ideal and I1, . . . , In be ideals of a ring R.
If p � I1 � � � In, then p � Ii for at least one i.
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Proof. An easy induction argument reduces us to the case of n � 2. So
suppose for a contradiction that p � I1I2 but there exists x P I1zp and y P I2zp.
Then xy P I1I2 � p; since p is prime we must have x P p or y P p, contradiction. □

Exercise 4.5. Show: Proposition 4.11 characterizes prime ideals, in the sense
that if p is any ideal such that for all ideals I, J of R, p � IJ implies p � I or
p � JJ , then p is a prime ideal.

For an ideal I and n P Z�, we denote the n-fold product of I with itself by In.

Corollary 4.12. If p, I are ideals and p is prime, then p � In ùñ p � I.

2. Radicals

An element x of a ring R is nilpotent if xn � 0 for some n P Z�. Obviously 0 is a
nilpotent element; a ring in which 0 is the only nilpotent element is called reduced.
An ideal I of R is nil if every element of I is nilpotent. An ideal I is nilpotent if
there exists n P Z� such that In � p0q.

Proposition 4.13. Let I be an ideal of a ring R.

a) If I is nilpotent, then I is a nil ideal.
b) If I is finitely generated and nil, then I is nilpotent.

Proof. Part a) is immediate from the definition.
Suppose I � xa1, . . . , anyR. Since I is nil, for each i, 1 ¤ i ¤ r, there exists ni

such that ani
i � 0. Let N � n1 � . . .� nr. We claim IN � 0. Indeed, an arbitrary

element of I is of the form x1a1� . . .�xnan. Raising this element to the nth power
yields a sum of monomials of the form xj11 � � �xjrr aj11 � � � ajrr , where

°r
i�1 ji � N . If

we had for all i that ji   ni, then certainly j1 � . . .� jr   N . So for at least one i
we have ji ¥ ni and thus xjii � 0; so every monomial term equals zero. □

Exercise 4.6. The bound on the nilpotency index of xa1, . . . , any we gave in
the preceding argument is a bit lazy: we can do better.

a) Let a1, . . . , ar be elements of a ring and let n1, . . . , nr P Z� be such that
an1
1 � . . . � anr

r � 0. Show:

xa1, . . . , aryn1�...�nr�pr�1q � p0q.
b) Show that the bound of part a) is best possible for all positive integers

r, n1, . . . , nr.
(Suggestion: for a field k, consider krt1, . . . , trs{xtn1

1 , . . . , tnr
r y.)

Exercise 4.7. Find a ring R and an ideal I of R which is nil but not nilpotent.

The nilradical N of R is the set of all nilpotent elements of R.

Proposition 4.14. Let R be a ring.

a) The nilradical N is a nil ideal of R.
b) The quotient R{N is reduced.
c) The map q : RÑ R{N is universal for maps from R into a reduced ring.
d) The nilradical is the intersection of all prime ideals of R.

Proof. a) It suffices to show that N is an ideal. The only part of this that
is not absolutely immediate is closure under addition. But by Proposition 4.13 the
ideal generated by two nilpotent elements is nilpotent, hence nil, hence consists of



2. RADICALS 99

nilpotent elements, so in particular the sum of two nilpotent elements is nilpotent.
b) Let r � N be a nilpotent element of R{N , so there exists n P Z� such that
rn P N . But this means there exists m P Z� such that 0 � prnqm � rnm, and thus
r itself is a nilpotent element.
c) In plainer terms: if S is a reduced ring and f : RÑ S is a ring homomorphism,
then there exists a unique homomorphism f : R{N Ñ S such that f � f � q. Given
this, the proof is straightforward, and we leave it to the reader.
d) Suppose x is a nilpotent element of R, i.e., Dn P Z� such that xn � 0. If p is
a prime ideal, then since 0 � x � � �x P p, we conclude x P p: this shows N � � p.
Conversely, suppose x is not nilpotent. Then the set Sx :� txn | n P Nu satisfies
(i) and (ii) of Proposition 5.26, so we may apply that result to get a prime ideal p
which is disjoint from Sx, hence not containing x. □

Exercise 4.8. Prove Proposition 4.14c).

Exercise 4.9. Let f : RÑ T be a ring homomorphism. Show:

f�pnilRq � nilT.

For a ring R, what are the units in the polynomial ring Rrts? If R is a domain, then
the leading coefficient of any nonzero polynomial is nonzero hence not a zero-divisor.
This implies that for nonzero f, g P Rrts we have degpfgq � degpfq � degpgq, from
which it follows that every unit has degree zero, i.e., is a constant polynomial and
then that Rrts� � R�. The following result treats the general case by reduction to
this case.

Proposition 4.15. Let R be a nonzero ring, and let Rrts be the polynomial
ring over R. Let f be a nonzero element of Rrts and write

f � ant
n � . . .� a1t� a0, an � 0.

Then f P Rrts� if and only if a0 P R� and for all 1 ¤ i ¤ n we have ai P nilR.
Proof. Put g :� ant

n � . . .� a1t.
First suppose that a0 P R� and ai P nilR for all 1 ¤ i ¤ n. Then is g nilpotent

by Exercise 4.9, so f � g� a0 is the sum of a nilpotent element and a unit. If m is
any maximal ideal of Rrts then if f P m then a0 � f � g P m, contradiction. So f
lies in no maximal ideal, hence is a unit of Rrts.

Now suppose that f P Rrts�. For a prime ideal p of R, let

qp : Rrts Ñ Rrts{ppRrtsq � pR{pqrts
be the quotient map. Then qppfq is a unit in pR{pqrts, which implies that ai P p for
all 1 ¤ i ¤ n. Since this holds for all prime ideals p we have ai P nilR. Moreover
qppa0q P pR{pq�, hence a0 R p. As above, this means that a0 lies in no maximal
ideal, hence a0 P R�. □

Proposition 4.16. (Lifting Idempotents Modulo a Nil Ideal) Let R be a ring,
let N be a nil ideal of R, and let e � e2 be an idempotent element of R{N . Then
there is a unique idempotent e of R such that e pmod Nq � e.

Proof. (Jacobson [J2, Prop. 7.14])
Step 1: We will prove the existence of e.2 First let x P R be such that x pmod Nq �

2This step holds for not-necessarily-commutative rings.
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e. Then z � x� x2 is nilpotent: there is n P Z� such that zn � 0. Put y � 1� x.
Then

0 � zn � pxp1� xqqn � xnyn,

so
1 � 12n�1 � px� yq2n�1 � e� f,

where e is a sum of terms xiy2n�1�i with n ¤ i ¤ 2n � 1 and f is a sum of the
terms xiy2n�1�i with 0 ¤ i ¤ n� 1. Since xnyn � 0, any term in e annihilates any
term in f . Hence ef � 0 � fe. Since e� f � 1, we have

e � epe� fq � e2 � ef � e2, f � pe� fqf � ef � f2 � f2.

Every term in e except x2n�1 contains the factor xy � z, so x2n�1 � e pmod Nq.
Since x � x2 � x3 � . . . � x2n�1 pmod Nq, we have e � x � e pmod Nq.
Step 2: Let e, z P R with e idempotent, z nilpotent and e� z idempotent. Then

e� z � pe� zq2 � e2 � 2ez � z2 � e� 2ez � z2
so

z2 � p1� 2eqz.
It follows that

z3 � p1� 2eqz2 � p1� 2eq2z � p1� 4e� 4e2qz � p1� 4e� 4eqz � z

and thus
z2k�1 � z @k P Z�.

Since z is nilpotent, it follows that z � 0. □

An ideal I of a ring R is radical if for all x P R, n P Z�, xn P I implies x P I.
Exercise 4.10. a) Show: a prime ideal is radical.
b) Exhibit a radical ideal that is not prime.
c) Find all radical ideals in R � Z.
d) Show: R is reduced if and only if p0q is a radical ideal.
e) Let tIiu be a set of radical ideals in a ring R. Show I � �i Ii is a radical

ideal.

Exercise 4.11. Let p1 and p2 be prime ideals of a ring R. By Exercise 4.10,
we have p1 X p2 is a radical ideal.

a) Show: if p1 � p2 � R then p1p2 is radical.
b) Give an example in which p1 � p2 and p1p2 is not radical.

For any ideal I of R, we define the radical of I:

rpIq � tx P R | Dn P Z� xn P Iu.
Proposition 4.17. Let R be a commutative ring and I, J ideals of R.

a) rpIq is the intersection of all prime ideals containing I, and is a radical
ideal.

b) (i) I � rpIq; (ii) rprpIqq � rpIq; (iii) I � J ùñ rpIq � rpJq.
c) rpIJq � rpI X Jq � rpIq X rpJq.
d) rpI � Jq � rprpIq � rpJqq.
e) rpIq � R ðñ I � R.
f) For all n P Z�, rpInq � rpIq.
g) If J is finitely generated and rpIq � J , then there is n P Z� such that

I � Jn.
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Proof. Under the canonical homomorphism q : RÑ R{I, rpIq � q�1pN pR{Iqq.
By Proposition 4.5a), rpIq is an ideal.
a) Since N is the intersection of all prime ideals of R{I, rpIq is the intersection of
all prime ideals containing I, which is, by Exericse 4.10e), a radical ideal.
b) (i) is immediate from the definition, and (ii) and (iii) follow from the character-
ization of rpIq as the intersection of all radical ideals containing I.
c) Since IJ � I X J , rpIJq � rpI X Jq. If xn P I X J , then x2n � xnxn P IJ , so
x P rpIJq; therefore rpIJq � rpI X Jq. Since I X J is a subset of both I and J ,
rpI X Jq � rpIq X rpJq. Conversely, if x P rpIq X rpJq, then there exist m and n
such that xm P I and xn P J , so xmn P I X J and x P rpI X Jq.
d) Since I � J � rpIq � rpJq, rpI � Jq � rprpIq � rpJqq. A general element of
rpIq�rpJq is of the form x�y, where xm P I and yn P J . Then px�yqm�n P I�J ,
so x� y P rpI � Jq.
e) Evidently rpRq � R. Conversely, if rpIq � R, then there exists n P Z� such that
1 � 1n P I.
f) By part a), rpInq is the intersection of all prime ideals p � In. But by Corollary
4.12, a prime contains In if and only if it contains I, so rpInq � rpIq.
g) Replacing R with R{I we may assume I � 0. Then J is a finitely generated nil
ideal, so it is nilpotent. □

Remark: Proposition 4.17b) asserts that the mapping I ÞÑ rpIq is a closure op-
erator on the lattice IpRq of ideals of R.

An ideal p of a ring R is primary if every zero divisor of R{p is nilpotent. Equiv-
alently, xy P p, x R p ùñ yn P p for some n P Z�. More on primary ideals in §10.3.

We also define the Jacobson radical JpRq as the intersection of all maximal
ideals of R. Evidently we have N � JpRq.

Proposition 4.18. Let R be a ring. An element x of R lies in the Jacobson
radical JpRq if and only if 1� xy P R� for all y P R.

Proof. Suppose x lies in every maximal ideal of R. If there is y such that
1 � xy R R�, then 1 � xy lies in some maximal ideal m, and then x P m implies
xy P m and then 1 � p1� xyq � xy P m, a contradiction. Conversely, suppose that
there is a maximal ideal m of R which does not contain x. Then xm, xy � R, so
1 � m� xy for some m P m and y P R, and thus 1� xy is not a unit. □

Proposition 4.19. Let J be an ideal of R contained in the Jacobson radical,
and let φ : RÑ R{J be the natural map.

a) For all x P R, we have x P R� ðñ φpxq P pR{Jq�: φ is unit-faithful.
b) The map φ� : R� Ñ pR{Jq� is surjective.

Proof. a) For any homomorphism of rings φ : R Ñ S, if x P R� then there
is y P R with xy � 1, so 1 � φp1q � φpxyq � φpxqφpyq, and thus φpxq P S�. For
the converse we assume S � R{J and let x P R be such that φpxq P pR{Jq�. Then
there is y P R such that xy�1 P J . Thus for each maximal ideal m of R, xy�1 P m.
It follows that x R m, for otherwise xy P m and thus 1 � xy� pxy� 1q P m. So x is
not contained in any maximal ideal and thus x P R�.
b) This is immediate from part a): in fact we’ve shown that every preimage under
φ of a unit in R{J is a unit in R. □
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Exercise 4.12. For a ring R, let ι : R ãÑ Rrts be the inclusion into the
polynomial ring Rrts.

a) Show:

JpRrtsq � ι�pnilRq.
b) Thus JpRrtsq � p0q if R is a domain. Give a simpler direct proof of this.

Remark: It is not yet clear why we have defined these two different notions of
“radical.” Neither is it so easy to explain in advance, but nevertheless let us make
a few remarks. First, the Jacobson radical plays a very important role in the theory
of noncommutative rings, especially that of finite dimensional algebras over a field.
(Indeed, a finite dimensional k-algebra is semisimple – i.e., a direct product of
algebras without nontrivial two-sided ideals – if and only if its Jacobson radical is
zero. In the special case of commutative algebras this comes down to the simpler
result that a finite dimensional commutative k-algebra is reduced if and only if
it is a product of fields.) One important place in commutative algebra in which
the Jacobson radical JpRq appears – albeit not by name, because of the necessity
of putting the results in a fixed linear order – is in the statement of Nakayama’s
Lemma. In general, the defining condition of nilpRq – i.e., as the intersection of
all prime ideals of R – together with the fact that the radical of an arbitrary ideal
I corresponds to the nilradical of R{I, makes the nilradical more widely useful
in commutative algebra (or so it seems to the author of these notes). It is also
important to consider when the nil and Jacobson radicals of a ring coincide. A ring
R for which every homomorphic image S has nilpSq � JpSq is called a Jacobson
ring; such rings will be studied in detail in §12.

3. Comaximal ideals

Two ideals I and J in a ring R are comaximal if I � J � R. A family of ideals in
R is pairwise comaximal if any two members of the family are comaximal.

Exercise 4.13. Let I1, . . . , In be pairwise comaximal. Show:
°n
j�1

±
i�j Ii �

R.

Proposition 4.20. Let I and J be ideals in R. If rpIq and rpJq are comaximal,
so are I and J .

Proof. Apply Proposition 4.17d) and 4.17e) to rpIq � rpJq � R:

R � rprpIq � rpJqq � rpI � Jq � I � J. □

An immediate corollary of Proposition 4.20 is that if tIiu are pairwise comaximal
and tniu are any positive integers, then tIni

i u are pairwise comaximal.

Lemma 4.21. Let K1, . . . ,Kn be pairwise comaximal ideals in the ring R. Then
K1 � � �Kn �

�n
i�1Ki.

Proof. We go by induction on n: n � 1 is trivial and n � 2 is Lemma 3.17b).
Suppose the theorem is true for any family of n� 1 pairwise comaximal ideals. Let
K 1 � �n

i�2Ki; by induction, K 1 � K2 � � �Kn. By Lemma 3.17c), K1 �K 1 � R, so
by the n � 2 case

�n
i�1Ki � K1 XK 1 � K1K

1 � K1 � � �Kn. □
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Theorem 4.22. (Chinese Remainder Theorem, or “CRT”) Let R be a ring
and I1, . . . , In a finite set of pairwise comaximal ideals. Consider the natural map

Φ : RÑ
n¹
i�1

R{Ii,

x ÞÑ px � Iiqni�1. Then Φ is surjective with kernel I1 � � � In, so that there is an
induced isomorphism

(13) Φ : R{pI1 � � � Inq �Ñ
n¹
i�1

R{Ii.

Proof. The map Φ is well-defined and has kernel
�n
i�1 Ii. Since the Ii’s are

pairwise comaximal, Lemma 4.21 gives
�n
i�1 Ii � I1 � � � In. So it remains to show

that Φ is surjective. We prove this by induction on n, the case n � 1 being trivial.
So we may assume that the natural map Φ1 : R Ñ R1 :� ±n�1

i�1 R{Ii is surjective,
with kernel I 1 :� I1 � � � In�1. Let pr1, sq be any element of R1�R{In. By assumption,
there exists r P R such that Φ1pr� I 1q � r1. Let s be any element of R mapping to
s P R{In. By Lemma 3.17c) we have I 1 � In � R, so there exist x P I 1, y P In such
that s � r � x � y. Then Φ1pr � xq � r1, and r � x � r � x � y � s pmod Inq, so
Φpr � xq � pr1, sq and Φ is surjective. □

In the classical case R � Z, we can write Ii � pniq and then we are trying to
prove – under the assumption that the ni’s are coprime in pairs in the sense of
elementary number theory – that the injective ring homomorphism Z{pn1 � � �nnq Ñ
Z{n1�� � ��Z{nn is an isomorphism. But both sides are finite rings of order n1 � � �nn,
so since the map is an injection it must be an isomorphism! Nevertheless the usual
proof of CRT in elementary number theory is much closer to the one we gave in
the general case: in particular, it is constructive.

Exercise 4.14 (Converse to CRT). Let I1, . . . , In be ideals in a ring R. Show:
if
±n
i�1R{Ii is a cyclic R-module, then I1, . . . , In are pairwise comaximal.

The following modulization of CRT is sometimes useful.

Theorem 4.23. (Module-theoretic CRT) Let R be a ring, I1, . . . , In a finite
set of pairwise comaximal ideals, and let M be an R-module. Then pI1 � � � InqM ��r
i�1 IiM , and there is an induced R-module isomorphism

(14) ΦM :M{pI1 � � � IrqM Ñ
n¹
i�1

M{IiM.

Proof. Indeed ΦM � ΦbRM , so it is an isomorphism. Thus

r£
i�1

IiM � ker

�
M Ñ

n¹
i�1

M{IiM
�
� pI1 � � � IrqM. □

Exercise 4.15. Let R be a ring and I1, . . . , In any finite sequence of ideals.
Consider the map Φ : RÑ±n

i�1R{Ii as in CRT.

a) Show that Φ is surjective only if the tIiu are pairwise comaximal.
b) Show that Φ is injective if and onl if

�n
i�1 Ii � p0q.

Exercise 4.16.
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a) Let G be a finite commutative group with exactly one element z of order
2. Show:

°
xPG x � z.

b) Let G be a finite commutative group that does not have exactly one element
of order 2. Show:

°
xPG x � 0.

c) Prove the following result of Gauss (a generalization of Wilson’s Theo-
rem): let N P Z�, and put

P pNq �
¹

xPpZ{NZq�
x.

Then: P pNq � �1, and the minus sign holds if and only if N � 4 or is
of the form pm or 2pm for an odd prime p and m P Z�.

d) For a generalization to the case of pZK{Aq�, where A is an ideal in the
ring ZK of integers of a number field K, see [Da09]. Can you extend
Dalawat’s results to the function field case?

Exercise 4.17. Let K be a field, and put R � Krts.
a) Let n1, . . . , nk be a sequence of non-negative integers and tx1, . . . , xku a

k-element subset of K. For 1 ¤ i ¤ k, let ci0, . . . , cini
be a finite sequence

of ni�1 elements of k (not necessarily distinct). By applying the Chinese
Remainder Theorem, show that there is a polynomial P ptq such that for
1 ¤ i ¤ k and 0 ¤ j ¤ ni we have P pjqpxiq � cij, where P

pjqpxiq denotes
the jth “formal” derivative of P evaluated at xi. Indeed, find all such
polynomials; what can be said about the least degree of such a polynomial?

b) Use the proof of the Chinese Remainder Theorem to give an explicit for-
mula for such a polynomial P .

Exercise 4.18. Let pM, �q be a monoid and k a field. A character on M with
values in k is a homomorphism of monoids from M to the multiplicative group k�

of k. Each character lies in the k-vector space kM of all functions from M to k.

a) (Dedekind) Show: any finite set of characters is k-linearly independent.
b) What does this have to do with CRT? Well, the wikipedia article on CRT3

contains a proof of part a) using CRT. This is the proof I had in mind
when I originally wrote this exercise. But it seems to me now that this
argument requires M to be finite. Discuss.

Exercise 4.19. Show: for a ring R, the following are equivalent:

(i) The ring R has finitely many maximal ideals.4

(ii) The quotient of R by its Jacobson radical JpRq is a finite product of fields.

We now give a commutative algebraic version of Euclid’s proof of the infinitude of
prime numbers. A special case for domains appears in [K, § 1.1, Exc. 8]. The case
in which R is infinite and R� is finite has appeared on an algebra qualifying exam
at UGA; the appearance of this unusually interesting and challenging problem on a
qual was remarked to me by both D. Lorenzini and B. Cook. I learned the stronger
version presented here from W.G. Dubuque.

Theorem 4.24. If R is infinite and #R ¡ #R�, then MaxSpecR is infinite.

3https://en.wikipedia.org/wiki/Chinese_remainder_theorem#Dedekind.27s_theorem
4Such rings are typically called semilocal. I am not a fan of the terminology – it seems to

either suggest that R has one half a maximal ideal (whatever that could mean) or two maximal

ideals. But it is well entrenched, and I will not campaign to change it.
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Proof. Since R is not the zero ring, it has at least one maximal ideal m1. We
proceed by induction: given maximal ideals m1, . . . ,mn, we construct another max-
imal ideal. Let J :� �n

i�1 mi �
±n
i�1 mi be the Jacobson radical. By Proposition

4.18 we have J � 1 � R�, so

#J � #pJ � 1q ¤ #R�   #R.

Moreover, by Proposition 4.19, the map R� Ñ pR{Jq� is surjective. It follows that
#pR{Jq� ¤ #R�   #R: by the Chinese remainder Theorem, R{J � ±n

i�1R{mi,
hence for all 1 ¤ i ¤ n there is an injection pR{miq� ãÑ pR{Jq�. Putting the last
two sentences together we conclude that for all 1 ¤ i ¤ n we have #pR{miq�   #R,
and since each R{mi is a field and R is infinite, we get

#R{mi � #pR{miq� � 1   #R.

Finally this gives

#R � #J �#R{J � #J �
n¹
i�1

#R{mi   p#Rqn�1 � #R,

a contradiction. □

In §15.11, following a discussion of factorization in domains, we will give a variant
on this result that gives a sufficient condition for a domain R to have infinitely
many pairwise nonassociate irreducible elements.

4. Local rings

Proposition 4.25. For a ring R, the following are equivalent:

(i) There is exactly one maximal ideal m.
(ii) The set RzR� of nonunits forms a subgroup of pR,�q.
(iii) The set RzR� is a maximal ideal.

A ring satisfying these equivalent conditions is called a local ring.

Proof. Since R� � Rz�m m, the union extending over all maximal ideals of
R, it follows that if there is only one maximal ideal m then m � RzR�. This shows
(i) ùñ (iii) and certainly (iii) ùñ (ii). Conversely, since the set of nonunits of
a ring is a union of ideals, it is closed under multiplication by all elements of the
ring. Thus it is itself an ideal if and only if it is an additive subgroup: (ii) ùñ
(iii). The implication (iii) implies (i) is very similar and left to the reader. □

Warning: In many older texts, a ring with a unique maximal ideal is called “quasi-
local” and a local ring is a Noetherian quasi-local ring. This is not our convention.

Local rings (especially Noetherian local rings) play a vital role in commutative al-
gebra: the property of having a single maximal ideal simplifies many ideal-theoretic
considerations, and many ring theoretic considerations can be reduced to the study
of local rings (via a process called, logically enough, localization: see Chapter 7).

A field is certainly a local ring. The following simple result builds on this triv-
ial observation to give some further examples of local rings:

Proposition 4.26. Let I be an ideal in the ring R.

a) If radpIq is maximal, then R{I is a local ring.
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b) In particular, if m is a maximal ideal and n P Z�, then R{mn is a local
ring.

Proof. a) We know that radpIq � �p�I p, so if radpIq � m is maximal it

must be the only prime ideal containing I. Therefore, by correspondence R{I is a
local ring. (In fact it is a ring with a unique prime ideal.)

b) By Proposition 4.17f), rpmnq � rpmq � m, so part a) applies. □

So, for instance, for any prime number p, Z{ppkq is a local ring, whose maximal ideal
is generated by p. It is easy to see (using, e.g. the Chinese Remainder Theorem)
that conversely, if Z{pnq is a local ring then n is a prime power.

Example 4.27. The ring Zp of p-adic integers is a local ring. For any field
k, the ring krrtss of formal power series with coefficients in k is a local ring. Both
of these rings are also PIDs. A ring which is a local PID is called a discrete
valuation ring; these especially simple and important rings will be studied in
detail later.

Exercise 4.20. Show: a local ring is connected, i.e., e2 � e ùñ e P t0, 1u.

5. The Prime Ideal Principle of Lam and Reyes

A recurrent meta-principle in commutative algebra is that if F is a naturally given
family of ideals in commutative ring R, then it is often the case that every maximal
element of F is prime. In this section we review some known examples, give some
further classical ones, and then discuss a beautiful theorem of T.-Y. Lam and M.
Reyes which gives a general criterion for this phemenon to occur.

Recall that for a ring R, IpRq is the monoid of ideals of R under multiplication.
For any F � IpRq, let MaxF denote the maximal elements of F (to be sure, this
means the elements of F which are not properly contained in any other element of
F , not the elements of F which are not contained in any other proper ideal!). We
say that F is an MP family if MaxF � SpecR.

Example 4.28. a) Every maximal ideal is prime (Corollary 4.9), so the
family of all proper ideals in a ring R is an MP family.

b) If S � R is a multiplicative set, an ideal that is maximal with the property
of being disjoint from S is prime (Proposition 5.26), so the family of all
ideals in R that are disjoint from S is an MP family.

c) As we will see shortly, the family of all non-principal ideals in a ring R
is an MP family. Thus if every prime ideal is principal, every ideal is
principal: Theorem 4.31.

d) As we will see shortly, the family of all infinitely generated ideals in a ring
R is an MP family. This implies a result of Cohen (Theorem 4.32): if
every prime ideal is finitely generated, then R is Noetherian.

The challenge is to come up with a common explanation and proof for all of these
examples. One first observation is that there is a complementation phenomenon in
play here: for F � IpRq, put F 1 � IpRqzF . Then in each of the last three cases it
is most natural to view the MP family as F 1 for a suitable F : in the second case, F
is the set of ideals meeting S; in the third case, F is the set of all principal ideals;
in the fourth case F is the set of all finitely generated ideals.
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Let us also recall that for I, J P IpRq,
pI : Jq � tx P R | xJ � Iu.

For a, b P R, we write pI : bq for pI : Rbq and pa : Jq for paR : Jq.
Exercise 4.21. For ideals I, J in R, show that

(15) pI : JqxI, Jy � I.

Exercise 4.22. Let R be a PID, and let a, b P R. Then paq and pbq can be
factored into products of principal prime ideals, say

paq � pπa11 � � � pπari q, b � pπb11 q � � � pπbrr q, ai, bi P N.
a) Show xa, by � xπminpa1,b1q

1 � � �πminpar,brq
r y.

b) Show pa : bq � xπmaxpa1�b1,0q
1 � � �πmaxpar�br,0q

r y.
c) Show xay � pa : bq.
d) Show pa : bqxa, by � xay.
e) Suppose #MaxSpecR ¥ 2. Find a, b P R such that:

(i) We have pa : bq � xa, by.
(ii) We have xa, by � pa : bq.
(iii) Neither of pa : bq, xa, by contains the other.

We say a partially ordered set pX,¤q has theweak maximum property if for every
x P X there is a maximal element m P X with x ¤ m. Zorn’s Lemma implies that
if every chain in X has an upper bound then X has the weak maximum property.

Exercise 4.23. Let F � IpRq be a family of finitely generated ideals of R.
(This applies to all F if and only if R is Noetherian.) Show: F 1 has the weak
maximum property.

A family F � IpRq is an Oka family if R P F and for all x P R and I P IpRq, if
xI, xy, pI : xq P F , then I P F .

A family F � IpRq is an Ako family if R P F and for all x1, .x2 P R and
I P IpRq, if xI, x1y, xI, x2y P F , then xI, x1x2y P F .

A family F � IpRq is increasing if for all I, J P IpRq, if I P F and J � I
then J P F .

Theorem 4.29. (Prime Ideal Principle of Lam-Reyes [LR08]) Let R be a ring
and let F � IpRq be a family of ideals that is either Oka or Ako.

a) The complementary family F 1 :� IpRqzF is an MP family.
b) Suppose moreover that F 1 has the weak maximum property. Then:

(i) Let f � IpRq be an increasing family. If fX SpecR � F , then f � F .
(ii) Suppose that I P IpRq is such that every prime ideal p that contains I

(resp. properly contains I) lies in F . Then every ideal that contains
I (resp. properly contains I) lies in F .

(iii) If SpecR � F then F � IpRq.
Proof. a) We go by contraposition: let I P MaxF 1 be an ideal which is not

prime, so there are a, b P RzI with ab P I. Since b P pI : aq, the ideals xI, ay, pI : aq
each properly contain I, so by maximality of I we have xI, ay, xI, by, pI : aq P F .
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Since I � xI, aby R F , the family F is neither Oka nor Ako.
b) (i) Suppose there is I P fzF . Since F 1 has the weak maximum property, I is
contained in a maximal element p of F 1, which by part a) is prime. Since f is
increasing, this gives p P fX SpecR � F , a contradiction.
(ii) Apply (i) with f the family of ideals containing (resp. properly containing) I.
(iii) Apply (i) with f � SpecR. □

Proposition 4.30. Let R be a ring. Each of the following families F is Oka
and the complementary family F 1 is closed under taking unions of chains hence
satisfies the weak maximum property:

(i) The set of all ideals meeting a multiplicatively closed subset S � R.
(ii) The set of all principal ideals.
(iii) The set of all finitely generated ideals.

Proof. (i) Let x P R, I P IpRq be such that xI, xy, pI : xq P F . Then there
are s1, s2 P S, i1, i2 P I and a, b P R such that

s1 � ai1 � bx, s2x � i2.

Then

s2s2 � as2i1 � bs2x � as2i1 � bi2 P S X I.
The union of a chain of ideals disjoint from S is an ideal disjoint from S.
(ii) Suppose pI : xq � xay and xI, xy � xby. Exercise 4.22d) gives us a useful hint:
we will show I � xaby. Equation (15) gives the containment

xaby � xayxbypI : xqxI, xy � I.

Conversely, let i P I. Since I � xI, xy � xby, we may write i � αb for some α P R.
We have αpbq � I hence also αxxy � I and thus α P pI : xq � xay. So

i � αb P xaby.
The union I of a chain tIju of nonprincipal ideals must be nonprincipal: if I � xay
then a P Ij for some j and thus xay � Ij � I � xa, so Ij � xay is principal.
(iii) Suppose pI : xq � xa1, . . . , amy and xI, xy � xi1 � α1x, . . . , in � αnxy. Let
J � xi1, . . . , in, xa1, . . . , xamy. We will show I � J , hence I is finitely generated.
It is immediate that J � I. Conversely z P I; since I � xI, xy, we may write

z � β1pi1�α1xq� . . .�βnpi1�αnxq � pβ1i1 � . . .� βninq� pα1β1� . . .�αnβnqx.
Since z and β1i1� . . .�βnin P I, so is pα1β1� . . .�αnβnqx, i.e., α1β1� . . .�αnβn P
pI : xq � xa1, . . . , amy, so pα1β1 � . . .� αnβnqx P xxa1, . . . , xamy and thus z P J .

The union I of a chain tIju of infinitely generated ideals must be infinitely
generated: if I � xx1, . . . , xny, then for all 1 ¤ i ¤ n we have xi P Iji for some
index ji. Then

xx1, . . . , xny � Imaxpj1,...,jnq � I � xx1, . . . , xny,
so Ij � xx1, . . . , xny is finitely generated. □

Combining Proposition 4.34 and Theorem 4.29 we deduce a new proof of Multi-
plicative Avoidance as well as immediate proofs of the following results.

Theorem 4.31. If every prime ideal of R is principal, every ideal of R is
principal.
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What about maximal ideals? Later we will encounter local rings with maximal
principal ideals that are not principal ideal rings, but they will be non-Noetherian.
Indeed they need to be: by a result of Kaplansky (Theorem 16.11), if in a Noetherian
ring every maximal ideal is principal, then every ideal is principal. The proof will
draw significantly on aspects of the structure theory of Noetherian rings.

Theorem 4.32. (Cohen [?]) If every prime ideal of R is finitely generated,
then every ideal of R is finitely generated.

Looking back at the above approach, the only cloud in the sky may be that directly
checking whether a family is Oka or Ako is neither completely trivial nor espe-
cially enlightening. Following Lam-Reyes, we introduce some further conditions on
a family that will allow us to prove more easily that it is either Oka or Ako.

A family F � IpRq is a strongly Oka family if R P F and for I, J P IpRq,
if xI, Jy, pI : Jq P F , then I P F .

A family F � IpRq is a strongly Ako family if R P F and for all x P R and
I, J P IpRq, if xI, xy, xI, Jy P F , then xI, xJy P F .

A family F � IpRq is a very strongly Ako family if R P F and for all
I, J1, J2 P IpRq, if xI, J1y, xI, J2y P F , then xI, J1J2y P F .

A family F � IpRq is a filter if F is increasing, F is closed under finite inter-
sections and R P F .5 A family F � IpRq is monoidal if R P F and for all I, J P F
we have IJ P F .

Exercise 4.24. a) Show: a monoidal increasing family F � IpRq is a
monoidal filter.

b) Let (P) be any of the following properties: Oka, Ako, strongly Oka, strongly
Ako, monoidal filter. For each i P I, let Fi be a family satisfying (P).
Show that F :� �iPI satsisfies property (P). Deduce: that for any family

F � IpRq there is a unique minimal family F containing F and satisfying
property (P).

c) Let (P) be the property of being a monoidal filter, and let F � IpRq be any
family of ideals. Show that F is the collection of ideals of R that contain
a finite product I1 � � � In with each Ii P F .

Proposition 4.33. Let R be a ring, and let F � IpRq be a family of ideals.

a) Strongly Oka implies Oka, and very strongly Ako implies strongly Ako
implies Ako.

b) Monoidal filter implies very strongly Ako.
c) Very strongly Ako implies strongly Oka.
d) Strongly Ako implies Oka.

Proof. a) These implications are immediate from the definitions.
b) Let I, J1, J2 P IpRq. If xI, J1y, xI, J2y P F , then since F is monoidal, we have

xI,J1yxI, J2y � xI2, IJ1, IJ2, J1J2y P F .
5This is the usual set-theoretic notion of a filter on 2R each of whose elements is an ideal.

To be slick about it, closure under finite intersections should include closure under the empty

intersection which should itself imply that R P F .
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Since xI2, IJ1, IJ2, J1J2y � xI, J1J2y and F is monoidal, we get that xI, J1J2y P F ,
so F is very strongly Ako.
c) Let F be very strongly Ako. Let I, J P IpRq be such that xI, Jy, xI : Jy P F .
Then pI : Jq � xI, pI : Jqy, and the very strong Ako condition gives

I � xI, JpI : Jqy P F .
d) Taking J �sxxy in the proof of part c) shows that strongly Ako implies Oka. □

We now revisit some of the above examples with these further conditions in mind.

Example 4.34. a) If S � R is a multiplicative subset, the family FS of
all ideals in R that meet S is a monoidal filter, as is almost immediate
to check. This is the strongest of the conditions we have introduced, so in
particular FS is both Oka and Ako.

b) Let F1 be the family of all principal ideals of R. Except in the trivial case
where every ideal of R is principal, F1 is not increasing, so is not a filter.
However it is monoidal and strongly Oka: the former is immediate and the
proof of Oka-ness given in Proposition adapts to show strong Oka-ness.

In fact the family F1 need not be Ako. Let R be a ring admitting
principal ideals xay, xby whose intersection is not finitely generated (see
[LR08, Remark 3.18]) and the references therein for a specific example).
Then xI, ay � xay, xI, by � xby P F1 but xI, aby � I R F1. This also gives
a ring in which the family of finitely generated ideals is not Ako (but is
strongly Oka, as we will now see).

c) For an infinite cardinal κ, let F κ (resp. F¤κ) be the family of ideals of R
that admit a generating set of cardinality less than α (resp. of cardinality
at most α). These families are monoidal: for F κ this is because if α, β, κ
are cardinals with κ infinite and α, β   κ then

αβ ¤ maxpα, βq2   κ2 � κ,

and the case of F¤κ is because κ2 � κ. They are also monoidal: we will
treat the slightly more difficult case of F κ. For an ideal I of R, we write
µpIq for its minimal number of generators. Let I P IpRq and x P R.
Then there are infinite cardinals α, β   κ such that µpI, xq ¤ α   κ and
µppI : xqq ¤ β   κ. Then there is an ideal I0 � I with µpI0q ¤ α and
xI, xy � xI0, xy. We claim that

I0 � pI : xqxxy � I.

Indeed, both I0 and pI : xqxxy are contained in I, so I0�pI : xqxxy � I. If
i P I there is i0 P I0 and a P R such that i � i0�ax; since ax � i� i0 P I,
we have a P pI : xq, and thus i P I0 � pI : xqxxy. Thus µpIq ¤ α � β ¤
maxpα, βq   κ, so I P Fα.

Exercise 4.25. Let κ be an infinite cardinal, and let F be either F κ or F¤κ
as defined in Example 4.34c) above. We showed that MaxF 1 � SpecF . Is it true
that if every prime ideal in R can be generated by fewer than κ elements (resp. by
at most κ elements) then every ideal in R can be generated be fewer than κ elements
(resp. by at most κ elements)?
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6. Minimal Primes

Let R be a ring. A minimal prime p of R is just what it sounds like: a minimal
element of the set SpecR of prime ideals of R, partially ordered by inclusion.

Exercise 4.26. Let C be a chain of prime ideals in a ring R. Show:
�

pPC p is
a prime ideal.

Proposition 4.35. Let I � P be ideals of R, with P prime. Then the set S of
all prime ideals p of R with I � p � P has a minimal element.

Proof. We partially order S by reverse inclusion i.e., p1 ¤ p2 ðñ p1 � p2.
Let C be any chain in S. By Exercise 4.26,

�
pPC p is a prime ideal and thus it is

an upper bound for C in S. By Zorn’s Lemma, S contains a maximal element, i.e.,
a minimal element under ordinary containment. □

Corollary 4.36. Every nonzero ring has at least one minimal prime.

Exercise 4.27. Prove Corollary 4.29.

We write MinSpecR for the set of all minimal primes of R and ZDpRq for the set
of all zerodivisors in R.

Exercise 4.28. Show: in a ring R, rpRq � �pPMinSpecR p.

In order to prove the next result, it is convenient to use the theory of localization,
which we will not develop until § 7. Nevertheless we have decided to place the proof
here, as it fits thematically with the other results of the section.

Theorem 4.37. Let R be a ring.

a) We have
�

pPMinSpecR p � ZDpRq.
b) If R is reduced, then equality holds:

(16)
¤

pPMinSpecR

p � ZDpRq.

Proof. a) Let p P MinSpecR and let x P p. Then pRp is the unique prime
ideal of Rp, so x P rppApq is nilpotent. By Exercise 7.6, this implies that there is
y P Rzp such that yxn � 0. Since y � 0, xn – and thus also x – is a zero-divisor.
b) Suppose a P ZDpRq, so there is b P R with ab � 0. Since b � 0 and R is reduced,
by Exercise 4.28 we have

b R
£

pPMinSpecR

p,

so there is p P MinSpecR not containing b. Since ab � 0 P p, we have a P p. □

Proposition 4.38. Let I :� tIjujPJ be any family of ideals in a ring R, and
let F be the family of ideals that contain some finite product Ij1 � � � Ijn (taking the
empty product, we get that R P F). Let F 1 be the complementary family of ideals
not containing any product of the Ij’s.

a) Any maximal element of F 1 is a prime ideal.
b) Suppose moreover that each Ii is finitely generated and that every prime

ideal of R contains some Ii. Then there are j1, . . . , jn P J such that
Ij1 � � � Ijn � p0q.
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Proof. a) The family F is a monoidal filter: indeed, it is the monoidal filter
generated by the family tIjujPI . By Theorem 4.29a), every maximal element of F 1

is prime.
b) Let tJku be a chain in F 1, and let J :� �k Jk be its union. If J � Ij1 � � � Ijn , then
since each Iji is finitely generated, so is Ij1 � � � Ijn , and as we have seen before, if
the union of a chain of ideals contains a finitely generated ideal, then so does some
element of the chain. So by Zorn’s Lemma F 1 has the weak maximum property,
so by Theorem 4.29b)(iii) since every prime ideal of R lies in F we conclude that
every ideal lies in F . In particular the zero ideal lies in F , giving the desired
conclusion. □

Corollary 4.39 (Anderson).

a) Suppose that in a ring R every minimal prime ideal is finitely generated.
Then MinSpecR is finite.

b) If R is Noetherian, then MinSpecR is finite.

Proof. a) We apply Proposition 4.38b) with I � MinSpecR. There are then
distinct minimal prime ideals p1, . . . , pn and a1, . . . , an P Z� such that pa11 � � � pann �
p0q. If now q P MinSpecR then q � pa11 � � � pann so q � pi for some 1 ¤ i ¤ n. It
follows that MinSpecR � tp1, . . . , pnu.
b) If R is Noetherian then every ideal is finitely generated, so part a) applies. □

7. An application to unit groups

The following useful generalization of Proposition 4.19 is due to MathOverflow user
zcn: see http://mathoverflow.net/users/44201/zcn.

Theorem 4.40. Let f : R Ñ S be a surjective ring homomorphism, with
kernel I. Suppose that all but finitely many maximal ideals of R contain I. Then
the induced group homomorphism on unit groups f� : R� Ñ S� is surjective.

Proof. We may identify S with R{I. Let m1, . . . ,mn be the maximal ideals
of R that do not contain I. Then the ideals I,m1, . . . ,mn are pairwise comaximal.
Let y P S�, and choose x P R such that fpxq � y. By the Chinese Remainder
Theorem there is a P I such that a � 1 � x pmod miq for all 1 ¤ i ¤ n. Then
fpx� aq � fpxq� fpaq � fpxq � y. Moreover, for all 1 ¤ i ¤ n we have x� a R mi.
If m P MaxSpecRztm1, . . . ,mnu then m � I, so if x � a P m, then x P m, so
y � fpxq P m{I, a proper ideal of R{I: contradiction. So x� a P R�. □

The hypothesis of Theorem 4.40 applies to every surjective homomorphism f : RÑ
S when R is semilocal, so in particular when R is finite or – as we will see later in
Theorem 8.37 – when R is Artinian.



CHAPTER 5

Examples of Rings

1. Rings of numbers

The most familiar examples of rings are probably rings of numbers, e.g.

Z � Q � R � C.
These are, respectively, the integers, the rational numbers, the real numbers and
the complex numbers. For any positive integer N the ring integers modulo N , de-
noted Z{NZ. We assume that the reader has seen all these rings before.

Historically, the concept of a ring as an abstract structure seems to have arisen
as an attempt formalize common algebraic properties of number rings of various
sorts. It is my understanding that the term “ring” comes from Hilbert’s Zahlring
(“Zahl” means “number” in German). Indeed, various sorts of extension rings of
C – most famously Hamilton’s quaternions H – have been referred to as systems
of hypercomplex numbers. This terminology seems no longer to be widely used.

The adjunction process gives rise to many rings and fields of numbers, as already
seen in §2.2. For instance, for a nonsquare integer D, let

?
D be a complex number

whose square is D: then Zr?Ds is an interesting ring.

Exercise 5.1. Show: Zr?Ds � ta� b?D | a, b P Zu.
In particular, pZr?Ds,�q � pZ2,�q as commutative groups, although not as rings,

since Zr?Ds is a domain and Z2 has nontrivial idempotents.

More generally, let K be any number field (a finite degree field extension of Q),
and let ZK be the set of elements x P K which satisfy a monic polynomial with
Z-coefficients. It turns out that ZK is a ring, the ring of algebraic integers in
K. This is a special case of the theory of integral closure: see §14.

Algebraic number theory proper begins with the observation that in general the
rings ZK need not be UFDs but are otherwise as nice as possible from a commuta-
tive algebraic standpoint. That is, every ring ZK is a Dedekind domain, which
among many other characterizations, means that every nonzero ideal factors into a
product of prime ideals. That the rings ZK are Dedekind domains is an example of
a normalization theorem, more specifically a very special case of theKrull-Akizuki
Theorem of §18.

Let Q be an algebraic closure of Q. (This is not a number field, being an infi-
nite degree algebraic extension of Q.) We may define Z to be the set of all elements
of Q which satsify a monic polynomial with integer coefficients: this is the ring of
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all algebraic integers. In particular,

Z � limÝÑZK
is the direct limit of all rings of integers in fixed number fields.

Exercise 5.2. Let Z be the set of all algebraic integers.

a) Taking as given that for any number field K, the algebraic integers in K
form a subring of K, show that Z is a subring of Q.1

b) Show: Z is a domain that is not Noetherian. Hint: use the fact that
the nth root of an algebraic integer is an algebraic integer to construct an
infinite strictly ascending chain of principal ideals in Z.

Theorem 5.1. Every finitely generated ideal in the ring Z is principal.

Thus, if only Z were Noetherian, it would be a principal ideal domain! Later on
we will prove a more general theorem, due to Kaplansky, in the context of limits of
Dedekind domains with torsion Picard groups.

2. Rings of continuous functions

2.1. The ring of real-valued functions.

Let R be a ring, X a set, and consider the set RX of all functions f : X Ñ R. We
may endow RX with the structure of a ring by defining addition and multiplication
“pointwise”, i.e.,

pf � gq : x ÞÑ fpxq � gpxq,
pfgq : x ÞÑ fpxqgpxq.

Exercise 5.3. Show: this makes RX into a ring with additive identity the
constant function 0 and multiplicative identity the constant function 1.

However, this is not really a “new” example of a ring.

Exercise 5.4. Show: RX is isomorphic as a ring, to
±
xPX R.

Later on we will see this construction in the special case R � F2, in which case
we get an important subclass of Boolean rings. However, in general RX is quite
a roomy ring. It contains many interesting subrings, some of which can be nicely
consructed and analyzed using topological, geometric and analytic considerations.

2.2. Separation axioms and CpXq.

We specialize to the following situation: R � R, X is a topological space, and
instead of the ring RX we look at the subring CpXq of continuous f : X Ñ R.

Exercise 5.5. Show: for a topological space X, the following are equivalent:

(i) For every x, y P X with x � y, there exists f P CpXq with fpxq � fpyq.
(ii) For every x, y P X with x � y and every α, β P R, there exists f P CpXq

with fpxq � α, fpyq � β.
(iii) For every finite subset S of X and any function g : S Ñ R, there is

f P CpXq such that f |S � g.

A space that satisfies these equivalent conditions is called C-separated.2

1Both the “given” and the conclusion of this part of the exercise will follow from our study
of integral extensions in Chapter 14.

2More standard terminology: “the continuous functions on X separate points”.
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Recall the following chains of implications from general topology:

Lemma 5.2. For any topological space, the following implications hold (and
none of the arrows may be reversed)):

a) X compact ùñ X normal ùñ X Tychonoff ùñ X regular ùñ X
Hausdorff ùñ X separated ùñ X Kolmogorov.

b) X locally compact ùñ X Tychonoff.

Exercise 5.6.

a) Show: a Tychonoff space is C-separated.
b) Show: a C-separated space is Hausdorff.
c) Show: a regular space need not be C-separated.

(Suggestion: see [Ga71].)

For a topological spaceX, a zero set is a set of the form f�1p0q for some continuous
function f : X Ñ R. A cozero set is a complement of a zero set. The cozero sets
in fact form a base for a topology on X; we call it the Z-topology and write XZ

for X endowed with the Z-topology. Since every cozero set is an open set in the
given topology on X, XZ is a coarser topology than the given topology on X. Of
course we allow the possibility that the two topologies coincide. The following basic
(but not so widely known) result gives a condition for this.

Theorem 5.3.

a) For a Hausdorff topological space X, the following are equivalent:
(i) XZ � X: every closed set is an intersection of zero sets of continuous

functions.
(ii) X is Tychonoff, i.e., if Y is a closed subset of X and x P XzY , then

there exists a continuous function f : X Ñ r0, 1s with fpxq � 0,
f |Y � 1.

b) For any topological space X, the space XZ is quasi-Tychonoff3 and is the
finest quasi-Tychonoff topology on the underlying set of X which is coarser
than X.

Proof. [GJ76, p. 38]. □

Let X be a topological space, and let x P X be any point. Consider the set

mx � tf P CpXq | fpxq � 0u.
Evidently mx is an ideal of CpXq. But more is true.

Proposition 5.4. Evaluation at x gives a canonical isomorphism CpXq{mx �Ñ
R. In particular, mx is a maximal ideal of CpXq.

Exercise 5.7. Prove Proposition 5.4.

For a topological space X, we let

MpXq :� MaxSpecCpXq
be the set of maximal ideals in the ring of continuous real-valued functions on X.
Thus x ÞÑ mx gives a map of sets M : X ÑMpXq.

3That is, points can be separated from closed subsets by continuous functions. Quasi-
Tychonoff is often called “completely regular,” and Tychonoff means quasi-Tychonoff and

Hausdorff.
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Proposition 5.5. The map m : X Ñ MpXq is injective if and only if X is
C-separated.

Exercise 5.8. Prove Proposition 5.5.

2.3. Quasi-compactness and CpXq.
Proposition 5.6. If X is quasi-compact, then m is surjective, i.e., every max-

imal ideal of CpXq is of the form mx for at least one point x P X.

Proof. It suffices to show: let I be an ideal of CpXq such that for no x P X
do we have I � mx. Then I � CpXq. By hypothesis, for every x P X there is
fx P I such that fxpxq � 0. Since fx is continuous, there is an open neighborhood
Ux of x such fx is nowhere vanishing on Ux. By quasi-compactness of X, there is a

finite set x1, . . . , xN such X � �N
i�1 Uxi . Then the function f � f2x1

� . . .� f2xn
is

an element of m which is positive at every x P X. But then 1
f is also a continuous

function on X, i.e., f P CpXq�, so I � R. □

A compact space is quasi-compact and C-separated. Thus previous results yield:

Theorem 5.7. If X is compact, then m : X Ñ MpXq is a bijection: every
maximal ideal of CpXq is of the form mx for a unique x P X.

If X is quasi-compact, there is a natural topology on MpXq, the initial topology:
each f P CpXq induces a function Mf :MpXq Ñ R, by mapping m to the image of
f in CpXq{m � R. We endow MpXq with the coarsest topology which makes each
Mf continuous. It follows that for a topological spaceW , a function g :W ÑMpXq
is continuous if and only if Mf � g : W Ñ R is continuous for all f P CpXq. In
particular the function m : X ÑMpXq is continuous because for all f P CpXq, we
have Mf �m � f is continuous.

Lemma 5.8. For a compact space X, the initial topology onMpXq is Hausdorff.
Proof. For distinct x, x1 P X, consider the maximal ideals mx,mx1 . By C-

separatedness, there exists f P CpXq with fpxq � 0, fpx1q � 0. Thus choose
disjoint neighborhoods V, V 1 of fpxq, fpx1q P R. The sets

Uf,V � tx P X | fpxq P V u, Uf,V 1 � tx P X | fpxq P V 1u
are disjoint open neighborhoods of x and x1. □

Theorem 5.9. If X is a compact space, then m : X ÑMpXq is a homeomor-
phism.

Proof. The map m is a continuous bijection from a compact space to a Haus-
dorff space. Any such map is a homeomorphism. Indeed, let Y be a closed subset
of X. Then Y is compact, so mpY q is compact in the Hausdorff space MpXq, so
mpY q is closed, and it follows that m�1 is continuous. □

2.4. The Zariski topology on CpXq.

For any commutative ring R, we define a topology on the set MaxSpecR of maximal
ideals of R. For an ideal I of R, we put

V pIq :� tm P MaxSpecR | I � mu.
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As we will pursue in much more detail in Chapter 13, the sets V pIq are the closed
sets for a unique topology on MaxSpecR, the Zariski topology. (The Zariski
topology on the set SpecR of all prime ideals of R is defined in exactly the analogous
way and later on will be our primary object of study. For the class of rings CpXq
it turns out to be sufficient – and easier – to study maximal ideals only.) Another
way to say it is that the closed sets in the Zariski topology are precisely all sets
obtained by intersecting sets of the form

V pfq � tm P MaxSpecR | f P mu.
To see this, note first that for any ideal I of R,

V pIq �
£
fPI

V pfq

and for any subset S of R, £
fPS

V pfq �
£

fPxSyR
V pfq.

It is virtually immediate that the Zariski topology on MaxSpecR is separated,
i.e., satisfies the T1 separation axiom: singleton sets are closed. Indeed, for any
subset S � MaxSpecS, the Zariski closure S of S is

�
fPS V pfq � V pSq � V pxSyq,

so if S � tmu then S � V pmq � tmu � S. It also also easy to see that the Zariski
topology on MaxSpecR is quasi-compact: indeed, suppose we have a family of
ideals tIiuIPS of ideals of R such that

�
iPS V pIiq � ∅. This means that there is no

maximal ideal m of R containing each Ii, which means that xIi | i P Sy � R. But
the ideal generated by any family of ideals is the set of all finite sums of elements
from the ideals, so therefore there is a finite subset T of S such that xIi | i P T y � R,
so
�
iPT V pIiq � ∅. Thus the closed subsets in MaxSpecR satisfy the finite inter-

section condition, which is a characteristic property of quasi-compact spaces.

The Zariski topology on MaxSpecCpXq was first defined by M. Stone.

Proposition 5.10. Let X be any topological space. The map m : X ÑMpXq
is continuous when MpXq is given the Zariski topology.

Proof. As above, it is enough to show that for all f P CpXq, the preimage
m�1pV pfqq is closed in X. Unpacking the definitions, we find

m�1pV pfqq � f�1p0q,
which is closed because f is continuous. □

Corollary 5.11. For a compact space X, the Zariski topology on MpXq co-
incides with the initial topology.

Proof. By Theorem 5.9, we may compare the Zariski topology on X – the
topology obtained by pulling back the Zariski topology on MpXq via m – with the
given topology on X. But the proof of Proposition 5.10 shows that the Zariski
topology on X is precisely the Z-topology, i.e., the one in which the closed subsets
are the intersections of zero sets. But X is compact hence quasi-Tychonoff, so by
Theorem 5.3 the Z-topology on X coincides with the given topology on X. □
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Let π : X Ñ Y be a continuous map of topological spaces. There is an induced map
Cpπq : CpY q Ñ CpXq: given g : Y Ñ R, we pull back by π to get g � π : X Ñ R.
It is no problem to see that Cpπq is a homomorphism of rings. For x P X we find:

Cpπq�pmxq � tg P CpY q | π � g P mxu � tg P CpY q | πpgpxqq � 0u � mπpxq.

In other words, maximal ideals in the image mpXq pull back to maximal ideals in
the image mpY q, and moreover on the image this pullback map is just π. If X and
Y are compact, m : X Ñ MpXq and m : Y Ñ MpY q are homeomorphisms and
therefore in this case we have

Cpπq� � π.

It follows that C andM are inverse anti-equivalences from the category of compact
spaces to the category of rings of continuous functions on compact spaces. This
gives a first glimpse at a class of very fruitful connections between topological
spaces and rings of functions on them that recurs throughout several brances of
mathematics. We will see another instance of this in Chapter 9.

2.5. When X is not compact. In this section we will discuss some results
on CpXq when the topological space is not compact. Unfrotunately we will have to
skip many proofs, referring instead to the excellent text of Gillman-Jerison [GJ76].

Example 5.12. Let X be an infinite discrete space, so CpXq � RX is the ring
of all functions from X to R. Thus X is a noncompact Tychonoff space. So it
follows from our work so far that m : X ÑMpXq is a continuous injection. In fact
m is an embedding: for any subset Y � X, let IY be the ideal of functions vanishing
identically on Y . Then

V pIq XmpXq � mpY q,
so mpY q is closed in mpXq. Therefore mpXq is an infinite discrete subspace of the
quasi-compact space MpXq, so the map m cannot be surjective.

The next result implies that we may restrict to considering Tychonoff spaces X
without shrinking the class of rings CpXq.

Theorem 5.13. Let X be a topological space, let m : X Ñ MpXq be the map
x ÞÑ mx, and let XT � mpXq, viewed as a subspace of MpXq.

a) The space XT is Tychonoff.
b) The map m : X Ñ XT is the Tychonoff completion of X: i.e., it is

universal for continuous maps from X to a Tychonoff space.
c) The induced map Cpmq : CpXT q Ñ CpXq is an isomorphism of rings.

Proof. See [GJ76, §3.9]. □

Henceforth we restrict to Tychonoff spaces.

Theorem 5.14. Let X be a Tychonoff space.

a) The space MpXq endowed with the Zariski topology is compact.
b) The map m : X ÑMpXq is the Stone-Čech compactification of X.

Proof. See [GJ76, §7.11]. □

%endcor

Exercise 5.9.

a) Show: CpXq is an R-subalgebra of RX .
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b) Show: CpXq is reduced: it contains no nonzero nilpotent elements.
c) (T. Rzepecki) Show: for a topological space, the following are equivalent:

(i) The Tychonoff completion XT of X is a one-point space.
(ii) We have CpXq � R.
(iii) The ring CpXq is a domain.

(Suggestion: (ii) ðñ (i) ùñ (iii) are straightforward. For (iii)
ùñ (ii), let f P CpXq be nonconstant, so fpxq � fpyq for some x, y P
X. Show that for suitable real numbers C1 and C2 the functions g1 �
maxp0, f1�C1q and g2 � maxp0,�f1�C2q give nonzero elements of
CpXq with g1g2 � 0.)

Exercise 5.10. Show CpXq is connected in the algebraic sense – i.e., there
are no idempotents other than 0 and 1 – if and only if the topological space X is
connected.

Exercise 5.11. Show: there is an antitone Galois connection between 2X and
the set of ideals of CpXq, as follows:
S � X ÞÑ IS � tf P CpXq | f |S � 0u and
I ÞÑ YI � tx P X | @f P I, fpxq � 0u.

Exercise 5.12. Let X be a Tychonoff space.

a) Let p be a prime ideal of CpXq. Show: #Yp ¤ 1.
b) Suppose X is moreover compact. Deduce:

(i) The space Yp consists of exactly one point.
(ii) A prime ideal p of CpXq is closed in the sense of the Galois connec-

tion – i.e., p � IYp
if and only if p is maximal.

(iii) Each prime ideal p of CpXq is contained in a unique maximal ideal.

A commutative ring in which each prime ideal is contained in a unique maximal
ideal is called a Gelfand ring (or sometimes an h-local ring, though I don’t know
what the “h” is for); this class of rings will be studied in Chapter 13. Two evident
classes of Gelfand rings are the local rings (i.e., there is a unique maximal ideal)
and the zero-dimensional rings (i.e., every prime ideal is maximal).

Exercise 5.13. Let X be a finite topological space. Show: dimCpXq � 0.
(Hint: the conclusion holds for any ring that is finite-dimensional as an algebra
over a field.)

If X is an infinite compact space, then since MpXq � X is infinite, evidently CpXq
is not local. It is less immediately clear whether CpXq is zero-dimensional.

Example 5.15. Let X be an infinite compact subset of RN that is Zariski-
dense: a polynomial f P Rrt1, . . . , tN s that vanishes identically on X must vanish
identically on RN and must therefore be the zero polynomial. (Notice that every
infinite subset of R is Zariski-dense.) Let S be the submonoid of Rrt1, . . . , tN s
generated by polynomials of the form ti � xi for some 1 ¤ i ¤ N and xi P R.
Because X is Zariski-dense in RN , each element of S induces a nonzero element
of CpXq. Therefore we may apply Theorem 4.9 to get a prime ideal p of CpXq
that is disjoint from S. In particular, for all x � px1, . . . , xN q P X, we have
pt1�x1q � � � pt�N �xN q P mxzp. Since every maximal ideal of CpXq is of the form
mx for some x P X, it follows that p is not maximal. So dimX ¥ 1.

But this is just the tip of the iceberg.
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Theorem 5.16. (Wofsey) Let X be a topological space.

a) The following are equivalent:
(i) Every prime ideal of CpXq is maximal.
(ii) Every chain of prime ideals in SpecCpXq has length less than c �

#R.
(iii) Every f P CpXq is locally constant.

Proof. Notice that (i) ùñ (ii) is immediate. We will give the proof of (iii)
ùñ (i) now. Later in the chapter, after developing some machinery for a similar
result, we will show that if there is f P CpXq that is not locally constant, then
SpecCpXq has a chain that is order-isomorphic to R, which by contraposition gives
(ii) ùñ (iii), completing the proof.

The proof of (iii) ùñ (i) is short but uses a result that we will prove in Chapter
7. Namely, we claim that if every f P CpXq is locally constant, then every principal
ideal of CpXq is idempotent, so by Proposition 3.103 the ring CpXq is absolutely
flat. Let p be a prime ideal of CpXq. By Exercise 3.91 the quotient CpXq{p is an
absolutely flat domain. Let x be a nonzero element of CpXq{p. Since the principal
ideal pxq is idempotent, we have pxq � pxq2 � px2q. Since we are in a domain, this
implies x � ux2 for some u P pCpXq{pq�, and since x is not a zero-divisor we may
cancel it to get ux � 1, so x P pCpXq{pq�. This implies that CpXq{p is a field and
thus that p is maximal.

Now let us establish the claim. If f P CpXq is locally constant, then

g : x ÞÑ
#

1
fpxq if fpxq � 0

0 if fpxq � 0

is also an element of CpXq. We get immediately that f � gf2, so pfq � pf2q,
completing this part of the proof. □

In Theorem 5.16, the equivalence of (i) and (iii) already appears in the text of
Gillman-Jerison [GJ76]. They call a Tychonoff space X for which every f P CpXq
is locally constant a P-space and show that this is equivalent to each of the fol-
lowing properties: (i) every zero-set in X is open; (ii) every Gδ-set (i.e., countable
intersection of open sets) is open; every ideal of CpXq is a radical ideal; (ii) for all
f, g P CpXq we have xf, gy � xf2 � g2y, hence in particular all finitely generated
idals of CpXq are principal; CpXq is absolutely flat.

Corollary 5.17. (Wofsey) Let X be an infinite space. Suppose that X is
either compact or is both Tychonoff and connected. Then X is a P -space, and thus

dimCpXq ¥ c.

Proof. In each case, we will construct a continuous function f : X Ñ R that
is not locally constant. The conclusion then follows from Theorem 5.16.

Suppose first that X is an infinite, connected Tychonoff space. Since X is con-
nected, every locally constant function on X is constant. But since X is Tychonoff,
it is C-separated, which since it has more than one point, means that CpXq � R.
So there is f P CpXq that is not locally constant.

Next suppose that X is compact. Let us first address the case in which X
is moreover metrizable, since we can make a simpler argument here. Choose any
infinite subset of X, and form an injective sequence with its terms. Since X is
alsosequentially compact, this sequence admits a convergent subsequence. This
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shows that there is an injective convergence sequence txnu8n�1 converging to some
x P X. The function x ÞÑ dpx, xq (where d is some metric inducing the topology
on X) is then 0 at x but not in any ϵ-ball around x, so is continuous and not
locally constant.

Now let X be any infinite compact space. Being an infinite Hausdorff space,
X admits a countably infinite discrete subspace Y , which we may arrange into
the terms of an injective sequence txnu. By Tietze”s Extension Theorem, for all
n P Z� there is a continuous function f : X Ñ r0, 2�ns such that fpxq � 2�n

if x P tx1, . . . , xnu and fpxq � 0 otherwise. Then f :� °n�1
8fn is an element

of CpXq, since each partial sum is continuous and f is the uniform limit of the
sequence of partial sums. We have fpxnq � 21�n, so f |Y is injective. Since X it
is compact, the infinite subset Y has a limit point: that is, there is x P X such
that every neighborhood U of x contains a point of Y ztxu, and indeed, since X
is Hausdorff, infinitely many such points. The function f is therefore not locally
constant at x. □

Exercise 5.14. Let X � r0, 1s with the standard Euclidean topology. Let r0
be the ideal of all functions f P CpXq such that for all k P N, limxÑ0�

fpxq
xk � 0.

Equivalently r0 is the ideal of all functions which are infinitely differentiable at 0
and have identically zero Taylor series at zero.

a) Show: r0 is radical but not prime.
b) Show: the only maximal ideal containing r0 is

m0 :� tf P Cpr0, 1sq | fp0q � 0u.
c) Deduce: there are ideals of CpXq that are prime but not maximal.

Exercise 5.15. Let X be a C-separated topological space.

a) Let S � X with #S ¡ 1. Show: IS is not maximal.
b) Suppose X is Tychonoff and S, T � X. Show: IS � IT ðñ T � S.
c) Show: if X is Tychonoff, then for closed S, T � X, we have IS � IT ðñ

S � T .

Exercise 5.16. Let φ : X Ñ Y be a continuous function between topological
spaces.

a) Show: φ induces a ring homomorphism Cpφq : CpY q Ñ CpXq by g P
CpY q ÞÑ φ�g � g � φ.

b) Suppose Y is normal, that X is a closed subspace of X and φ : X Ñ Y is
the inclusion map. Show: Cpφq is surjective.

Exercise 5.17. Let X be a normal topological space. Show: the closure oper-
ator on subsets of X given by the Galois connection is the topological closure.

Exercise 5.18. Let X � t0u Y t 1nunPZ� � R, and let m be the maximal
ideal of functions vanishing at 0. Fill in the details of the following proof that
m is not finitely generated.4 Assume not: m � xa1, . . . , any. Then for all g P m,

limxÑ0
g2pxq

|a1pxq|�...�|anpxq| � 0. (Show also that there is δ ¡ 0 such that the denomi-

nator is strictly positive on p0, δq.) Now choose g P m so as to get a contradiction.

Exercise 5.19. Let X be a normal space, and let x P X.

4Or, if you like, give your own proof that m is not finitely generated!



122 5. EXAMPLES OF RINGS

a) Show that the following are equivalent:
(i) The ideal Ix is finitely generated.
(ii) The ideal Ix is principal.
(iii) The point x is isolated in X (i.e., txu is open).

b) Suppose X is compact. Show that the following are equivalent:
(i) The ring CpXq is Noetherian.
(ii) The ring CpXq is finite-dimensional as an R-vector space.
(iii) The set X is finite.

Exercise 5.20. Show: if we worked throughout with rings CpX,Cq of contin-
uous C-valued functions, then all of the above results continue to hold.

Exercise 5.21. Suppose we looked at rings of continuous functions from a
topological space X to Qp. To what extent to the results of the section continue to
hold?

Exercise 5.22. Let X be a compact smooth manifold and consider the ring
C8pXq of smooth functions f : X Ñ R.

a) Show: for x P X, tf P C8pXq | fpxq � 0u is a finitely generated maximal
ideal.

b) The phenomenon of part a) is in contrast to the case of maximal ideals
in the ring Cpr0, 1sq, say. However, I believe that with this sole exception,
all of the results of this section hold for the rings C8pXq just as for the
rings CpXq. Try it and see.

2.6. A theorem of B. Sury.

Theorem 5.18. (Sury) Let c P r0, 1s, and let mc � tf P Cpr0, 1sq | fpcq � 0u.
Then mc admits no countable generating set.

Proof. Let tfnu8n�1 be a countably infinite subset ofmc, and let J � xtfnu8n�1y.
It suffices to exhibit f P mczJ . By rescaling, we may assume ||fn|| ¤ 1 for all n.
And we may assume

�8
n�1 f

�1
n p0q � tcu: otherwise x ÞÑ |x� c| lies in mczJ . Put

fpxq �
8̧

n�1

c
|fnpxq|
2n

.

The series is uniformly convergent (by “Weierstrass’s M-Test”) and thus f , being
the uniform limit of continuous functions, is itself continuous. Moreover f�1p0q �
tcu, and in particular f P mc. Seeking a contradiction, we suppose f P J : then
there is r P Z� and g1, . . . , gr P Cpr0, 1sq such that

f �
ŗ

n�1

gnfn.

Let M � max1¤n¤r ||gn||, so ||f || ¤ M
°r
n�1 ||fn||. Let U be a neighborhood of c

such that ||?fn||U   1
2nM for 1 ¤ n ¤ r. Since f � °r

n�1 gnfn vanishes only at c,
for each x P Uztcu, there exists 1 ¤ N ¤ r such that fN pxq � 0 and thus

|fN pxq|  
a|fN pxq|
2NM

.

Hence

|fpxq| ¤M
ŗ

n�1

|fnpxq|  
ŗ

n�1

a|fnpxq|
2n

¤ |fpxq|,
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a contradiction. □

Exercise 5.23. Let X be a compact topological space, and let c P X be such
that there is f P CpXq such that f�1p0q � tcu. (Note: this condition holds for
all points c P X if X is perfectly normal, which in turn holds if X is metrizable.)
For the maximal ideal mc :� tf P CpXq | fpcq � 0u, show that the following are
equivalent:

(i) The point c is isolated in X.
(ii) The ideal mc is principal.
(iii) The ideal mc is countably generated.

3. Rings of holomorphic functions

We have just seen that the ring of continuous functions on a topological space is
very rarely a domain. A remedy for this is to consider more “rigid” collections of
functions. Let U be an open subset of the complex plane C, and let HolpUq be the
set of holomorphic functions f : U Ñ C. (A holomorphic function on U is one for
which the complex derivative f 1pzq exists for each z P U . Equivalently, for each
z P U f admits a power series expansion with positive radius of convergence.) Then
HolpUq � CU , the ring of all C-valued functions on U .

Proposition 5.19. For nonempty open U � C, the following are equivalent:

(i) The set U is connected.
(ii) The ring HolpUq is a domain.

Proof. (i) ùñ (ii): For any f P CpU,Cq let Zpfq � tz P U | fpzq � 0u be the
zero set of f . Since f is continuous, Zpfq is a closed subset of U . If f is moreover
holomorphic, then Zpfq has no accumulation point in U , i.e., f � 0 ùñ Zpfq
is discrete – in particular Zpfq is countable. Moreover, for any f, g P CpU,Cq we
have Zpfgq � Zpfq Y Zpgq, so if f, g P HolpUq then Zpfgq is at most countable,
whereas U is uncountable, so fg � 0.
 (i) ùñ  (ii): If U is not connected, then U � V1 Y V2 where V1 and V2
are disjoint open subsets. Let χi be the characteristic function of Vi for i � 1, 2.
Then each χi is locally constant on U – hence holomorphic, and nonzero, but
χ1χ2 � 0. □

In complex function theory it is common to call a nonempty connected open U � C
a domain. Henceforth we assume that U is a domain. For z P U there is a function
ordz : HolpUq Ñ N, the order of vanishing of f at z: we expand f into a power
series at z: fpζq � °8

n�0 anpζ�zqn and let ordzpfq be the least n for which an � 0.
Compiling these we associate to each f P HolpUq its total order Ordpfq : U Ñ N
given by Ordpfqpzq � ordzpfq. Consider the set NU of all functions from U to N.
For O P NU , we define the support of O to be the set of z P U such that Opzq ¡ 0.

A meromorphic function on U is a function which is holomorphic on U except
for isolated finite order singularities. More precisely, a meromorphic function is a
function which is holomorphic on UzZ for some discrete closed subset Z of U and
such that for all z0 P Z, there exists n P Z� such that pz � z0qnfpzq extends to a
holomorphic function on a neighborhood of z. If the least n as above is positive,
we say that f has a pole at z0, and we employ the convention that fpz0q � 8. Let
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MerpUq be the set of all meromorphic functions on U ; it is a ring under pointwise
addition and multiplication, under the conventions that for all z P C,

z �8 � 8�8 � z � 8 � 8 � 8 � 8.
Theorem 5.20. (Weierstrass + Mittag-Leffler) Let U � C be a domain.

a) If O P NU has closed, discrete support, there is f P HolpUq with Ordpfq �
O.

b) Let Z � U be a closed subset without limit points. To each z P Z we
associate nz P N and wz,k P C for all 0 ¤ k ¤ nz. Then there is f P
HolpUq such that for all z P Z and 0 ¤ k ¤ nz, f

pkqpzq � k!wz,k.

Proof. Part a) is part of Weierstrass’ Factorization Theory [Ru87, Thm.
15.11]. To get part b), combine part a) with Mittag-Leffler’s result on the existence
of meromorphic functions with prescribed principal parts [Ru87, Thm. 15.13]. □

Corollary 5.21. The ring MerpUq of meromorphic functions on U is a field,
and indeed is the field of fractions of HolpUq.

Exercise 5.24. Prove Proposition 5.21.

Exercise 5.25. Fix z0 P U . For f P MerpUq, choose n P N such that pz�z0qnf
is holomorphic at z0, and put ordz0pfq � ordz0ppz � z0qnfq � n.

a) Show that this gives a well-defined function ordz0 : MerpUq Ñ Z (i.e.,
independent of the choice of n in the definition).

b) Show that for all f, g P MerpUq�, ordz0pfgq � ordz0pfq � ordz0pgq.
c) We formally extend ordz0 to a function from MerpUq to ZYt8u by setting

ordz0p0q � 8. Show that, under the convention that 8�n � 8�8 � 8,
we have for all f, g P MerpUq that ordz0pf � gq ¥ min ordz0pfq, ordz0pgq.

d) Show that if ordz0pfq � ordz0pgq then ordz0pf�gq � min ordz0 f, ordz0pgq.
Similarly we may extend Ord to a function from MerpUq to ZU .

Lemma 5.22. For f, g P HolpUq, the following are equivalent:

(i) Ordpfq � Ordpgq.
(ii) f � ug for u P HolpUq�.
(iii) pfq � pgq.
Proof. (ii) ðñ (iii) for elements of any domain.

(ii) ùñ (i) is easy and left to the reader.

(i) ùñ (ii): The meromorphic function f
g has identically zero order, hence is

nowhere vanishing and is thus a unit u in HolpUq. □

Theorem 5.23. (Helmer [He40]) For a domain U in the complex plane, every
finitely generated ideal of HolpUq is principal. More precisely, for any f1, . . . , fn P
HolpUq, there exists f P HolpUq such that Ordpfq � miniOrdpfiq, unique up to
associates, and then xf1, . . . , fny � xfy.

Proof. Step 1: Suppose f1, f2 P HolpUq don’t both vanish at any z P U . Let
Z be the zero set of f1, so for all z P Z, f2pzq � 0. Theorem 5.20b) gives g2 P HolpUq
such that for all z P Z, ordzp1� g2f2q ¥ ordzpf1q. Thus Ordp1� g2f2q ¥ Ordpf1q,
so g1 :� 1�g2f2

f1
P HolpUq, f1g1 � f2g2 � 1 and xf1, f2y � HolpUq.

Step 2: Now let f1, f2 P HolpUq be arbitrary. By Theorem 5.20a), there exists
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f P HolpUq with Ordpfq � minOrdpf1q,Ordpf2q. For i � 1, 2, put gi � fi
f . Then g1

and g2 are holomorphic and without a common zero, so by Step 1 xg1, g2y � HolpUq.
Multiplying through by f gives xf1, f2y � xfy.
Step 3: If in a ring every ideal of the form xx1, x2y is principal, then every finitely
generated ideal is principal. By Step 2, this applies in particular to HolpUq. More-
over, if the ideal xf1, . . . , fny � xfy, then we must have Ord f � minOrd fi. □

Exercise 5.26. Explain why in Step 1 above, Theorem 5.20b) implies that g2
exists.

The most familiar domains in which every finitely generated ideal is principal are
those in which every ideal is principal: PIDs! But as the reader may have al-
ready suspected, if HolpUq were a PID, we would have said so by now: indeed it
is not. One way to see this is to show that HolpUq is not even a UFD. Remark-
ably, this is a consequence of the Weierstrass Factorization Theory, which expresses
every holomorphic function as a product of prime elements! The catch is that
most holomorphic functions require infinite products, a phenomenon which is not
countenanced in the algebraic theory of factorization.

Exercise 5.27. Let f P HolpUq.
a) Show that f is an irreducible element of HolpUq – i.e., if f � g1g2 then

exactly one of g1, g2 is a unit – if and only if it has exactly one simple
zero.

b) Suppose f is irreducible. Show: HolpUq{pfq � C. In particular, pfq is
prime.

c) Show: f admits a (finite!) factorization into irreducible elements if and
only if f has only finitely many zeros. Conclude that HolpUq is not a
UFD.

Exercise 5.28.

a) Show: all the results of this section extend to the ring of holomorphic
functions on a noncompact Riemann surface.

b) Investigate which of the results of this section hold for all Stein manifolds.5

4. Kapovich’s Theorem and Wofsey’s Theorem

4.1. The cardinal Krull dimension of a partially ordered set.

Throughout, all rings are commutative and with multiplicative identity. For a
ring R, SpecR is the set of prime ideals of R, partially ordered under inclusion.

A chain is a linearly ordered set; its length is its cardinality minus one. The
cardinal Krull dimension carddimX of a partially ordered set X is the supre-
mum of lengths of its chains. For a ring R we put carddimR � carddimSpecR.

Remark 3. The prime spectrum SpecR of a ring is endowed with the Zariski
topology, in which the closed sets are V pIq � tp P SpecR | p � Iu as I ranges

over all ideals of R. For p1, p2 P SpecR we have p1 � p2 ðñ p2 P tp1u. Thus
carddimR is a topological invariant of SpecR.

For a topological space X, define the cardinal Krull dimension carddimX as

5Step 1: learn the definition of a Stein manifold!
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the supremum of lengths of chains of closed irreducible subspaces of X. Since for
a ring R the map p ÞÑ V ppq gives an antitone bijection from SpecR to the set of
closed irreducible subspaces of SpecR, we have carddimR � carddimSpecR.

Our use of the word “cardinal” is twofold: (i) it is common to say “dimR is infinite”
if there are arbitrarily long finite chains in SpecR. For the class of rings considered
here we will show the Krull dimension is zero or infinite, but we will not completely
answer the more refined question of how infinite it is. (ii) There is also a notion of
ordinal Krull dimension of rings [GoRo] that we do not discuss here.

Remark 4.

a) Let X and Y bre partially ordered sets. If there is an injective isotone
map ι : Y Ñ X, then carddimY ¤ carddimX.

b) If f : R1 Ñ R2 is surjective or a localization map, then f� : SpecR2 Ñ
SpecR1 is an injective isotone map, so carddimR2 ¤ carddimR1.

4.2. Holomorphic functions on a C-manifold.

Let M be a C-manifold. (Our definition includes that M is Hausdorff and second
countable.) Let HolpMq be the ring of global holomorphic functions f : M Ñ C.
We have C ãÑ HolpMq via the constant functions.

Lemma 5.24. The ring HolpMq is a domain if and only if M is connected.

Proof. If M �M1

²
M2 with M1,M2 � ∅, let fi be the characteristic func-

tion of Mi. Then f1, f2 P HolpMq and f1f2 � 0.
Conversely, let f P HolpMq, and let U be the set of x PM such that the power

series expansion at x is zero (as a formal series: i.e., every term is zero). For all
x P U , f vanishes identically in some neighborhood of x, so U is open. If x PMzU ,
then some mixed partial derivative of f is nonvanishing at x. These mixed partials
are continuous, so there is a neighborhood Nx of x on which this condition con-
tinues to hold, and thus Nx � MzU and U is closed. Since M is connected and
U � M , we have U � ∅. For f, g P HolpMq, let x P M . The power series of f
and g at x are each nonzero, hence the same holds for fg. So fg does not vanish
identically on any neighborhood of x: thus fg � 0. □

From now on we will assume that all our C-manifolds are connected.

4.3. Kapovich’s Theorems: Statements.

Theorem 5.25. (Kapovich [Ka17]) Let M be a C-manifold. Then either
HolpMq � C or carddimHolpMq ¥ c � 2ℵ0 .

A discrete valuation on a ring R is a surjective function

v : RÑ NY t8u
such that
(DV0) For all x P R, vpxq � 8 ðñ x � 0.
(DV1) For all x, y P R, vpxyq � vpxq � vpyq.
(DV2) For all x, y P R, vpx� yq ¥ min vpxq, vpyq.

Here we use some standard conventions on arithmetic in the extended real numbers:
for all x P r0,8s, x � 8 � 8 and minpx,8q � x. Conditions (DV0) and (DV1)
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ensure that a ring that admitting a discrete valuation is a domain.

A V8-ring is a ringR admitting a sequence tvkukPZ� of discrete valuations such that
for any sequence tnku8k�1 of natural numbers there is x P R such that vkpxq � nk
for all k P Z�. The following results together imply Theorem 5.25.

Theorem 5.26. If R is a V8-ring, then carddimR ¥ c.

Theorem 5.27. Let M be a C-manifold. If M admits a nonconstant holomor-
phic function, then HolpMq is a V8-ring.

4.4. Preliminaries on ultralimits.

Let I be a set, let X be a topological space, and let x : I Ñ X be a func-
tion. Let F be an ultrafilter on I. We say x P X is an ultralimit of x and write
F limx � x if xpFq Ñ x: that is, for every neighborhood U of x P X, we have
x�1
 pUq P F . From the general theory of filter convergence, we deduce: (i) If X

is Hausdorff, then every I-indexed sequence x : I Ñ X has at most one ultra-
limit. (ii) If X is quasi-compact, then every I-indexed sequence has at least one
ultralimit. Thus (iii) If X is compact, then every I-indexed sequence has a unique
ultralimit. In our application we will have I � N, ω a fixed nonprincipal ultrafilter
and X � r0,8s. Thus we have an ordinary sequence txnu in r0,8s; let us spell out
what ω limxn � x means. If x   8, it means that for all ϵ ¡ 0, we have

tn P N | |xn � x|   ϵu P ω.
If x � 8, it means that for all M P r0,8q, we have

tn P N | xn ¡Mu P ω.
Because r0,8s is compact, any sequence in r0,8s has a unique ultralimit.

Exercise 5.29. Let ω be a nonprincipal ultrafilter on Z�.
a) Show: if limkÑ8 xk � x in the usual sense, then also ω limk xk � x.
b) Let txku, tyku be sequences in r0,8s. Show:

(i) ω limkpxk � ykq � ω limk xk � ω limk yk.
(ii) ω limkminpxk, ykq � minpω limk xk, ω limk ykq.
(iii) ω limkmaxpxk, ykq � maxpω limk xk, ω limk ykq.

4.5. Proof of Theorem 5.26.

For t P p0,8q, put
pt � tx P R | ω lim

k

vkpxq
kt

¡ 0u.
Each pt is a prime ideal, and for all t1 ¥ t2 we have pt1 � pt2 . Since R is a V8-ring,
there is xt P R such that vkpxtq � rkts for all k P Z�, and we have xt P pt, xt R ps
for all s ¡ t. So tpt | t P p0,8qu is a chain of prime ideals of R of cardinality c.

4.6. Proof of Theorem 5.27.

Let h : M Ñ C be holomorphic and nonconstant. By the Open Mapping The-
orem, U � hpMq is a connected open subset of C. In particular U is metrizable
and not compact, so there is a sequence tzku8k�1 of distinct points of U with no
accumulation point in U . We do not disturb the latter property by successively
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replacing each zk with any point in a sufficiently small open ball, so by Sard’s
Theorem we may assume that each zk is a regular value of h. For k P Z�, let
pk P h�1pzkq and let vk : HolpMq Ñ N be the order of vanishing of h at pk: that
is, the least N such that there is a mixed partial derivative of order N which is
nonvanishing at pk. Then vk is a discrete valuation. Let tnku8k�1 be as sequence of
natural numbers. By Theorem 5.20a), there is g P HolpUq such that ordzkpgq � nk
and thus – since pk is a regular value for h – for all k P Z� we have vkpg � hq � nk.

4.7. The cardinal Krull dimension of a Stein manifold.

We will now prove a stronger lower bound on the cardinal Krull dimension of
HolpMq for when M is a Stein manifold: a C-manifold which admits a closed
(equivalently proper) holomorphic embedding into CN for some N P Z�. Stein
manifolds play the role in the biholomorphic category that affine varieties play in
the algebraic category (of quasi-projective varieties V{C, say) – and a nonsingu-
lar affine variety over C is a Stein manifold – namely the C-manifolds which have
“enough” global holomorphic functions: in particular, for points x � y on a Stein
manifold M , there is f P HolpMq with fpxq � fpyq. At the other extreme lie the
compact C-manifolds, which play the role in the biholomorphic category that pro-
jective varieties play in the algebraic category – and a nonsingular projective variety
over C is a compact C-manifold). In dimension one this is a simple dichotomy: a
Riemann surface is a Stein manifold if and only if it is noncompact [GuRo, p. 209].

Theorem 5.28. If S1, S2 are noncompact Riemann surfaces then

carddimHolpS1q � carddimHolpS2q ¥ 2ℵ1 .

Proof. Henriksen showed HolpCq ¥ 2ℵ1 [He53]. For noncompact Riemann
surfaces S and T , Alling showed SpecHolpSq and SpecHolpT q are homeomorphic
[Al63]. By Remark 3 it follows that carddimHolpSq � carddimHolpCq ¥ 2ℵ1 . □

Lemma 5.29. Let M1,M2 be C-manifolds. Then

carddimHolpM1 �M2q ¥ carddimHolpM1q.
Proof. Fix y0 PM2. Pulling back holomorphic functions via the embedding

ι :M1 ãÑM1 �M2, x ÞÑ px, y0q
gives a ring homomorphism ι� : HolpM1 �M2q Ñ HolpM1q. If f P HolpM1q put

F :M1 �M2 Ñ C, px, yq ÞÑ fpxq.
Then F P HolpM1 �M2q and ι�pF q � f . So we may apply Remark 4b). □

Theorem 5.30. Let M be a C-manifold of the form V �N for a Stein manifold
V . Then carddimHolpMq ¥ carddimHolpCq ¥ 2ℵ1 .

Proof. Lemma 5.29 reduces us to the case in which M is a Stein mani-
fold. If f : M Ñ C is a nonconstant holomorphic function, then a connected
component M 1 of the preimage of a regular value is a closed submanifold with
dimCM

1 � dimCM � 1. A closed C-submanifold of a Stein manifold is a Stein
manifold [GuRo, p. 210], so we may repeat the process, eventually obtaining a
closed embedding ι : S ãÑ M with S a connected, one-dimensional Stein mani-
fold, hence a connected, noncompact Riemann surface. Now if Y is a closed C-
submanifold of a Stein manifold X then the map HolX Ñ HolY obtained by
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restricting holomorphic functions to Y is surjective [GuRo, Thm. VIII.18], so
ι� : HolpMq Ñ HolpSq is surjective. By Remark 4b) and Theorem 5.28 we have
carddimM ¥ carddimS ¥ 2ℵ1 . □

4.8. Further Remarks on Kapovich’s Theorem.

A little set theory: For a C-manifold M , the ring HolpMq is a subring of the
ring of all continuous C-valued functions. For any separable topological space X,
the set of continuous functions f : X Ñ C has cardinality at most cℵ0 � p2ℵ0qℵ0 �
2ℵ0�ℵ0 � 2ℵ0 � c. Since C � HolpMq we have #HolpMq � c. It follows that
HolpMq has at most 2c ideals and thus carddimHolpMq ¤ 2c. Moreover

c � 2ℵ0 ¤ 2ℵ1 ¤ 2c.

Whether either inequality is strict is independent of the ZFC axioms, but e.g.
the Continuum Hypothesis (CH) gives c   2ℵ1 � 2c. Thus under CH we have
carddimHolpMq � 2c for any Stein manifold M . It may well be the case that the
determination of carddimHolpCq is independent of the ZFC axioms.

A little history: Theorem 5.25 is a result of M. Kapovich. It answers a question
of G. Elencwajg: is there a C-manifold M with carddimHolpMq finite and posi-
tive?6 The question was asked on April 19, 2012 and answered the following day.
Kapovich’s construction draws from work of Henriksen [He53] and Sasane [Sa08].
Kapovich’s first proof of Theorem 5.26 was closely modelled on a criterion of Sasane
[Sa08, Thm. 2.2] which was used by Sasane to show that the Krull dimension of
a noncompact Riemann surface is infinite (which had earlier been established by
Alling). I believe Sasane’s proof is faulty: [Sa08, (2.6)] assumes that the Multi-
plicative Avoidance Theorem gives a unique ideal. I corresponded with Kapovich,
and he immediately replaced the limsup with an ultralimit.

The proof of Theorem 5.25 given here is directly inspired by Kapovich’s proof.
The proof of Theorem 5.27 is identical to Kapovich’s, but the proof of Theorem 5.26
is a bit different. Kapovich uses hyperreals and hypernaturals, but in an earlier ver-
sion he used ultralimits to show carddimHolpMq ¥ 1 ùñ carddimHolpMq ¥ ℵ0;
we adapt this argument to show the stronger result by following a construction of
Henriksen [He53]. Henriksen’s proof is not couched in the language of ultralimits,
but this is just an expository difference: crucially, it uses a nonprincipal ultrafilter
on Z�. Our perspective is that ultrafilters are a nice way to package this argument,
as it makes the bookkeeping virtually automatic.

4.9. Proof of Wofsey’s Theorem. We will now complete the proof of The-
orem 5.16 by showing: for a topological space X admitting a continuous function
f : X Ñ R that is not locally constant, there is a chain of prime ideals in X that is
order isomorphic to R. In fact, we will construct a chain that is order isomorphic
to p0,8q, which is itself order isomorphic to R.

Let f0 P CpXq be a function that is constant in no neighborhood of a point
x0 P X. The same property then holds for f0�f0px0q, so without loss of generality
we may assume that f0px0q � 0. Put

U :� f�1
0 pRzt0uq.

6See https://mathoverflow.net/questions/94537.
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Then U is an open subset of Xztx0u, and since f0 does not vanish identically on any
neighborhood of x0, the point x0 lies in the closure U of U . Let ω be an ultrafilter
on U converging to x0. If g P CpXq, then by restriction g defines a continuous
function g : U Ñ R. We can therefore consider ultralimits: for L P R, recall that
ω lim g � L means that the ultrafilter gpωq converges to L in R: for all ϵ ¡ 0, the
set tx P U | |gpxq�L|   ϵu lies in ω. Notice that since we are now looking at ultra-
filters on the noncompact space R, the ultralimit ω lim g need not exist; however it
is still true that if limxÑx0

gpxq � L in the usual sense – even upon restriction to
U – then ω lim g � L.

Now, for α P p0,8q, we define

pα :� tf P CpXq | @a P R, ω lim ea|f0|
�α

f � 0u.
The intuition here is that pα consists of functions f that, as x approaches x0,
converge to 0 much faster than e�|f0|

α

.
Step 1: Let 0   α   β be real numbers. It is immediate that pβ � pα. Moreover,
consider the function

fα : x ÞÑ
#
e�|f0pxq|

�α�1

if f0pxq � 0

0 if f0pxq � 0
.

Then since f0, being continuous, converges to f0px0q � 0, so for all a P R we have

that ea|f0pxq|
�α�|f0pxq|�α�1

converges to 0 as xÑ x0 along U , so fα P pα. Similarly,

since e2|f0pxq|
�α�1�|f0pxq|�α�1

approaches 8 as x Ñ x0 along U . Thus the chain
tpαuαPp0,8q is order-anti-isomorphic to p0,8q, hence order-anti-isomorphic to R,
but R is order-anti-isomorphic to itself via x ÞÑ �x.
Step 2: Let α ¡ 0. We will show that pα is a prime ideal of CpXq. It is clear that
pα is an additive subgroup of CpXq, and the fact that every continuous function
is bounded on some neighborhood of x0 implies that if f P pα and g P CpXq then
gf P pα, so pα is an ideal of CpXq. Finally we show that pα is prime, and notice
that it is here that the magic of ultrafilters must come in: for everything we did
so far we could have taken ω simply to be the filter of all neighborhoods of x0 and
used limits in th usual sense. Suppose g, h P CpXqzpα. Because ω is an ultrafilter,
there are a, b P R and ϵ ¡ 0 such that

S :� tx P U | |ea|f0pxq|�α

gpxq| ¥ ϵu
and

T :� tX P U | |eb|f0pxq|�α

hpxq| ¥ ϵu
both lie in ω, hence also S X T lies in ω. But for all x P S X T , we have

|epa�bq|f0pxq|�α

gpxqhpxq| ¥ ϵ2.

Therefore the set of x P U for which

|epa�bq|f0pxq|�α

gpxqhpxq|   ϵ2

is disjoint from S X T so cannot lie in ω because any two elements of a filter have
nonempty intersection. It follows that gh R pα. Therefore pα is a prime ideal, which
completes the proof.
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4.10. Further Remarks on Wofsey’s Theorem. Theorem 5.16 can be
summarized as follows: for any topological spaceX, we have either carddimCpXq �
0 or carddimCpXq ¥ c and the former holds if and only if every f P CpXq is locally
constant. Because our definition of C-manifold includes connectedness, all locally
constant continuous functions on a C-manifold are constant and in particular all
locally onstant holomorphic functions are constant. So Kapovich’s Theorem can
be summarized in a completely analogous way: for a C-manifold X, we have either
carddimHolpMq � 0 or carddimHolpMq ¥ c.

Wofsey’s Theorem also arose as an answer to a question on a website.7 The question
was asked on December 31, 2016 and answered a few hours later. In both cases it
seems likely that these questions would have been readily answered by experts in
the fields of rings of continuous and holomorphic functions already in the 1950’s, but
to the best of my knowledge they did not explicitly appear until much more recently.

If X is a discrete space, then CpXq � RX and every element is locally constant, so
it follows that carddimRX � 0. In Chapter 9 we will prove by different methods
that for any set X, we have carddimFX2 � 0. In fact prime ideals are maximal in
any product of fields, although we will unfortunately not prove that result in this
text.

Gillman-Jerison showed that for any topological space X (but one reduces to the
case in which X is Tychonoff), for any p P SpecCpXq, the set of prime ideals con-
taining p forms a chain. In particular, every prime ideal is contained in a unique
maximal ideal: this was shown in Exercise 5.12 when X is compact and will be
shown in general in Chapter 13. The classical study of CpXq – especially in the
case when X is compact – emphasizes maximal ideals over prime ideals. Because of
the aforementioned uniqueness result, we can think of the maximal ideals of CpXq
as “rocks” under which all the other prime ideals are hiding, but by Wofsey’s Theo-
rem, if CpXq carries a function that is not locally constant then every rock is hiding
at least continuum-many nonmaximal prime ideals! (Note that this result leaves
open the possibility that carddimCpXq ¡ c; unlike for the case of C-manifolds, as
we range over all topological spaces X, it is not even clear that the cardinal Krull
dimension of CpXq must be bounded above by any fixed cardinal.)

Very broadly speaking, the moral here is that it is interesting to consider rings
of functions arising from topology and analysis, but these rings are often bewilder-
ingly large: non-Noetherian to say the least! This tends not to happen when we
consider rings of functions arising from algebra, a topic to which we now turn.

5. Polynomial rings

Let R be a ring (possibly non-commutative, but – as ever – with identity). Then
Rrts denotes the ring of univariate polynomials with R-coefficients.

We assume the reader knows what this means in at least an informal sense: an
element of R will be an expression of the form ant

n� . . .�a1t�a0, where n is some
non-negative integer and an, . . . , a0 are in R. The degree of a polynomial is the

7See https://math.stackexchange.com/questions/2078755/
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supremum over all numbers n such that an � 0. We say “supremum” rather than
“maximum” as an attempt to justify the convention that the degree of the 0 poly-
nomial should be �8 (for that is the supremum of the empty set). A polynomial
of degree 0 is called constant, and we can view R as a subset of Rrts by mapping
a P R to the constant polynomial a. As an commutative group, Rrts is canonically
isomorphic to

À8
n�0R, the isomorphism being given by

°
n ant

n ÞÑ pa0, a1, . . .q.
(The key point here is that on both sides we have an � 0 for all sufficiently large
n.) Multiplication of polynomials is obtained by applying the relations

t0 � 1,

@i, j P N, ti�j � titj ,

@a P R, at � ta

and distributivity, i.e.,

pantn � . . .� ant1 � a0q � pbmtm � . . .� b1t� b0q �
¸

0¤i¤n, 0¤j¤m
aibjt

i�j .

For any P P Rrts, the identity 1 P R has the property 1 � P � P � 1 � 1.

Unfortunately there are some minor annoyances of rigor in the previous descrip-
tion. The first one – which a sufficiently experienced reader will immediately either
dismiss as silly or know how to correct – is that it is not set-theoretically correct :
technically speaking, we need to say what Rrts is as a set and this involves saying
what t “really is.” It is common in abstract algebra to refer to t is an indeter-
minate, a practice which is remarkably useful despite being formally meaningless:
essentially it means “Don’t worry about what t is; it can be anything that is not
an element of R. All we need to know about t is encapsulated in the multiplication
rules at � ta, t0 � 1, titj � ti�j .” In other words, t is what in the uncomplicated
days of high school algebra was referred to as a variable.

If someone insists that Rrts be some particular set – a rather unenlighened at-
titude that we will further combat later on – then the solution has already been
given: we can take Rrts � À8

n�0R. (It is fair to assume that we already know
what direct sums of commutative groups “really are”, but in the next section we
will give a particular construction which is in fact rather useful.) This disposes of
the set-theoretic objections.

Not to be laughed away completely is the following point: we said Rrts was a
ring, but how do we know this? We did explain the group structure, defined a mul-
tiplication operation, and identified a multiplicative identity. It remains to verify
the distributivity of multiplication over addition (special cases of which motivated
our definition of multiplication, but nevertheless needs to be checked in general)
and also the associativity of multiplication.

Neither of these properties are at all difficult to verify. In fact:

Exercise 5.30.

a) Show: Rrts is a ring.
b) Show: Rrts is commutative if and only if R is commutative.
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Let us now attempt a “conceptual proof” of the associativity of polynomial multi-
plication. For this we shall assume that R is commutative – this is the only case
we will be exploring further anyway. Then we can, as the P ptq notation suggests,
view an element of Rrts as a function from R to R. Namely, we just plug in values:

a P R ÞÑ P paq P R.
To be clear about things, let us denote this associated function from R to R by
P . As we saw above, the set of all functions RR from R to R forms a commuta-
tive ring under pointwise addition and multiplication: pf � gqpaq :� fpaq � gpaq,
pfgqpaq :� fpaq � gpaq. In particular, it really is obvious that the multiplication of
functions is associative. Let P be the subset of RR of functions of the form P for
some P P Rrts. More concretely, we are mapping the constant elements of Rrts to
constant functions and mapping t to the identity function. This makes it clear that
P is a subring of RR: in fact it is the subring of RR generated by the constant
functions and the identity function.

So why don’t we just define Rrts to be P, i.e., identify a polynomial with its
associated function?

The problem is that the map Rrts Ñ P need not be an injection. Indeed, if R
is finite (but not the zero ring), P is a subring of the finite ring RR so is obviously
finite, whereas Rrts is just as obviously infinite. If R is a domain this turns out to
be the only restriction.

Proposition 5.31. Let R be a domain.

a) Suppose that R is infinite. Then the canonical mapping Rrts Ñ P is a
bijection.

b) Suppose that R is finite, say of order q, and is therefore a field. Then the
kernel of the canonical mapping Rrts Ñ P is the principal ideal generated
by tq � t.

We leave the proof as a (nontrivial) exercise for the interested reader.

Exercise 5.31. Exhibit an infinite commutative ring R for which the map
Rrts Ñ P is not injective. (Suggestion: find an infinite ring all of whose elements
x satisfy x2 � x.)

Exercise 5.32. Show: the map Rrts Ñ P is a homomorphism of rings.

So if we restrict to infinite domains, the map Rrts Ñ P is an isomorphism of rings.
Thus we see, after the fact, that we could have defined the ring structure in terms
of pointwise multiplication.

6. Semigroup algebras

A semigroupM is a set equipped with a single binary operation �, which is required
(only!) to be associative. A monoid is a semigroup with a two-sided identity.

Exercise 5.33. Show: a semigroup has at most one two-sided identity, so it
is unambiguous to speak of “the” identity element in a monoid. We will denote it
by e (so as not to favor either addditive or multiplicative notation).

Example 5.32. Let pR,�, �q be an algebra. Then pR, �q is a semigroup. If R is
a ring (i.e., has an identity 1) then pR, �q is a monoid, with identity element 1.
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Example 5.33. Any group is a monoid. In fact a group is precisely a monoid
in which each element has a two-sided inverse.

Example 5.34. The structure pN,�q of natural numbers under addition is a
monoid; the identity element is 0.

Example 5.35. The structure pZ�, �q of positive integers under multiplication
is a monoid; the identity element is 1.

Let M and N be two semigroups. Then the Cartesian product M � N becomes
a semigroup in an obvious way: pm1, n1q � pm2, n2q :� pm1 � m2, n1 � n2q. If M
and N are monoids with identity elements eM and eN , then M � N is a monoid,
with identity element peM , eN q. Exactly the same discussion holds for any finite
set M1, . . . ,MN of semigroups: we can form the direct sum M � Àn

i�1Mi, i.e.,
the Cartesian product of sets with componentwise operations; if all the Mi’s are
monoids, so is M .

If we instead have an infinite family tMiuiPI of semigroups indexed by a set I,
we can define a semigroup structure on the Cartesian product

±
iPIMi in the obvi-

ous way, and if each Mi is a monoid with identity ei, then the product semigroup
is a monoid with identity peiqiPI . If each Mi is a monoid, we can also define the
direct sum

À
iPIMi, which is the subset of the direct product

±
iPIMi consisting

of all I-tuples pmi PMiqiPI such that mi � ei for all but finitely many i. Then we
have that

À
iPIMi is a submonoid of the direct product monoid

±
iPIMi.

If M and N are semigroups, then a map f : M Ñ N is a homomorphism of
semigroups if fpm1 �m2q � fpm1q � fpm2q for all m1, m2 P M . If M and N are
monoids, a homomorphism of monoids is a homomorphism of semigroups such that
moreover fpeM q � eN . A homomorphism f : M Ñ N of semigroups (resp. of
monoids) is an isomorphism if and only if there is a homomorphism of semigroups
(resp. monoids) g : N ÑM such that g � f � IdM , f � g � IdN .

Exercise 5.34.

a) Exhibit monoids M and N and a homomorphism of semigroups f :M Ñ
N that is not a homomorphism of monoids.

b) Show: a homomorphism of semigroups f : M Ñ N is an isomorphism if
and only if it is bijective. Show the same result for monoids.

Exercise 5.35. Show: the monoid pZ�, �q of positive integers under multipli-
cation is isomorphic to

À8
i�1pN,�q, i.e., the direct sum of infinitely many copies

of the natural numbers under addition. (Hint: a more natural indexing set for the
direct sum is the set of all prime numbers.)

Now let R be an algebra and M be a semigroup. We suppose first that M is finite.
Denote by RrM s the set of all functions f :M Ñ R.

As we saw, using the operations of pointwise addition and multiplication endow
this set with the structure of an associative algebra (which has an identity if and
only if M does). We are going to keep the pointwise addition but take a different
binary operation � : RrM s �RrM s Ñ RrM s.
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Namely, for f, g P RrM s, we define the convolution product f � g as follows:

pf � gqpmq :�
¸

pa,bqPM2 | ab�m
fpaqgpbq.

In other words, the sum extends over all ordered pairs pa, bq of elements ofM whose
product (in M , of course), is m.

Proposition 5.36. Let R be an associative algebra and M a finite semigroup.
The structure pRrM s,�, �q whose underlying set is the set of all functions fromM to
R, and endowed with the binary operations of pointwise additition and convolution
product, is an associative algebra. If R is a ring and M is a monoid with identity
e, then RrM s is a ring with multiplicative identity the function I which takes eM
to 1R and every other element of M to 0R.

Proof. First, suppose that R is a ring and M is a monoid, then for any
f P RrM s and m PM , we have

pf�Iqpmq �
¸

pa,bqPM2 | ab�m
fpaqIpbq � fpmqIp1q � fpmq � Ip1qfpmq � . . . � pI�fqpmq.

We still need to check the associativity of the convolution product and the distribu-
tivity of convolution over addition. We leave the latter to the reader but check the
former: if f, g, h P RrM s, then

ppf � gq � hqpmq �
¸
xc�m

pf � gqpxqhpcq �
¸
xc�m

¸
ab�x

fpaqgpbqhpcq

�
¸

abc�m
fpaqgpbqhpcq

�
¸

ay�m

¸
bc�y

fpaqgpbqhpcq �
¸

ay�m
fpaqpg � hqpyq � pf � pg � hqqpmq.

□

A special case of this construction which is important in the representation theory
of finite groups is the ring krGs, where k is a field and G is a finite group.

Now suppose that M is an infinite semigroup. Unless we have some sort of ex-
tra structure on R which allows us to deal with convergence of sums – and, in
this level of generality, we do not – the above definition of the convolution product
f � g is problematic because the sum might be infinite. For instance, if M � G
is any group, then our previous definition of pf � gqpmq would come out to be°
xPG fpxqgpx�1mq, which is, if G is infinite, an infinite sum.

Our task therefore is to modify the construction of the convolution product so
as to give a meaningful answer when the semigroupM is infinite, but in such a way
that agrees with the previous definition for finite M .

Taking our cue from the infinite direct sum, we restrict our domain: define RrM s to
be subset of all functions f : M Ñ R such that fpmq � 0 except for finitely many
m (or, for short, finitely nonzero functions). Restricting to such functions,

pf � gqpmq :�
¸
ab�m

fpaqgpbq
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makes sense: although the sum is apparently infinite, all but finitely terms are zero.

Proposition 5.37. Let R be an associative algebra and M a semigroup. The
structure pRrM s,�, �q whose underlying set is the set of all finitely nonzero func-
tions from M to R, and endowed with the binary operations of pointwise additition
and convolution product, is an associative algebra. If R is a ring andM is a monoid
with identity element e, then RrM s is a ring with multiplicative identity the function
I which takes eM to 1R and every other element of M to 0R.

Exercise 5.36. Prove Proposition 5.37. More precisely, verify that the proof
of Proposition 5.36 goes through unchanged.

As a commutative group, RrM s is naturally isomorphic to the direct sum
À

mPM R,
i.e., of copies of R indexed by M . One can therefore equally well view an element
RrM s as a formal finite expressions of the form

°
mPM amm, where am P R and all

but finitely many are 0. Written in this form, there is a natural way to define the
product � ¸

mPM
amm

�� ¸
mPM

bmm

�
of two elements f and g of RrM s: namely we apply distributivity, use the multi-
plication law in R to multiply the am’s and the bm’s, use the operation in M to
multiply the elements of M , and then finally use the addition law in R to rewrite
the expression in the form

°
m cmm. But a moment’s thought shows that cm is

nothing else than pf � gqpmq. On the one hand, this makes the convolution product
look very natural. Conversely, it makes clear:

The polynomial ring Rrts is canonically isomorphic to the monoid ring RrNs. In-
deed, the explict isomorphism is given by sending a polynomial

°
n ant

n to the
function n ÞÑ an.

This gives a new proof of the associativity of the product in the polynomial ring
Rrts. We leave it to the reader to decide whether this proof is any easier than direct
verification.. Rather the merit is that this associativity computation has been done
once and for all in a very general context.

The semigroup algebra construction can be used to define several generalizations
of the polynomial ring Rrts.

Exercise 5.37. For a ring R, identify the monoid ring RrZs with the ring
Rrt, t�1s of Laurent polynomials.

First, let T � ttiu be a set. Let FApT q :�ÀiPT pN,�q be the direct sum of a num-
ber of copies of pN,�q indexed by T . Let R be a ring, and consider the monoid ring
RrFApT qs. Let us write the composition law in FApT q multiplicatively; moreover,
viewing an arbitrary element I of FApT q as a finitely nonzero function from T to
N, we use the notation tI for

±
tPT t

Iptq. Then an arbitrary element of RrFApT qs is
a finite sum of the form

°n
k�1 rkt

Ik , where I1, . . . , Ik are elements of FAptq. This
representation of the elements should make clear that we can view RrFApT qs as a
polynomial ring in the indeterminates t P T : we use the alternate notation Rrttius.
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Theorem 5.38. Let R be a ring and G a group. Then the group ring RrGs is
a domain – i.e., a commutative ring without nonzero zero-divisors – if and only if
R is a domain and G is commutative and torsionfree.

Proof. Step 1: The ring RrGs is commutative if and only if both R and G
are. Since R is a subring of RrGs, if RrGs is a domain then so is R. If there is
g P G and n ¡ 1 such that gn � 1, then pg � 1qpgn�1 � . . .� g � 1q � 0, so RrGs is
not a domain.
Step 2: Suppose R is a domain and G is torsionfree commutative. Let K be the
fraction field of R. Then RrGs is a subring of KrGs, so it is enough to show
that KrGs is a domain. Here is the key observation: for x, y P KrGs, there is a
finitely generated subgroup H of G such that x, y P KrHs. Since H is also torsion-
free, we have H � Zn so KrHs is isomorphic to the ring of Laurent polynomials
Krt1, t�1

1 , . . . , tn, t
�1
n s, which itself lies in function field Kpt1, . . . , tnq so is a domain.

Somewhere in here we must have used that Krt1, . . . , tns is a domain, so
that it has a field of fractions. This is no problem to establish directly: write
Krt1, . . . , tns � Krt1, . . . , tn�1srtns to reduce to the case of a polynomial ring in
one variable over a domain. If degpfq � d1 and degpgq � d2, then degpfgq �
d1 � d2.) □

Remark 5. Our convention that a domain is a commutative ring saved us from
considering the following question: if R is a ring without (nonzero) zero-divisors
and G is a group without (nontrivial) elements of finite order, is RrGs a ring without
zero-divisors? This question remains wide open even in the case when R is a field,
in which case it is known as the Kaplansky Zero Divisor Conjecture.

Let us go back to the monoid ring RrNs, whose elements are finitely nonzero func-
tions f : R Ñ N. Notice that in this case the precaution of restricting finitely
nonzero functions is not necessary: the monoid pN,�q, although infinite, has the
property that for any m P N, the set of all x, y P N such that x � y � m is finite
(indeed, of cardinality m � 1). Let us call an arbitrary monoid M divisor-finite
if for each m in M , the set tpx, yq PM2 | xy � mu is finite.

Exercise 5.38.

a) For a set T , FApT q �ÀtPT pN,�q is divisor-finite.
b) A group is divisor-finite if and only if it is finite.

For a divisor-finite monoid M , and any ring R, we may define the big monoid
ring RrrM ss to be the collection of all functions M Ñ R, with pointwise addition
and convolution product.

For example, if M � pN,�q, then writing M multiplicatively with n P N ÞÑ tn

for some formal generator t, an element of the ring RrrM ss is an infinite formal
sum

°
nPN rnt

n. Such sums are added coordinatewise and multiplied by distribu-
tivity:

p
¸
nPN

rnt
nqp
¸
nPN

snt
nq � r0s0 � pr0s1 � r1s0qt� . . .� p

ņ

k�0

rksn�kqtn � . . . .

This ring is denoted by Rrrtss and called the formal power series ring over R.

Exercise 5.39. Using Exercise 5.38, define, for any set T � ttiu and any ring
R, a formal power series ring Rrrttiuss.
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Here is yet another variation on the construction: suppose M is a commutative,
cancellative divisor-finite monoid endowed with a total order relation ¤. (Example:
pN,�q or FApT q for any T .) There is then a group completion GpMq together with
an injective homomorphism of monoidsM Ñ GpMq. IfM is finite and cancellative,
it is already a group. IfM is infinite, then so is GpMq, so it cannot be divisor-finite.
Nevertheless, the ordering ¤ extends uniquely to an ordering on GpMq, and we can
define a ring RppGpMqq whose elements are the functions from f : GpMq Ñ R
such that tx P GpMq | x   0, fpxq � 0u is finite, i.e., f is finitely nonzero on the
negative values of GpMq.

Exercise 5.40.

a) Show: under the above hypotheses, the convolution product on RppGpMqq
is well-defined, and endows RppGpMqq with the structure of a ring.

b) When M � pN,�q, identify RppMqq as Rpptqq, the ring of formal finite-
tailed Laurent series with coefficients in R. Give a multi-variable analogue
of this by taking M � FApT q for arbitrary T .

Exercise 5.41. Let R be a not-necessarily-commutative ring. Give a rigorous
definition of the ring Rxt1, t2y of “noncommutative polynomials” – each ti commutes
with each element of R, but t1 and t2 do not commute – as an example of a small
monoid ring RrM s for a suitable monoid M . Same question but with an arbitrary
set T � ttiu of noncommuting indeterminates.

The universal property of semigroup rings: Fix a commutative ring R. Let B
be a commutative R-algebra and M a commutative monoid. Let f : RrM s Ñ B be
an R-algebra homomorphism. Consider f restricted to M ; it is a homomorphism
of monoids M Ñ pB, �q. Thus we have defined a mapping

HomR-algpRrM s, Bq Ñ HomMonoidpM, pB, �qq.
Interestingly, this map has an inverse. If g :M Ñ B is any homomorphism satisfy-
ing gp0q � 0, gpm1 �m2q � gpm1q � gpm2q, then g extends to a unique R-algebra
homomorphism RrM s Ñ B:

°
mPM rmm ÞÑ °

m rmgpmq. The uniqueness of the
extension is immediate, and that the extended map is indeed an R-algebra homo-
morphism can be checked directly (please do so).

In more categorical language, this canonical bijection shows that the functor M ÞÑ
RrM s is the left adjoint to the forgetful functor pS,�, �q ÞÑ pS, �q from R-algebras
to commutative monoids. Yet further terminology would express this by saying
that RrM s is a “free object” of a certain type.

Theorem 5.39. (Universal property of polynomial rings) Let T � ttiu be a set
of indeterminates. Let R be a commutative ring, and S an R-algebra. Then each
map of sets T ÞÑ S extends to a unique R-algebra homomorphism RrT s Ñ S.

Proof: By the previous result, each monoid map from the free commutative monoidÀ
tPT Z to S extends to a unique R-algebra homomorhpism. So what is needed is

the fact that every set map T Ñ M to a commutative monoid extends uniquely
to a homomorphism

À
tPT Z Ñ M (in other words, we pass from the category of

sets to the category of commutative R-algebras by passing through the category
of commutative monoids, taking the free commutative monoid associated to a set
and then the free R-algebra associated to the monoid). As before, the uniqueness
of the extension is easy to verify.
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Exercise 5.42.

a) Formulate analogous universal properties for Laurent polynomial rings,
and non-commutative polynomial rings.

b) Suppose M is a divisor-finite monoid. Is there an analogous extension
property for the big monoid ring RrrM ss?

This result is of basic importance in the study of R-algebras. For instance, let S
be an R-algebra. A generating set for S, as an R-algebra, consists of a subset T of
S such that the least R-subalgebra of S containing T is S itself. This definition is
not very concrete. Fortunately, it is equivalent to the following:

Theorem 5.40. Let R be a commutative ring, S a commutative R-algebra, and
T a subset of S. the following are equivalent:

(i) The set T generates S as an R-algebra.
(ii) The canonical homomorphism of R-algebras RrT s Ñ S – i.e., the unique

one sending t ÞÑ t – is a surjection.

Exercise 5.43. Prove Theorem 5.40.

In particular, a commutative R-algebra S is finitely generated if and only if it is a
quotient ring of some polynomial ring Rrt1, . . . , tns.

Another application is that every commutative ring whatsoever is a quotient of
a polynomial ring (possibly in infinitely many indeterminates) over Z. Indeed, for
a ring R, there is an obvious surjective homomorphism from the polynomial ring
ZrRs – here R is being viewed as a set of indeterminates – to R, namely the one
carrying r ÞÑ r.

A ring R is said to be absolutely finitely generated if it is finitely generated as
a Z-algebra; equivalently, there exists an n P N and an ideal I in Zrt1, . . . , tns such
that Zrt1, . . . , tns is isomorphic to R.

Exercise 5.44.

a) Show: a finitely generated ring has finite or countably infinite cardinality.
b) Find all fields which are finitely generated as rings.

(N.B.: In field theory there is a notion of absolute finite generation for a
field. This a much weaker notion: e.g. Qpxq is absolutely finitely generated
as a field but not as a ring.)





CHAPTER 6

Swan’s Theorem

We now digress to discuss an important theorem of R.G. Swan on projective mod-
ules over rings of continuous functions.

Throughout this section K denotes either the field R or the field C, each endowed
with their standard Euclidean topology. For a topological space X, the set CpXq
of all continuous functions f : X Ñ K forms a commutative ring under pointwise
addition and multiplication.

1. Introduction to (topological) vector bundles

Recall1 the notion of a K-vector bundle over a topological space X. This is given
by a topological space E (the “total space”), a surjective continuous map π : E Ñ X
and on each fiber Ex :� π�1pxq the structure of a finite-dimensional K-vector space
satisfying the following local triviality property: for each x P X, there exists an
open neighborhood U containing x and a homeomorphism f : π�1U Ñ U � Kn

such that for all y P U f carries the fiber Ey over y to tyu � Kn and induces on
these fibers an isomorphism of K-vector spaces. (Such an isomorphism is called
a local trivialization at x.) As a matter of terminology we often speak of “the
vector bundle E on X” although this omits mention of some of the structure.

On any K-vector bundle E over X we have a rank function r : X Ñ N, namely
we define rpxq to be the dimension of the fiber Ex. We say that E is a rank n
vector bundle if the rank function is constantly equal to n. The existence of local
trivializations implies that the rank function is locally constant – or equivalently,
continuous when N is given the discrete topology, so if the base space X is con-
nected the rank function is constant.

As a basic and important example, for any n P N we have the trivial rank n
vector bundle on X, with total space X �Kn and such that π is just projection
onto the first factor.

If π : E Ñ X and π1 : E1 Ñ X are two vector bundles over X, a morphism
of vector bundles f : E Ñ E1 is a continuous map of topological spaces from E to
E1 over X in the sense that π � π1 � f – equivalently f sends the fiber Ex to the
fiber E1

x – and induces a K-linear map on each fiber. In this way we get a category
VecpXq of K-vector bundles on X. If we restrict only to rank n vector bundles and
morphisms between them we get a subcategory VecnpXq. A vector bundle E on X
is said to be trivial (or, for emphasis, “globally trivial”) if it is isomorphic to the

1from a previous life, if necessary

141
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trivial rank n vector bundle for some n.

Many of the usual linear algebraic operations on vector spaces extend immediately
to vector bundles. Most importantly of all, if E and E1 are two vector bundles on
X, we can define a direct sum E`E1, whose definining property is that its fiber over
each point x P X is isomorphic to Ex ` Ex1 . This not being a topology/geometry
course, we would like to evade the precise construction, but here is the idea: it is
obvious how to define the direct sum of trivial bundles. So in the general case, we
define the direct sum by first restricting to a covering family tUiuiPI of simultaneous
local trivializations of E and E1 and then glue together these vector bundles over
the Ui’s. In a similar way one can define the tensor product E b E1 and the dual
bundle E_.

For our purposes though the direct sum construction is the most important. It
gives VecpXq the structure of an additive category: in addition to the existence
of direct sums, this means that each of the sets HompE,E1q of morphisms from E
to E1 form a commutative group. (In fact HompE,E1q naturally has the structure
of a K-vector space.) Decategorifying, the set of all isomorphism classes of vector
bundles on X naturally forms a commutative monoid under direct sum (the iden-
tity is the trivial vector bundle X Ñ X where each one point fiber is identified –
uniquely! – with the zero vector space). The Grothendieck group of this monoid is
KpXq: this is the beginning of topological K-theory.

2. Swan’s Theorem

But we digress from our digression. A (global) section of a vector bundle π : E Ñ
X is indeed a continuous section σ of the map π, i.e., a continuous map σ : X Ñ E
such that π � σ � 1X . The collection of all sections to E will be denoted ΓpEq.
Again this is a commutative group and indeed a K-vector space, since we can add
two sections and scale by elements of K.

But in fact more is true. The global sections form a module over the ring
CpXq of continuous K-valued functions, in a very natural way: given a section
σ : X Ñ E and f : X Ñ K, we simply define fσ : X Ñ E by x ÞÑ fpxqσpxq. Thus
Γ : E Ñ ΓpEq gives a map from vector bundles over X to CpXq-modules.

In fancier language, Γ gives an additive functor from the category of vector
bundles on X to the category of CpXq-modules; let us call it the global section
functor. (Indeed, if we have a section σ : E Ñ X of E and a morphism of vector
bundles f : E Ñ E1, fpσq � f � σ is a section of E1. No big deal!)

Theorem 6.1. (Swan [Sw62]) Let X be a compact space. Then the global
section functor Γ gives an equivalence of categories from VecpXq to the category of
finitely generated projective CpXq-modules.

In other words, at least for this very topologically influenced class of rings CpXq,
we may entirely identify finitely generated projective bundles with a basic and im-
portant class of geometric objects, namely vector bundles.

There is a special case of this result which is almost immediately evident. Namely,
suppose that E is a trivial vector bundle on X, i.e., up to isomorphism E is simply
X �Kn with π � π1. Thus a section σ is nothing else than a continuous function
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σ : X Ñ Kn, which in turn is nothing else than an n-tuple pf1, . . . , fnq of elements
of CpXq. Thus if we define σi P ΓpEq simply to be the section which takes each
point to the ith standard basis vector ei ofK

n, we see immediately that pσ1, . . . , σnq
is a basis for ΓpEq, i.e., ΓpEq is a free CpXq-module of rank n. Moreover, we have

HompX �Kn, X �Kmq � MappX,HomKpKn,Kmqq
� CpXq bK HompKn,Kwq � HomCpXqpΓpX �Knq,ΓpX �Kmqq.

Thus we have established that Γ gives an additive equivalence from the category of
trivial vector bundles on X to the category of finitely generated free CpXq-modules.
We wish to promote this to an equivalence from locally trivial vector bundles (i.e.,
all vector bundles) to finitely generated projective modules. Oh, if only we had
some nice “geometric” characterization of finitely generated projective modules!

But we do: namely Proposition 3.11 characterizes finitely generated projective
modules over any commutative ring R as being precisely the images of projection
operators on finitely generated free modules. Thus the essence of what we want
to show is that for any vector bundle E over X (a compact space), there exists a
trivial vector bundle T and a projection P : T Ñ T – i.e., an element of HompT, T q
with P 2 � P such that the image of P is a vector bundle isomorphic to E. Indeed,
if we can establish this, then just as in the proof of 3.11 we get an internal direct
sum decomposition T � P pT q ` p1 � P qpT q and an isomorphism P pT q � E, and
applying the additive functor Γ this gives us that ΓpEq is isomorphic to a direct
summand of the finitely generated free CpXq-module ΓpT q. A little thought shows
that in fact this proves the entire result, because we have characterized VecpXq as
the “projection category” of the additive category trivial vector bundles, so it must
be equivalent to the “projection category” of the equivalent additive category of
finitely generated free CpXq-modules. So from this point on we can forget about
projective modules and concentrate on proving this purely topological statement
about vector bundles on a compact space.2

3. Proof of Swan’s Theorem

Unfortunately the category of vector bundles over X is not an abelian category.
In particular, it can happen that a morphism of vector bundles does not have
either a kernel or image. Swan gives the following simple example: let X � r0, 1s,
E � X�K the trivial bundle, and f : E Ñ E be the map given by fpx, yq � px, xyq.
Then the image of f has rank one at every x � 0 but has rank 0 at x � 0. Since X
is connected, a vector bundle over X should have constant rank function. Exactly
the same considerations show that the kernel of f is not a vector bundle. However,
nothing other than this can go wrong, in the following sense:

Proposition 6.2. For a morphism f : E Ñ E1 of vector bundles over X, the
following are equivalent:

(i) The image of f is a subbundle of E1.
(ii) The kernel of f is a subbundle of E.

2We note that [Sw62] takes a more direct approach, for instance proving by hand that

the global section functor Γ is fully faithful. In our use of projection operators and projection

categories to prove Swan’s theorem we follow Atiyah [At89, §1.4]. Aside from being a bit shorter
and slicker, this approach really brings life to Proposition 3.11 and thus seems thematic in a

commutative algebra course. But it is not really more than a repackaging of Swan’s proof.
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(iii) The function x ÞÑ dimKpIm fqx is locally constant.
(iv) The function x ÞÑ dimKpKer fqx is locally constant.

Proof. Step 1: We first wish to prove a special case: namely that if f : E Ñ E1

is a monomorphism of vector bundles (i.e., it induces an injection on all fibers) then
pIm fq is a subbundle of E1 and f : E Ñ pIm fq is an isomorphism. The issues of
whether Im f is a vector bundle and f is an isomorphism are both local ones, so it
suffices to treat the case where E and E1 are trivial bundles. Suppose E1 � X �V ,
and let x P X. Choose Wx � V a subspace complementary to pIm fqx. Then
G :� X �Wx is a sub-bundle of E; let ι : G Ñ E be the inclusion map. Define
θ : E ` G Ñ E1 by θppa, bqq � fpaq � ιpbq. Then θx is an isomorphism, so there
exists an open neighborhood U of x such that θ|U is an isomorphism. Since E is a
subbundle of E `G, θpEq � fpEq is a subbundle of θpE `Gq � E1 on U .
Step 2: Since the rank function on a vector bundle is locally constant, (i) ùñ
(iii), (ii) ùñ (iv), and (by simple linear algebra!) (iii) ðñ (iv).
(iv) ùñ (i): Again the issue of whether Im f is a vector bundle is a local one,
so we may assume that E � X � V is a trivial bundle. For x P X, let Wx � V
be a complementary subspace to pKer fqx. Let G � X �Wx, so that f induces
a homomorphism ψ : G Ñ E1 whose fiber at x is a monomorphism. Thus ψ is a
monomorphism on some neighborhood U of x, so ψpGq|U is a subbundle of E1|U .
However ΨpGq � fpEq, and since fpEq has constant rank, and

dimψpGqy � dimψpGqx � dim fpEqx � dim fpEqy
for all y P U , ψpGq|U � fpEq|U . so fpEq is a subbundle of E1.
(iv) ùñ (ii): here we exploit dual bundles. The hypothesis implies that the kernel
of f_ : pE1q_ Ñ E_ has constant rank function. Since E_ Ñ Coker f_ is an
epimorphism, pCoker f_q_ Ñ E__ is a monomorphism: by Step 1, its image is a
subbundle. But the natural map E Ñ E__ is an isomorphism, the restriction of
which to Ker f gives an isomorphism to the vector bundle pCoker f_q_. So Ker f
is a vector bundle. □

The proof yields the following additional information.

Corollary 6.3. For any morphism of vector bundles, the rank function of the
image is upper semi-continuous: that is, for any x P X, there exists a neighborhood
U of x such that for all y P U , dimKpIm fqy ¥ dimKpIm fqx.

Exercise 6.1. Prove Corollary 6.3.

Proposition 6.4. Let E be a vector bundle over X, and let P P EndpEq �
HompE,Eq be a projection, i.e., P 2 � P . Then:

a) We have KerpP q � Imp1� P q.
b) ImP and Imp1� P q are both subbundles of E.
c) There is an internal direct sum decomposition E � ImP ` Imp1� P q.

Proof. a) For all x P X linear algebra gives us an equality of fibers KerpP qx �
Imp1� P qx. This suffices!
b) From part a) we deduce an equality of rank functions

rImP � rImp1�P q � rE .

By Corollary 6.3, for all x P X, there is a neighborhood U of x on which rImP is
at least as large as rImP pxq, rImp1�P q is at least as large as rImp1�P qpxq and rE is
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constantly equal to rEpxq. On this neighborhood the ranks of ImP and Imp1�P q
must be constant, and therefore by Proposition 6.2 ImP and Imp1 � P q are both
subbundles.
c) Again it is enough to check this fiber by fiber, which is simple linear algebra. □

An inner product on a finite-dimensional R-vector space V is, as usual, a symmet-
ric R-bilinear form x, y : V � V Ñ R which is positive definite in the sense that
for all x P V zt0u, xx, xy � 0. An inner product on a finite-dimensional C-vector
space V is a positive definite sesquilinear form: i.e., it is C-linear in the first vari-
able, conjugate-linear in the second variable and again we have xx, xy ¡ 0 for all
x P V zt0u.

Now let E be a K-vector bundle on X. An inner product on E is a collection of
inner products x, yx : Ex�Ex Ñ K on each of the fibers which vary continuously in
x. Formally this means the following: let E �X E be the subset of pe1, e2q P E �E
such that πpe1q � πpe2q; then such a fiberwise family of inner products defines a
function from E �X E to K, and this function is required to be continuous.

Let us say that a metrized vector bundle E on X is a vector bundle together
with an inner product. (Again, this is an abuse of terminology: we do not speak of
the inner product by name.)

Proposition 6.5. Let E be a metrized line bundle on X.

a) If E1 is a subbundle of E, fiberwise orthogonal projection onto E1 defines
a projection operator P P EndpEq with image E1.

b) All short exact sequences 0 Ñ E1 Ñ E Ñ E2 Ñ 0 of vector bundles are
split.

c) If M is another vector bundle on X and there exists an epimorphism of
bundles q : E Ñ M , then M is isomorphic to the image of a projection
operator on E.

Proof. a) This is mostly a matter of understanding and unwinding the defi-
nitions, and we leave it to the reader.
b) Let P be orthogonal projection onto E1. The restriction of the map E Ñ E2 to
KerP is an isomorphism of vector bundles. The inverse of this isomorphism gives
a splitting of the sequence.
c) By Proposition 6.2, since Im q � M is a vector bundle, so is Ker q, whence a
short exact sequence

0Ñ Ker q Ñ E ÑM Ñ 0.

By part b), there exists a splitting σ : M Ñ E of this sequence. Then, as usual,

P � σ � q is a projection operator on E and q|ImP : ImP
�ÑM . □

Proposition 6.6. If X is a paracompact topological space, then every vector
bundle over X admits an inner product.

Proof. This is a rather standard topological argument which we just sketch
here. Let M be a vector bundle on X, and let tUiuiPI be an open covering of X
such that the restriction of M to each Ui is a trivial bundle. On a trivial bundle
there is an obvious inner product, say x, yx. Now, since X is paracompact, there
exists a partition of unity tφiuiPI subordinate to the open covering tUxu: that is,
 each φi : X Ñ r0, 1s is continuous,
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 for all x P X we have supppφiq � Ui
 for all x P X there exists an open neighborhood V of x on which all but finitely
many φi’s vanish identically, and
 for all x P X,

°
iPI φipxq � 1.3

Then, for x P X and e1, e2 PMx, define

xe1, e2yx :�
¸
i

φipxqxe1, e2yi;

the sum extends over all i P I such that x P Ui. This is an inner product on M . □

To complete the proof of Swan’s Theorem, it suffices to show that if X is com-
pact, every vector bundle M on X is the epimorphic image of a trivial bundle.
In particular, Proposition 6.5 then shows that M is a direct summand of a trivial
vector bundle T and thus ΓpMq is a direct summand of the finitely generated free
CpXq-module ΓpT q, hence is finitely generated projective.

Proposition 6.7. Let X be a compact space and M a vector bundle on X.
Then there exists an epimorphism of bundles from a trivial vector bundle X �V to
M .

Proof. Step 1: We claim that for each x P X, there exists a neighborhood
Ux of x and finite set of global sections Sx � tsx,1, . . . , sx,kxu of M such that for
all y P U , sx,1pyq, . . . , sx,kxpyq is a K-basis for My.
proof of claim: Let U be an open neighborhood of x on which M is a trivial
bundle. Certainly then there exist finitely many sections s1, . . . , sn of M over U
which when evaluated at any y P U give a basis of My. We need to show that there
exists an open set W with x P W � U and global sections s11, . . . , s

1
n such that for

all i, s1i|W � si|W . For this it suffices to work one section at a time: let s be a
section of M over U . Since X is paracompact, it is normal, so there exist open
neighborhoods W and V of x with W � V and V � U . By Urysohn’s Lemma,
there is a continuous function ω : X Ñ r0, 1s such that ω|W � 1 and ω|XzV � 0.
If we then define s1 : X Ñ M by s1pyq � ωpyqspyq for y P U and s1pyq � 0 for
y P XzU , then this s does the job.
Step 2: By compactness of X, there exists a finite subset I of X such that tUxuxPI
covers X. So S � �

iPI Sx is a finite set of global sections of M which when
evaluated at any x P X, span the fiber Mx. So the K-subspace V of ΓpMq spanned
by S is finite-dimensional. We define a map q : X � V Ñ M by qpx, sq � spxq.
This is a surjective bundle map from a trivial vector bundle to M ! □

Remark: In the above proof the paracompactness of X seems to have been fully
exploited, but the need for compactness is less clear. In fact, at the end of [Sw62],
Swan remarks that if you replace the last step of the proof by an argument from
Milnor’s 1958 lecture notes Differential Topology, one gets a categorical equivalence
between vector bundles with bounded rank function on a paracompact space X and
finitely generated projective CpXq-modules.

Remark: A more straightforward variant of Swan’s theorem concerns the case where
X is a compact differentiable manifold (say of class C8). In this case the equiva-
lence is between differentiable K-vector bundles on X and modules over the ring of
K-valued C8-functions. Looking over the proof, one sees that the only part that

3See e.g. Exercise 5 in §4.5 of Munkres’ Topology: a first course for a proof of this fact.
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needs additional attention is the existence of differentiable partitions of unity. Such
things indeed exist and are constructed in many of the standard texts on geometry
and analysis on manifolds. We recommend [We80], which has a particularly clear
and complete discussion.

4. Applications of Swan’s Theorem

4.1. Vector bundles and homotopy.

Vector bundles on a space are of interest not only to differential topologists and
geometers but also to algebraic geometers. This is because pullback of vector bun-
dles behaves well under homotopy.

First, suppose that f : X Ñ Y is a continuous map of topological spaces and
π : E Ñ Y is a vector bundle on Y . We may pullback π to a vector bundle
πX : E �Y X Ñ X just by taking E �Y X to be the fiber product of the maps
f and π, namely the subspace of X � E consisting of all pairs px, vq such that
fpxq � πpvq P Y . The map πX : E �Y X Ñ X is just restriction of the projection
map: px, vq ÞÑ x.

Exercise 6.2. Show: πX : E �Y X Ñ X is indeed a vector bundle on X. We
abbreviate it by either f�π or (more abusively) f�E.

Exercise 6.3. Show: the pullback of a trivial bundle is a trivial bundle.

Theorem 6.8. (Covering Homotopy Theorem) Let X and Y be topological
spaces with X paracompact. Let π : E Ñ Y be a vector bundle on Y , and let
f, g : X Ñ Y be homotopic maps. Then the pullbacks f�π and g�π are isomorphic
vector bundles on X.

Proof. See for instance [Hs66, Thm. 4.7]. □

For our applications, it is enough to know that compact spaces are paracompact.
But for culture we also remark that any regular σ-compact space is paracompact,
e.g. any CW-complex with only finitely many cells of any given dimension.

Corollary 6.9. If X is a contractible paracompact space, then every vector
bundle on X is trivial.

Proof. Choose any point x0 P X, let f : X Ñ X be the map which sends
every point of X to x0,and let g : X Ñ X be the identity map. If π : E Ñ X is
any vector bundle on X, then by Theorem 6.8 we have f�π � g�π. Since g is the
identity map, g�π � π. On the other hand, tracking through the definitions shows
f�π � X � π�1px0q, a trivial bundle. So π is trivial. □

5. Stably free modules

Recall that an R-module M is stably free if there is a finitely generated free
module F such that M ` F is free. This definition is natural from the perspective

of K-theory: the class rP s in �K0pRq of a finitely generated projective module P is
trivial iff P is stably free.

Exercise 6.4. Let 0 Ñ A Ñ B Ñ P Ñ 0 be a short exact sequence of R-
modules, with P stably free. Show: A is stably free ðñ B is stably free.



148 6. SWAN’S THEOREM

Certainly we have

free ùñ stably free ùñ projective .

Asking to what extent these implications can be reversed brings us quickly to some
deep and beautiful mathematics.

5.1. Finite Generation.

We begin by addressing finite generation conditions.

Exercise 6.5. (Eilenberg Swindle): Let us say that a projective module P is
weakly stably free if there exists a not necessarily finitely generated free module
F such that P ` F is free. Show that every projective module is weakly stably free.
(Hint: if P `Q is free, take F � P `Q` P `Q` . . ..)

Exercise 6.6. Show: for a finitely generated projective module P , the following
are equivalent:

(i) P is stably free.
(ii) P admits a finite free resolution: for some n P N there is an exact

sequence
0Ñ Fn Ñ . . .Ñ F0 Ñ P Ñ 0,

with each Fi a finitely generated free module.

This explains why the free module we take the direct sum with in the definition of
stably free is required to be finitely generated. What happens if we take the module
P to be infinitely generated? Here let us be sure that by an infinitely generated
R-module, we mean an R-module which is not finitely generated.4

Theorem 6.10. (Gabel) Each infinitely generated stably free module is free.

Proof. LetM be infinitely generated and stably free. Choose a P N such that
F �M`Ra is free. Let taiuiPI be a basis for F . Since F has an infinitely generated
homomorphic image, I is infinite. Let p : F Ñ Ra be the natural projection map
px, yq ÞÑ y. For each standard basis element ek of Ra lift it to rek in F and let Jk
be the “support” of rek, i.e., the set of indices i such that the coefficient of ai in rek
is nonzero. Then J � �a

k�1 Jk is finite. Let F 1 � xaiyiPJ , so that F 1 is free of finite
rank and F {F 1 is free of infinite rank. By construction qpF 1q � Ra; it follows that

F � F 1 �M.

Put N �M X F 1, so
F 1{N � Ra.

Since Ra is projective, the sequence

0Ñ N Ñ F 1 Ñ Ra Ñ 0

splits, giving
F 1 � N `Ra.

Further
F {F 1 �M{N,

4A priori it would be reasonable to take “infinitely generated R-module” to mean a module

which possesses an infinite generating set, but a moment’s thought shows that an R-module has
this property if and onl if it is infinite, so it is more useful to define “infinitely generated” as we

have.
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so M{N is infinitely generated free: M{N � Ra ` F 2 for a free module F 2. In
particular M{N is projective, so the sequence

0Ñ N ÑM ÑM{N Ñ 0

splits. Putting all this together we get

M � N `M{N � N `Ra ` F 2 � F 1 ` F 2. □

The following result – which we will not prove here – shows that for a large class of
“reasonable rings” infinitely generated projective modules are much less interesting
objects than finitely generated projectives, and thus gives further motivation to our
restriction to the finitely generated case.

Theorem 6.11. (Bass [Ba63]) Let R be a connected Noetherian ring. Then
any infinitely generated projective R-module is free.

However, we can use Swan’s Theorem to exhibit a nonfree infinitely generated pro-
jective module. Let r0, 1s be the closed unit interval with its topology: a compact,
contractible space. By Corollary 6.9, every vector bundle over r0, 1s is trivial. By
Swan’s Theorem, this implies that every finitely generated projective module over
the ring R � Cpr0, 1sq of continuous functions f : r0, 1s Ñ R is free.

But now – as in §3.9 – consider the ideal I of all functions f P R which vanish
near zero, i.e., for which there exists ϵpfq ¡ 0 such that f |r0,ϵpfqs � 0. Exercise
3.74 tells us that I is a projective R-module. Moreover, I is not a free R-module:
indeed, any f P I is annihilated by any continuous function with support lying in
r0, ϵpfqs, and nonzero such functions clearly exist. On the other hand, any nonzero
free module has elements with zero annihilator: take any basis element.

Thus Cpr0, 1sq is a connected ring over which every finitely generated projective
module is free, but the infinitely generated projective module I is not free. (Theo-
rem 6.11 says that no such modules exist over connected Noetherian rings.) More-
over I is therefore clearly not a direct sum of finitely generated modules, since by
what we have established any such module over Cpr0, 1sq would be free!

Exercise 6.7. Use Corollary 3.51 to give a purely algebraic proof that I is not
a direct sum of finitely generated submodules.

Exercise 6.8. Find necessary and sufficient conditions on a compact, con-
tractible space X for there to exist a nonfree projective module.

5.2. Ranks.

Later we will attach to a finitely generated projective module over any ring R
a rank function (on SpecR). However, for a stably free module we can – as for free
modules – simply assign a rank. Namely, if we put rankP � b� a.

Exercise 6.9. Show: the rank of a finitely generated stably free module is
well-defined.

Exercise 6.10. Show: for an R-module M , the following are equivalent:

(i) M is stably free of rank zero.
(ii) M � 0.
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Comment: This will be quite routine once we have the theory of localization. If you
have trouble with the general case now, just show that M ` R � R ùñ M � 0,
which is easier: every cyclic module is isomorphic to R{I for some ideal I of R;
now consider annihilators.

5.3. The least number of generators.

For a finitely generated R-module M we denote by mgM the minimal number
of generators of M , i.e., the least n such that Rn ↠M .

From a naive perspective this is perhaps the most natural numerical invariant
associated to a finitely generated R-module. But in fact it behaves badly. Essen-
tially its only good property is the obvious one: if M1 ↠ M2, then mgpM2q ¤
mgpM1q. However, if M1 ãÑ M2, then we certainly need not have mgpM1q ¤
mgpM2q: let I be a finitely generated but nonprincipal ideal, and let M1 � I,
M2 � R. One may momentarily hope that for finitely generated R-modules M1

and M2 we at least have mgpM1 `M2q � mgpM1q � mgpM2q but in fact this is
false even over the simplest rings: take R � Z, M1 � Z{2Z, M2 � Z{3Z. But it
gets even worse:

Exercise 6.11. Let R be a ring and M1, M2 be finitely generated R-modules.

a) Suppose R is local. Show: mgpM1 `M2q � mgpM1q �mgpM2q. In fact,
show that if 0ÑM 1 ÑM ÑM2 Ñ 0 is a short exact sequence of finitely
generated R-modules then mgpMq � mgpM 1q �mgpM2q.

b) Suppose R is a PID. Show: mgpM1 `M1q � 2mgpM1q.
c) Suppose R is a Dedekind domain,5 and l I is a nonzero proper ideal of R.

Show:
(i)  If I is principal, mgpIq � 1.

 If I is not principal, mgpIq � 2.
(ii)  If I2 is principal, mgpI ` Iq � 2.
(iii)  If I2 is not principal, mgpI ` Iq � 3.

d) Deduce: For a nonprincipal ideal I in a Dedekind domain R, mgpI` Iq  
2mgpIq.

Later we will see “better” invariants for certain subclasses of finitely generated R-
modules, namely the rank for projective modules and the length for...finite length
modules. Over a Dedekind domain every finitely generated module can be decom-
posed into the direct sum of a projective module and a finite length module. This
does not hold over more general rings, e.g. the Crx, ys-module Crxs is a torsion
module of infinite length so cannot be so expressed.

Proposition 6.12. A rank one stably free module is free.

We will come back to prove this later once we have developed localization.

5.4. Around Hermite’s Lemma.

In number theory and related branches of mathematics one studies sublattices Λ of
the standard integral lattice Zn, i.e., rank n Z-submodules of Zn. Their structure
is surprisingly rich – for instance, the function Lnpkq which counts the number of

5This exercise is stated now for continuity purposes, but to solve it you will probably want
to use the theory of finitely generated modules over a Dedekind domain detailed in § 20.6.
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index k sublattices of Zn is arithmetically interesting and nontrivial. In particular,
one question that comes up in the study of integer lattices is: which vectors v P Zn
can be part of a Z-basis of Zn? Unlike the answer for modules over a field (all
nonzero vectors), there is an obvious obstruction: for instance there is no basis
pv1, v2q of Z2 with v1 � p2, 0q. For if so, the linear transformation T : Z2 Ñ Z2

given by T pp1, 0qq � p2, 0q, T pp0, 1qq � v2 � pa, bq has determinant 2b. Since this
is not a unit in Z, T is not invertible, which is a contradiction (make sure you see
why, e.g. by using the universal property of free modules).

This observation can be vastly generalized, as follows: for a domain R and n P Z�,
we say v � px1, . . . , xnq P Rn is a primitive vector if v � 0 and xx1, . . . , xny � R.

Exercise 6.12. Let K be the fraction field of R. Show that v P pRnq is
primitive if and only if Kv XRn � Rv.

Exercise 6.13. Let R be a domain, and let pb1, . . . , bnq be a basis for Rn. Show
that each bi is a primitive vector.

In 1850 Hermite proved that for integer lattices this is the only obstruction.

Proposition 6.13. (Classical Hermite Lemma) For a vector v P Zn, the fol-
lowing are equivalent:

(i) There is M P GLnpZq with Mpe1q � v, i.e., the first column of M is v.
(ii) There is a basis for Zn containing v.
(iii) The vector v is primitive.

For a proof of Proposition 6.13 in the classical style, see [GoN, § 1.3.3]. In fact the
methods of module theory allow for a slicker proof of a more general result.

Proposition 6.14.
Let R be a PID. For a vector v P Rn, the following are equivalent:

(i) There is M P GLnpRq with Mpe1q � v, i.e., the first column of M is v.
(ii) There is a basis for Rn containing v.
(iii) v is a primitive vector.

Proof. Any two bases of Rn are equivalent under GLnpRq. So (i) ðñ (ii).
(ii) ùñ (iii): If v, v2, . . . , vn is a basis for Rn and v were not primitive, then we
would have v � αw for some α P RzR�. Then w � 1

αv expresses w as a K-linear
combination of the basis vectors with a nonintegral coefficient: contradiction.
(iii) ùñ (ii): Step 1: For a domain R and v P pRnq, we claim that v is a primitive
vector if and only if Rn{xvy is torsionfree.
Proof: Suppose v is not primitive: v � αv1 for some α P RzR�. Then v1 is a torsion
element of Rn{xvy. Conversely, suppose v is primitive. Ifn � 1 then xvy � R and
the result holds trivially, so assume n ¥ 2. Suppose there is w P Rn and α P R
such that αw � βv for some β P R. Thus w � β

αv. Since v is primitive, α | β and
the image of w in Rn{xvy is zero.
Step 2: Consider the short exact sequence

0Ñ xvy Ñ Rn ÑM Ñ 0,

with M � Rn{xvy. By Step 1, M is a finitely generated torsionfree module over a
PID, so it is free: indeed, tensoring to K and applying linear algebra we see that
M � Rn�1. Thus the sequence splits: Rn � xvy `M 1, with M 1 � Rn�1. Thus if
v2, . . . , vn is an R-basis for M 1, v, v2, . . . , vn is an R-basis for Rn. □
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Proposition 6.15. Let R be a commutative ring, and let n P Z�. the following
are equivalent:

(i) If for an R-module M we have M `R � Rn then M is free.
(ii) Every primitive vector v P Rn is part of a basis for Rn.

Proof. We follow a treatment of K. Conrad [Cd-SF]. First we observe that
when n � 1 both (i) and (ii) hold for all R-modules M : indeed, by Exercise 6.10,
if M `R � R then M � 0, whereas (ii) is completely vacuous in this case.
(i) ùñ (ii): Assume (i). For v � pv1, . . . , vnq, w � pw1, . . . , wnq P Rn, let
v �w � °n

i�1 viwi. Let a � pa1, . . . , anq P Rn be a primitive vector. Observe that
this is equivalent to the existence of b � pb1, . . . , bnq P Rn with a � b � 1 and fix
such a b. Consider the R-linear functional f : Rn Ñ R given by v ÞÑ v � b. Since
fpaq � 1 it is nonzero and thus there is a short exact sequence

0Ñ Ker f Ñ Rn
fÑ RÑ 0.

Since R is projective, this sequence splits, giving Rn � Ker f `R. More concretely
a splitting is given by a section σ : R Ñ Rn of f which is determined by mapping
1 P R to any v P Rn with fpvq � 1. Thus 1 ÞÑ a gives an internal direct sum
decomposition

Rn � Ker f ` xay � Ker f `R.
By our hypothesis (i), Ker f is free, and if b2, . . . , bn is a basis for Ker f then
a, b2, . . . , bn is a basis for Rn containing a.
(ii) ùñ (i): Let g : M ` R

�Ñ Rn be an R-module isomorphism. Put a �
pa1, . . . , anq � gp0, 1q. We claim that a is a primitive vector. If not, there is a
maximal ideal m such that xa1, . . . , any � m. But

g|mpM`Rnq : mM `m
�Ñ pmRqn,

and gp0, 1q � a P pmRqn, so p0, 1q P mM ` pmRqn, a contradiction. Thus by (ii)
there is a basis a, b2, . . . , bn of Rn, so that g�1paq, g�1pb2q, . . . , g�1pbnq is a basis
of M ` R. For 2 ¤ i ¤ n we write g�1pbiq � pxi, ciq. Subtracting off from each
of these vectors a suitable scalar multiple of g�1paq � p0, 1q we get a new basis
p0, 1q, px2, 0q, . . . , pxn, 0q of M `R. Then x2, . . . , xn is a basis for M . □

Theorem 6.16. For a commutative ring R, the following are equivalent:

(i) For all R-modules M , if M `R is free, then M is free.
(ii) For all n P Z�, every primitive vector v P Rn is an element of some basis

of Rn.
(iii) Every stably free R-module M is free.

A ring satisfying these equivalent conditions will be called an L-Hermite ring.

Proof. Since an infinitely generated stably free module is free (Theorem 6.10),
in parts (i) and (iii) we may – and shall – assume M is finitely generated. Then:
(i) ðñ (ii) is immediate from Proposition 6.15.
(i) ùñ (iii): It suffices to show that for all finitely generated modules M and all
a P N, if M ` Ra is free then M is free. We go by induction on n, the case n � 0
being trivial. Suppose the result holds for a P N. Then M `Ra�1 � pM `Raq`R
is free, so by (i) M `Ra is free, and then by induction M is free.
(iii) ùñ (i) is immediate. □
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5.5. Swan’s Construction.

For n P N, let
Rn � Rrt0, . . . , tns{xt20 � . . .� t2n � 1y.

Exercise 6.14. Show: Rn is a domain if and only if n ¥ 1.

Consider the map H : Rn�1
n Ñ Rn obtained by taking the dot product of v �

pv1, . . . , vn�1q with t � pt0, . . . , tnq. For 0 ¤ i ¤ n, let ei be the ith standard basis
vector of Rn�1

n ; then Hpeiq � ti, so the image of H contains xt0, . . . , tny � Rn: H
is surjective. Let Pn � KerH, so we have a short exact sequence

0Ñ Pn Ñ Rn�1
n

HÑ Rn Ñ 0.

As above, this sequence splits and since t � t � 1, a canonical section is given by
mapping 1 P Rn to t. In particular

Pn `Rn � Rn�1
n

so Pn is stably free. When is it free?

Theorem 6.17. (Swan) The stably free Rn-module Pn is free if and only if
n � 0, 1, 3 or 7.

Proof. Step 0: Since P0 � 0, it is free. Moreover P1 has rank 1 so is free
by general principles (Proposition 6.12). But this is overkill: in fact one sees that
�t1e0 � t0e1 is a basis for P1. Similarly one can simply write down bases for P3

and P7 in a concrete manner: we leave this as an exercise for the reader.
Step 1: Suppose n R t0, 1, 3, 7u. We wish to show that Pn is not free. The key
observation is that it is enough to do so after any base change: that is, if Rn Ñ S
is a ring map and M is an R-module such that M bRn

S is not a free S-module,
then M is not a free R-module. What is the natural base change to make?

Notice that Rn is nothing else than the ring of polynomial functions on the
unit sphere Sn � Rn�1. For those unitiated in the above jargon we spell it out
more explicitly: every f P Rrt0, . . . , tn�1s induces a function from Rn�1 Ñ R
and thus by restriction a function Sn Ñ R. We wish to identify polynomials
which define the same function on Sn, and to do so we should at least impose the
relation t20 � . . .� t2n � 1 � 0 since this function vanishes identically on Sn. As we
will see later when we study the Nullstellensatz, since by Exercise 6.14 the ideal
I � xt20 � . . .� t2n � 1y is prime, it is radical and thus the relation IpV pIqq � I tells
us that the only polynomials which vanish identically on Sn are those in I.

Since every polynomial function is a continuous function for the Euclidean
topology on Sn, we get an extension of rings Rn Ñ CpSnq. So our bright idea is to
show insteaad that the finitely generated projective CpSnq-module

Tn � Pn bRn CpSnq
is not free. By Swan’s Theorem, Tn corresponds to a vector bundle on Sn and it is
equivalent to show that this vector bundle is nontrivial. 6

Step 3: We claim that in fact Tn is nothing else but the tangent bundle of Sn.
Indeed, we have Sn � Rn�1. The tangent bundle to Rn�1 is trivial, hence so is its

6Thus in summary we have just accomplished the following exciting maneuver: using ba-
sic affine algebraic geometry, we have completely transferred our problem from the domain of

commutative algebra to that of differential topology!
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pullback to Sn, say Fn�1. Further, there is a surjective bundle map from Fn�1 to
the rank one trivial bundle F 1: at every point of Sn we orthogonally project to the
outward normal vector. The kernel of this bundle map is T pSnq. Thus we have a
short exact sequence of vector bundles

0Ñ TSn Ñ Fn�1 Ñ F Ñ 0.

We claim that under the Swan’s Theorem equivalence of categories, this split exact
sequence corresponds to the split exact sequence

0Ñ Tn Ñ CpSnqn�1 HÑÑ CpSnq Ñ 0

which is the base change to CpSnq of the defining short exact sequence of Sn. We
leave it to the interested reader to piece this together from our consruction of Pn.
Step 4: By a classical theorem of Bott and Milnor [BM58], the tangent bundle of
Sn is trivial if and only if n P t0, 1, 3, 7u. □

Exercise 6.15. Show: Pn is free for n � 3 and n � 7.

Exercise 6.16. Find stably free but not free modules of ranks 3 and 7.

The Bott-Milnor Theorem is a deep and celebrated result. Their original proof used
the recently developed tools of midcentury differential topology: Stiefel-Whitney
and Pontrjagin classes, cohomology operations, and so forth. In 1962 J.F. Adams
determined for each n the largest rank of a trivial subbundle of T pSnq [Ad62]. The
K-theory developed in the 1960’s gave more graceful proofs: we recommend that
the interested reader consult, for instance, [Ka, § V.2].

If one merely wants some values of n for which Pn is not free, one can use much
lower technology. for instance, the Poincaré-Hopf Theorem [Mi, p. 35] implies
that a closed n-manifold which admits a nowhere vanishing vector field (equiva-
lently a trivial rank one subbundle of its tangent bundle; this is much weaker than
the tangent bundle being trivial) must have zero Euler characteristic. The Euler
characteristic of Sn is 1� p�1qn, so it is nonzero for all even n.



CHAPTER 7

Localization

1. Definition and first properties

As we have seen, one way to “simplify” the study of ideals in a ring R is to pass to
a quotient ring R{I: as we have seen, this has the (often useful) effect of “cutting
off the bottom” of the ideal lattice by keeping only ideals J � I. There is another
procedure, localization, which effects the opposite kind of simplification: given a
prime ideal P of R, there is a ring RP together with a canonical map ι : RÑ RP
such that ι� : IpRP q Ñ IpRq is an injection whose image is precisely the ideals
J � P . As usual, ι� carries prime ideals to prime ideals. In particular, assuming
only that P is prime, we get a corresponding ideal – rather inelegantly but stan-
dardly denoted PRP – which is the unique maximal ideal of RP . If we can take
P � p0q – i.e., if R is a domain – this means that PRP is the only ideal of RP ,
which is therefore a field. In fact it is nothing else than the quotient field of the
domain R, and – with one exception – all the secrets of localization are already
present in this very familiar special case.

In fact the localization construction is a bit more general than this: given an arbi-
trary ring R (of course commutative with unity!) and an arbitrary multiplicative
subset S of R – this just means that 1 P S and SS � S – we will define a new
ring RS together with a canonical homomorphism ι : R Ñ RS (for which ι� will
still be an injection with explicitly given image). Just as in the case of quotients,
ι satisfies a certain universal mapping property, but let us sacrifice some elegance
for intelligibility by working our way up to this crisp definition.

Indeed, first consider the special case in which R is a domain, with fraction field
F . Then RS will be an extension ring of R, still with fraction field F , which is
obtained by adjoining to R all elements 1

s for s P S.

Example 7.1. Suppose R � Z, S � t2nunPN. Then RS � Zr 12 s. Indeed we see
that for any nonzero element f , we can take S to be the multiplicative set consisting
of the powers of f , and then the localization is just Rr 1f s.

What if in the example above, instead of taking the multiplicative subset generated
by 2, we took the multiplicative subset generated by 22, or 2127? Clearly it wouldn’t

matter: if we have 1
2k

for any k in our subring of Q, we also have 2k�1

2k
� 1

2 . To
generalize this idea, define the saturation S of a multiplicatively closed subset S
of a domain R to be the set ta P R | Db P R | ab P Su, i.e., the set of all divisors of
elements of S. The same observation as above shows that RS � RS, so if we like
we can restrict to consideration of saturated multiplicatively closed subsets.

155
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Example, continued: The saturated, multiplicatively closed subsets of Z corre-
spond to (arbitary) subsets P of the prime numbers (exercise!). In particular Z
itself corresponds to P � H, Zr 1p s corresponds to P � tpu, Q corresponds to the

set of all primes. Most interestingly, fix any prime p and let P be the set of all
primes except p: then the corresponding ring, which is confusingly denoted Zppq
is the set of all rational numbers of the form x

y where p does not divide y. Notice

that such rings are the maximal subrings of Q which are not fields. Moreover, the
units of Zppq are precisely the elements of the form x

y with pp, xq � 1. The nonunits

a are all of the form pa1 for a1 P Zppq, so therefore the unique maximal ideal is the
principal ideal ppq � pZppq.

Exercise 7.1. Show: the only ideals in Zppq are those of the form ppqk for
some k P N.
Now let R be any ring and S a multiplicatively closed subset of R. We would still
like to define a ring S�1R which is, roughly speaking, obtained by adjoining to R
all inverses of elements of S. We can still define S�1R in terms of formal quotients,
i.e., as equivalence classes of elements pa, bq with a P R, b P S. However, if we define
pa, bq � pc, dq to be ad � bc, then unfortunately we find that this need not be an
equivalence relation! Indeed:

Exercise 7.2. Let R be a nonzero ring that is not a domain: thus there are
a, b P Rzt0u such that ab � 0. Let S � tan | a P Nu. Show that the relation � on
R� S defined by

pr1, s1q � pr2, s2q if s1r2 � s2r1

is not transitive.

Therefore we need to enlarge the relation a bit: we put pa, bq � pc, dq if and only if
there is s P S such that sad � sbc. We then define

a

s
� b

t
:� at� bs

st
,

a

s
� b
t
:� ab

st
.

We must check that these operations are well-defined on equivalence classes; this is
left as a (perhaps somewhat tedious, but not difficult) exercise for the reader.

Exercise 7.3. Let R be a ring, and let S � R be a multiplicative subset. We
wish to consider three relations on R�S: the first relation �1 i the “wrong” relation
considered above:

pr1, s1q �1 pr2, s2q if s1r2 � s2r1.

By Exercise 7.2, the relation �1 can fail to be transitive when R is not a domain.
So we define the relation �2 to be the transitive closure of �1, i.e., the smallest
transitive relation on R � S that contains �1. We define �3 to be the “right
relation”:

pr1, s1q � pr2, s2q if there is s P S such that ss1r2 � ss2r1.

a) Show: �1 is reflexive and symmetric, and deduce that �2 is an equivalence
relation.

b) Show: �2 � �3. Deduce: the “right relation” �3 is the equivalence re-
lation generated by (i.e., the smallest equivalence relation containing) the
“wrong relation” �1.
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Exercise 7.4. Indeed, check that S�1R is a ring and that x ÞÑ x
1 defines a

homomorphism of rings RÑ S�1R. Thus S�1R is an R-algebra, and in particular
an R-module.

Exercise 7.5. Let R be a domain and S � R � Rzt0u. Show: S�1R is indeed
the fraction field of R.

When f P R, we denote the localization of R at the multiplicative subset generated
by f as Rf .

Example 7.2. Suppose f P R is a nilpotent element: fn � 0 for some n P Z�.
Then 1 � fn�1

fn�1 whereas 0 � 0
f . Since pfn�1 � f � fn�1 � 0q � 0, we have that 1 � 0,

i.e., Rf is the zero ring. Conversely, if 1 � 0 in Rf , then there is s P tfn | n P Nu
such that 0 � s � 1 � s, so f is nilpotent. The same argument shows that for any
multiplicative subset S, we have that S�1R is the zero ring if and only if 0 P S.

Exercise 7.6.

a) Show: the kernel of the natural map R Ñ S�1pRq is the set of all r P R
such that for some s P S, sr � 0.

b) The map RÑ S�1pRq is injective if and only if S has no zerodivisors.
c) Show that the subset Q of all nonzerodivisors of a ring R is multiplicatively

closed. The localization Q�1R is called the total fraction ring of R.
Show that Q�1pRq is a field if and only if R is a domain.

Exercise 7.7. Show: the homomorphism R Ñ S�1R is universal for homo-
morphisms RÑ T with fpSq � T�.

Exercise 7.8. A multiplicatively closed subset S of a ring R is saturated if
for all s P S and all t P R, if t | s then t P S.

a) For a multiplicatively closed subset S � R, define its saturation S �
tt P R | t | s for some s P Su. Show that S contains S, is multiplicatively
closed and saturated, and is minimal with these properties: if T � S is
saturated and multiplicatively closed, then T � S.

b) Show: the rings S�1R and S�1R are canonically isomorphic.
c) Let I be an ideal of R. Show that the following are equivalent:

(i) RzI is multiplicatively closed.
(ii) RzI is multiplicatively closed and saturated.
(iii) I is a prime ideal.

d) Let S � R be a saturated multiplicatively closed subset. Show: there is a
subset Y � SpecR such that S � �pPY pRzpq.
(Hint: use Multiplicative Avoidance.)

2. Pushing and pulling via a localization map

Let R be a ring and S a multiplicatively closed subset. Let ι : R Ñ S�1R be the
natural map. As for any homomorphism of rings, ι induces maps between the sets
of ideals of R and the set of ideals of S�1R, in both directions:

ι� : IR Ñ IS�1R, I ÞÑ IS�1R,

ι� : IS�1R Ñ IR, J ÞÑ ι�1pJq.
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Lemma 7.3. Let ι : RÑ S�1R be as above. For an ideal I of R, we have

ι�pIq � tx
s
P S�1R | x P I, s P Su.

Proof. Let us temporarily write

I � tx
s
P S�1R | x P I, s P Su.

We want to show that I � ι�pIq � xιpIqyS�1R. It is clear that ιpIq � I � ι�pIq, so
it is enough to show that I is itself an ideal of S�1R. No problem: if x1

s1
, x2

s2
P I,

x1
s1
� x2
s2
� x1s2 � x2s1

s1s2
P I,

and if ys P S�1R, then
y

s

x1
s1
� x1y

ss1
P I. □

Like quotient maps, any localization map has the pull-push property.

Proposition 7.4. Let ι : RÑ S�1R be as above. For an ideal J of S�1R, we
have

J � ι�ι�J.

Proof. We have seen before that for any homomorphism ι : R Ñ R1 of rings
and any ideal J of R1 we have

J :� ι�ι�J � J.

Thus it is enough to show the reverse containment. For this, consider an arbitrary
element x

s P J . Then x � sxs P J hence also x P ι�pJq, so ιpxq P J . But since J is

an ideal and s is a unit in S�1R, we then also have 1
sx � x

s P J . □

Lemma 7.5. Let ι : RÑ S�1R be as above and I an ideal of R. The following
are equivalent:

(i) I X S � H.
(ii) ι�pIq � S�1R.

Proof. (i) ùñ (ii): If s P S X I, then s P IS�1R, so 1 � s
s P ι�pIq.

(ii) ùñ (i): Suppose 1 P ι�pIq. By Lemma 7.3, 1
1 � x

s for some x P I and s P S.
Clearing denominators, there is s1 P S such that ss1 � s1x and thus ss1 P I XS. □

Proposition 7.6. Let ι : RÑ S�1R be a localization homomorphism.

a) For a prime ideal p of R, the following are equivalent:
(i) The pushforward ι�p is prime in S�1R.
(ii) The pushforward ι�p is proper in S�1R.
(iii) We have pX S � ∅.

b) If p is prime and disjoint from S, then ι�pι�pq � p.

Proof. a) (i) ùñ (ii) since prime ideals are proper.
(ii) ðñ (iii) for all ideals of R by Lemma 7.5.
(iii) ùñ (i): Suppose p is a prime ideal of R, and suppose we have a1

s1
, a2s2 P S�1R

with a1
s1
a2
s2
� x

s P ι�ppq. Clearing denominators, there is s1 P S such that

ss1a1a2 � s1s1s2x P p.
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Since SXp � ∅, pss1q R p, and since p is prime, we conclude that a1a2 P p and then
that ai P p for some i, hence ai

si
P ι�p for some i and ι�ppq is prime. This completes

the proof of part a).
b) Recall: for any homomorphism ι : RÑ R1 and any ideal I of R we have

ι�pι�pIqq � I,

so taking I � p to be prime it suffices to show the inverse inclusion. Suppose
x P ι�ι�p, i.e., there exist a P p, s P S such that ιpxq � x

1 � a
s . By definition,

this means that there exists some s1 P S such that s1sx � s1a P p. Therefore either
s1s P p or x P p, but since s1s P S and S is disjoint from p, we must have x P p. □

Corollary 7.7. The maps ι� and ι� give mutually inverse bijections from the
set of prime ideals of S�1R to the set of prime ideals of R that are disjoint from S.

Therefore we may – and shall – view SpecS�1R as a subset of SpecR.

Exercise 7.9.

a) Show: the results of Proposition 7.6 extend to all primary ideals of R.1

b) Let I be any ideal of R. Show that

ι�ι�I � tx P R | Ds P S such that sx P Iu.
c) Exhibit a map ι : R Ñ S�1R and a (nonprimary) ideal I of R such that

ι�ι�I � I.

Exercise 7.10. Let R be a ring, let S � R be a multiplicative subset, and let
I, J be ideals of R. Recall:

pI :R Jq :� tx P R | xJ � Iu.
a) Show: S�1pI X Jq � S�1I X S�1J .
b) Show: S�1pI � Jq � S�1I � S�1J .
c) Show: S�1pIJq � pS�1IqpS�1pJq.
d) Show: if J is finitely generated, then we have S�1pI : Jq � pS�1I : S�1Jq.

3. The fibers of a morphism

Let f : R Ñ S be a homomorphism of rings, and let p P SpecR. Consider the
“fiber of f� : SpecS Ñ SpecR over p”, i.e.,

fp � pf�q�1ppq � tP P SpecS | f�pPq � pu.
We claim that fp is canonically isomorphic to the spectrum of a certain ring.
Namely, let kppq be the fraction field of the domain R{p. Then we wish to identify
fp with SpecpS bR kppqq.

Let ι1 : S Ñ S bR kppq and ι2 : kppq Ñ S bR kppq be the canonical maps. The ten-
sor product of R-algebras fits into a commutative square (INSERT) and is indeed
the categorical pushout: in other words, given any ring A and homomorphisms
φ1 : AÑ S φ2 : AÑ kppq such that the composite homomorphisms ι1�φ1 � ι2�φ2

are equal, there exists a unique homomorphism Φ : A Ñ R such that f � Φ � φ1

and q � Φ � φ2, where q : RÑ R{p is the quotient map.

1Recall p is primary if for a, b P R such that ab P p, either a P p or bn P p for some n P Z�.
We have not yet done much with this concept, and will not really address it squarely until the

section on primary decomposition.
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On the spectral side, all the arrows reverse, and the corresponding diagram is
(INSERT), which expresses SpecpS bR kppqq as the fiber product of SpecS and
Spec kppq over SpecR.

Observe that the map ι1 : S Ñ S bR kppq is the composite of the surjective map
q1 : S Ñ S bR R{p with the map ℓ2 : S bR R{pÑ pS bR R{pq bR{p kppq, the latter
map being localization with respect to the multiplicatively closed subset q1pRzpq.
Both q�1 and ℓ�2 are injections, and therefore ι1� � q�1 � ℓ�2 is injective. Similarly
Spec kppq ãÑ SpecR (this is just the special case of the above with R � S). It
follows that the above diagram identifies SpecS bR kppq with the prime ideals P
of SpecS such that f�P � p.

4. Commutativity of localization and passage to a quotient

Lemma 7.8. Let R be a ring, S � R a multiplicatively closed subset, and I an
ideal of R. Write q : RÑ R{I for the quotient map and put S :� qpSq. Then there
is a canonical isomorphism

S�1R{IS�1R � S
�1pR{Iq.

Proof. Explicitly, we send a
s pmod IqS�1R to a

s , where a � a� I, s � s� I.
It is straightforward to check that this an isomorphism. □

Matsumura makes the following nice comment: both sides satisfy the universal
property for homomorphisms f : R Ñ R1 such that fpSq � pR1q� and fpIq � 0.
Therefore they must be canonically isomorphic.

5. Localization at a prime ideal

An extremely important example of a multiplicative subset of R is the complement
Rzp of a prime ideal p. As a matter of notation, we write Rp for pRzpq�1R.2

Proposition 7.9. If p is a prime ideal of R, then the localization Rp is a local
ring with unique maximal ideal pRp.

Proof. We know that the primes of the localized ring are precisely the push-
forwards of the prime ideals of R which are disjoint from the muliplicatively closed
set. Here S � Rzp, so being disjoint from S is equivalent to being contained in p.
Thus the unique maximal such element is indeed pRp. □

Remark: We will simply write p for the maximal ideal pRp of Rp.

Proposition 7.9, simple though it is, is of inestimable importance. It shows that
the effect of localization at a prime ideal on the lattice of ideals is dual to that of
passage to the quotient: if we mod out by a prime p, we get a ring R{p whose ideals
are precisely the ideals of R containing p. However, if we localize at Rzp, we get
a ring whose ideals are precisely the ideals of R contained in p. In particular, this

2This is inevitably a bit confusing at first, but our choice of notation for a loacalization is

designed to make this less confusing. The other common notation for the localization, RS , creates
a notational nightmare. As a mnemonic, remember that we gain nothing by localizing at a subset

S containing 0, since the corresponding localization is the trivial ring.
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construction motivates us to develop an especially detailed theory of local rings, by
assuring us that such a theory could be put to good use in the general case.

Exercise 7.11. True or false: If pR,mq is a local ring and S � R is a multi-
plicatively closed set, then S�1R is a local ring (or the zero ring).

Exercise 7.12. Let R be a ring, and let S � R be a saturated multiplicatively
closed subset such that the localization S�1R is a local ring with maximal ideal m.
Write ι : RÑ S�1R be the localization map. Show:

S � Rzι�pmq.
6. Localization of modules

If S is any multiplicative subset and M is any R-module, we can also construct
a localized R-module S�1M . One the one hand, we can construct this exactly as
we did S�1R, by considering the appropriate equivalence relation on pairs pm, sq P
M � S. On the other hand, we can just take the base extension S�1R bM . We
are left with the task of showing that these two constructions are “the same”.

Exercise 7.13. Formulate a universal mapping property for the localization
morphism M Ñ S�1M . Check that both of the above constructions satisfy this
universal mapping property, and deduce that they are canonically isomorphic.

Exercise 7.14.

a) Show: the kernel of M Ñ S�1M is the set of m PM such that annpmq X
S � H.

b) Let R be a domain with fraction field K. Let M be an R-module. Show:

KerpM ÑM bKq �M rtorss.
c) Use part b) to give a new proof of Proposition 3.8b).

Exercise 7.15. Let N be any S�1R-module. Show that there exists an R-
module M such that N � S�1RbRM .

Generally speaking, thinking of S�1M as S�1RbRM is more convenient for proving
results, because it allows us to employ the theory of tensor products of modules.
For example:

Proposition 7.10. For any ring R and multiplicatively closed subset S of R,
S�1R is a flat R-module. Equivalently, if

0ÑM 1 ÑM ÑM2 Ñ 0

is a short exact sequence of R-modules, then

0Ñ S�1M 1 Ñ S�1M Ñ S�1M2 Ñ 0

is a short exact sequence of R-modules (or equivalently, of S�1R-modules).

Proof. Tensor products are always right exact, so we need only show S�1M 1 ãÑ
S�1M . Suppose not: then there exists m1 P M 1 and s P S such that m1

s � 0 P M .

Thus there is g P S such that gm1 � 0, but if so, then m1

s � 0 in M 1.3 □

3Note also that the exactness of a sequence of R-modules does not depend on the R-module

structure but only on the underlying commutative group structure. Thus if we have a sequence
of commutative groups which can be viewed as a sequence of R-modules and also as a sequence

of R1-modules, then exactness as R-modules is equivalent to exactness as R1-modules.
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Corollary 7.11. Let N and P be submodules of an R-module M . Then:

a) S�1pN � P q � S�1N � S�1P .
b) S�1pN X P q � S�1N X S�1P .
c) S�1pM{Nq �S�1R S

�1M{S�1N .

Exercise 7.16. Prove Corollary 7.11.

Proposition 7.12. Let M and N be R-modules and S a multiplicatively closed
subset of R. Then the mapping

m

s
b n

t
ÞÑ mb n

st

induces an isomorphism of S�1pRq-modules

S�1M bS�1R S
�1N

�Ñ S�1pM bR Nq.
In particular, for any prime ideal p of R, we have

Mp bRp
Np

�Ñ pM bR Nqp.
Exercise 7.17. Prove Proposition 7.12.

Exercise 7.18. Let R be a ring, S � R multiplicative, and M an R-module.

a) IfM is finitely generated, then S�1M is a finitely generated S�1R-module.
b) IfM is finitely presented, then S�1M is a finitely presented S�1R-module.4

Recall that if M1 and M2 are R-submodules of an R-module M , then

pM1 :M2q � tx P R | xM2 �M1u
and thus

pM1 :M2q � annppM1 �M2q{M1qq.
Proposition 7.13. Let S � R be a multiplicatively closed subset.

a) Let M be a finitely generated R-module. Then

S�1 annM � annS�1M.

b) IfM1, M2 are submodules of an R-moduleM andM2 is finitely generated,
then

S�1pM1 :M2q � pS�1M1 : S�1M2q.
Proof. a) We go by induction on the number n of generators of M .

Base Case: If n � 1 then M � R{I for some ideal I, so

S�1 annM � S�1I � annS�1R{S�1I � annS�1M.

Induction Step: Suppose n ¥ 2 and that the result holds for all modules that can
be generated by n elements. WriteM �M1�M2 withM1 generated by n elements
and M2 generated by 1 element. Then

S�1 annM � S�1 annpM1�M2q � S�1pannM1XannM2q � S�1 annM1XS�1 annM2

� annS�1M1 X annS�1M2 � annS�1M1 � S�1M2 � annS�1M.

b) Put M :� pM1�M2q{M1. Then M is a quotient of M2 hence finitely generated,
so by part a) we have

S�1pM1 :M2q � S�1 annpM1 �M2q{M1 � annS�1pM1 �M2q{M1

4Actually both parts hold for any base change R Ñ R1! We record it in this form since it
will be used later.
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� annpS�1pM1 �M2q{S�1M1q � pS�1M1 : S�1M2q. □

7. Local properties

We say that a property P of a ring R is localizable if whenever R satisfies property
P , so does Rp for every prime ideal p of R. We say that a property P is local-
to-global if whenever Rp has property P for all prime ideals p of R, then R has
that property. Finally, we say a property is local if it is both localizable and
local-to-global. There are similar definitions for properties of R-modules.

Exercise 7.19.

a) Show the following properties of rings are localizable: being a field, hav-
ing characteristic 0, having prime characteristic p, being a domain, being
reduced.

b) Show that the following properties of modules are localizable: freeness,
projectivity, flatness, cyclicity, finite generation, finite presentation.

For a property P of rings, we say that a ring R is locally P if for all p P SpecR,
Rp has the property P . Similarly, if Q is a property of modules, we say that an
R-module M is locally P if for all p P SpecR, Mp has property Q.

Warning: It would also be reasonable to define “locally P” to mean that for
all p P SpecR, there is f P Rzp such that Rf (or Mf ) has property P . In the case
of rings, as we shall see later this latter definition means that SpecR has property
P locally with respect to the Zariski topology. We will consider this property as
well, but we call it Z-locally P instead.

Exercise 7.20. Let P be a property of rings (or modules). Show: “locally P”
is a local property.

One of the most important themes in commutative algebra is the recognition of the
importance of local properties for rings and modules.

Remark: Very often it is true that if P is a local property, then R has prop-
erty P if and only if Rm has property P for all maximal ideals m of R. We will not
introduce terminology for this, but watch for it in the upcoming results.

First of all, for an R-module, being zero is a local property.

Proposition 7.14. For an R-module M , the following are equivalent:

(i) M � 0.
(ii) Mp � 0 for all primes p of R.
(iii) Mm � 0 for all maximal ideals m of R.

Proof. Clearly (i) ùñ (ii) ùñ (iii), so asume that Mm � 0 for all maximal
ideals m of R. Suppose there exists 0 � x P M , and let I be the annihilator of x,
so that I is a proper ideal of R and thus contained in some maximal ideal m. Then
x is not killed by any element of the multiplicative subset Rzm and therefore maps
to a nonzero element of Mm: contradiction. □

Exercise 7.21. Let M be an R-module, and let N1, N2 be R-submodules of M .

a) Show: the following are equivalent:
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(i) We have N1 � N2.
(ii) For all p P SpecR, we have pN1qp � pN2qp.
(iii) For all m P MaxSpecR, we have pN1qm � pN2qm.
(Hint: N1 � N2 if and only if pN1 �N2q{N2 � 0.)

b) Show: the following are equivalent:
(i) We have N1 � N2.
(ii) For all p P SpecR, we have pN1qp � pN2qp.
(iii) For all m P MaxSpecR, we have pN1qm � pN2qm.

Proposition 7.15. Let f :M Ñ N be an R-module homomorphism.

a) The following are equivalent:
(i) f is injective.
(ii) For all prime ideals p of R, fp :Mp Ñ Np is injective.
(iii) For all maximal ideals m of R, fm :Mm Ñ Nm is injective.

b) Part a) holds with “injective” replaced everywhere by “surjective”, and
thus also if “injective” is replaced everywhere by “is an isomorphism.”

Proof. a) (i) ùñ (ii) by the exactness of localization, and obviously (ii)
ùñ (iii). Assume (iii), and let M 1 � Kerpfq. Then 0 Ñ M 1 Ñ M Ñ N is exact,
hence for all m we have 0 Ñ M 1

m Ñ Mm Ñ Nm is exact. So, by our assumption,
M 1

m � 0 for all maximal ideals m, and thus by Proposition 7.14 we have M 1 � 0.
The proof of part b) is virtually identical and left to the reader. □

Warning: Proposition 7.15 does not say: if M and N are R-modules such that
Mp � Np as Rp modules for all p P SpecR, then M � N . This is being asserted
only when there is a map f : M Ñ N inducing all the isomorphisms between
localized modules.

Exercise 7.22. Exhibit finitely generated R-modules M and N which are “lo-
cally isomorphic” – i.e., Mp � Np for all p P SpecR – but are not isomorphic.5

Corollary 7.16. Let R be a domain with fraction field K. Then we have£
mPMaxSpecR

Rm � R.

Proof. Certainly R ãÑ �mPMaxSpecRRm. Conversely, if x P KzR then

I :� pR : Rxq
is a proper ideal, hence contained in some maximal ideal m. Because Rx is a finitely
generated R-module, by Proposition 7.13 we have

pRm : Rmxq � Im � Rm.

Thus x R Rm. □

Let R be a domain with fraction field K, and let V be a finite-dimensional K-vector
space. An R-lattice in V is a finitely generated R-submodule Λ of V such that
xΛyK � V . Since K is a torsionfree R-module, every R-lattice in K is a finitely
generated, torsionfree R-module. Convesrsely, if Λ is a finitely generated torsionfree
R-module, let V :� Λ bR K. Then by Exercise 3.46 the natural R-module map
Λ ãÑ Λ bR K is injective and makes Λ into an R-lattice in the finite-dimensional

5In mantra form: “being isomorphic” is not a local property, but “being an isomorphism” is.
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K-vector space ΛbRK. Such lattices are ubiquitous in algebra and number theory.
Corollary 7.16 extends to a local-global principle for lattices.

Theorem 7.17. Let R be a domain with fraction field K, let V be a finite-
dimensional K-vector space, and let Λ be a finitely generated R-submodule of K.
Then, inside V we have £

mPMaxSpecR

Λm � Λ.

Proof. Put L :� �mPMaxSpecR Λm. Clearly Λ ãÑ L. Seeking a contradiction,

suppose there is x P LzΛ, and put Λ̃ � xΛ, xy. Then
I :� pΛ : Λ̃q

is a proper ideal of R, hence contained in a maximal ideal m. Since Λ is finitely
generated, so is Λ̃, so by Proposition 7.13 we have

pΛm : Λ̃mq � Im � Rm.

It follows that Λ̃m � xΛ, xyRm
� Λm so x R Λm, hence x R L: contradiction. □

We give an application in the theory of stably free modules.

Proposition 7.18. A stably free module of rank one is free.

Proof. The natural proof uses exterior products of modules, which we have
unfortunately not defined in these notes. For the basics here see BOURBAKI or
[Ei, Appendix A2]. Especially, all the properties of exterior powers that we use
appear in [Ei, Prop. A2.2].

Now suppose P is such that P ` Rn�1 � Rn. Taking top exterior powers we
get

R �
n©
Rn �

n©
pP `Rn�1q � à

i�j�n

i©
P b

j©
Rn�1

�M `
�

2©
M b

n�2©
Rn�1

�
` . . . .

For any p P SpecR, Mp is free of rank one over Rp. Thus
�i

Mp � p
�i

Mqp � 0

for all i ¥ 2. By Proposition 7.14,
�i

M � 0 for all i ¥ 2, so R �M . □

One of the most important local properties of an R-module M is the condition
of being locally free: for all p P SpecM , Mp is free. We had better repeat the
previous warning in this special case: some people say that M is locally free if and
only if for all p P SpecR there is f P Rzp such that Mf is free. This is in general a
stronger property, which we call Z-locally free.

In light of the fact the being projective is a localizable property, Theorem 3.76
can be rephrased as follows.

Theorem 7.19. (Kaplansky) A projective module is locally free.

From our study of vector bundles it is natural to wonder about the converse: must
a finitely generated locally free module be projective? In complete generality the
answer is negative (we will meet counterexamples later on), but morally it is right:
cf. Theorem 7.30.
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7.1. Rank Functions.

Let M be a finitely generated module. There is an associated rank function
rankM : SpecRÑ N, given by

rankM ppq � dimkppqM b kppq.
Here kppq is the fraction field of the domain R{p, and sinceM is a finitely generated
R-module, M b kppq is a finite-dimensional kppq-vector space.

Exercise 7.23.

a) Show: for finitely generated R-modules M and N , we have

rankM`N � rankM � rankN

and
rankMbRN � rankM � rankN .

b) Compute the rank function on the Z-module Z{nZ.
c) Compute the rank function on any finitely generated module over a PID.

Exercise 7.24. Let M be a finitely generated R-module.

a) Show: if M is locally free, then for all p P SpecR, Mp � R
rankM ppq
p .

b) Suppose M is stably free of rank n: i.e., there are m,n P N such that
M `Rm � Rm�n. Show: for all p P SpecR, we have rankM ppq � n.

We will mostly be interested in the rank function on a finitely generated projective
module. As in §6, we view a finitely generated projective module as being anal-
ogous to a vector bundle, and then the rank at p plays the role of the dimension
of the fiber at p. In the case of a vector bundle on a topological space X, the
rank function is locally constant, hence constant if X is connected. Once we study
the Zariski topology on SpecR in earnest, we can and will prove the analogous
statement: the rank function on a finitely generated projective moduleM is locally
constant. Its failure to be constant is somehow the coarsest possible obstruction to
M being free: if the rank function is not constant, then M cannot even be stably

free: equivalently, its class in the reduced K-group �K0pRq is nontrivial.

Here is a (not so deep) criterion for a projective module to be free.

Proposition 7.20. Let M be a projective R-module of constant rank n. Then
M is free if and only if M can be generated by n elements.

Proof. If M is free then M � Rn. Conversely, that M can be generated by n
elements means there is a surjective R-module map φ : Rn Ñ M . Let K � kerφ;
since M is projective, we have

Rn � K `M.

Thus K is also finitely generated projective, so for all p P SpecR we have

Rnp � Kp `Mp

with Kp � R
rppq
p and Mp � Rnp . It follows (by tensoring to kppq) that Kp � 0.

Being zero is a local property, so K � 0 and φ : Rn ÑM is an isomorphism. □

We can now give a situation in which our coarsest possible obstruction to freeness
is the only one.
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Lemma 7.21. Let M be a finitely generated projective R-module, and let I be
an ideal contained in the Jacobson radical. If M{IM is free, then so is M .

Proof. IfM{IM � pR{Iqn, then by Nakayama’s Lemma n is the least number
of generators of M . Moreover, for all m P MaxSpecR, since the map M ÑM{mM
factors through M{IM we have rankM pmq � n. Now observe that if p1 � p2 P
SpecR, then

R
rkM pp1q
p1

�Mp1
�Mp2

bRp2
Rp1

� R
rkM pp2q
p2

bRp2
Rp1

� R
rkM pp2q
p1

,

so rkM pp1q � rkM pp2q. It follows thatM has constant rank n and can be generated
by n elements, so by Proposition 7.20 we have that M is free. □

Exercise 7.25. Let I � JpRq be an ideal of R. Let P1, P2 be two finitely
generated projective R-modules. Show: if P1{IP1 �R{I P2{IP2 then P1 � P2.

(Hint: use the projectivity of P1 to factor the map P1 Ñ P1{IP1
�Ñ P2{IP2 through

P2.)

Corollary 7.22. Let R be a semilocal ring (MaxSpecR is finite). Let M be a
finitely generated projective R-module. Then M is free if and only if it has constant
rank.

Proof. We know that free modules have constant rank. Conversely, suppose
M is projective of constant rank n, and let m1, . . . ,mN be the distinct maximal

ideals of R, so JpRq � �N
i�1 mi �

±N
i�1 mi. By the Chinese Remainder Theorem

for modules we have

M{JpRq �
N¹
i�1

M{miM.

Since M has constant rank n, we have dimR{mi
MmiM � n for all i, so M{JpRqM

is a free R{JpRq-module of rank n. Apply Lemma 7.21. □

The topological analogue of Corollary 7.22 is, roughly, that a vector bundle on a
discrete space is trivial if and only if it has constant rank. (However that is a
triviality whereas Corollary 7.22 is actually rather useful.)

7.2. Local nature of flatness.

Proposition 7.23. For an R-module M , the following are equivalent:

(i) M is flat.
(ii) For all prime ideals p of R, the Rp-module Mp is flat.
(iii) For all maximal ideals m of R, the Rm-module Mm is flat.

Proof. (i) ùñ (ii) is a special case of Proposition 7.10; (ii) ùñ (iii) is
immediate. So assume (iii), and let N ãÑ P be any injective R-module homo-
morphism. Then, by exactness of localization, for all maximal ideals m we have
Nm ãÑ Pm. Since Mm is assumed to be flat, we have pN bR Mqm � Nm bRm

Mm ãÑ Pm bRm
Mm � pP bR Mqm. Applying Proposition 7.15 we conclude that

N bRM Ñ P bR P is injective, and therefore M is flat over R. □

Corollary 7.24. Let R be a ring, S � R a multiplicative subset. If M is a
flat R-module, then S�1M is a flat S�1R-module.

Proof. IfM is flat, so isMp for each prime ideal p ofM , but since the primes
of S�1R are a subset of the primes of R, this implies that S�1M is flat. □
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When a property P of rings or modules is not local, it is often of interest to study
also its “localized version”: we say that an R-module M is locally P if for all
prime ideals p of R, Mp has property p (and similarly for rings).

7.3. Absolute flatness revisited.

Lemma 7.25. Suppose an absolutely flat ring R is either local or a domain.
Then R is a field.

Proof. Suppose R is not a field, and let x P R be a nonzero, nonunit. Then
p0q � pxq � R. Proposition 3.103 gives R � pxq ` J : contradiction. □

Lemma 7.26. Let R be a ring.

a) If R is absolutely flat and S � R is any multiplicative subset, then S�1R
is absolutely flat.

b) The ring R is absolutely flat if and only if Rm is a field for all maximal
ideals m of R.

Proof. a) By Exercise 7.15 every S�1R-module is of the form S�1R bR M
for some R-module M . By hypothesis M is flat, so by Corollary 7.24, so is S�1M .
b) If R is absolutely flat, and m is a maximal ideal of R, then by part a) Rm is
absolutely flat. On the other hand it is a local ring, so by Lemma 7.25, Rm is a
field. Conversely, assume that each Rm is a field, and let M be an R-module. Then
for all m P MaxSpecR, Mm is a flat Rm-module, so M is a flat R-module. □

Theorem 7.27. For a ring R, the following are equivalent:

(i) The ring R{nilR is absolutely flat, i.e., every R{nilR-module is flat.
(ii) Every prime ideal of R is maximal.

‘

Proof. Since the prime ideals of R are the same as those of R{nilR, it is
equivalent to prove the following simpler assertion: if R is reduced, it is absolutely
flat if and only if every prime ideal of R is maximal. Suppose R is absolutely flat
and p P SpecR. Then R{p is an absolutely flat domain, hence a field by Lemma
7.25, hence p is maximal. Let m be a maximal ideal of R. Then Rm is a reduced
local ring, hence a field. By Lemma 7.26, R is absolutely flat. □

8. Local characterization of finitely generated projective modules

Let us call a family of tfiuiPI of elements of R a Z-family if xfiy � 1. Clearly for
every Z-family there is a finite subset J � I such that tfiuiPJ is also a Z-family.
(Later on, this trivial observation will be dressed up in rather fancy attire: this
gives the quasi-compactness of the Zariski topology on SpecR.)

A property P of rings or modules will be said to be Z-local if it holds over R
if and only if it holds over all Rfi for some Z-family tfiu of R.

Proposition 7.28.
Let u :M Ñ N be a homomorphism of R-modules, and let p P SpecR.

a) If N is finitely generated and up is surjective, there exists f P Rzp such
that uf :Mf Ñ Nf is surjective.

b) The surjectivity of u is a Z-local property.
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c) If M is finitely generated, N is finitely presented and up is an isomor-
phism, then there exists f P Rzp such that uf : Mf Ñ Nf is an isomor-
phism.

d) If M is finitely generated and N is finitely presented, then the bijectivity
of u is a Z-local property.

Proof. Write out the exact sequence

0Ñ keruÑM
uÑ N Ñ cokeruÑ 0.

By the flatness of localization, this sequence remains exact upon being tensored
with Rf for any f P R or with Rp for any p P R. It follows that passage to the
kernel and cokernel commutes with localization.
a) We’re assuming 0 � cokerpupq � pcokeruqp, i.e., for each x P cokeru there exists
fx P Rzp such that fxx � 0. Since cokeru is a quotient of the finitely generated
module N , it is finitely generated, say by x1, . . . , xn. Then f � fx1

� � � fxn
P Rzp is

such that f cokeru � 0, so 0 � pcokeruqf � cokerpuf q and uf is surjective.
b) It is clear that if u is surjective, then for any f P R, uf is surjective. Conversely,
let tfiuiPI be a Z-family such that ufi is surjective for all i. Then for any p P SpecR
there exists i P I such that fi P Rzp, so that up is a further localization of ufi and
thus the surjectivity of ufi implies that of up. By Proposition 7.15, u is surjective.
c) By part a), there exists f1 P Rzp such that cokeruf1 � 0, and thus we have an
exact sequence

0Ñ pkeruqf1 ÑMf1 Ñ Nf1 Ñ 0.

Since N is finitely presented over R, Nf1 is finitely presented over Rf1 and thus
pkeruqf1 is finitely generated. Arguing as in part b), we get f2 P Rzp such that

f1f2 keru � 0. Taking f � f1f2 we get uf :Mf
�Ñ Nf .

d) This is proved analogously to part b) and is left to the reader. □

Corollary 7.29. For a finitely presented R-moduleM , the following are equiv-
alent:

(i) There is a Z-family tfiuiPI of R such that for all i P I, Mfi is a free
Rfi-module.

(ii) M is locally free: for all p P SpecR, Mp is a free Rp-module.
(ii1) For every m P MaxSpecR, Mm is a free Rm-module.

Proof. (i) ùñ (ii): For each prime ideal p there exists at least one i such
that fi R p; equivalently, the multiplicative subset generated by fi is contained in
Rzp. Thus Mp �Mfi bRfi

Rp and since Mfi is free, so is Mp.

(ii) ùñ (i): It is enough to find for each prime ideal p an element fp P Rzp such
that Mfp is free: for if so, then tfpupPSpecR is a Z-family. Choose x1, . . . , xn P M
whose images in Mp give an Rp-basis, and define u : Rn Ñ M via ei ÞÑ xi. Then
up is an isomorphism, so by Proposition 7.28c) we may choose fp P Rzp such that
ufp is an isomorphism and thus Mfp is free.
(ii) ðñ (ii1): Since freeness is localizable, this follows from Exercise 7.21. □

Remark 6. (M. Brandenburg) The proof of (ii) ùñ (i) shows something a bit
stronger: if M is a finitely presented module over a ring R and for some p P SpecR
we have that Mp is free, then there is fp P R such that Mfp is free.

Exercise 7.26. For 1 ¤ i ¤ n, let Mi be a finitely generated proejctive Ri-
module. Show:

±n
i�1Mi is a finitely generated projective

±n
i�1Ri-module.
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We can now prove one of the major results of this text.

Theorem 7.30. For an R-module M , the following are equivalent:

(i) M is finitely generated and projective.
(ii) M is finitely presented and locally free.
(iii) For every maximal ideal m of R, there exists f P Rzm such that Mf is a

locally free Rf -module of finite rank.
(iv) There is a finite Z-family tf1, . . . , fnu of R such that xf1, . . . , fny � R and

for all i, Mfi is a finitely generated free Rfi-module.

Proof. (i) ùñ (ii): Let M be finitely generated and projective. There
exists a finitely generated free module F and a surjection q : F Ñ M . Since M is
projective, q splits and Kerpqq is not just a submodule of F but also a quotient and
thus finitely generated. So M is finitely presented. Since projectivity is preserved
by base change and any finitely generated projective module over a local ring is
free (Theorem 3.16), for all maximal ideals m of R, Mm is free.
(ii) ùñ (iii): this follows immediately from Corollary 7.29.
(iii) ùñ (iv): For each m P MaxSpecR, choose fm P Rzm such that Mfm is a
finitely generated free Rfm -module. Then tfmumPMaxSpecR is a Z-family of R, and
as remarked above, every Z-family contains a finite subfamily.
(iv) ùñ (i): Put S �±n

i�1Rfi and let f : RÑ S be the natural map.
Step 1: First note that

ker f �
n£
i�1

kerpRÑ Rfiq �
n£
i�1

annpfiq � f annxf1, . . . , fny � annR � 0,

so f is injective, and thus S is an extension ring of R.
Step 2: We claim f : R ãÑ S is a faithfully flat extension. Since localizations
are flat and direct sums of flat algebras are flat, S{R is a flat extension. So by
Theorem 3.111, it is enough to show that f� : SpecS Ñ SpecR is surjective. But
SpecS � ²n

i�1 SpecRfi and f�pSpecRfiq is the subset of p P SpecR such that
fi R p. Since tf1, . . . , fnu forms a Z-family, no proper ideal can contain all the fi’s,
and therefore p lies in at least one f�pSpecRfiq.
Step 3: We have a faithfully flat ring extension f : R ãÑ S and an R-moduleM such
that M bR S �

±n
i�1Mfi is a finitely generated projective S � ±n

i�1Rfi-module
(Exercise 7.26). By Theorem 3.114, M is finitely generated and projective! □

Corollary 7.31. Every finitely presented flat R-module is projective.

Proof. Let M be a finitely presented, flat R-module. For each maximal ideal
m of R, Mm is a finitely presented flat module over the local ring Rm, hence is free
by Theorem 3.54. Therefore by criterion (iii) of Theorem 7.30, M is projective. □

Corollary 7.32. Let R be a Noetherian ring, and letM be a finitely generated
R-module. The following are equivalent:

(i) M is projective.
(ii) M is locally free.
(iii) M is flat.

Exercise 7.27. Prove Corollary 7.32.

Theorem 7.33. For an R-module A, the following are equivalent:

(i) A is finitely generated projective.
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(ii) For all R-modules B, the natural map

Φ : A_ bR B Ñ HomRpA,Bq
induced by pf, bq ÞÑ pa ÞÑ fpaqbq is an isomorphism.

(iii) The map Φ : A_ bR AÑ HomRpA,Aq is an isomorphism.

Proof. (i) ùñ (ii): It is enough to show that for all p P SpecR, Φp is an
isomorphism. Since A is finitely generated projective, it is finitely presented; more-
over Rp is a flat R-module, so by Theorem 3.106 we have a canonical isomorphism
HomRpA,Nq bR Rp � HomRp

pAp, Npq. Also tensor products commute with base
change, so it is enough to show

Φp : A_p bRp
Bp Ñ HomRp

pAp, Bpq
is an isomorphism. Since A is finitely generated projective, Ap is finitely generated
and free. We are thus essentially reduced to a familiar fact from linear algebra,
namely the canonical isomorphism V _bW �Ñ HompV,W q for vector spaces over a
field, with V finite-dimensional. We leave the details to the reader as an exercise.
(ii) ùñ (iii): This is immediate.
(iii) ùñ (i): Let Φ�1p1Aq �

°m
i�1 fi b ai. Then we have that for all a P A,

a � °m
i�1 fipaqai. By the Dual Basis Lemma, A is finitely generated projective. □

We end by showing that without the Noetherian hypothesis, a finitely generated
locally free module need not be projective.

Proposition 7.34. For a ring R, the following are equivalent:

(i) R is absolutely flat.
(ii) Every R-module is locally free.

Proof. (i) ùñ (ii): By Lemma 7.26, for m P MaxSpecR, Rm is a field, so
every Rm-module is free. By Theorem 7.27 every prime ideal of R is maximal, so
every R-module is locally free.
(ii) ùñ (i): Applying Lemma 7.26 again, if R is not absolutely flat, there is
m P MaxSpecR such that Rm is not a field, and thus there exists a nonfree Rm-
module Mm. By Exercise 7.15 there is an R-module M such that M bR Rm �Mm

and thus M is not locally free. □

Exercise 7.28. (G. Elencwajg) Let R be a ring, and let I be an ideal of R.

a) Show: if R{I is a projective R-module, then I is principal.
b) Suppose that R is absolutely flat and not Noetherian (e.g. an infinite

product of fields) and that I is infinitely generated. Show: the R-module
R{I is finitely generated, flat, not projective, locally free and not Z-locally
free.





CHAPTER 8

Noetherian rings

We have already encountered the notion of a Noetherian ring, i.e., a ring in which
each ideal is finitely generated; or equivalently, a ring which satisfies the ascending
chain condition (ACC) on ideals. Our results so far have given little clue as to the
importance of this notion. But in fact, as Emmy Noether showed, consideration of
rings satisfying (ACC) is a major unifying force in commutative algebra.

In this section we begin to see why this is the case. After giving an introduc-
tory examination of chain conditions on rings and modules, we are able to make
the key definitions of height of a prime ideal and dimension of a ring. We begin
by giving a reasonably complete analysis of the structure theory of Artinian rings,
which, as we will show, really is our first order of business in attempting the sys-
tematic study of Noetherian rings, since according to the Akizuki-Hopkins theorem
the Artinian rings are precisely the Noetherian rings of dimension zero. We are
then able to state and prove three of the most important and useful theorems in
the entire subject. Whereas the first theorem, the Hilbert basis theorem, gives us
a large supply of Noetherian rings, the latter two theorems, Krull’s intersection
theorem and Krull’s principal ideal theorem, are basic results about the structure
theory of Noetherian rings.

1. Chain conditions on partially ordered sets

Proposition 8.1.
For a partially ordered set pS,¤q, the following are equivalent:

(i) The set S satisfies the Ascending Chain Condition (ACC): there is no
infinite sequence txiu8n�1 of elements of S with xn   xn�1 for all n P Z�.

(ii) Every nonempty subset T � S has a maximal element.

A partially ordered set satisfying these equivalent conditions is called Noetherian.

Proof. (i) ùñ (ii): Let T be a nonempty subset of S without a maximal
element. Since T is nonempty, choose x1 P T . Since T has no maximal elements,
choose x2 ¡ x1. Since T has no maximal elements, choose x3 ¡ x2. And so on: we
get an infinite strictly ascending chain in S.
(ii) ùñ (i): Indeed, an infinite strictly ascending chain is a nonempty subset
without a maximal element. □

Similarly, we say that a partially ordered set satisfies theDescending Chain Con-
dition (DCC) –if there is no infinite sequence tyju8j�1 of elements of S such that

yj ¡ yj�1 for all j P Z�. As above, this holds if and only if every nonempty subset
of S has a minimal element, and a partially ordered set satisfying these equivalent
conditions is called Artinian.

173
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Every partially ordered set pS,¤q has an order dual S_: the underlying set is
S, and we put x ¤_ y ðñ y ¤ x. Clearly S is Noetherian (resp. Artinian) if
and only if S_ is Artinian (resp. Noetherian). Thus at this level of abstraction we
really have one notion here, not two. Nevertheless in our applications to rings and
modules the two conditions remain quite distinct.

Examples: If S is finite it satisfies both ACC and DCC. With the usual order-
ings, the positive integers Z� satisfy DCC but not ACC, the negative integers Z�
(or equivalently, Z� with the opposite ordering) satisfy ACC but not DCC, and
the integers Z satisfy neither.

Exercise 8.1. Let S be a partially ordered set.

a) Show that S satisfies (ACC) (resp. (DCC)) if and only if there is no order
embedding Z� ãÑ S (resp. Z� ãÑ S).

b) Suppose S is totally ordered. Show that S satisfies (DCC) if and only if
it is well-ordered: i.e., every nonempty subset has a minimal element.

2. Chain conditions on modules

Let R be a ring, and M a (left) R-module. It makes sense to speak of the (ACC)
and (DCC) for R-submodules ofM . Indeed, we will callM a Noetherian module
if it satisfies (ACC) and an Artinian module if it satisfies (DCC).

Exercise 8.2. Show: an R-module M is Noetherian if and only if every R-
submodule M 1 of M is finitely generated.

Example 8.2. As a Z-module, the integers Z are Noetherian but not Artinian.

Example 8.3. As a Z-module, the group of all p-power roots of unity in the
complex numbers – in other words, limnÑ8 µpn – is Artinian but not Noetherian.

Every ring R is naturally an R-module, and the R-submodules of R are precisely the
ideals. Thus it makes sense to say whether R is a Noetherian or Artinian R-module,
and – thank goodness – this is visibly consistent with the previous terminology.

Exercise 8.3. Let M 1 �M be R-modules, and φ :M ÑM{M 1 be the quotient
map. If N1 and N2 are submodules of M such that N1 � N2, N1 XM 1 � N2 XM 1

and φpN1q � φpN2q, show that N1 � N2.

Theorem 8.4. Let 0 Ñ M 1 Ñ M Ñ M2 Ñ 0 be a short exact sequence of
R-modules. Then M is Noetherian (resp. Artinian) if and only if both M 1 and M2

are Noetherian (resp. Artinian).

Proof. We do the Noetherian case, leaving the similar Artinian case as an
exercise for the reader. First, since an infinite ascending chain in a submodule
or quotient module of M gives rise to an infinite ascending chain in M , if M is
Noetherian, both M 1 and M2 are. Conversely, suppose N1 � N2 � . . . is an
infinite ascending chain of submodules of M . Consider the chain pNi �M 1q{M 1 in
M2 � M{M 1. By hypothesis, this chain eventually stabilizes, i.e., for sufficiently
large i and j, Ni �M 1 � Nj �M 1. Similarly, by intersecting with M 1 we get that
for sufficiently large i and j NiXM 1 � NjXM 1. Applying Exercise 8.3 we conclude
Ni � Nj for all sufficiently large i, j. □
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A ring R is Noetherian if R is a Noetherian R-module. A ring R is Artinian if
R is an Artinian R-module.

Exercise 8.4. Let R be a ring.

a) Show: R is Noetherian if and only if every finitely generated R-module is
Noetherian.

b) Show: R is Artinian if and only if every finitely generated R-module is
Artinian.

c) Exhibit a ring R that is Noetherian but not Artinian.
d) Can you find a ring R which is Artinian but not Noetherian?1

3. Semisimple modules and rings

In this section we allow not necessarily commutative rings R. By a “module over
R” we mean a left R-module unless otherwise indicated.

A module M is simple if it is nonzero and has no proper, nonzero submodules.

This definition is of course made in analogy to that of a simple group, namely
a nontrivial group possessing no nontrivial proper normal subgroups. And indeed
many of the results in this and subsequent sections were first proved in the context
of groups. It is even possible to work in a single context that simultaneously gen-
eralizes the case of groups and modules (over a not necessarily commutative ring),
the key concept being that of groups with operators. For more on this perspec-
tive we invite the reader to consult any sufficiently thick all-purpose graduate level
algebra text, the gold standard here being [J1], [J2].

Exercise 8.5. (Schur’s Lemma): Let M be a simple R-module. Show:
EndRpMq is a division ring.

Theorem 8.5. For an R-module M , the following are equivalent:

(i) M is a direct sum of simple submodules.
(ii) Every submodule of M is a direct summand.
(iii) M is a sum of simple submodules.

A modules satisfying these equivalent conditions is called semisimple.

Proof. (i) ùñ (ii): SupposeM �ÀiPI Si, with each Si a simple submodule.
For each J � I, put MJ �

À
iPJ Si. Now let N be an R-submodule of M . An easy

Zorn’s Lemma argument gives us a maximal subset J � I such that N XMJ � 0.
For i R J we have pMJ ` Siq X N � 0, so choose 0 � x � y � z, x P N , y P MJ ,
z P Si. Then z � x� y P pMj �Nq X Si, and if z � 0, then x � y P N XMj � 0,
contradiction. So pMJ `Nq X Si � 0. Since Si is simple, this forces Si �MJ `N .
It follows that M �MJ `N .
(ii) ùñ (i): First observe that the hypothesis on M necessarily passes to all
submodules of M . Next we claim that every nonzero submodule C �M contains
a simple module.

proof of claim: Choose 0 � c P C, and let D be a submodule of C which
is maximal with respect to not containing c. By the observation of the previous
paragraph, we may write C � D ` E. Then E is simple. Indeed, suppose not and

1More on this later!
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let 0 � F � E. Then E � F ` G so C � D ` F ` G. If both D ` F and D ` G
contained c, then c P pD ` F q X pD ` Gq � D, contradiction. So either D ` F
or D ` G is a strictly larger submodule of C than D which does not contain c,
contradiction. So E is simple, establishing our claim.

Now let N � M be maximal with respect to being a direct sum of simple
submodules, and write M � N ` C. If C � 0, then by the claim C contains a
nonzero simple submodule, contradicting the maximality of N . Thus C � 0 and
M is a direct sum of simple submodules.
(i) ùñ (iii) is immediate.
(iii) ùñ (i): as above, by Zorn’s Lemma there exists a submodule N ofM which is
maximal with respect to being a direct sum of simple submodules. We must show
N � M . If not, since M is assumed to be generated by its simple submodules,
there exists a simple submodule S � M which is not contained in N . But since S
is simple, it follows that S XN � 0 and thus N ` S is a strictly larger direct sum
of simple submodules: contradiction. □

Corollary 8.6. An R-module M has a unique maximal semisimple sub-
module, called the socle of M and written SocM . Thus M is semisimple iff
M � SocM .

Exercise 8.6. Prove Corollary 8.6.

Exercise 8.7. Let N P Z�. Compute the socle of the Z-module Z{NZ. Show
in particular that Z{NZ is semisimple if and only if N is squarefree.

A not-necessarily-commutative ring R is left semisimple if R is semisimple as a
left R-module.

Theorem 8.7. For a nonzero not necessarily commutative ring R, the following
are equivalent:

(i) R is left semisimple.
(ii) Every left ideal of R is a direct summand.
(iii) Every left ideal of R is an injective module.
(iv) All left R-modules are semisimple.
(v) All short exact sequences of left R-modules split.
(vi) All left R-modules are projective.
(vii) All left R-modules are injective.

Proof. We will show (i) ðñ (ii), (iv) ðñ (v) ðñ (vi) ðñ (vii) and
(ii) ùñ (vii) ùñ (iii) ùñ (ii), which suffices.
(i) ùñ (ii) follows immediately from Theorem 8.5.
(iv) ðñ (v) follows immediately from Theorem 8.5.
(v) ðñ (vi) and (v) ðñ (vii) are immediate from the definitions of projective
and injective modules.
(ii) ùñ (vii): Let I be a left ideal of R and f : I Ñ M an R-module map. By

hypothesis, there exists J such that I ` J � R, so f extends to F : R � I ` J
π1Ñ

I ÑM . By Baer’s Criterion, M is injective.
(vii) ùñ (iii) is immediate.
(iii) ùñ (ii) is immediate from the definition of injective modules. □

Lemma 8.8. Let R be a ring and tMjujPJ be an indexed family of nonzero
R-modules. The following are equivalent:
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(i) I is finite and each Mj is finitely generated.
(ii) M �ÀjPJMj is finitely generated.

Proof. (i) ùñ (ii) is left to the reader as an easy exercise.
(ii) ùñ (i): EachMj is isomorphic to a quotient ofM , so ifM is finitely generated,
so is Mj . Now let X � tx1, . . . , xnu be a finite generating set for M , and for each
1 ¤ 1 ¤ n, let xij be the j-component of xi, so xi �

°
jPJ xij . This sum is of

course finite, and therefore the set J 1 � J of indices j such that xij � 0 for some
1 ¤ i ¤ n is finite. It follows that xXy �ÀjPJ 1 Mj �M , contradiction. □

Lemma 8.9. Let R1, . . . , Rn be finitely many not necessarily commutative rings,
and put R �±n

i�1Ri. Then R is semisimple if and only if Riis semisimple for all
1 ¤ i ¤ n.

Exercise 8.8. Prove Lemma 8.9.

We now quote the following basic result from noncommutative algebra.

Theorem 8.10. (Wedderburn-Artin) For a ring R, the following are equiva-
lent:

(i) R is semisimple as a left R-module (left semisimple).
(ii) R is semisimple as a right R-module (right semisimple).
(iii) There are N,n1, . . . , nN P Z� and division rings D1, . . . , DN such that

R �
N¹
i�1

Mni
pDiq.

Combining Theorems 8.7 and 8.10 gives us a tremendous amount of information.
First of all, a ring is left semisimple iff it is right semisimple, so we may as well
speak of semisimple rings. A ring is semisimple if and only if it is absolutely
projective if and only if it is absolutely injective.

Coming back to the commutative case, the Wedderburn-Artin theorem tells us
that the class of semisimple / absolutely projective / absolutely injective rings is
extremely restricted.

Corollary 8.11. A commutative ring is semisimple if and only if it is a finite
product of fields.

However it is significantly easier to give a proof of Wedderburn-Artin in the com-
mutative case, so we will give a direct proof of Corollary 8.11

Proof. Step -1: Officially speaking the theorem holds for the zero ring because
it is an empty product of fields. In any event, we may and shall assume henceforth
that our semisimple ring is nonzero.
Step 0: A field is a semisimple ring: e.g. every module over a field is free, hence
projective. By Lemma 8.9, a finite direct product of fields is therefore semisimple.
Step 1: Let R be a semisimple ring, and let R �ÀiPIMi be a direct sum decompo-
sition into simple R-modules. R is a finitely generated R-module, by Lemma 8.8 I
is finite, and we may identify it with t1, . . . , nu for some n P Z�: R �M1`. . .`Mn.
Step 2: We may uniquely write 1 � e1 � . . .� en with ei PMi. Then for all i � j,
eiej � 0, and this together with the identity 1 � 1 � 1 implies that e2i � ei for all
i. As usual for idempotent decompositions, this expresses R as a direct product of
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the subrings Ri �Mi � eiR. Moreover, since Mi is a simple R-module, Ri has no
proper nonzero ideals, and thus it is a field, say ki. □

Exercise 8.9. Exhibit an absolutely flat commutative ring that is not semisim-
ple.

4. Normal Series

If M is an R-module a normal series is a finite ascending chain of R-submodules
0 � M0 � M1 � . . . � Mn � M . We say that n is the length of the series. (The
terminology is borrowed from group theory, in which one wants a finite ascending
chain of subgroups with each normal in the next. Of course there is no notion of
“normal submodule”, but we keep the group-theoretic terminology.)

There is an evident partial ordering on the set of normal series of a fixed R-module
M : one normal series tMiuni�0 is less than another normal series tM 1

jun
1

j�0 if for all

1 ¤ i ¤ n, Mi is equal to M
1
j for some (necessarily unique) j. Rather than saying

that tMiu ¤ tM 1
ju, it is traditional to say that the larger series tM 1

ju refines the
smaller series tMiu.

Given any normal series tMiu we may form the associated factor sequenceM1{M0 �
M1,M2{M1, . . . ,Mn{Mn�1 � M{Mn�1. Two normal series tMiuni�0, tM 1

jun
1

j�0 are

equivalent if n � n1 and there is a permutation σ of t1, . . . , nu such that for all
1 ¤ i ¤ n, the factorsMi{Mi�1 andM 1

σpiq{M 1
σpiq�1 are isomorphic. In other words,

if we think of the factor sequence of a normal series as a multiset of isomorphism
classes of modules, then two normal series are equivalent if the associated multisets
of factors are equal.

Exercise 8.10. Show: refinement descends to a partial ordering on equivalence
classes of normal series of a fixed R-module M .

The following theorem is the basic result in this area.

Theorem 8.12. (Schreier Refinement) For any R-module M , the partially or-
dered set of equivalence classes of normal series of submodules of M is directed:
that is, any two normal series admit equivalent refinements.

Proof. For the proof in a context that simultaneously generalizes that of
modules and groups, see e.g. [J2, §3.3]. □

For an R-module M , a composition series is a maximal element in the partially
ordered set of normal series: that is, a composition series which admits no proper
refinement.

Exercise 8.11. Show: a normal series tMiuni�0 for an R-module M is a com-
position series if and only if for all 1 ¤ i ¤ n, the factor module Mi{Mi�1 is
simple.

Theorem 8.13. (Jordan-Hölder) Let M be an R-module. Then any two com-
position series for M are equivalent: up to a permutation, their associated factor
series are term-by-term isomorphic.
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Proof. This is an immediate consequence of Schreier Refinement: any two
normal series admit equivalent refinements, but no composition series admits a
proper refinement, so any two composition series must already be equivalent. □

Thus for a moduleM which admits a composition series, we may define the length
ℓpMq of M to be the length of any composition series. One also speaks of the
Jordan-Hölder factors of M or the composition factors of M, i.e., the unique
multiset of isomorphism classes of simple R-modules which must appear as the suc-
cessive quotients of any composition series for M .

If a module does not admit a composition series, we say that it has infinite length.

And now a basic question: which R-modules admit a composition series?

Exercise 8.12. Let M be an R-module.

a) Suppose M is finite: recall that for us this mean that the underlying set of
M is finite (which is much stronger than being finitely generated). Show:
M admits a composition series.

b) Show: if M admits a composition series, then M is finitely generated.
c) Let R � Z. Show: M admits a composition series and only if M is finite.
d) Let R � k be a field. Show: M admits a composition series if and only if

M is finitely generated (in other words, finite-dimensional).

Exercise 8.13. Show: an R-module M admits a composition series if and only
if there is L P Z� such that every normal series in M has length at most L. (Hint:
use Schreier Refinement.)

Theorem 8.14. Show: for an R-module M , the following are equivalent:

(i) M is both Noetherian and Artinian.
(ii) M admits a composition series.

Proof. Assume (i). Since M satisfies (DCC), there is a minimal nonzero
submodule, say M1. If M1 is a maximal proper submodule, we have a composition
series. Otherwise among all proper R-submodules strictly containingM1, by (DCC)
we can choose a minimal one M2. We continue in this way: since M also satisfies
(ACC) the process must eventually terminate, yielding a composition series.

(ii) ùñ (i): This follows easily from Exercise 8.13. □

Exercise 8.14. Exercise 8.13 makes use of Schreier Refinement. Give a proof
that (ii) ùñ (i) in Theorem 8.14 that is independent of Schreier Refinement.
(Suggestion: try induction on the length of a composition series.)

Proposition 8.15. Let 0ÑM 1 ÑM ÑM2 Ñ 0 be a short exact sequence of
R-modules.

a) M admits a composition series if and only if both M 1 and M2 admit
composition series.

b) If M admits a composition series, then

ℓpMq � ℓpM 1q � ℓpM2q.
Exercise 8.15. Prove Proposition 8.15.
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Although it will not play a prominent role in our course, the length of an R-
module M is an extremely important invariant, especially in algebraic geometry:
it is is used, among other things, to keep track of intersection multiplicities and to
quantitatively measure the degree of singularity of a point.

5. The Krull-Schmidt Theorem

The material in this section follows [J2, §3.4] very closely. In particular, very ex-
ceptionally for us – but as in loc. cit. – in this section we work with left modules
over a possibly noncommutative ring R. The reason: not only does the desired
result carry over verbatim to the noncommutative case (this is not in itself a good
enough reason, as the same holds for a positive proportion of the results in these
notes) but the proof requires us to consider noncommutative rings!

A module M is decomposable if there are nonzero submodules M1,M2 � M
such that M �M1 `M2; otherwise M is indecomposable.

Theorem 8.16. (Krull-Schmidt) Let M be an R-module of finite length.

a) There are indecomposable submodulesM1, . . . ,Mm such thatM �Àm
i�1Mi.

b) If there are indecomposable submodules N1, . . . , Nn such thatM �Àn
i�1Ni,

then m � n and there exists a bijection σ of t1, . . . , nu such that for all i,
Mi � Nσpiq.

The Proof of Theorem 8.16a) is easy, and we give it now. If M is a finite length
module and we write M � M1 `M2 then 0   ℓpM1q, ℓpM2q   ℓpMq. Thus an
evident induction argument shows that any sequence of moves, each one of which
splits a direct summand of M into two nontrivial direct subsummands of M , must
terminate after finitely many steps, leaving us with a decomposition of M into a
finite direct sum of indecomposable submodules. □

As one might suspect, the second part of Theorem 8.16 concerning the unique-
ness of the indecomposable decomposition is more subtle. Indeed, before giving the
proof we need some preparatory considerations on endomorphism rings of modules.

Proposition 8.17. For an R-module M , the following are equivalent:

(i) M is decomposable.
(ii) The (possibly noncommutative, even if R is commutative) ring EndRpMq �

HomRpM,Mq has a nontrivial idempotent, i.e., an element e � 0, 1 with
e2 � e.

Exercise 8.16. Prove Proposition 8.17.

A not-necessarily-commutative ring R is local if the set of nonunits RzR� forms a
two-sided ideal of R.

Exercise 8.17. Let R be a local, not necessarily commutative ring.

a) Show: R � 0.
b) Show: R has no nontrivial idempotents.

An R-moduleM is strongly indecomposable if EndRpMq is local. Thus it follows
from Proposition 8.17 and Exercise 8.17 that a strongly indecomposable module is
indecomposable.
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Example 8.18. The Z-module Z is indecomposable: any two nonzero submod-
ules paq and pbq have a nontrivial intersection pabq. On the other hand EndZpZq � Z
is not a local ring, so Z is not strongly indecomposable.

Thus “strongly indecomposable” is, in general, a stronger concept than merely “in-
decomposable”. Notice though that the Krull-Schmidt theorem applies only to
finite length modules – equivalently to modules which are both Noetherian and
Artinian – and Z is not an Artinian Z-module. In fact, it shall turn out that any
finite length indecomposable module is strongly indecomposable, and this will be a
major step towards the proof of the Krull-Schmidt Theorem.

But we are not quite ready to prove this either! First some Fitting theory.

For an R-module M and f P EndRpMq, we put

f8pMq �
8£
n�1

fnpMq.

The set f8pMq is the intersection of a descending chain

M � fpMq � f2pMq � . . . � fnpMq � . . .

of submodules of M , and is thus an f -stable submodule of M . The restriction of f
to f8pMq is surjective. Moreover, if M is an Artinian module, there exists s P Z�
such that fspMq � fs�1pMq � . . ..

Exercise 8.18. Find a commutative ring R, an R-moduleM and f P EndRpMq
such that for no n P Z� is the submodule fnpMq f -stable.
Similarly, for M and f as above, we put

f�8p0q �
8¤
n�1

ker fn.

Here each ker fn is an f -stable submodule of M on which f is nilpotent. The set
f�8p0q is the union of an ascending chain of submodules

0 � ker f � ker f2 � . . . � ker fn � . . .

of M and is thus an f -stable submodule of M on which f acts as a nil endomor-
phism: i.e., every element of M is killed by some power of f . Moreover, if M is a
Noetherian module, there exists t P Z� such that ker f t � ker f t�1 � . . . and thus
f is a nilpotent endomorphism of f�8p0q.

Exercise 8.19. Find a commutative ring R, an R-moduleM and f P EndRpMq
such that f is not a nilpotent endomorphism of f�8p0q.

Theorem 8.19. (Fitting’s Lemma) Let M be a finite length module over the
not necessarily commutative ring R, and let f P EndRpMq.

a) There is a Fitting Decomposition

(17) M � f8pMq ` f�8p0q.
b) f |f8pMq is an isomorphism and f |f�8p0q is nilpotent.

Proof. Since M has finite length it is both Noetherian and Artinian. Thus
there exists r P Z� such that

frpMq � fr�1pMq � . . . � f8pMq
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and
ker fr � ker fr�1 � . . . � f�8p0q.

Let x P f8pMq X f�8p0q. Then there is y P M such that x � frpyq; moreover
0 � frpxq � f2rpyq. But f2rpyq � 0 implies x � frpyq � 0, so f8pMqXf�8p0q � 0.

Let x P M . Then frpxq P frpMq � f2rpMq, so there exists y P M with
frpxq � f2rpyq and thus frpx� frpyqq � 0. so

x � frpyq � px� frpyqq P f8pMq � f�8p0q,
completing the proof of part a). As for part b), we saw above that the restriction
of f to f8pMq is surjective. It must also be injective since every element of the
kernel lies in f�8p0q. Thus f |f8pMq is an isomorphism. Finally, as observed above,
since f�8p0q � ker fr, f |f�8p0q is nilpotent. □

Corollary 8.20. Let M be a finite length indecomposable R-module. Then
every f P EndRpMq is either an automorphism or nilpotent. MoreoverM is strongly
indecomposable.

Proof. Since M is indecomposable, Fitting’s Lemma implies that for f P
EndRpMq we must have either M � f8pMq – in which case f is an automorphism
– or M � f�8p0q – in which case f is nilpotent. We must show that

I :� EndRpMqzEndRpMq�
is a two-sided ideal of EndRpMq. We observe that I consists precisely of the nilpo-
tent elements of EndRpMq.

For f P I and g P EndRpMq, since f is neither injective nor surjective, we have
gf is not injective and fg is not surjective, hence fg, gf P I.

Let f1, f2 P I, and seeking a contradiction we suppose that f1 � f2 R I, so
u :� f1 � f2 P EndRpMq�. For i � 1, 2, we put hi � fiu

�1
i , so h1 � h2 � 1. Then

h2 is non-invertible hence nilpotent: we have hn2 � 0 for some n P Z� and thus

p1� h2qp1� h2 � . . .� hn�1
2 q � 1 � p1� h2 � . . .� hn�1

2 qp1� h2q,
contradicting that h1 � 1� h2 P I □

Lemma 8.21. Let M be a nonzero R-module and N an indecomposable R-
module. Suppose we have homomorphisms f : M Ñ N, g : N Ñ M such that gf
is an automorphism of M . Then both f and g are isomorphisms.

Proof. Let h � pgfq�1, l � hg : N Ñ M and e � fl : N Ñ N . Then
lf � hgf � 1M and e2 � flfl � f1M l � fl � e. SinceM is indecomposable, either
e � 1 or e � 0, and the latter implies 1M � 12M � lf lf � lef � 0, i.e., M � 0. So
fl � e � 1N , so f is an isomorphism and thus so too is pfpgfq�1q�1 � g. □

Theorem 8.22. LetM � N be isomorphic modules, and letM �Àm
i�1Mi and

N �Àn
i�1N

1
i with each Mi strongly indecomposable and each Ni indecomposable.

Then m � n and there is a bijection σ of t1, . . . ,mu such that for all i, Mi � Nσpiq.

Proof. By induction on m: m � 1 is clear. Suppose the result holds for all
direct sums of fewer than m strongly indecomposable submodules.
Step 1: Let e1, . . . , em P EndRpMq and f1, . . . , fn P EndRpNq be the idempotent
elements corresponding to the given direct sum decompositions (i.e., projection

onto the corresponding factor). Let g :M
�Ñ N , and put

hj :� fjge1 P HomRpM,Nq, kj � e1g
�1fj P HomRpN,Mq, 1 ¤ j ¤ n.
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Then

ņ

j�1

kjhj �
¸
j

e1g
�1fjge1 � e1g

�1
¸
j

fjge1 � e1g
�11Nge1 � e1.

The restrictions of e1 and kjhj to M1 stabilize M1 so may be regarded as endomor-
phisms of M1, say e

1
1 and pkjhjq1, and we have

ņ

j�1

pkjhjq1 � e11 � 1M1
.

By assumption EndRM1 is local, so for at least one j, pkjhjq1 is a unit, i.e., an
automorphism of M1. By reordering the Nj ’s we may assume that j � 1, so
pk1h1q1 P AutRM1. We may regard the restriction h11 of h1 to M1 as a homomor-
phism fromM1 toN1 and similarly the restriction k11 of k1 toN1 as a homomorphism
from N1 to M1, and then k11h

1
1 � pk1h1q1 is an automorphism. By Lemma 8.21,

h11 � pf1ge11q :M1
�Ñ N1 and k11 � pe1g�1f1q1 : N1

�ÑM1.
Step 2: We claim that

(18) M � g�1pN1q `
mà
i�2

Mi.

To see this, let x P g�1N1 X p
Àm

i�2Miq, so x � g�1y for some y P N1. Because
x PÀm

i�2Mi, e1x � 0. Thus

0 � e1x � e1g
�1y � e1g

�1f1y � k1y � k11y.

Since k11 is an isomorphism, y � 0 and thus x � 0, so the sum in (18) is direct.
Now put M 1 � g�1pN1q `

Àm
i�2Mi, so we wish to show M 1 �M . Let x P g�1N1.

Then x, e2x, . . . , emx PM 1, so e1x � p1� e2 � . . .� emqx PM 1. So

M 1 � e1g
�1N1 � e1g

�1f1N1 � k1N1 � k11N1 �M1

and thus M 1 �Àm
i�1Mi �M .

Step 3: The isomorphism g : M
�Ñ N carries g�1N1 onto N1 hence induces an

isomorphism M
g�1N1

simÑ N{N1. Using Step 2, we have

nà
j�2

Ni � N

N1
� M

g�1N1
�

mà
i�2

Mi.

We are done by induction. □

Exercise 8.20. Please confirm that we have proved the Krull-Schmidt Theo-
rem!

Exercise 8.21. Let M and N be R-modules such that M �M � N �N .

a) If M and N are both of finite length, show that M � N .
b) Must we have M � N in general?

Part b) is far from easy! If you give up, see [Co64].
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6. Some important terminology

All we aspire to do in this section is to introduce some terminology, but it is so
important that we have isolated it for future reference.

Let R be a ring and p a prime ideal of R. The height of p is the supremum
of all lengths of finite chains of prime ideals of the form p0 � p1 � . . . � pn � p
(the length of the indicated chain being n; i.e., it is the number of �’s appearing,
which is one less than the number of elements). Thus the height is either a non-
negative integer or 8; the latter transpires if and only if there are arbitrarily long
finite chains of prime ideals descending from p (and of course, this need not imply
the existence of an infinite chain of prime ideals descending from p).

A prime ideal of height 0 is called a minimal prime. In a domain R, the unique
minimal prime is p0q, so the concept is of interest only for rings which are not
domains. If I is a proper ideal of R, we also speak of a minimal prime over I,
which means a prime p � I such that there is no prime ideal q with I � q � p.
Note that p is a minimal prime over I if and only if p is a minimal prime in the
quotient ring R{I. This remark simultaneously explains the terminology “minimal
over” and gives a hint why it is useful to study minimal prime ideals even if one is
ultimately most interested in domains.

The dimension of a ring R is the supremum of all the heights of its prime ideals.
The full proper name here is Krull dimension of R, which is of course useful
when one has other notions of dimension at hand. Such things certainly do exist
but will not be considered here. Moreover, as will shortly become apparent, the
need to include Krull’s name here so as to ensure that he gets proper recognition
for his seminal work in this area is less than pressing. Therefore we use the full
name “Krull dimension” only rarely as a sort of rhetorical flourish.

One also often speaks of the codimension of a prime ideal p of R, which is the
dimension of R minus the height of p. This is especially natural in applications
to algebraic geometry, of which the present notes allude to only in passing. Note
that this is not necessarily equal to the Krull dimension of R{p – or what is the
same as that, the maximal length of a finite chain of prime ideals ascending from p
– although in reasonable applications, and especially in geometry, one is certainly
entitled to hope (and often, to prove) that this is the case.

Remark: All of these definitions would make perfect sense for arbitrary partially
ordered sets and their elements, but the terminology is not completely consistent
with order theory. Namely, the height of an element in an arbitrary partially or-
dered set is defined as the supremum of lengths of chains descending from that
element, but the order theorists would cringe to hear the supremum of all heights
of elements called the “dimension” of the partially ordered set. They would call
that quantity the height of the partially ordered set, and would reserve dimension
for any of several more interesting invariants. (Roughly, the idea is that a chain
of any finite length is one-dimensional, whereas a product of d chains should have
dimension d.)
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7. Introducing Noetherian rings

The following is probably the most important single definition in all of ring theory.

A ring R is said to be Noetherian if the partially ordered set IpRq of all ideals of
R satisfies the ascending chain condition.

Theorem 8.23. A finitely generated module over a Noetherian ring is Noether-
ian.

Proof. If M is a finitely generated module over R, then we may represent it
as Rn{K for some submodule K of Rn. An immediate corollary of the preceding
theorem is that finite direct sums of Noetherian modules are Noetherian, and by
assumption R itself is a Noetherian R-module, hence so is Rn and hence so is the
quotient Rn{K �M . □

Thus so long as we restrict to Noetherian rings, submodules of finitely generated
modules remain finitely generated. This is extremely useful even in the case of
R � Z: a subgroup of a finitely generated commutative group remains finitely
generated. This does not hold for all noncommutative groups, e.g. not for a finitely
generated free group of rank greater than 1.

Theorem 8.24. (Characterization of Noetherian rings) For a ring R, the
following are equivalent:

(i) Every nonempty set of ideals of R has a maximal element.
(ii) There are no infinite ascending chains

I1 � I2 � . . . � In � . . .

of ideals of R.
(iii) Every ideal of R is finitely generated.
(iv) Every prime ideal of R is finitely generated.

Proof. (i) ðñ (ii) is a special case of Proposition 8.1.
(ii) ðñ (iii) is a special case of Exercise 8.2.
(iii) ðñ (iv) is Cohen’s Theorem (Theorem 4.25). □

Exercise 8.22. Suppose a ring R satisfies the ascending chain condition on
prime ideals. Must R be Noetherian?

Proposition 8.25. Let R be a Noetherian ring.

a) If I is an ideal of R, the quotient R{I is Noetherian.
b) If S � R is any multiplicative subset, the localization S�1R is Noetherian.

Proof. Any ideal of R{I is of the form J{I for some ideal J � I of R. By as-
sumption J is finitely generated, hence J{I is finitely generated, so R{I is Noether-
ian. A similar argument holds for the localization; details are left to the reader. □

Exercise 8.23. Let k be a field, let S be an infinite set, and put R �±sPS k,
i.e., the infinite product of #S copies of k. Show that R is not Noetherian, but the
localization Rp at each prime ideal is Noetherian.

Thus Noetherianity is a localizable property but not a local property.
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8. Theorems of Eakin-Nagata, Formanek and Jothilingam

In 1968, P.M. Eakin, Jr. [Ea68] and M. Nagata [Na68] independently showed that
if a ring R admits an extension ring S which is Noetherian and finitely generated
as an R-module, then R is Noetherian.

Several years later, E. Formanek [Fo73] gave a stronger result. His improve-
ment is a nice instance of the philosophy of “modulization”: where possible one
should replace theorems about rings with theorems about modules over rings. He
writes: “The object of this paper is to present a simple and elementary proof of
the Eakin-Nagata theorem which generalizes the original version in a new direction.
The proof is essentially a contraction of Eakin’s proof as presented by Kaplansky in
[K, Exc. 14-15, p. 54] based on the observation that much of the proof disappears
if one is not ‘handicapped’ by the hypothesis that T is a ring.”

More recently, P. Jothilingam [Jo00] gave a result which simultaneously gen-
eralizes Formanek’s Theorem and Cohen’s Theorem that a ring in which all prime
ideals are finitely generated is Noetherian. Finally(?), several years ago A. Naghipour
[Na05] found a significantly shorter, simpler proof of Jothilingam’s Theorem, which
we will present here. All in all, this provides a nice case study of how even very
basic results get improved and simplified as time passes.

Having told the story in correct chronological order, we now reverse it: we will
prove Jothilingam’s Theorem and swiftly deduce the earlier results as corollaries.
First a couple of easy preliminaries.

Lemma 8.26 (Kaplansky). For a ring R, the following are equivalent:

(i) R is Noetherian.
(ii) R admits a faithful Noetherian module.

Proof. (i) ùñ (ii): If R is Noetherian, then R is a faithful Noetherian R-
module.
(ii) ùñ (i): Let M be a faithful Noetherian R-module. In particular M is finitely
generated, say by x1, . . . , xn. Let φ : R Ñ Mn by r ÞÑ prx1, . . . , rxnq. Since
M is Noetherian, so is Mn, and since M is faithful, φ is injective, and thus R is
isomorphic to a submodule of a Noetherian module, hence Noetherian. □

Exercise 8.24.

a) Show: any ring R admits a Noetherian module.
b) Show: if M is a Noetherian R-module, then R{ annM is Noetherian.

Let M be an R-module. An R-submodule of M is extended if it is of the form
IM for some ideal I of R. This is a generalization of a previous use of the term:
if ι : R Ñ T is a map of rings, then the extended ideals of T are those of the form
ι�I � IT for an ideal I of R.

Proposition 8.27. For a finitely generated R-module M , let EM be the family
of extended submodules of M , partially ordered under inclusion. the following are
equivalent:

(i) EM is Noetherian: i.e., extended submodules satisfy (ACC).
(ii) Every extended submodule of M is finitely generated.

Proof.  (ii) ùñ  (i): Let I be an ideal of R such that IM is not
finitely generated. Let a1 P I. Then, since M is finitely generated, a1M is a
finitely generated submodule of IM , hence proper: there exists a2 P I such that
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a1M � xa1, a2yM . Again, xa1, a2yM is finitely generated, so is proper in IM .
Continuing in this way we get a sequence tanu8n�1 in I such that

a1M � xa1, a2yM � . . . � xa1, . . . , anyM � . . . ,

so EM is not Noetherian.
(ii) ùñ (i): Let I1M � I2M � . . . � InM � . . . be an ascending chain in EM .
Let N � °n InM and I � °n In, so N � IM P EM . By assumption, N is finite
generated, so there is n P Z� with N � I1M � . . .� InM . Since IkM � Ik�1M for
all k, N � InM and thus InM � In�kM for k P N: the chain stabilizes at n. □

Theorem 8.28 (Jothilingam). For a finitely generated R-module M , the fol-
lowing are equivalent:

(i) M is Noetherian.
(ii) For every prime ideal p of R, the submodule pM is finitely generated.

Proof. We follow [Na05].
(i) ùñ (ii): If M is Noetherian, then every submodule of M is finitely generated.
 (i) ùñ  (ii): Suppose M is not Noetherian: we will find a prime ideal p of R
such that pM is infinitely generated.
Step 0: Since the union of a chain of infinitely generated submodules of M is
an infinitely generated submodule of M , by Zorn’s Lemma there is a submodule
N �M maximal with respect to being infinitely generated.
Step 1: Let p � annpM{Nq � tx P R | xM � Nu. We will show that p is
a prime ideal: indeed, seeking a contradiction suppose there are a, b P Rzp such
that ab P p. Then N � aM,B � bM � N so are both finitely generated: write
N � aM � xn1 � am1, . . . , nℓ � amℓy with ni P N , mi PM . Put

L � tm PM : am P Nu;
then L is an R-submodule ofM containing N and bM and hence also N�bM � N ,
so L is finitely generated. We claim

N �
ℓ̧

i�1

Rni � aL.

If so, then N is finitely generated, a contradiction, and thus p is prime. Since

abM � N , we have
°ℓ
i�1Rni� aL � N . Conversely, let y P N . Since y P N � aM ,

there are b1, . . . , bℓ P R such that

y �
ℓ̧

i�1

bipni � amiq �
ℓ̧

i�1

bini � a
ℓ̧

i�1

bimi.

Thus

a
ℓ̧

i�1

bimi � y �
ℓ̧

i�1

bini P N,

so
°ℓ
i�1 bimi P L and y P °ℓ

i�1Rni � aL.
Step 2: For x P M , write x for the canonical image of x in M{N . Now we use
that M is finitely generated: write M � xx1, . . . , xnyR, so M{N � xx1, . . . , xnyR,
so p � �n

i�1 annRxi. Because p is prime, we must have p � annRxj for some j.
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Since N �Rxi � N , N �Rxi is finitely generated, say by y1 � r1xj , . . . , yk � rkxj ,
with yi P N , ri P R. Arguing as in Step 1 we get

N �
ķ

i�1

Ryi � pxj .

Since pM � N , we have

N �
ķ

i�1

Ryi � pxj �
ķ

i�1

Ryi � pM �
ķ

i�1

Ryi �N � N,

and thus

(19) N �
ķ

i�1

Ryi � pM.

Since N is infinitely generated, (19) implies pM is infinitely generated. □

Corollary 8.29. (Formanek’s Theorem) Let R be a ring, and let M �
xa1, . . . , any be a faithful finitely generated R-module. Suppose M satisfies (ACC)
on “extended submodules” – i.e., submodules of the form IM for I an ideal of R.
Then M is Noetherian, hence so is R.

Proof. By Proposition 8.27, all extended submodules are finitely generated,
hence a fortiori all submodules of the form pM for p P SpecR are finitely generated.
By Theorem 8.28, M is Noetherian, and then by Lemma 8.26, R is Noetherian. □

Corollary 8.30. (Eakin-Nagata Theorem) Let R � S be an ring extension,
with S finitely generated as an R-module. Then R is Noetherian if and only if S is
Noetherian.

Proof. ùñ If R is Noetherian, then S is a finitely generated module over
a Noetherian ring so S is a Noetherian R-module. That is, (ACC) holds on R-
submodules of S, hence a fortiori it holds on S-submodules of S.
ð Apply Formanek’s Theorem with M � S. □

Exercise 8.25. Investigate the possibility of proving Jothilingam’s Theorem
using the Prime Ideal Principle of §4.5.

9. The Bass-Papp Theorem

We now present a beautiful characterization of Noetherian rings in terms of proper-
ties of injective modules, due independently to Z. Papp [Pa59] and H. Bass [Ba59].

Theorem 8.31. (Bass-Papp) For a ring R, the following are equivalent:

(i) A direct limit of injective modules is injective.
(ii) A direct sum of injective modules is injective.
(iii) A countable direct sum of injective modules is injective.
(iv) R is Noetherian.

Proof.
(i) ùñ (ii): A direct sum is a kind of direct limit.
(ii) ùñ (iii) is immediate.
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(iii) ùñ (iv): Let I1 � I2 � . . . � In � . . . be an infinite ascending chain of ideals
of R, and let I � �n In. We define

E �
8à
n�1

EpR{Inq.

For n P Z�, let fn : I Ñ EpR{Inq be the composite map I Ñ R Ñ R{In Ñ
EpR{Inq. There is then a unique map

±
f : I Ñ ±8

n�1EpR{Inq. But indeed, for
each fixed x P I, x lies in In for sufficiently large n and thus fnpxq � 0. It follows
that

±
f actually lands in the direct sum, and we have thus defined a map

f : I Ñ E.

By hypothesis, E is a countable direct sum of injective modules and therefore
injective, so f extends to an R-module map with domain all of R and is thus of the
form fpxq � xfp1q � xe for some fixed e P E. Let N be sufficiently large so that
for n ¥ N , the nth component en of e is zero. Then for all x P I,

0 � xen � fnpxq � x� In P R{In,
and thus x P In. That is, for all n ¥ N , In � I.
(iv) ùñ (i): let tEαu be a directed system of injective modules with direct limit
E. For α ¤ β we denote the transition map from Eα to Eβ by ιαβ and the natural
map from Eα to E by ια. We will show E is injective by Baer’s Criterion (Theorem
3.22), so let I be any ideal of R and consider an R-module map f : I Ñ E. Since
R is Noetherian, I is finitely generated, and it follows that there exists an index
α such that fpIq � ιαpEαq. Let M be a finitely generated submodule of Eα such
that fpIq � ιαpMq. Consider the short exact sequence

0Ñ K ÑM
ιαÑ fpIq Ñ 0.

SinceM is finitely generated and R is Noetherian, K is finitely generated. Moreover
K maps to 0 in the direct limit, so there exists β ¥ α such that ιαβK � 0. Let
M 1 � ιαβM , so by construction

ιβ :M 1 �Ñ fpIq.
Taking g � ιβ |�1

M 1 � f we get a map g : I Ñ Eβ such that f � ιβ � g. Since Eβ is
injective, g extends to a map G : RÑ Eβ and thus F � ιβ �G extends f to R. □

10. Artinian rings: structure theory

A ring R which satisfies the descending chain condition (DCC) on ideals is called
Artinian (or sometimes, “an Artin ring”).

Exercise 8.26.

a) Show: a ring with only finitely many ideals is Artinian.
b) Show: the ring of integers Z is not Artinian.
c) Show: a quotient of an Artinian ring is Artinian.
d) Show: a localization of an Artinian ring is Artinian.

Obviously any finite ring has only finitely many ideals and is Artinian. It is not
difficult to give examples of infinite rings with finitely many ideals. For instance,
let k be a field and let 0 � f P krts. Then R � krts{pfq has only finitely many
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ideals. Indeed, if we factor f � fa11 � � � farr into irreducible factors, then the Chinese
Remainder Theorem gives

krts{pfq � krts{pfa11 q � . . .� krts{pfarr q.
Each factor ring krts{pfaii q is a local ring with maximal ideal pf1q, and the ideals
are precisely

p0q � pfiqai�1 � . . . � fi.

Since every ideal in a product is a direct sum of ideals of the factors, there are then
precisely

±r
i�1pai � 1q ideals of R.

A bit of reflection reveals that – notwithstanding their very similar definitions –
requiring (DCC) on ideals of a ring is considerably more restrictive than the (ACC)
condition. For instance:

Proposition 8.32. A domain R is Artinian if and only if it is a field.

Proof. Obviously a field satisfies (DCC) on ideals. Conversely, if R is a
domain and not a field, there exists a nonzero nonunit element a, and then we have
paq � pa2q � pa3q � . . .. Indeed, if pakq � palq, suppose k ¤ l and write l � k � n,
and then we have uak � akan for some u P A�, and then by cancellation we get
an � u, so an is unit and thus a is a unit, contradiction. □

The result collects several simple but important properties of Artinian rings.

Theorem 8.33. Let R be an Artinian ring.

a) R has dimension zero: prime ideals are maximal.
b) Therefore the Jacobson radical of R coincides with its nilradical.
c) The ring R has only finitely many maximal ideals, say m1, . . . ,mn.
d) Let N � �n

i�1 mi be the nilradical. Then it is a nilpotent ideal: there is
k P Z� such that N k � 0.

Proof. a) If p is a prime ideal of A, then A{p is an Artinian domain, which
by Proposition 8.32 is a field, so p is maximal.
b) The Jacobson radical is the intersection of all maximal ideals and the nilradical
is the intersection of all prime ideals. So their coincidence follows from part a).
c) Suppose mi is an infinite sequence of maximal ideals. Then

R � m1 � m1 Xm2 � � �
is an infinite descending chain. Indeed, equality at any step would mean mN�1 ��N
i�1 mi �

±N
i�1 mi, and then since mN�1 is prime it contains mi for some 1 ¤ i ¤

N , contradiction.
d) By DCC, it must be the case that there exists some k with N k � N k�n for all
n P Z�. Put I � N k. Suppose I � 0, and let Σ be the set of ideals J such that
IJ � 0. Evidently Σ � H, for I P Σ. By DCC we are entitled to a minimal element
J of Σ. There exists 0 � x P J such that xI � 0. For such an x, we have pxq P Σ
and by minimality we must have J � pxq. But pxIqI � xI � 0, so xI � pxq and
thus xI � pxq by minimality. So there exists y P I with xy � x and thus we have

(20) x � xy � xy2 � . . . � xyk � . . . .

But y P I � N , so y is nilpotent and (20) gives x � 0, a contradiction. □
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Lemma 8.34. Suppose that in a ring R there exists a finite sequence m1, . . . ,mn
of maximal ideals such that 0 � ±imi. Then R is Noetherian if and only if it is
Artinian.

Proof. Recall from §8.4 that an R-module M is Noetherian and Artinian if
and only if it has finite length. Consider

0 � m1 � � �mn � m1 � � �mn�1 � . . . � m1 � R.

For R to have finite length, it is necessary and sufficient that each quotient

Qi � m1 � � �mi�1{m1 � � �mi
be a finite length R-module. (Since we do not assume that the mi’s are distinct, it is
possible – and harmless – that some Qi’s may be zero.) But each Qi is canonically
a module over the field R{mi, i.e., a vector space, so it has finite length if and only
if it is finite-dimensional. So we win: R is Noetherian if and only if each Qi is if
and only if each Qi is finite-dimensional if and only if each Qi is Artinian if and
only if R is Artinian. □

Theorem 8.35. (Akizuki-Hopkins) For a ring R, the following are equivalent:

(i) R is Artinian.
(ii) R is Noetherian, and prime ideals are maximal.

Proof. (i) ùñ (ii): Suppose R is Artinian. By Theorem 8.33, prime ideals
in R are maximal, so it suffices to show that R is Noetherian. Let m1, . . . ,mn be
the distinct maximal ideals of R. For any k P Z� we have (using CRT)

±n
i�1 m

k
i �

p�n
i�1 miqk. Applying Theorem 8.33d), this shows that for sufficiently large k we

have
±n
i�1 m

k
i � 0. We can now apply Lemma 8.34 to conclude that R is Artinian.

(ii) ùñ (i): Suppose R is Noetherian and zero-dimensional. A bit later on
(sorry!) we will see that any Noetherian ring has only finitely many minimal prime
ideals (Theorem 10.14 and again in Corollary 13.21), so R has only finitely many
minimal prime ideals, each of which is maximal by zero-dimensionality. Therefore
N � �n

i�1 mi is the nilradical of a Noetherian ring, hence a nilpotent ideal by
Proposition 4.12. As above, we deduce that

±n
i�1 m

k
i � 0 for sufficiently large k.

By Lemma 8.34, R is Artinian. □

Exercise 8.27. Consider the ring R � Crx, ys{px2, xy, y2q � Crx, ys{I.
a) Show that dimCR � 3 and that a C-basis is given by 1� I, x� I, y � I.
b) Deduce: R is Artinian.
c) Show: the proper ideals of R are precisely the C-subspaces of xx�I, y�IyC.
d) Deduce: R has infinitely many ideals.2

Exercise 8.28. Let k be a field and A � krtxiu8i�1s a polynomial ring over k
in a countable infinite number of indeterminates. Let m � ptxiuq be the ideal of all
polynomials with zero constant term, and put R � A{m2. Show that R is a ring
with a unique prime ideal which is not Noetherian (so also not Artinian).

Exercise 8.29. Let n P Z�. Suppose R is a Noetherian domain with exactly
n prime ideals. Must R be Artinian?

2Indeed, the number of maximal ideals if c, the cardinality of the continuum. Replacing C
by an arbitrary field k, we find that for every infinite cardinal κ, there is an Artinian ring with κ

maximal ideals.
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Proposition 8.36. Let pR,mq be a Noetherian local ring.

a) Either:
(i) mk � mk�1 for all k P Z�, or
(ii) mk � 0 for some k.

b) Moreover, condition (ii) holds if and only if R is Artinian.

Proof. a) Suppose there exists k such that mk � mk�1. By Nakayama’s
Lemma, we have mk � 0. If p is any prime ideal of R, then mk � p, and taking
radicals we have m � p, so p � m and R is a Noetherian ring with a unique prime
ideal, hence an Artinian local ring. b) If R is Artinian, then (i) cannot hold, so (ii)
must hold. Conversely, if (ii) holds then m is a nil ideal, hence contained in the
intersection of all prime ideals of R, which implies that m is the only prime ideal
of R, and R is Artinian by the Akizuki-Hopkins theorem. □

Theorem 8.37. Let R be an Artinian ring.

a) There are n P Z� and local Artinian rings R1, . . . , Rn such that R �±n
i�1Ri.

b) Moreover, the decomposition is unique in the sense that if R � ±m
j�1 Sj

is another decomposition, then n � m and there exists a permutation σ of
t1, . . . , nu such that Ri � Sσpiq for all i.

Proof. a) Let pmiqni�1 be the distinct maximal ideals of R. We have seen that
there exists k P Z� such that

±n
i�1 m

k
i � 0. By Proposition 4.16, the ideals mki are

pairwise comaximal, so so
�
im

k
i �

±
im

k
i . Therefore by CRT the natural mapping

RÑ
n¹
i�1

R

mki

is an isomorphism. Each R
mk

i

is local Artinian, so this gives part a).

b) The proof requires primary decomposition, so must be deferred to §10.5. □

Exercise 8.30. Let R be an Artinian ring.

a) Show: every element of R is either a unit or a zero divisor.
b) Show: R is its own total fraction ring.

Exercise 8.31. Let R be a ring, and let JpRq be its Jacobson radical. The
following are equivalent:

(i) R is semilocal, i.e., MaxSpecR is finite.
(ii) The ring R{JpRq is a finite product of fields.
(iii) The ring R{JpRq has only finitely many ideals.
(iv) The ring R{JpRq is Artinian.

11. The Hilbert Basis Theorem

The following result shows in one fell swoop that the majority of the rings that one
encounters in classical algebraic geometry and number theory are Noetherian.

Theorem 8.38. (Hilbert Basis Theorem) If R is Noetherian, so is Rrts.
Proof. Seeking a contradiction, suppose J is an ideal of Rrts which is not

finitely generated. We inductively construct a sequence f0, f1, . . . , fn, . . . of ele-
ments of J and a sequence of ideals Jn � xf0, . . . , fny of Rrts as follows: f0 � 0,
and for all i P N, fi�1 is an element of minimal degree in JzJi. Thus for all positive
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integers i we have deg fi ¤ deg fi�1. Moreover, for all i P Z� let ai be the leading
coefficient of fi, and let I be the ideal xa1, a2, . . . , aN , . . .y of R. However, R is
Noetherian, so there exists N P Z� such that I � xa1, . . . , aN y. In particular, there
are u1, . . . , uN P R such that aN�1 � u1a1 � . . .� uNaN . Define

g �
Ņ

i�1

uifit
deg fN�1�deg fi .

Since g P JN and fN�1 P JzJN , we have fN�1 � g P JzJN . Moreover g and fN�1

have the same degree and the same leading term, so deg fN�1�g   deg fN�1, hence
fN�1 does not have minimal degree among polynomials in JzJN , contradiction. □

Exercise 8.32. Prove the converse of the Hilbert Basis Theorem: if R is a
ring such that either Rrts or Rrrtss is Noetherian, then R is Noetherian.

Corollary 8.39. A finitely generated algebra over a Noetherian ring is Noe-
therian.

Proof. LetR be Noetherian and S a finitely generatedR-algebra, S � Rrt1, . . . , tns{I
for some n P Z� and some ideal I. By induction on the Hilbert Basis Theorem, the
ring Rrt1, . . . , tns is Noetherian, hence so is its quotient ring S. □

Theorem 8.40. Let R be a ring, let P be a prime ideal of Rrrtss, and let p be
the set of constant coefficients of elements of P.

a) Suppose that for some k P N, p can be generated by k elements. Then P
can be generated by k�1 elements. Moreover, if t R P, P can be generated
by k elements.

b) If R is Noetherian, then so is Rrrtss.
Proof. Let q : Rrrtss Ñ Rrrtss{ptq � R be the quotient map, so p � q�P.

a) Suppose p � xa1, . . . , aky, and let I be the ideal xa1, . . . , ak, ty of Rrrtss.
Case 1: If t P P, we claim I � P, which suffices. That I � P is clear; conversely,
writing f � °8

n�0 ant
n P P as a0 � tpa1 � a2t� . . .q shows f P I.

Case 2: Suppose t R P. Let f1, . . . , fk P P with constant terms a1, . . . , ak, respec-
tively. We claim P � xf1, . . . , fky. To see this, let g1 �

°8
n�0 bnt

n P P. Since
b0 P p, there are r1,1, . . . , rk,1 P R with

b0 � r1,1a1 � . . .� rk,1ak,
and thus

g1 � pr1,1f1 � . . .� rk,1fkq � tg2

for some g2 P Rrrtss. Since P is prime, tg2 P P and t R P, we must have g2 P P.
Applying the above argument to g2 we find r1,2, . . . , rk,2 P R and g3 P P such that
g2�pr1,2f1� . . .�r1,kfkq � tg3. Continuing in this way, we generate, for 1 ¤ i ¤ k,
a power series hi �

°8
n�0 ri,nt

n, such that

g � h1f1 � . . .� hkfk,
establishing the claim.
b) If R is Noetherian, then by part a) every prime ideal of Rrrtss is finitely generated.
By Cohen’s Theorem (Theorem 4.25), Rrrtss is Noetherian. □

Exercise 8.33. Show: for a ring R, the following are equivalent:

(i) R is Noetherian.
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(ii) For all n ¥ 1, Rrt1, . . . , tns is Noetherian.
(iii) For all n ¥ 1, Rrrt1, . . . , tnss is Noetherian.

Exercise 8.34. Let k be a field, and consider the subring R � kry, xy, x2y, . . .s
of krx, ys. Show that R is not Noetherian.

Therefore, a subring of a Noetherian ring need not be Noetherian. Thinking that
this ought to be the case is one of the classic “rookie mistakes” in commutative
algebra. In general though, it is the exception rather than the rule that a nice
property of a ring R is inherited by all subrings of R, and one gets used to this.

12. Monomial Ideals

Let k be a field, and let R :� krt1, . . . , tN s.

Let MonpRq denote the set of monomials tn1
1 � � � tnN

N of R. There is a natural bi-
jection from MonpRq to the commutative monoid NN : tn1

1 � � � tnN

N ÞÑ pn1, . . . , nN q.
The set NN has a natural, product partial ordering, in which pm1, . . . ,mN q ¤
pn1, . . . , nN q if and only if mi ¤ ni for all 1 ¤ i ¤ N . This is a total ordering if
and only if N � 1. By transport of structure, we get a natural partial ordering on
MonpRq that is nothing else than the divisibility relation restricted to monomials.

For f P R, we define the support supppfq � MonpRq to be the set of mono-
mials appearing in f with nonzero coefficient. For an ideal I of R, let

MpIq :� MonpRq X I
be the set of monomials that lie in I. With respect to the aforementioned par-
tial ordering on MonpRq, the subset MpIq is an up-set: that is, for monomials
m1 ¤ m2, if m1 P MpIq, then also m2 P MpIq: this is just because if m1 ¤ m2

then m2 � m1f for some f P R.

An ideal I of R is a monomial ideal if it can be generated by monomials: that
is, if there is S � MonpRq such that I � xSy. Notice that by the Hilbert Basis
Theorem, I has a finite set of generators, but the definition of a monomial ideal
allows the set of monomial generators to be infinite, and it is not immediately clear
from the definition that a monomial ideal is always generated by a finite set of
monomials. But the following result implies that this is the case.

Proposition 8.41. Let I be a monomial ideal of R � krt1, . . . , tN s, and let
f P R. Then f P I if and only if m P I for each monomial m P supppfq.

Proof. If every monomial in the support of a polynomial f lies in any ideal
J of R, then evidently f lies in J . Conversely, suppose that f P I. Since I is a
monomial ideal there are m1, . . . ,mk PMpIq and g1, . . . , gk P R such that

f �
ķ

i�1

gimi.

We have

supppfq �
k¤
i�1

supppgimiq.

Because mi P MpIq, for all 1 ¤ i ¤ k and all u P supppgimiq we have mi ¤ u, so
u PMpIq. It follows that supppfq �MpIq, which is what we wanted to show. □
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Lemma 8.42. Let tmxuxPX be a set of monomials in R � krt1 . . . , tN s, and let
m be a monomial in R. Then m lies in I :� xmx | x P Xy if and only if mx | m for
some x P X.

Proof. Clearly if mx | m for some x P X, then m P I. Conversely, suppose
m P I. Then there are x1, . . . , xn P X and g1, . . . , gn P R such that m � g1mx1

�
. . .�gnmxn

. Multiplying out the right hand side, we see that every monomial term
that appears is divisible by some mxi , hence the same is true for the left hand side,
which is m. □

Exercise 8.35. Let I be an ideal of R � krt1, . . . , tN s with the property of
Proposition 8.41: for all f P R, we have f P I if and only if m P I for each
monomial m P supppfq. Show: I is a monomial ideal.

Exercise 8.36. Let I be a monomial ideal of R � krt1, . . . , tN s. Show: MpIq
is a k-basis for I.

Corollary 8.43. For a subset M � MonpRq, let
MÒ :� tu P MonpRq | m ¤ u for some m PMu;

this is the smallest up-set of MonpRq containing M . Then

MpxMyq �MÒ.

Proof. Since MpxMyq is an up-set in MonpRq containing M , it must also
contain MÒ. The proof of the converse is very similar to that of Proposition 8.41
indeed, let m be a monomial in xMy. We may write

m �
ķ

i�1

gimi

with m1, . . . ,k PM , which shows that tmu � supppmq �MÒ, so m PMÒ. □

For each element n � pn1, . . . , nN q P NN , the principal downset

nÓ :� tpm1, . . . ,mN q P NN | mi ¤ ni @1 ¤ i ¤ Nu
is finite: indeed, it has size

±N
i�1pni � 1q. In particular, the partially ordered set

NN is Artinian: that is, it has no infinite descending chains. For S � NN , let
minpSq be the set of minimal elements of S: i.e., elements that are not strictly
smaller than any other element of S.

Lemma 8.44. Let pX,¤q be an Artinian partially ordered set, and let S, T � X.

b) We have SÒ � pminSqÒ.
b) If SÒ � T Ò, then minpSq � minpT q.
c) We have minpSÒq � minpSq.

Proof. a) For subsets S � T � X of any partially ordered set, we have
SÒ � T Ò. If x P SÒ there is s P S with s ¤ x. Since X is Artinian, there is some
m P minpSq with m ¤ s. Then m ¤ x, so x P pminSqÒ.
b) By symmetry, it suffices to show that every s P minpSq is also a minimal element
of T . Since s P T Ò � pminT qÒ, there is t P minT with t ¤ s. Since T � SÒ there is
s1 P S with s1 ¤ t ¤ s. Since s P minpSq we have s1 � t � s and thus s P minT .
c) For instance, we can apply part b) with T � SÒ, since pSÒqÒ � SÒ. □
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Now let M � MonpRq, and let I :� xMy be the associated monomial ideal. If
M 1 is another set of monomial generators for I, then by Corollary 8.43 we have
MÒ � pM 1qÒ, so by Lemma 8.44 we have minpMq � minpM 1q and I � xminpMqy.
Thus every monomial ideal has a unique minimal set of monomial generators, which
is precisely the set of minimal elements of any monomial generating set. Moreover,
by the Hilbert Basis Theorem we have I � xf1, . . . , fky, so by Proposition 8.41, if

M 1 � �k
i�1 supppfiq, then M 1 � I and thus I � xM 1y. So as promised earlier,

every monomial ideal has a finite set of monomial generators that is easily deter-
mined from any finite set of generators: write out the monomials appearing in the
support of the generators in a finite list, and proceeding from left to right, cross
out monomials that are multiples of monomials appearing earlier in the list.

This discussion has an important purely order-theoretic consequence:

Corollary 8.45 (Dickson’s Lemma). Let N P Z�. Each subset of NN has
finitely many minimal elements.

Proof. Let S � NN , and let MS � MonpRq be the corresponding set of
monomials. As explained above, the set minpMSq is the unique, minimal set of
monomial generators for xMSy, and it is finite. Our canonical bijection between
NN and MonpRq identifies minpSq with minpMSq, so minpSq is finite. □

Exercise 8.37. A partially ordered set pX,¤q is a well partial ordering
if it is Artinian and has no infinite antichains: that is, for any infinite subset
Y � X there are elements y1, y2 P Y with y1   y2. Show that Dickson’s Lemma
is equivalent to the assertion that for all N P Z�, the product ordering on NN is a
well partial ordering.

We have made very little use of k being a field: indeed, Proposition 8.41 and
Corollary 8.43 manifestly hold verbatim with k any ring. In order to show that
the unique minimal monomial generating set of a monomial ideal was finite, we
appealed to the Hilbert Basis Theorem, for which k should be a Noetherian ring.
However, after applying this to the case of k a field we got Dickson’s Lemma, which
we can then turn around and apply to monomial ideals over any coefficient ring k to
see that the unique minimal monomial generating set of any monomial ideal is finite.

We will end our discussion of monomial ideals here: in fact it was included mostly
as another instance of the interaction between commutative algebra and order the-
ory. But it is no exaggeration to say that the importance of monomial ideals in
contemporary commutative algebra is such that one could write an entire book on
them. Indeed this has already been done at least twice: [HH] and [MRSW].

Exercise 8.38. Let k be a field, and let R � krt1, . . . , tN s.
a) Show that there is exactly one monomial ideal m P MaxSpecR.
b) Show that there are precisely 2N monomial ideals p P SpecR (and find

them all).

Exercise 8.39. Let k be a field, and let R � krt1, . . . , tN s. For a monomial
u � ta11 � � � tann , put radpuq :�±i|ai¡0 ti.

a) Show: for all u P MonpRq, we have radpuq � pradpuqq.
b) For any subset S � MonpRq, show: radxSy � xradpuq | u P Sy.
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c) Deduce: the radical of a monomial ideal is again a monomial ideal.
d) Deduce: there are only finitely many radical monomial ideals. Can you

determine the number in terms of N?

13. The Krull Intersection Theorem

13.1. Preliminaries on Graded Rings.

In the proof of the theorem of this section we will need a little fact about homoge-
neous polynomials. So here we discuss some rudiments of this theory by embedding
it into its natural context: graded rings. The notion of graded ring is of the utmost
importance in various applications of algebra, from algebraic geometry to algebraic
topology and beyond. It would certainly be nice to give a comprehensive exposition
of graded algebra but at the moment this is beyond the ambition of these notes, so
we content ourselves with the bare minimum needed for our work in the next section.

Let R be a ring, n P Z�, and denote by Rrts � Rrt1, . . . , tns the polynomial ring in
n indeterminates over R. For a polynomial P � P ptq in several variables, we have
the notion of the degree of P with respect to the variable ti: thinking of P as
an element of Rrt1, . . . , ti�1, ti�1, . . . , tnsrtis it is just the largest m such that the

coefficient of tmi is nonzero, as usual. For any monomial term cIt
i1
1 � � � tinn we define

the total degree to be d � i1 � . . .� in.

A nonzero polynomial P � °I cIt
i1
1 � � � tinn is homogeneous if all of its monomial

terms have the same total degree, and this common number is called the degree
of the homogeneous polynomial P . By convention the zero polynomial is re-
garded as being homogeneous total degree d for all d P N.

A general polynomial P P Rrts can be written as a sum of homogeneous poly-
nomials P � °8

d�0 Pdptq with each Pd homogeneous of degree d (and of course
Pd � 0 for all sufficiently large d). This sum is unique. One way to see this is
to establish the following more structural fact: for any d P N, let P rtsd be the
set of all polynomials which are homogeneous of degree d. Then each P rtsd is an
R-submodule of P rts and we have a direct sum decomposition

(21) P rts �
8à
d�0

P rtsd.

Moreover, for all d1, d2 P N we have

(22) P rtsd1 � P rtsd2 � P rtsd1�d2 .
In general, if R is a ring and S is an algebra admitting an R-module direct sum
decomposition S �À8

d�0 Sd satisfying Sd1 �Sd2 � Sd1�d2 , then we say that S is an
pNq-graded R-algebra. Taking R � Z we get the notion of a graded ring.

Exercise 8.40. Let S � À8
d�0 Sd be a graded R-algebra. Show: the R-

submodule S0 is in fact an R-algebra.

Let S �À8
d�0 Sd be a graded ring. We say that x P S is homogeneous of degree

d if x P Sd. An ideal I of S is homogeneous if it has a generating set I � xxiy
with each xi a homogeneous element.
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Exercise 8.41. Let S be a graded R-algebra and let I be a homogeneous ideal
of S. Show:

S{I �
8à
d�0

pSd � Iq{I

and thus S{I is a graded R-algebra.

Now back to the case of polynomial rings.

Lemma 8.46. Let S be a graded ring, let f1, . . . , fn be homogeneous elements
of S, and put I � xf1, . . . , fny. Let f P I be homogeneous. Then there are homoge-
neous elements g1, . . . , gn P R such that

f �
ņ

i�1

gifi

and for all 1 ¤ i ¤ n,
deg gi � deg f � deg fi.

Proof. Since f P I, there exist X1, . . . , Xn P S such that

f � X1f1 � . . .�Xnfn.

For each 1 ¤ i ¤ n, let Xi �
°
j xi,j with deg xi,j � j be the canonical decomposi-

tion of Xi into a sum of homogeneous elements: i.e., deg xi,j � j. Then

(23) f �
8̧

d�0

ņ

i�1

xi,d�deg fifi.

Since f is homogeneous of degree degpfq, only the d � degpfq in the right hand
side of (23) is nonzero, so

f �
ņ

i�1

xi,deg f�deg fifi. □

13.2. The Krull Intersection Theorem.

Theorem 8.47. Let R be a Noetherian ring, and I an ideal of R. Suppose
there is an element x of R such that x P �8

n�1 I
n. Then x P xI.

Proof. The following miraculously short proof is due to H. Perdry [Pe04].
Suppose I � xa1, . . . , ary. For each n ¥ 1, since x P In there is a homogeneous
degree n polynomial Pnpt1, . . . , trq P Rrt1, . . . , trs such that

x � Pnpa1, . . . , arq.
By the Hilbert Basis Theorem (Theorem 8.38), the ring Rrt1, . . . , trs is Noetherian.
Therefore, definining Jn � xP1, . . . , Pny, there exists N such that JN � JN�1. By
Lemma 8.46 we may write

PN�1 � QNP1 � . . .�Q1PN ,

with Qi homogeneous of degree i ¡ 0. Plugging in ti � ai for 1 ¤ i ¤ n, we get

x � PN�1pa1, . . . , arq � x pQ1pa1, . . . , arq � . . .�QN pa1, . . . , arqq .
Since each Qi is homogeneous of positive degree, we have Qipa1, . . . , arq P I. □

Corollary 8.48. Let I be an ideal in a Noetherian ring R. Suppose either
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(i) R is a domain and I is a proper ideal; or
(ii) I is contained in the Jacobson radical JpRq of R.

Then
�8
n�1 I

n � 0.

Proof. Either way, let x P �8
n�1 I

n and apply Theorem 8.47 to obtain an
element a P I such that x � xa. Thus pa � 1qx � 0. Under assumption (i), we
obtain either a � 1 – so I � R, contradicting the properness of I – or x � 0. Under
assumption (ii), a P JpRq implies a� 1 P R�, so that we may multiply through by
pa� 1q�1, again getting x � 0.F □

Exercise 8.42. (Suárez-Alvarez) Exhibit an ideal I in a Noetherian ring such
that

�8
n�1 I

n � t0u. (Hint: idempotents!)

Exercise 8.43. Let R be the ring of all C8 functions f : RÑ R.
Let m � tf P R | fp0q � 0u.

a) Show that m � xR is a maximal ideal of R.
b) Show that for all n P Z�, mn � tf P R | fp0q � f 1p0q � . . . � f pn�1qp0qu.
c) Deduce that

�8
n�1 m

n is the ideal of all smooth functions with identically

zero Taylor series expansion at x � 0. Conclude that
�8
n�1 m

n � 0.

d) Let fpxq � e
�1

x2 for x � 0 and 0 for x � 0. Show that f R fm.
e) Deduce: R is not Noetherian.

Exercise 8.44. Let R � �8
n�1 Crrt

1
n ss be the Puiseux series ring. Show that

R is a domain with a unique maximal ideal m and that for all n P Z�, mn � m.
Deduce from the Krull Intersection Theorem that R is not Noetherian.

The preceding exercise will become much more routine when we study valuation
rings in §17. In that language, one can show that if R is a valuation ring with
divisible value group, then pR,mq is a local domain and

�8
n�1 m

n � m.

Exercise 8.45 (Kearnes-Oman [KeOm10]). Let I be an ideal in a Noetherian
ring R, and suppose that either R is a domain and I is proper or I is contained in
the Jacobson radical of R. Show: #R ¤ p#R{Iqℵ0 .
(Suggestion: Show #

±8
n�1R{In ¤ p#R{Iqℵ0 and apply Krull Intersection.)

The following exercise was conveyed to me by J.H. Silverman.

Exercise 8.46. Let pR,mq be a local ring with residue field k � R{m. Let
n P Z� be indivisible by the characteristic of k (i.e., n � 1 is a unit in k), and let

µnpRq :� tx P R | xn � 1u
be the group of nth roots of unity in R.

a) Show:

µnpRq X p1�mq �
8£
k�1

ml.

(Hint: Let r P Z�, and let y P mr be such that p1 � yqn � 1. Show:
y P m2r.)

b) Deduce: if R is Noetherian, then µnpRq X p1�mq � t1u.
c) Exhibit a Noetherian local ring pR,mq of residue characteristic p ¡ 0 such

that µppRq X p1�mq � t1u.
d) (Open) Must we have µnpRq X p1�mq � t1u if R is not Noetherian?
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14. Krull’s Principal Ideal Theorem

Theorem 8.49. (The Principal Ideal Theorem, a.k.a. Krull’s Hauptidealsatz)
Let x be a nonunit in a Noetherian ring R, and let p be minimal among prime ideals
containing x. Then p has height at most one.

Remark: A prime p which is minimal among primes containing x will be called a
minimal prime over x. Note that an equivalent condition is that p is a minimal
prime in the quotient ring R{pxq. Note also that if x is nilpotent, every prime of p
contains x so the height of any minimal prime is 0.

Our strategy of proof follows Kaplansky, who follows D. Rees. We need a pre-
liminary result:

Lemma 8.50. Let u and y be nonzero elements in a domain R. Then:

a) The R-modules xu, yy{puq and xu2, uyy{pu2q are isomorphic.
b) If we assume further that for all t P R, tu2 P pyq implies tu P pyq, then

the R-modules puq{pu2q and xu2, yy{xu2, uyy are isomorphic.

Proof. a) The isomorphism is simply induced by multiplication by u.
b) The module puq{pu2q is cyclic with annihilator puq, and conversely any such
module is isomorphic to R{puq. Moreover M :� xu2, yy{xu2, uyy is also cyclic,
being generated simply by y. Certainly u annihilates M , so it suffices to show that
the annihilator is exactly puq. More concretely, given ky � au2 � buy, we must
deduce that k P puq. But we certainly have au2 P pyq, so by hypothesis au P pyq,
say au � cy. Then ky � cuy� buy. Since 0 � y in our domain R, we may cancel y
to get k � pc� bqu P puq. □

Proof of Krull’s Hauptidealsatz : Under the given hypotheses, assume for a contra-
diction that we have

p2 � p1 � p.

Note first that we can safely pass to the quotient R{p2 and thus assume that R is
a domain. Dually, it does not hurt any to localize at p. Therefore we may assume
that we have a Noetherian local domain R with maximal ideal m, an element x P m,
and a nonzero prime ideal, say p, with x P p � m, and our task is now to show
that this setup is impossible. Now for the clever part: let 0 � y be any element of
p, and for k P Z�, let Ik denote the ideal of all elements t with txk P pyq. Then
tIku8k�1 is an ascending chain of ideals in the Noetherian ring R so must stabilize,
say at k � n. In particular, tx2n P pyq implies txn P pyq. Putting u � xn, we have
tu2 P pyq implies ptuq P pyq.

Since m is a minimal prime over pxq, the quotient ring T � R{pu2q has exactly
one prime ideal, m, and is therefore, by the Akizuki-Hopkins Theorem, an Artinian
ring, so that any finitely generated T -module has finite length. In particular, M :�
xu, yy{pu2q, which can naturally be viewed as a T -module, has finite length, and
hence so does its T -submodule M 1 :� xu2, yy{pu2q. Put N � xu2, yyxu2, uyy. Then

ℓpM 1q � ℓpNq � ℓpxu2, uy{pu2qq � ℓppuq{pu2qq � ℓpxu, yy{puqq � ℓpMq;
in the second equality we have used Lemma 8.50. The only way that M could have
the same length as its submoduleM 1 is if xu, yy � xu2, yy, i.e., if there exist c, d P R
such that u � cu2 � dy, or up1 � cuq � �dy. Since u lies in the maximal ideal of
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the local ring R, 1� cu P R�, and thus u P pyq � p. But m is minimal over x and
hence, being prime, also minimal over u � xn, contradiction! □

Corollary 8.51. With hypotheses as in Theorem 8.49, suppose that x is not
a zero-divisor. Then any prime p which is minimal over x has height one.

Exercise 8.47. Use the Akizuki-Hopkins theorem and Proposition 8.36 to give
a proof of Corollary 8.51.

Again we need a small preliminary result.

Lemma 8.52. (Prime Avoidance) Let R be a ring, and I1, . . . , In, J be ideals
of R. Suppose that all but at most two of the Ii’s are prime and that J � �n

i�1 Ii.
Then J � Ii for some i.

Proof. We go by induction on n, the case n � 1 being trivial.
n � 2: Seeking a contradiction, suppose there is x1 P JzI2 and x2 P JzI1. Since
J � I1 Y I2 we must have x1 P I1 and x2 P I2. Then x1 � x2 P J � I1 Y I2.
If x1 � x2 P I1, then since x1 � x2, x1 P I1, so is x2, contradiction; whereas if
x1 � x2 P I2, then since x1 � x2, x2 P I1, so is x1.

3

n ¥ 3: We may suppose that In is prime and also that for all proper subsets
S � t1, . . . , nu, J � �iPS Ii; otherwise we would be done by induction. So for
1 ¤ i ¤ n, there is xi P Jz

�
j�i Ij , and then xi P Ii. Consider x � x1 � � �xn�1�xn.

Then x P J , so x P Ii for some i.
Case 1: x P In. Then since xn P In, x1 � xn�1 P In, and since In is prime xi P In
for some 1 ¤ i ¤ n� 1, contradiction.
Case 2: x P Ij for some 1 ¤ j ¤ n � 1. Then x1 � � �xn�1 P Ij , so xn P Ij ,
contradiction. □

Exercise 8.48. ([CDVM13, Prop. 2.2]) Let R be a UFD and not a field.
Suppose R� is finite. Show: R has infinitely many principal prime ideals.
(hint: Suppose R has finitely many principal nonzero principal prime ideals, say
pπ1q, . . . , pπnq. Let m P MaxSpecR. By choosing x P m and applying unique
factorization, show m � �n

i�1pπiq. Apply Prime Avoidance and then Theorem
4.24.)

We can now give a striking structural result about primes in a Noetherian ring.
First a piece of notation: for any elements x, y in a partially ordered set S we
define the “interval” px, yq to be the set of all z P S such that x   z   y. For prime
ideals p and q, we denote by pp, qq the set of all prime ideals P with p � P � q.

Corollary 8.53. Let p � q be prime ideals in a Noetherian ring R. Then the
interval pp, qq is either empty or infinite.

Proof. As usual, by correspondence we may pass to R{p and therefore assume
that p � 0. Suppose that for some n ¥ 1 we have p0, qq � tp1, . . . , pnu. By Prime
Avoidance (Lemma 8.52) we cannot then have q � �n

i�1 pi, so choose x P qz
�n
i�1 pi.

Then q is a prime of R, of height at least 2, which is minimal over pxq, contradicting
Theorem 8.49. □

In particular, if R is Noetherian and SpecR is finite, then dimR ¤ 1.

3In fact this works for any subgroups I1, I2, J of a group G with J � I1 Y I2.
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Theorem 8.54. (Generalized Principal Ideal Theorem) Let R be a Noetherian
ring, and let I � xa1, . . . , any be a proper ideal of R. Let p be a minimal element
of the set of all prime ideals containing I. Then p has height at most n.

Proof. As usual, we may localize at p and suppose that R is local with p as
its maximal ideal. Suppose to the contrary that there exists a chain p � p0 � p1 �
. . . � pn�1. Because R is Noetherian, we may arrange for pp1, pq � H. Because p
is minimal over I, I cannot be contained in p1; without loss of generality we may
suppose that a1 is not in p1. Put J :� xp1, a1y; then J strictly contains p1 so p is
the unique prime of R containing J . So the ring R{J is an Artin local ring, and
then by Proposition 8.36 for sufficiently large k we have pk � J . Then by taking t
to be sufficiently large we can write, for 2 ¤ i ¤ n,

ati � cia1 � bi, ci P R, bi P p1.
Put K � xb2, . . . , bny � p1. Since the height of p1 exceeds n� 1, by induction on n
we may assume that p1 properly contains a prime ideal Q which contains J . The
ideal Q1 :� xa1, Qy contains some power of each ai and therefore p is the unique
prime ideal containing Q1. So in the quotient R{Q, the prime p{Q is minimal over
the principal ideal Q1{Q. By Krull’s Hauptidealsatz (Theorem 8.49) p{Q has height
1. On the other hand, we have p{Q � p1{Q � 0, a contradiction. □

Thus every prime ideal in a Noetherian ring has finite height. More precisely:

Corollary 8.55. Let R be a Noetherian ring, and let p P SpecR be a non-
minimal prime ideal. Then the height of p is the least n P Z� such that there are
x1, . . . , xn P p such that p is a minimal prime over the ideal xx1, . . . , xny.

Proof. Let p have height m ¥ 1, and let n be the least positive integer such
that p is a minimal prime over an ideal with n generators. By Theorem 8.54 we have
m ¤ n. Conversely, we’ll show that n ¤ m by induction on m: suppose the claim
holds for every prime ideal in a Noetherian ring of height less than m. By Corollary
4.32b), the set of minimal primes of R is finite, so by Prime Avoidance (Lemma
8.52) there is x1 that lies in p and does not lie in any minimal prime of R, so any
prime ideal containing x1 has positive height, so any finite chain of prime ideals in
R with smallest element p can be extended in length by adjoining a minimal prime
contained in p (which exists by Proposition 4.26). It follows that the ideal p{xx1y of
R{xx1y has height at most m� 1. By induction, there are x2, . . . , xm P p{xx1y such
that p{xx1y is a minimal prime over xx2, . . . , xmy in R{xx1y. For 2 ¤ i ¤ m, lifting
each xj to xj P p, we get that p is a minimal prime over xx1, . . . , xmy in R. □

Suppose in particular that pR,mq is a Noetherian local ring of dimension n. By
Corollary ?? there are x1, . . . , xn P m such that radxx1, . . . , xny � m. (In the ter-
minology of Chapter 10, this means that the ideal xx1, . . . , xny is m-primary.) The
finite sequence x1, . . . , xn is then called a system of parameters of m.

An important special case of the Generalized Principal Ideal Theorem is that if
p is a height n prime in a Noetherian ring, then p requires at least n generators.
It is natural to ask about the converse, and this certainly need not be true. For
instance, we will see in §15.1 that a Noetherian domain is a UFD if and only if
every height one prime is principal – most Noetherian domains are not UFDs. It
is especially important to ask this question after localization: if pR,mq is a Noe-
therian local ring of dimension n, then there are x1, . . . , xn such that the radical of
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xx1, . . . , xny is m, but when can we find x1, . . . , xn such that xx1, . . . , xny � m? By
Nakayama’s Lemma, the minimal number of generators for m is

zpRq :� dimR{m m{m2,

so for a Noetherian local ring R we have

zpRq ¤ dimR

and are asking about equality. By definition, equality holds if R is a regular local
ring. Moreover, a Noetherian ring R is regular if for all m P MaxSpecR, the
localization Rm is a regular local ring. Regularity is a vitally important concept
in commutative algebra and algebraic geometry: it is perhaps the first example of
a purely algebraic concept that must be appreciated geometrically to be properly
understood, which makes it mostly out of scope of the present text.

However, let us at least discuss two important examples; we will quote some
later results in this text. Let k be a field. First consider the polynomial ring
Rn :� krt1, . . . , tns. Then every maximal ideal of Rn has height n (Theorem 14.31)
and can be generated by n elements (Theorem 12.21). In particular the ring Rn is
regular (with room to spare: in this ring, maximal ideals m are globally generated
by htm elements, whereas for regularity they only need to be locally generated by
htm elements). Also Rn is a UFD (§15.6), so every height one prime of Rn is
principal (Corollary 15.2a)). Thus if n ¤ 2 then indeed every prime ideal p of Rn
can be generated by htppq elements. The early algebraist F.S. Macaulay showed in
1916 that for all r P Z¥2 there is a height 2 prime ideal in Crt1, t2, t3s that needs
at least r generators. See [Ab73] for a modern take on this, with C replaced by
any algebraically closed field. I expect that for any field k and h, k, r P Z� with
2 ¤ h ¤ n � 1 there is a prime ideal p P krt1, . . . , tns of height h and needing at
least r generators: it would be nice to have a reference.

Now let n ¥ 2 and let f P krt1, . . . , tns be a polynomial of degree at least 2
having no constant and no linear term, and consider the ring Rf :� krt1, . . . , tns{pfq.
By Krull’s Hauptidealsatz, every minimal prime of Rf is a height one prime of
R � krt1, . . . , tns; since every maximal ideal of R has height n, every maximal
ideal of Rf has height n � 1 and thus Rf has dimension n � 1. The maximal
ideal m :� xt1, . . . , tny of R contains f , so m :� m � pfq is a maximal ideal of Rf .
Clearly it is still generated by the images of t1, . . . , tn, but we claim that even in
the localization pRf qm the maximal ideal mm requires n generators, so Rf is not
a regular ring. Again, by Nakayama the minimal number of generators of mm is
dimRf {m m{m2. We have Rf {m � R{m � k and f P m2, so the natural map

m{m2 Ñ m{m2

is a k-vector space isomorphism. It follows that the minimal number of generators
for mm is n, so pRf qm is not a regular local ring.

Exercise 8.49. Let R be a Noetherian ring.

a) Suppose R is semilocal. Show: dimR is finite.
b) Suppose R is local, with maximal ideal m. Show: dimR is the least n P N

such that that there are x1, . . . , xn with radxx1, . . . , xny � m.

Exercise 8.50. Let k be a field. Let R � krt1, . . . , tn, . . .s be a polynomial ring
over k in a countably infinite set of indeterminates. Find a prime ideal of R of
infinite height.
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However, it does not follow from Theorem 8.54 that a Notherian ring necessarily
has finite Krull dimension, and in fact this is false: the first counterexample was
constructed by Nagata in 1962.

15. The Dimension Theorem

Theorem 8.56. Let R be a ring.

a) Let M be a maximal ideal in Rrts, and suppose that its contraction m :�
M X R is maximal in R. Then M can be generated by m and by one
additional element f , which can be taken to be a monic polynomial which
maps modulo m to an irreducible polynomial in R{mrts.

b) If, moreover, we suppose that R{m is algebraically closed, then M �
xm, t� ay for some a P R.

Proof. a) Since M contains m, by correspondence M may be viewed as a
maximal ideal of Rrts{mRrts � pR{mqrts, a PID, so corresponds to an irreducible
polynomial f P R{mrts, which we may take to be monic. If f is any monic lift of f
to Rrts, then M � xm, fy. Part b) follows immediately from the observation that
an irreducible univariate polynomial over an algebraically closed field is linear. □

The following result covers the other extreme.

Theorem 8.57. Let R be a domain, with fraction field K. Let ι : Rrts Ñ Krts
be the natural inclusion. Then ι� and ι� induce mutually inverse bijections between
the set of prime ideals P of Rrts such that P XR � p0q and the set of prime ideals
of Krts. It follows that every nonzero prime ideal P of Rrts such that PcapR � p0q
has height one.

Proof. Let S :� R. The key observation is that S�1Rrts � Krts. A prime
ideal P of Rrts is disjoint from S if and only if P XR � p0q, so by Proposition 7.6
and Corollary 7.7, the maps ι� and ι� are mutually inverse bijections from the set
of P P SpecRrts such that PXR � p0q to the set of prime ideals of Krts. Moreover
the bijections ι� and ι� are height-preserving: they are order-preserving, and if P
is disjoint from S then so is every prime ideal contained in P. So the last statement
follows because in the PID Krts, every nonzero prime ideal has height one. □

Corollary 8.58. Let R be a domain, let I be an ideal of Rrts and let P be a
prime ideal of Rrts such that p0q � P � I. Then I XR � p0q.

Proof. Seeking a contradiction, suppose that I XR � p0q. Then I is disjoint
from R, so by Multiplicative Avoidance I is contained in a prime ideal Q that is
disjoint from R. Then Q � P � p0q shows that Q is a prime ideal of Rrts of height
at least two such that QXR � p0q, contradicting Theorem 8.57. □

Lemma 8.59. Let R be a ring, and let I1 � P � I2 be ideals of R with P a
prime ideal. Then I1 XR � I2 XR.

Proof. The conclusion certainly holds if I1 XR � P XR, so we may assume

p :� P XR � I1 XR P SpecR.
We may replace R by R{p and Rrts by Rrts{pRrts � pR{pqrts and thereby assume
that R is a domain and I1 XR � P XR � p0q. Corollary 8.58 applies to show that
I2 XR � p0q, so I1 XR � I2 XR. □
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Theorem 8.60 (Dimension Theorem). Let R be a ring of finite Krull dimension
d, and let n P Z�.

a) We have d� 1 ¤ dimRrts ¤ 2d� 1.
b) Suppose that R is Noetherian. Then

dimRrt1, . . . , tns � d� n.
c) Suppose that R is Noetherian. Then

dimRrrt1, . . . , tnss � d� n.
Proof. a) Since R has dimension d, there is a chain p0 � . . . � pd of prime

ideals in R. Since for every p P SpecR we have Rrts{pRrts � pR{pqrts, which is
a domain, also pRrts P SpecRrts. Since ppRrtsq X R � p, it follows that p0Rrts �
. . . � pdRrts is a chain of prime ideals in Rrts of length d. Moreover xpdRrts, ty is a
prime ideal of Rrts properly containing pdRrts, so dimRrts ¥ d� 1.

Now let P0 � P1 � . . . � Pr be a chain of prime ideals of Rrts of length r ¥ 1.
If r is even, then by Lemma 8.59, we have that

P0 XR � P2 XR � . . . � Pr XR
is a chain of prime ideals of R of length r

2 , so r ¤ 2d. Similarly, if r is odd then by
Lemma 8.59 we have that

P0 XR � P2 XR � . . . � Pr�1 XR
is a chain of prime ideals of R of length r�1

2 , so r ¤ 2d�1. Thus dimRrts ¤ 2d�1.
b) Suppose R is Noetherian. By induction and the Hilbert Basis Theorem it is
enough to show that dimRrts � d�1, and by part a) we know that dimRrts ¥ d�1.
Let P P SpecRrts. By Corollary 8.55 (note that we use here that R is Noetherian),
it is enough to show that P is minimal over an ideal I that can be generated by at
most d� 1 elements.

Let p :� P X R. Since p has height d1 ¤ d, by Corollary 8.55 there are
x1, . . . , xd1 P R such that p is a minimal prime over I :� xx1, . . . , xd1y.

Let P1 be a prime ideal of Rrts such that

IRrts � P1 � pRrts,
so P1 � P. Then I � P1 X R � P X R � p, so P1 X R � p and P1 � pRrts. Thus
pRrts is a minimal prime over IRrts. Since IRrts can be generated by d1 elements,
pRrts has height at most d1 ¤ d. Thus if pRrts � P, then P has height at most d.

Now suppose that pRrts � P, let f P PzpRrts, and let Q be a minimal prime
over IRrts � pfq � xa1, . . . , ad, fy that is contained in P. Since I � Q X R � p
and p is minimal over I, we have QXR � p and thus pRrts � Q. Indeed, because
f P QzpRrts we have pRrts � Q. Since

ppRrtsq XR � QXR � P XR,
Lemma 8.59 gives Q � P, and thus P is minimal over xa1, . . . , ad, fy so has height
at most d� 1.
c) Again, induction and the power series analogue of the Hilbert Basis Theorem
(Theorem 8.40b) reduces us to the case of n � 1. Let M P MaxSpecRrts. We claim
that t PM. Indeed, this is equivalent to showing that t lies in the Jacbson radical
of Rrts. which by Proposition 4.18 is equivalent to showing that for all f P Rrrtss
we have 1� ft P Rrrtss�. But an element

°8
n�0 ant

n of Rrrtss is a unit if and only
if the constant coefficient a0 is a unit of R, and the constant coefficient of 1 � ft



206 8. NOETHERIAN RINGS

is 1, establishing the claim. Then Theorem 8.40a) tells us that if m :� M X R is
the set of constant coefficients of elements of M, then M � xm, ty. Since M is
maximal and Rrrtss{M � R{m, also m is a maximal ideal of the Noetherian ring
R. Suppose m has height h (so h ¤ d � dimR). Then there is a chain

p0 � p1 � . . . � ph � m

of prime ideals of R. For any p P SpecR, we have Rrrtss{pRrrtss � pR{pqrrtss is a
power series ring over a domain, hence a domain, so pRrrtss is a prime ideal. Also
if I � J are ideals of R then IRrtss � JRrrtss are ideals of Rrrtss, so

p0Rrrtss � p1Rrrtss � . . . � phRrrtss �M

shows that M has height at least h� 1, and it follows that dimRrrtss ¥ d� 1.
To complete the proof it suffices to show that M has height at most h� 1. As

we saw in §8.13, the height of any maximal ideal M in a Noetherian ring A is the
minimal h P N such that there are x1, . . . , xh P A such that M � radxx1, . . . , xhy,
or equivalently such that M is the only prime ideal of A containing x1, . . . , xh.
Applying this remark to the height h maximal ideal m of R, there are x1, . . . , xh P R
such that m � radxx1, . . . , xhy. We claim that M � radxx1, . . . , xh, ty, which will
therefore show that M has height at most d � 1. Establishing the claim is easy:
if P is any prime ideal of Rrrtss containing x1, . . . , xh, t then for any x P R and
n P Z� such that xn P xx1, . . . , xhyR we have xn P P hence x P P; thus P contains
m, and by assumption it contains t, so it contains xm, ty �M. □

The proofs of parts b) and c) of Theorem 8.60 use Corollary 8.55, whch is one
of the deeper results in this text. In contrast, the proof of part a) is much more
elementary. If I didn’t know any better, comparing parts a) and b) would make
me want to work harder to try to show that dimRrts � 1 � dimR for any ring R
of finite Krull dimension. But in fact Theorem 8.60a) is sharp! That is, for any
d,D P N with d� 1 ¤ D ¤ 2d� 1, there is a ring R of Krull dimension d such that
Rrts has Krull dimension D. Moreover, the class of rings R of Krull dimension d
such that Rrts has Krull dimension d � 1 is well understood. A domain with this
property is called a Jaffard domain, and a domain R of dimension d with fraction
field K is Jaffard if and only if for every T with R � T � K we have dimT ¤ d if
and only if for every valuation ring T (see Chapter 17) with R � T � K we have
dimT ¤ d. It turns out that e.g. any Prüfer domain (see Chapter 20) is a Jaffard
domain, though we will not prove that here. In general, the dimension of Rrts can
be understood in terms of the valuative dimension of R, which is the largest
Krull dimension of any valuation overring of R.

When one proves a result about polynomial rings, it is usually fruitful to pur-
sue analogues in formal power series rings, but the situation with the Hilbert Basis
Theorem perhaps gives the wrong impression: the formal power series story need
not be fully parallel with the polynomial ring story, and in many cases the formal
power series story turns out to be more complicated. For instance, in Chapter 14
we will study “integrally closed domains” and prove that if R is an integrally closed
domain then so is Rrts, but it will turn out that Rrrtss need not be. Moreover, in
Chapter 15 we will study unique factorization domains (UFDs) and prove that if R
is a UFD then so is Rrts; in this case it is a major result of Samuel that Rrrtss need
not be (we will see the ring R but not the proof). In the present context, parts
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b) and c) of Theorem 8.60 are in perfect analogue and the proof was even a little
easier in the formal power series case. But...what about the formal power series
analogue of part a)? This turns out to be fals

Theorem 8.61. (Arnold) For any d P N, there is a ring R of Krull dimension
d such that Rrrtss has infinite Krull dimension.

Proof. See [Ar73]. □

Let us just mention one example from Arnold’s paper: he shows that if R is a
valuation ring of rank 1 that is not discrete (see Chapter 17), then R has dimension
1 but Rrrtss has infinite Krull dimension.

16. The Artin-Tate Lemma

Theorem 8.62. (Artin-Tate [AT51]) Let R � T � S be a tower of rings with:

(i) R Noetherian,
(ii) S finitely generated as an R-algebra, and
(iii) S finitely generated as a T -module.

Then T is finitely generated as an R-algebra.

Proof. Let x1, . . . , xn be a set of generators for S as an R-algebra, and let
ω1, . . . , ωm be a set of generators for S as a T -module. For all 1 ¤ i ¤ n, we may
write

(24) xi �
¸
j

aijωj , aij P T.

Similarly, for all 1 ¤ i, j ¤ m, we may write

(25) ωiωj �
¸
i,j,k

bijkωk, bijk P T.

Let T0 be the R-subalgebra of T generated by the aij and bijk. Since T0 is a finitely
generated algebra over the Noetherian ring R, the ring T0 is Noetherian by the
Hilbert Basis Theorem. Each element of S may be expressed as a polynomial in
the xi’s with R-coefficients. Making substitutions using (24) and then (25), we see
S is generated as a T0-module by ω1, . . . , ωm, and in particular that S is a finitely
generated T0-module. Since T0 is Noetherian, the submodule T is also finitely
generated as a T0-module. This immediately implies that T is finitely generated as
a T0-algebra and then in turn that T is finitely generated as an R-algebra. □





CHAPTER 9

Boolean Rings

1. First Properties

Just for a second, let us break our rule by considering a not-necessarily-commutative
ring R, but let us suppose that this ring has the property that every element is
idempotent: we have x2 � x for all x P R. Then:

p1� 1q � p1� 1q2 � 1� 1� 1� 1,

so 1� 1 � 0 and thus �x � x for all x P R. Moreover for all x, y P R we have

x� y � px� yq2 � x2 � xy � yx� y2 � x� y � xy � yx,
so xy � yx � 0 and thus xy � �yx � yx. It turns out that we haven’t broken our
rule at all: such a ring is necessarily commutative. In this chapter we study this
class of rings: a ring is Boolean if every element is idempotent. Although this is
clearly a very special class of rings, it is still interesting: in particular, there are
important connections to both order theory and topology.

Exercise 9.1. Show: if R is a Boolean ring, then its unit group R� is trivial.

Exercise 9.2.

a) Show: a subring of a Boolean ring is Boolean.
b)) Show: a quotient of a Boolean ring is Boolean.
c) Show: let I be a nonempty set, and for each i P I let Ri be a Boolean ring.

Show: the product R :�±iPI Ri is Boolean.

Exercise 9.3. Show: a Boolean ring is absolutely flat (cf. §3.11).

Exercise 9.4. Let R be a Boolean ring, and let x, y P R.
a) Show: the following are equivalent:

(i) We have x | y: that is, there is z P R such that xz � y.
(ii) We have xy � y.

b) Show: if pxq � pyq, then x � y.

2. Ideal Theory in Boolean Rings

Proposition 9.1. Let R be a Boolean ring.

a) For all x P N and all n ¥ 2, we have xn � x.
b) A Boolean ring is reduced, i.e., has no nonzero nilpotent elements.
c) Every ideal in a Boolean ring is a radical ideal.

Proof. a) The case n � 2 is the definition of a Boolean ring, so we may
assume n ¥ 3. Assume the result holds for all x P R and all 2 ¤ k   n. Then
xn � xn�1x � x � x � x.

b) If x P R is such that xn � 0 for some positive integer n, then either n � 1

209
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or n ¥ 2 and xn � x; either way x � 0.
c) Let I be an ideal in the Boolean ring R. Then I � radpIq if and only if R{I is
reduced, but R{I is again a Boolean ring and part b) applies. □

Of course Z{2Z is a Boolean ring. It is also a field, hence certainly a local ring
and a domain. We will now show that Z{2Z is the unique Boolean ring possessing
either of these latter two properties.

Proposition 9.2. Let R be a Boolean ring.

a) If R is a domain, then R � Z{2Z.
b) We have dimR � 0: i.e., every prime ideal of R is maximal.
c) If pR,mq is a local ring, then R � Z{2Z
d) R is semiprimitive: the Jacobson radical JpRq :� �mPMaxSpecRm � p0q.

Proof. a) Let x P R. Then xpx� 1q � 0, so in a domain R this implies x � 0
or x � 1, so R � Z{2Z.
b) If p P SpecR then R{p is a Boolean domain, hence by part a) is isomorphic to
Z{2Z, which is a field, so p P MaxSpecR.
c) By part b), we have SpecR � tmu, so by Proposition 4.14d) we have that the set
of nilpotents in R is m. Combining with Proposition 9.1 we conclude that m � 0,
so R is a field, so by part a) we have R � Z{2Z.
d) By part b) and Proposition 4.14d), we have

JpRq �
£

mPMaxSpecR

m �
£

pPSpecR
p � nilR � p0q. □

Exercise 9.5. Let R be a Boolean ring, and let x, y P R.
a) Show: xx, yy � xxy � x� yy.
b) Deduce: any finitely generated ideal of R is principal.

Proposition 9.3.

a) For a Boolean ring R, the following are equivalent:
(i) R is finite.
(ii) R is Noetherian.
(iii) Every prime ideal of R is finitely generated.
(iv) SpecR is finite.

b) If these equivalent conditions hold, then R � pZ{2Zqn with n � #SpecR.

Proof. By Proposition 9.2b) we know that R is zero-dimensional:

MinSpecR � SpecR � MaxSpecR.

a) (i) ùñ (ii) ùñ (iii) holds immediately in any ring.
(iii) ùñ (iv) by Corollary 4.32b).
(iv) ùñ (i): Suppose SpecR is finite. By Proposition 9.2d) we have JpRq � 0, so
Exercise 8.31 gives R �±n

i�1 ki is a finite product of fields. Each ki is a quotient of
R, hence a Boolean field, hence ki � Z{2Z by Proposition 9.2a), so R � pZ{2Zqn.
b) While proving part a) we also showed that the conditions imply R �±n

i�1 Z{2Z.
The prime ideals in

±n
i�1 Z{2Z are the ideals of the form

±n
i�1 Ii in which exactly

one Ii is zero and the others are Z{2Z, so there are precisely n of them. □

Lemma 9.4. For an ideal m in a Boolean ring R, the following are equivalent:

(i) m is maximal.
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(ii) For all x P R, exactly one of x and 1� x lies in m.

Proof. (i) ùñ (ii): Suppose m is maximal, and let x P R. Of course we
cannot have both x, 1�x P m for then 1 P m and m � R. We may assume that x is
neither 0 nor 1, so by Proposition 1.9 we get a decomposition R � xR� p1� xqR.
By Proposition 1.8 we have m � I1 � I2 with I1 � xR and I2 � p1 � xqR, so
R{m � pxRq{I1 � p1 � xqR{I2. For this quotient to be a field we need either
I1 � xR – in which case x P m – or I2 � p1� xqR – in which case 1� x P m.
(ii) ùñ (i): This implication holds in any ring. We will show the contrapositive:
suppose m is not maximal. If m � R then for all x P R both x and 1� x lie in m,
so we may assume that m is properly contained in M P MaxSpecR. Let x PMzm.
Then ineed x R m, and because M is a proper ideal containing x, it does not contain
1� x and hence neither does the smaller ideal m. □

3. The Stone Representation Theorem

Let R be a Boolean ring. We would like to find an embedding of R into a Boolean
ring of the form pZ{2ZqX . For this the key question is what X should be. Can we
find any clues in our prior work on Boolean rings?
indent We understand finite Boolean rings very well: from Proposition 9.3, we know
that every finite Boolean ring R is isomorphic to pZ{2Zqn, where n is the number
of maximal ideals of R. We claim that there is in fact a canonical isomorphism
φ : R

�Ñ pZ{2ZqMaxSpecR. Indeed, for any finite set S of maximal ideals of a ring
R, the Chinese Remainder Theorem gives an isomorphism

R{
£
mPS

m
�Ñ
¹
mPS

R{m.

In any semilocal ring – e.g. any finite ring – we may take S � MaxSpecR, getting

R{JpRq �Ñ
¹

mPMaxSpecR

R{m.

In a Boolean ring, we know that JpRq � p0q and for all m P MaxSpecR we have
R{m � Z{2Z – in fact, uniquely isomorphic, since 0 must go to 0 and 1 must go to
1. So in a finite Boolean ring the CRT map gives a canonical isomorphism

φ : R
�Ñ pZ{2ZqMaxSpecR.

Another way of viewing φ is that for x P R, the vector φpxq is, precisely, recording
which maximal ideals contain x: for m P MaxSpecR, the m-component of φpxq is
0 if and only if x P m.

In the above construction, the only real use of CRT was to get the surjectivity
of φ. For any ring R we have an injective ring homomorphism

R{JpRq ãÑ
¹

mPMaxSpecR

R{m.

If R is Boolean, then once again we have JpRq � 0 and R{m � Z{2Z, so we get:

Theorem 9.5. (Stone Representation Theorem) Let R be a Boolean ring. We
define a map

E : RÑ Z{2ZMaxSpecR

as follows: for x P R and m P MaxSpecR, Epxq maps m to 0 if and only if x P m.
Then E is an injective homomorphism of Boolean rings.
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4. Boolean Algebras

A Boolean ring is an object of commutative algebra. It turns out that there is a com-
pletely equivalent class of structures of an order-theoretic nature, called Boolean
algebras. In some ways the concept of a Boolean algebra is more intuitive and
transparent – e.g., starting directly from the definition, it is perhaps easier to give
examples of Boolean algebras.

A Boolean algebra is a certain very nice partially ordered set pB,¤q. Recall
that for any partially ordered set B and any subset S, we have the notion of the
supremum supS and the infimum inf S. To define these it is convenient to extend
the inequality notation as follows: if S, T are subsets of B, we write

S   T

to mean that for all s P S and t P T , s   t, and similarly

S ¤ T

to mean that for all s P S and t P T , s ¤ t.
Then we say that z � supS if S ¤ z and if w is any element of B with S ¤ w,
then z ¤ w. Similarly z � inf S if z ¤ S and if w is any element of B with w ¤ S
then w ¤ Z. For a given subset S, neither supS nor inf S need exist, but if either
exists it it is plainly unique. In particular if sup∅ exists, it is necessarily a bottom
element, called 0, and if inf ∅ exists, it is necessarily a top element called 0.
A partially ordered set pL,¤q is called a lattice if for all x, y P L, suptx, yu and
inftx, yu both exist. We give new notation for this: we write

x_ y :� suptx, yu,
the join of x and y and

x^ y :� inftx, yu,
the meet of x and y.
A lattice is said to be bounded if it contains a bottom element 0 and a top element
1: each of these is unique if it exists. Notice that

0 � sup∅ and 1 � inf ∅,

so a lattice is bounded if and only every finite subset has both a supremum and
infimum.

Exercise 9.6. Let L be a lattice containing 0 and 1, and let x P L.
a) Show: x_ 1 � 1.
b) Show: x^ 1 � x.
c) Show: x_ 0 � x.
d) Show: x^ 0 � 0.

A lattice L is complemented if it has a bottom element 0, a top element 1, and
for each x P L there exists y P L such that x_ y � 1, x^ y � 0.

A lattice is distributive if @x, y, z P L,
px_ yq ^ z � px^ zq _ py ^ zq,
px^ yq _ z � px_ zq ^ py _ zq.
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Proposition 9.6. Let L be a distributive complemented lattice. Then for all
x P L, the complement of x is unique.

Proof. Suppose that y1 and y2 are both complements to x, so

x_ y1 � x_ y2 � 1, x^ y1 � x^ y2 � 0.

Then

y2 � 1^ y2 � px_ y1q ^ y2 � px^ y2q _ py1 ^ y2q � 0_ py1 ^ y2q � y1 ^ y2,
so y2 ¤ y1. Reasoning similarly, we get y1 ¤ y2, so y1 � y2. □

By virtue of Proposition 9.6 we denote the complement of an element x in a dis-
tributive complemented lattice as x�.

Exercise 9.7. Show: for every element x of a distributive complemented lattice
we have px�q� � x.

A Boolean algebra is a complemented distributive lattice with 0 and 1. (We allow
0 � 1.)

Exercise 9.8. (DeMorgan’s Laws) Let B be a Boolean algebra.

a) Show: for all x, y P B, we have px^ yq� � x� _ y�.
b) Show: for all x, y P B, we have px_ yq� � x� ^ y�.

The shining example of a Boolean algebra is the powerset algebra 2S for a nonempty
set S. In the special case in which |S| � 1, we denote the corresponding Boolean
algebra (the unique totally ordered set on two elements) simply as 2.

Not every Boolean algebra is isomorphic to a power set Boolean algebra.

Example 9.7. Let S be a set, and let ZpSq � 2S be the collection of all finite
and cofinite subsets of S. Then pZpSq,�q � p2S ,�q is a sub-Boolean algebra.
However, #ZpSq � #S, so if S is countably infinite, then ZpSq is not isomorphic
to any power set Boolean algebra.

Boolean algebras form a full subcategory of the category of partially ordered sets.
In other words, we define a morphism f : B Ñ B1 of Boolean algebras simply to be
an isotone (or order-preserving) map: @x, y P B, x ¤ y ùñ fpxq ¤ fpyq. One can
also axiomatize Boolean algebras as a structure pB,_,^, �, 0, 1q, the point being
that x ¤ y if and only if x_ y � y if and only if x^ y � x, so the partial ordering
can be recovered from either the wedge or the join.

Proposition 9.8. The category of Boolean rings is equivalent to the category
of Boolean algebras.

In other words, we can define a functor F from Boolean rings to Boolean algebras
and a functor G from Boolean algebras to Boolean rings such that for every Boolean
ring R, R is naturally isomorphic to GpF pRqq and for every Boolean algebra B, B
is naturally isomorphic to F pGpBqq.

Let us sketch the basic construction, leaving the details to the reader. Suppose
first that R is a Boolean ring. Then we associate a Boolean algebra F pRq with the
same underlying set as R, endowed with the following operations: @x, y P R,
(26) x^ y � xy
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and

(27) x� � 1� x � 1� x.
The join operation is then forced on us by DeMorgan’s Laws:

(28) x_ y � px� ^ y�q� � x� y � xy � x� y � xy.
Exercise 9.9. Check that pF pRq,^,_, �q is indeed a Boolean algebra, and

that the bottom element 0 in F pRq (resp. the top element 1) is indeed the additive
identity 0 (resp. the multiplicative identity 1).

Conversely, suppose that we have a Boolean algebra pB,^,_, �q. Then we define
a Boolean ring GpBq on the same underlying set B, by taking

(29) x� y :� px^ y�q _ py ^ x�q
and

(30) xy :� x^ y.
The formula for addition may look a bit opaque. If B is a Boolean algebra of sets
– i.e., a subalgebra of 2S – then for x, y � S, x� y is the symmetric difference
of x and y: the set of all elements of S that lie in exactly one of x and y.

Exercise 9.10. Let B be a Boolean algebra. Show: pGpBq,�, �q is indeed a
Boolean ring with additive identity the bottom element 0 of B and multiplicative
identity the top element 1 of B.

Exercise 9.11.

a) Let R be a Boolean ring. Show: the identity map 1R on R is an isomor-
phism of Boolean rings RÑ GpF pRqq.

b) Let B be a Boolean algebra. Show that the identity map 1B on B is an
isomorphism of Boolean algebras B Ñ GpF pBqq.

Let B be a Boolean algebra. A subset I of B is an ideal if 0 P I, for all x, y P I we
have x_ y P I and for all x P I and a P B we have a^ x P I. Because for x, y P B
we have x ¤ y if and only if x^ y � x, every ideal I is a downset of pB,¤q.

Proposition 9.9.

a) Let I be an ideal of the Boolean algebra B. Then I is also an ideal of the
Boolean ring R :� F pBq.

b) Let I be an ideal of the Boolean ring R. Then I is also an ideal of the
Boolean algebra B :� GpRq.

Proof. a) Suppose I is an ideal of B. Then for all x P I and a P B we
have ax � a ^ x P I. Now let x, y P I. We have x ^ y�, y ^ x� P I, hence
x� y � px^ y�q _ py ^ x�q P I.
b) Suppose I is an ideal of R. Then for all x, y P I and a P R we have x � y P I
and ax P I. So if x, y P I then x^ y � xy � x� y P I and if x P I and a P B then
a^ x � ax P I. □

Because the categories of Boolean rings and Boolean algebras are equivalent, every
part of the theory of Boolean rings – definitions, theorems, and so forth – has a
perfect analogue in the theory of Boolean algebras. However, it may happen that
something is easier to understand or to prove in one category than the other. In
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fact the theory of Boolean algebras predates the theory of Boolean rings, and for
the most part things seem simpler on the ring side – at least, that is the perspec-
tive that we take in this text! But the Boolean algebras perspective is sometimes
extremely enlightening: indeed, the main result of this chapter (Stone Duality) will
be stated for Boolean algebras.

It is easy to express the conditions of prime and maximal ideals on the Boolean
algebra side. An ideal I of a Boolean algebra B is prime if for all x, y P B, x^y P I
implies that at least one of x, y lies in I. An ideal I is maximal if it is a proper ideal
– i.e., it does not contain 1 – and is not properly contained in any other proper
ideal. We will write MpBq for the set of maximal ideals of a Boolean algebra. To
be sure, we have immediately that MpBq � MaxSpecpGpBqq.

Example 9.10. Let S be a set, and let 2S be the Boolean algebra of all subsets
of S, partially ordered under inclusion. This Boolean algebra is canonically iso-
morphic to the Boolean algebra F ppZ{2ZqSq. Indeed, to a function f : S Ñ Z{2Z,
we attach the subset Spfq :� tx P S | fpxq � 1u. This correspondence is (a very
well-known) bijection: the inverse function maps a subset X of S to the “indicator
function” 1X : 1Xpsq � 1 if and only if s P X. Moreover, for f1, f2 : S Ñ Z{2Z, we
have f1 ¤ f2 if and only if f1^ f2 � f1 if and only if ((by Exercise 9.4)) f2 divides
f1 if and only if for all s P S, f2psq � 0 implies f1psq � 0 if and only if for all
s P S, f1psq � 1 implies f2psq � 1 if and only if Sf1 � Sf2 . Because of this we will
allow ourselves to say that p2S ,�q is the Boolean algebra associated to pZ{2ZqS.

We can then state the Stone Representation Theorem in terms of Boolean al-
gebras as follows: every Boolean algebra is isomorphic to an algebra of sets (i.e., a
subalgebra of some p2S ,�q). More precisely, we have an injective homomorphism
of Boolean algebras

E : B ãÑ 2MpBq

obtained by mapping x P B to the set of maximal ideals m of B that do not contain
x. Thus for instance since 0 is contained in every maximal ideal, we have Ep0q � ∅,
and since 1 is not contained in any maximal ideal, we have Ep1q �MpBq. This is
the form in which the Stone Representation Theorem was originally proved.

Let us explore the ideal theory of Boolean algebras just a little further. The
critierion for an ideal to be maximal given by Lemma 9.4 comes out nicely on
the Boolean algebra side: it says that an ideal I in a Boolean algebra B is maximal
if and only if for all x P B, I contains exactly one of x, x�. Using this we can give
an “algebra side” proof that an ideal is maximal if and only if it is prime: suppose
I is a maximal ideal of the Boolean algebra B, let x, y P B be such that x^ y P I,
and suppose that x R I. Then by maximality we have x� P I, hence I contains

px� ^ yq _ px^ yq � px_ x�q ^ y � y.

Conversely, suppose that I is prime and let x P B. Then 0 � x ^ px�q P I, so I
contains one of x and x�, and if it contained both then it would contain x_x� � 1.

For a subset X of a Boolean algebra B, let xXy be the ideal generated by X:
by definition, this is the intersection of all ideals containing X and thus the unique
minimal ideal containing X. As usual, this “top-down” description is easy to give
but insufficiently concrete for many purposes. The next several results address this.
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Proposition 9.11. Let B be a Boolean algebra, let X be a subset of B, and
let p P B. Then the ideal of B generated by X contains p if and only if there is a
finite subset Y of X such that p ¤�Y .

Proof. Since for any finite subset Y of X we have
�
Y � xXy, one direction

is clear. For the converse, let J be the set of elements of p P B such that there
is a finite subset Y of X with p ¤ �Y . Clearly X � J , so it is enough to show
that J is an ideal of B, for then I, being the unique minimal ideal of B containing
X, must be contained in J . If p1, p2 P B, there are finite subsets Y1, Y2 of X such
that pi ¤

�
yi for i � 1, 2, and then Y1 Y Y2 is a finite subset of X such that

p1 _ p2 ¤
�pY1 Y Y2q. Moreover if x P J and p P B, there is a finite subset Y of X

such that x ¤�Y and then p^ x ¤ x ¤�Y , so p^ x P J . □

Corollary 9.12. Let B be a Boolean algebra, let I be an ideal of B, and let
x0 P B.

a) We have

xI, x0y � tx_ y | x ¤ x0 and y P Iu.
b) If x�0 R I, then x�0 R xI, x0y.

Proof. a) Let J :� xI, x0y. It is clear that every element x_y with x ¤ x0 and
y P I lies in J . Conversely, let p P J : applying Proposition 9.11 with X :� IYtx0u,
we get that there is a finite subset Y of I such that p ¤�pY Y tx0uq � y _ x0 for
some y P I, which implies

p � p^ py _ x0q � pp^ yq _ pp^ x0q.
Since p^ y P I and p^ x0 ¤ x0, we’re done.
b) Seeking a contradiction, suppose x�0 P xI, x0y. By part a), there is x ¤ x0 and
y P I such that

x� � x_ y ¤ x0 _ y.
Thus we have

x�0 � x�0 ^ px0 _ yq � px�0 ^ x0q _ px�0 ^ yq � px�0 ^ yq,
which implies that x�0 ¤ y, hence x�0 P I, contradiction. □

We can now give an “algebra side” proof of Lemma 9.4: namely, we will show
that an ideal I in a Boolean algebra B is maximal if and only if for all x P B
exactly one of x and x� lies in I. One direction is easy: an ideal that contains
exactly one of x, x� for all x P R contains 0 so does not contain 1 so is proper,
and it must be maximal, because for any element x P RzI we have x� P I so the
xI, xy � xx�, xy � B. Inversely, suppose there is x P B such that I contains neither
x nor x�. By Corollary 9.12b), we have I � xI, x0y � B, so I is not maximal.

Corollary 9.13. Let x and y be distinct elements of a Boolean algebra B.

a) If y ¦ x, then there is a maximal ideal of B containing x and not con-
taining y.

b) There is a maximal ideal of B containing exactly one of x and y.

Proof. a) Suppose y ¦ x, so y R xxy. By Corollary 9.12b), we have y R I :�
xx, y�y. By the usual Zorn’s Lemma argument, there is a maximal ideal m of B
containing I. Then m contains x and y� hence does not contain y.
b) Since x � y, part a) can be applied after interchanging them if necessary. □
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Corollary 6 is the necessary ingredient to give an “algebra side” proof of the Stone
Representation Theorem: namely, for any Boolean algebra B, we may certainly
define the map

E : B Ñ 2MpBq

by mapping x P B to the set of maximal ideals that do not contain x. If x ¤ y, then
every maximal ideal that contains y also contains x, so the set Bpxq of maximal
ideals that do not contain x is a subset of the set of maximal ideals that do not
contain y, showing that E is a homomorphism of Boolean algebras. The injectivity
of B is the assertion that an element of B is determined by the set of maximal
ideals that contain it, which is precisely the content of Corollary 6.

For elements x and y in a partially ordered set pX,¤q, we say that y covers
x if x   y and there is no z P X with x   z   y. This relation comes up for
instance in the Hasse diagram of X which is a directed graph with vertex set X
and there is a direted edge from x to y if and only if y covers x.

An atom in a Boolean algebra B is an element x that covers 0: in other words,
x is a minimal nonezero element of B. For any nonzero element x of a Boolean
algebra, there is either an atom y ¤ x or an infinite descending chain x ¡ x2 ¡ . . ..
A Boolean algebra B is atomic if for every nonzero x P B there is an atom a ¤ x.
A Boolean algebra is atomless if it contains no atoms.

Example 9.14. a) Let S be a set, and let B � p2S ,�q be the Boolean
algebra of all subsets of S. Then B is atomic, and the atoms are the sin-
gleton sets tsu for s P S. Since every finite Boolean algebra is isomorphic
to such a Boolean algebra, every finite Boolean algebra is atomic. This
was however already clear from the definition.

b) Let S be an infinite set, and let B � 2S be the Boolean algebra of subsets
that are either finite or have finite complement. Again the atoms are the
singleton sets and this Boolean algebra is atomic.

c) Let B � 2R be the set of subsets of R that are finite unions of any of the
following subsets: ∅, R, ra, bq for any real numbers a   b, ra,8q for any
a P R and p�8, bq for any b P R. This is an atomless Boolean algebra of
cardinality ⌋ � #R. More generally, if we replace R by any dense totally
ordered set X (dense means: for all x, y P X with x   y, there is z in
X with x   z   x) with at least two elements, then we get an atomless
Boolean algebra IX of cardinality #X called the interval algebra of X.
Taking X � Q we get a countably infinite atomless Boolean algebra.

d) Let B2 be an atomless Boolean algebra, and let B :� t0, 1u � B2 with the
product partial ordering: pa1, b1q ¤ pa2, b2q if and only if a1 ¤ a2 and
b1 ¤ b2. This is again a Boolean algebra. The unique atom in B is p1, 0q,
so there is no atom a ¤ x for any element x of B with nonzero second
coordinate. Thus B is neither atomless nor atomic.

The following is an important early result in the theory of Boolean algebras:

Theorem 9.15. Any two countably infinite atomless Boolean algebras are iso-
morphic.

Theorem 9.15 bears a strong family resemblance to the result that any two count-
ably infinite dense linear orders without endpoints are isomorphic. The proof is via
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the “back-and-forth” method. The reader who is familiar with the back-and-forth
method may wish to try to prove Theorem 9.15. We will not give a proof here, but
later we will deduce it from a result in topology.

Exercise 9.12. (Kernel of a homomorphism) Let f : R Ñ Z{2Z be a homo-
morphism of Boolean rings.

a) Show: Ker f is _-closed: if x, y P Ker f , then x_ y P Ker f .
b) Show: Ker f is downward-closed: if x P Ker f and y ¤ x, then y P Ker f .
c) Explain why parts a) and b) are equivalent to showing that Ker f is an

ideal of the Boolean ring R.
d) Show: Ker f is in fact a maximal ideal of R.
e) Conversely, for every maximal ideal m of R, show that R{m � Z{2Z and

thus the quotient map q : RÑ R{m is a homomorphism from R to Z{2Z.

Exercise 9.13. (Shell of a homomorphism) Let f : RÑ Z{2Z be a homomor-
phism of Boolean rings. Define the shell Sh f to be f�1p1q.

a) Show: Sh f is wedge-closed: if x, y P Sh f , so is x^ y.
b) Show: Sh f is upward-closed: if x P Sh f and x ¤ y, then y P Sh f .
c) A nonempty, proper subset of a Boolean algebra that is wedge-closed and

upward-closed is called a filter, so by parts a) and b) Sh f is a filter on
B. Show that in fact it is an ultrafilter on B, i.e., that it is not properly
contained in any other filter. (Suggestion: use Lemma 9.4.)

d) Show: every ultrafilter on B is the shell of a unique homomorphism of
Boolean algebras f : B Ñ Z{2Z.

5. Boolean Spaces

We will now digress a bit to talk (not for the first or last time!) about topological
spaces. Following Bourbaki, for us compact means quasi-compact and Hausdorff.
Further a locally compact space is a Hausdorff space in which each point admits
a local base of compact neighborhoods. A subset of a topological space is clopen
if it is both closed and open.

A topological space X is totally disconnected if the only connected subsets
of X are the singleton sets txu.1 A totally disconnected space is necessarily sep-
arated: singleton sets are closed. Indeed, the closure of every connected set is
connected, so the closure of a non-closed point would give a connected set which
is larger than a point. On the other hand a space X is zero-dimensional if it
admits a base of clopen sets.

Proposition 9.16. Let X be a locally compact space. Then X is totally dis-
connected if and only if it is zero-dimensional.

Proof. It is an exercise to show that every zero-dimensional Hausdorff space
is totally disconnected. For a proof that every locally compact totally disconnected
space is zero-dimensional, see e.g. [Cl-GT, Thm. 5.48]. □

A space X is called Boolean2 if it is compact and zero-dimensional; in particular
a Boolean space admits a base for the topology consisting of compact open sets.

1Following Qiaochu Yuan, we take the convention that the empty space is not connected: it

has zero connected components, not one!
2There are many synonyms: e.g. Stone space, profinite space.
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Exercise 9.14.

a) A finite space is Boolean if and only if it is discrete.
b) A Boolean space is discrete if and only if it is finite.
c) An arbitrary direct product of Boolean spaces is Boolean.
d) The usual Cantor space is homeomorphic to a countably infinite direct

product of copes of a discrete, two-point space and thus is a Boolean space.

Exercise 9.15. Show: a topological space is Boolean if and only if it is home-
omorphic to an inverse limit of finite, discrete spaces.

Exercise 9.16. Let X be a Boolean space. Show: the following are equivalent:

(i) The space X has a countable base for its topology.
(ii) The space X is metrizable.
(iii) There is a sequence of finite discrete spaces Xn and for each m ¤ n a

map φn,m : Xn Ñ Xm such that X is homemorphic to the inverse limit
limÐÝnXn.

(iv) The set of clopen subsets of X is countable.

To every topological space X we may associate a Boolean algebra: namely, the
subalgebra of 2X consisting of compact open subsets. Thus in particular we may
associate a Boolean algebra CpXq, the characteristic algebra of X.

Exercise 9.17. Show: the assignment X ÞÑ CpXq extends to a contravariant
functor from the category of topological spaces to the category of Boolean algebras.
(In other words, show that a continuous map f : X Ñ Y of topological spaces
induces a “pullback” ring homomorphism Cpfq : CpY q Ñ CpXq.)
If X is itself a Boolean space, then the characteristic algebra CpXq is indeed char-
acteristic of X in the following sense.

Proposition 9.17. Let X be a Boolean space, and let A be a Boolean algebra
of subsets of X that is also a base for the topology of X. Then A � CpXq.

Proof. By hypothesis the elements of A are open sets in X. Moreover, since
A is closed under complementation, the elements are also closed. Thus A � CpXq.

Conversely, suppose Y P CpXq. Since Y is open and A is a base for the topology
on X, for each y P Y there is Ay P A with y P Ay � Y . Thus tAyuyPY is an open
cover for Y . But Y is also closed in a compact space hence itself compact, so we
may extract a finite subcover, say Y � �n

i�1Ayi . Since A is a subalgebra, it is
closed under finite unions, so Y P A. Thus CpXq � A. □

To every Boolean algebra B we will now endow the set MpBq of maximal ideals of
B with a topology that makes it into a Boolean space.

By the Stone Representation Theorem we have an embedding

B ãÑ 2MpBq

and thus every element x P B determines a function x : MpBq Ñ t0, 1u: xpmq �
1 ðñ x R m. Endowing t0, 1u with the discrete topology, we may give MpBq
the initial topology for the family of maps tx :MpBq Ñ t0, 1uuxPR: the coarsest
topology that makes each of these maps continuous. Because a for a topological
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space X, a map f : X Ñ t0, 1u is continuous if and only if f�1p0q and f�1p1q are
open, the initial topology on MpBq is the one generated by tUx, VxuxPX where

Ux � tm PMpBq | x R mu
and

Vx � tm PMpBq | x P mu.
Because for all x P B and all m P MpBq we have that m contains exactly one of x
and x�, it follows that

Vx � Ux� .

Moreover, for x, y P B we have

Ux X Uy � Ux^y.

Thus the set tUxuxPB is a base for this topology on MpBq. In Chapter 13 we will
study the Zariski topology on SpecR for any ring R and see right away that a base
for it is

tUpfq :� tp P SpecR | f R puufPR,
so the topology we’ve defined on MpBq is the Zariski topology on the associated
Boolean ring R � F pBq. For x P B we have Ux �MpBqzVx �MpBqzUx� , so each
Ux is a clopen set. Le tus now show that MpRq is a Boolean space.

Hausdorff: Let m1 and m2 be distinct maximal ideals of R. Choose x P m2zm1, so
by Lemma 9.4 we have x� P m1zm2. Thus m1 P Ux, m2 P Ux� and

Ux X Ux� � Ux^x� � U0 � ∅,
so we have separated m1 and m2 by open sets.

Quasi-compactness: It suffices to check quasicompactness using open covers taken
from any given base, so let’s use tUxuxPB : suppose that we have a family txiuiPI
such that

�
iPI Uxi

�MpBq. Now

MpBq �
¤
i

Uxi
�
¤
i

pMpBqzVxi
q �MpBqz

£
i

Vxi
,

so that
�
i Vxi � ∅. Thus we have xxi | i P Iy � B. By Propoisition 9.11 there is a

finite subset J of I such that 1 P xxi | i P Jy and thus
�
iPJ Uxi

�MpBq.

Thus MpBq is a Boolean space, which we call the Stone space of the Boolean
algebra B. If R is the corresponding Boolean ring (on the same underlying set as
R) then we have SpecR �MpBq as topological spaces.

Exercise 9.18. Show: the assignment B ÞÑ MpBq extends to a contravariant
functor from the category of Boolean algebras to the category of Boolean spaces:
that is, a homomorphism f : B1 Ñ B2 canonically induces a continuous map
Mpfq :MpB2q ÑMpB1q of Stone spaces.

6. Stone Duality

Theorem 9.18. (Stone Duality) The functors C and M give a duality between
the category of Boolean spaces and the category of Boolean algebras. That is:

a) For every Boolean algebra B, the map B Ñ CpMpBqq given by x P B ÞÑ Ux
is an isomorphism of Boolean algebras.
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b) For every Boolean space X, the map m : X Ñ MpCpXqq given by x P
X ÞÑ mx :� tU P CpXq | x R Uu is a homeomorphism of Boolean spaces.

Proof. a) The map e : x P B ÞÑ Ux P 2MpBq is the embedding e of the Stone
Representation Theorem. In particular it is an embedding of Boolean algebras. Its
image epBq is a subalgebra of the characteristic algebra of the Boolean spaceMpBq
which is, by definition, a base for the topology of MpBq. By Proposition 9.17 we
have epBq � CpMpBqq so e is an isomorphism of Boolean algebras.
b) First we need to show that mx is a maximal ideal in the characteristic ring
CpXq. It seems more natural to show this on the Boolean algebra side, i.e., to show
that mx is downward closed and union-closed. Indeed, U P mx means x R U , so if
V � X then certainly x R V , i.e., V P mx; moreover, U, V P mx ðñ x R U and x R
V ðñ x R U Y V ðñ U Y V P mx. Thus mx is an ideal of CpXq. Applying
Lemma 9.4, one easily sees that is maximal, so the map m is well-defined.
indent The injectivity of m follows immediately from the Hausdorff property of X.

Surjectivity: Let m P MpCpXqq. We may identify m with a homomorphism
of Boolean algebras fm : CpXq Ñ Z{2Z. Let F � f�1

m p1q be the shell of fm, an
ultrafilter on the Boolean algebra of sets CpXq. In particular F is wedge-closed,
i.e., it is a family of clopen subsets of the compact space X satisfying the finite
intersection property. Therefore there exists x P �UPF U . On the other hand,
the collection Fx of all clopen sets in X containing x is also a filter on CpXq
with F � Fx. But since F is an ultrafilter – i.e., a maximal filter – we have
F � Fx. Thus m and Fx are respectively the kernel and shell of the homomorphism
f : CpXq Ñ Z{2Z, so

m � CpXqzFx � tU P CpXq | x R Uu � mpxq.
Finally, since m is surjective, we have that for each A P CpXq,

tU PMpCpXqq | A P Uu � tmpxq | x P Au,
so thatmmaps the base CpXq for the topology onX onto the base CpMpCpXqqq. □

Thus at this point we know that the category of Boolean spaces is anti-equivalent
to the category of Boolean algebras, which is equivalent to the category of Boolean
rings. It follows, of course, that the category of Boolean spaces is anti-equivalent
to the category of Boolean rings. We can state this a bit more directly, as follows:
for a topological space X, let CpX, 2q be the ring of all continuous functions f :
X Ñ Z{2Z (with Z{2Z being given the discrete topology). The ring CpX, 2q is
a Boolean ring under pointwise addition and multiplication. Letting CpXq be the
characteristic algebra of X, the map

CpX, 2q Ñ CpXq, f P CpX, 2q ÞÑ f�1p1q
is an isomorphism from GpCpX, 2qq, the Boolean algebra of CpX, 2q, to the Boolean
algebra CpXq. It follows that:

Theorem 9.19 (Stone Duality, version II). a) For every Boolean ring R,
the map RÑ CpSpecR, 2q given by x ÞÑ pm ÞÑ x pmod mq P Z{2Zq is an
isomorphism of Boolean rings.

b) For every Boolean space X, the map X Ñ SpecpCpX, 2qq given by x ÞÑ
mx :� tf P CpX, 2q | fpxq � 0u is a homeomorphism.
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The map x ÞÑ mx of Theorem 9.19 is an analogue of the map X Ñ MaxSpecCpXq
that we defined for the ring of R-valued continuous functions on any topologi-
cal space X. (For any topological field F , we can define such a map X Ñ
MaxSpecCpX,F q, where CpX,F q is the ring continuous functions f : X Ñ F .)
Theorem 9.19 is closely analogous to the anti-equivalence from the category of
compact spaces to the category of continuous real-valued functions on those spaces.

However, in Chapter 5 we did not give a ring-theoretic characterization of the
class of rings CpXq for X a compact space, whereas the class of rings CpX, 2q ob-
tained by varying over all topological spaces X is simply the class of all Boolean
rings. There is a better duality theorem on the class of compact spaces, but it
takes us out of our subject matter: for a compact space X, there is more structure
on CpX,Cq � tcontinuous f : X Ñ Cu than just that of a commutative ring: it
is a commutative, unital C�-algebra. Gelfand showed that there is a categorical
anti-equivalence between compact spaces and commutative, unital C�-algebras.

Theorem 9.20. Let B be a Boolean algebra, with associated Boolean ring R
and Stone space MpBq � SpecR.

a) For m PMpBq, the following are equivalent:
(i) m is an isolated point of MpBq: that is, tmu is open.
(ii) The ideal m is principal.

b) For x P B, the following are equivalent:
(i) The ideal xxy is maximal.
(ii) The element x� is an atom of B.

Proof. a) (i) ùñ (ii): Suppose that m P MpBq is isolated: then there is
x P B such that tmu � Ux, i.e., m is the unique maximal ideal that does not contain
x. Equivalently, m is the unique maximal ideal containing x�. If m contained an
element y with y ¦ x� then by Corollary a) there would be a maximal ideal of
B containing x� and not y, which is a contradiction: the only maximal ideal that
contains x� also contains y. It follows that m � xx�y is principal.
(ii) ùñ (i): If m � xxy, then every maximal ideal that does not contain x� must
contain m, so Ux� � tmu.
b) (i) ùñ (ii): We go by contraposition: suppose that x� is not an atom, so there
is y P B with 0   y   x�. Then x   y�   1, so xxy � xy�y � B.
(ii) ùñ (i): Again, we go by contraposition: if xxy is not maximal, then there is
y P B such that

xxy � xx, yy � B.

But xx, yy � xx _ yy, so we have x   x _ y   1 and thus 0   px _ yq�   x� . It
follows that x� is not an atom. □

Here is another take on Theorem 9.20b): an element x of a Boolean algebra B is
an atom if and only if xxy is minimal among nonzero principal ideals if and only if
xx�y is maximal among proper principal ideals. Because finitely generated ideals
in a Boolean ring are principal, an ideal that is maximal among proper principal
ideals must actually be a maximal ideal. (In a domain R, an element that generates
an ideal that is maximal among proper principal ideals is called irreducible. Such
elements will be studied in great detail in Chapter 15. The ideal generated by an
irreducible element need not be prime, and if it is prime it need not be maximal.)
Because principal ideals in a Boolean algebra B have unique generators (Exercise
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9.4b)), the map
a ÞÑ pa�q

gives a bijection from the set of atoms of B to the set PMpBq of principal maximal
ideals of B, which by Theorem 9.20a) is an open, discrete subset of MpBq.

Exercise 9.19. Let B be a Boolean algebra. Show: the set PMpBq is dense in
the set MpBq of all maximal ideals of B if and only if B is atomic.

Earlier, in Proposition 9.3 we showed that every infinite Boolean ring has a prime
ideal that is not principal (equivalently, not finitely generated, since all finitely
generated ideals of a Boolean ring are not principal). Theorem 9.20 gives a nice
topological proof of this: if R is a Boolean ring in which every prime ideal is
principal, then every point of SpecR is isolated, so SpecR is discrete. But it is also
compact, hence it is finite.

We also immediately deduce:

Corollary 9.21. For a Boolean algebra B with corresponding Boolean ring
R, the following are equivalent:

(i) B is atomless.
(ii) R has no principal prime ideals.
(iii) The Stone space MpBq � SpecR is perfect: no point is isolated.

Thus atomless Boolean algebras correspond to perfect Boolean spaces. The most
famous perfect Boolean space is the Cantor space,. The Cantor set C is the set
of real numbers in r0, 1s admitting a ternary (base 3) expansion in which 1 does
not appear. Any real number has at most one such expansion, so C is in canonical

bijection with t0, 2uZ� . If we give each t0, 2u the discrete topology and t0, 2uZ� the
product topology, then this caononical bijection is a homeomorphism. One also sees

easily that t0, 2uZ� is Boolean, perfect and second-countable. In fact, any infinite
topological space that is Boolean, perfect and second-countable is homeomorphic to
the Cantor space [Cl-GT, Thm. 9.4]. Using Exercise 9.16, the “Stone dual” of this
result is the assertion that any two countably infinite atomless Boolean algebras
are isomorphic: this is Theorem 9.15.

Exercise 9.20. Let S be a nonempty set, and let R :� pZ{2ZqS.
a) Show: the atoms of R are the elements x all of whose coordinates except

for exactly one are 0.
b) For s P S, let xs be the element all of whose coordinates except for the

sth coordinate are 1 and for which the sth coordinate is 0. Show: the map
ι : S ãÑ MaxSpecR given by s ÞÑ pxsq is an injection with image the set
of principal maximal ideals of R.

c) As mentioned above, ιpSq is a discrete, open subspace of MaxSpecR.
Show: ι : S ãÑ MaxSpecR is the Stone-Cech compactification of the
discrete space S.

In the examples of infinite Boolean algebras that we’ve seen so far, “most” maximal
ideals were not principal. This need not be the case:

Exercise 9.21. Let κ be a countable cardinal. Show: there is a countably
infinite Boolean algebra with exactly κ nonprincipal maximal ideals.





CHAPTER 10

Associated Primes and Primary Decomposition

1. Associated Primes

Let M be an R-module. A prime ideal p of R is an associated prime of M if
there is m P M with p � annm � tx P R | xm � 0u. The set of associated primes
of M is denoted (unfortunately) by AssM .

Thus when R is a domain andM is torsionfree, p0q is the only associated prime
of M . In particular this holds for ideals of R. We hope this motivates the following
definition: for an ideal I of a ring R, the associated primes of the ideal I are the
associated primes of the module R{I.

Proposition 10.1.
For an R-module M and p P SpecR, the following are equivalent:

(i) p P AssM .
(ii) There is an injection of R-modules R{p ãÑM .

Proof. (i) ùñ (ii): Let p P AssM , and let m P M with p � annm. Define
ι : RÑM by x ÞÑ xm. Then Ker ι � p, so ι gives an injection from R{p to M .
(ii) ùñ (i): If ι : R{p ãÑM , let m � ιp1� pq. Then p � annm. □

We immediately deduce:

Corollary 10.2. If N �M are R-modules, then AssN � AssM .

Proposition 10.3. For a prime ideal p of R, AssR{p � tpu.
Proof. Proposition 10.1 gives p P AssR{p. Conversely, let x P R be such that

annpx�pq � q is a prime ideal. Since p is prime, y P q ðñ yx P p ðñ y P p. □

For an R-module M , a zero divisor of M is an element x P R such that xm � 0
for some m PM. We write ZDpMq for the set of all zero divisors of M .

Proposition 10.4. For a nonzero R-module M , let F � tannm | m PMu.
a) Every maximal element of F is a prime ideal.
b) If R is Noetherian, then AssM � ∅.

Proof. a) Let I be an ideal of R of the form annm for some x PM and not
properly contained in annx1 for any x1 P M. Let a, b P R be such that ab P I
but b R I. Then bx P M. Since 0 � abx � apbxq, a P annpbxq. But clearly
I � annx � annpbxq, so by maximality of I we have I � annpbxq and thus a P I.
b) If M � 0, then F is a nonempty family of ideals in a Noetherian ring so has a
maximal element. Apply part a). □

Exercise 10.1. Let M be a nonzero R-module, and let S � R be a multiplica-
tive subset. Following [LR08, Prop. 3.5], we consider the family F of ideals I of R
with the following propery: for all m PM , if Im � 0 then sm � 0 for some s P S.

225
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a) Show: F is increasing and strongly Ako.
b) Show: an ideal I of R is maximal with respect to being disjoint from S

and of the form annpmq for some nonzero element m P M if and only if
it is a maximal element of F 1.

c) (Herstein) Show: an ideal that is maximal among annihilators of nonzero
points of M is prime.

d) Suppose that either R or M is Noetherian. Show: F is a monoidal filter.

Proposition 10.5. Let M be an R-module.

a) We have
�

pPAssM p � ZDpMq.
b) If R is Noetherian, then

�
pPAssM p � ZDpMq.

Proof. a) If p � annm, then xm � 0 for all x P p, so p � ZDpMq.
b) Let x P ZDpMq, so that there is m P M with xm � 0. By Proposition 10.4
applied to N � xmy, there is p P AssN , i.e., there is y P R such that ym � 0 and
p � ann ym. Since xm � 0, xym � 0 and x P p. By Proposition 10.2 p P AssM
and thus x P �pPAssM p. □

Proposition 10.6. Let N �M be R-modules. Then:

a) We have AssM � AssN YAssM{N .
b) We have Ass pÀiPIMiq �

�
iPI AssMi.

Proof. a) For p P AssM , let ι : R{p � M be an R-module monomorphism.
Put H � ιpR{pq and L � H XN .
Case 1: Suppose L � 0. Then the natural map α : H ÑM{N is a monomorphism,
so α � ι : R{pÑM{N is a monomorphism and p P AssM{N .
Case 2: Let x P L. Then x P H � pR{pq, so annx � p. Since x P N , p P AssN .
b) Put M � ÀiPIMi. Since each Mi is a submodule of

À
iPIMi,

�
iPI AssMi �

AssM follows from Proposition 10.2. The containment AssM � �iPI AssMi fol-
lows from part a) when I is finite. In the general case, let p P AssM . Then there
is an R-module monomorphism ι : R{p ãÑM �ÀiPIMi. The image ιpR{pq lies in
the submodule generated by ιp1� pq, hence lies in

À
iPJMi for some finite subset

J � I. This reduces us to the finite case. □

Theorem 10.7. Let R be a Noetherian ring, and let M be a nonzero, finitely
generated R-module.

a) There is a chain of submodules

0 �M0 �M1 � . . . �Mn �M

such that for all 0 ¤ i ¤ n � 1 there is a prime ideal pi of R with
Mi�1{Mi � pi.

b) For any such chain, we have AssM � tp0, . . . , pn�1u.
c) In particular, AssM is finite.

Proof. a) By Proposition 10.5 M has an associated prime p1 � annm1. Put
M0 � t0u and M1 � xm1y; note M1{M0 � M1 � R{p1. If M1 � M we’re
done; if not, M{M1 is finitely generated and nonzero so has an associated prime
p2 � annpm2 �M1q. Put M2 � xm1,m2y, so that M2{M1 � R{p2. We continue
in this way, getting an increasing chain of submodules Mi in M . Since M is
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Noetherian, we must have Mn �M for some m.
b) By Proposition 10.3, for all 0 ¤ i ¤ n� 1 we have

AssMi�1{Mi � AssR{pi � tpiu.
By Proposition 10.6 we have for all 0 ¤ i ¤ n � 1, AssMi�1 � AssMi Y tpi�1u,
and from this AssM � AssMn � tp1, . . . , pnu follows.
c) This follows immediately. □

Corollary 10.8. Let pR,mq be a Noetherian local ring. If mzm2 consists
entirely of zero-divisors, then there is x P R with xm � 0.

Proof. If m � 0 we may take x � 1. Henceforth we assume m � 0, so by
Nakayama’s Lemma there is a P mzm2. By Theorem 10.7 and Proposition 10.5,
AssR � tp1, . . . , pnu is finite and ZDpRq � �n

i�1 pi. Thus by hypothesis

mzm2 �
n¤
i�1

pi.

For y P m2 and p P Z�, a � yp P mzm2, so by the Pigeonhole Principle there are
1 ¤ p   q P Z� such that a � yp, a � yq P pi for some i. Then ypp1 � yq�pq P pi;
since yq�p P m and R is local, 1 � yq�p P R�; thus yp P pi and, since pi is prime,
y P pi. This shows

m �
n¤
i�1

pi.

By Prime Avoidance (Lemma 8.52), there is at least one i such that m � pi. By
definition pi � annx for some x P R: we’re done. □

Proposition 10.9. Let S � R be multiplicatively closed.

a) If M is an S�1R-module, then AssRM � AssS�1RM .
b) If M is an R-module, then

AssRM X SpecS�1R � AssS�1R S
�1M.

c) If R is Noetherian and M is an R-module, then

AssRM X SpecS�1R � AssS�1R S
�1M.

Let M be an R-module. A weakly associated prime of M is a prime ideal p of
R such that there is x PM with p � rpannxq. Thus the definition differs from the
usual one in that we are permitted to pass from annx to its radical. We denote by
weakAssM the set of weakly associated primes of M .

Exercise 10.2. Show: for an R-module M and p P SpecR, the following are
equivalent:

(i) p is weakly associated to M .
(ii) There is an ideal I of R with rpIq � p and an R-module injection R{I ãÑ

M .

Exercise 10.3. Show: parts a) and b) of Proposition 10.9b) hold if we replace
Ass by weakAss throughout.

Proposition 10.10. Let M be an R-module.

a) We have AssM � weakAssM .
b) If R is Noetherian, then AssM � weakAssM .
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Proof. a) As the terminology suggests, this is immediate: if p � annx, then
annx is prime, hence radical, so p � rpannxq.
b) By Proposition 10.9 it is enough to show that p P AssRp

Mp: replacing R by Rp

we may assume R is Noetherian local with maximal ideal p. Since p P weakAssM ,
there is x PM with rpannxq � p. Since R is Noetherian, by Proposition 4.17g) we
have that pn � annx for some n P Z�. Again using the Noetherian hypothesis, the
set tann y | y P R is such that ann y � annxu has a maximal element ann y, and
by Proposition 10.4, q � ann y is prime. Then we have pn � annx � q, and since
q is prime and p is maximal, we have q � p and thus p P AssM . □

Exercise 10.4. Let k be a field and R � krt1, t2, . . .s be the polynomial ring
in a countably infinite set of indeterminates over k. Let I � xt21, t22, . . .y, and let
p � rpIq � xt1, t2, . . .y. Show: p P weakAssR{IzAssR{I.

2. The support of a module

For a module M over a ring R, we define its support

suppM � tp P SpecR | Mp � 0u.
Proposition 10.11. For a finitely generated R-module M ,

suppM � tp P SpecR | p � annMu.
Proof. Write M � xω1, . . . , ωnyR. For p P SpecR, we have p P suppM if and

only if Mp � 0 iff for some 1 ¤ i ¤ n we have annpωiq � p. If these conditions hold
then

annM �
n£
i�1

annpωiq � p.

Conversely, if p contains annpMq � �n
i�1 annpωiq then p contains

±n
i�1 annpωiq

hence it contains annpωiq for some i, so p P suppM . □

We record the following result here, even though it involves some ideas from Chapter
13.

Corollary 10.12. Let M be a finitely generated R-module.

a) The set suppM is a Zariski-closed subset of SpecR.
b) If q � p are prime ideals of R and p P suppM , then also q P suppM .

Proof. a) Indeed, Proposition 10.11 gives that suppM is the set of all prime
ideals containing the ideal annM , which makes its Zariski-closed by definition. b)
If q � p, then q lies in the closure of p (cf. §13.4), so this follows from part a). □

Theorem 10.13. Let M be an R-module.

a) We have weakAssM � suppM .
b) If R is Noetherian, the minimal elements of AssM are the minimal ele-

ments of suppM .
c) The minimal associated primes of R are the minimal primes of R.

Proof. a) Let p P weakAssM . By Exercise 10.2, there is an ideal I of R
with rpIq � p and an R-module embedding R{I ãÑ M . Tensoring with the flat
R-module Rp gives an injection Rp{IRp ãÑ Mp. Since rpIq � p, I � p and thus
IRp � pRp � Rp and Mp � Rp{IRp � 0.
b) Recall that under the Noetherian assumption weakAssM � AssM .
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Step 1: Each p P suppM contains an element of AssM : indeed, let p P suppM , so
Mp � 0. Since Rp is Noetherian, Propositions 10.4b) and 10.9c) give

∅ � AssRp
Mp � AssRM X SpecRp,

and an element of the latter set is precisely an associated prime q of M with q � p.
Step 2: Let p P AssM be minimal, so by part a) p P suppM . If there were
p1 P suppM with p1 � p then there is no element in AssM which is contained in
p1, contradicting Step 1.
Step 3: Let p P suppM be minimal. By Step 1, p contains an element p1 of AssM ,
but since AssM � suppM and p is minimal we must have p � p1.
c) Apply part b) to M � R. □

Theorem 10.14. If R is Noetherian, MinSpecR is finite.

Proof. Combine Theorem 10.7c) and Theorem 10.13c). □

Later we will give a topological proof of Theorem 10.14!

3. Primary Ideals

A proper ideal q of a ring R is primary if for all x, y P R, xy P q implies x P q or
yn P q for some n P Z�.

Exercise 10.5.

a) Show: a prime ideal is primary. (Trivial but important!)
b) Show: an ideal q of R is primary if and only if every zero-divisor in R{q

is nilpotent.

Neither the definition or primary ideal nor the characterization given in the above
exercise is particularly enlightening, so one natural question is: which ideals are
primary? (And, of course, another natural question is: what’s the significance of
a primary ideal?) Here are some simple results which give some information on
primary ideals, sufficient to determine all the primary ideals in some simple rings.

Proposition 10.15. Let q be an ideal in a ring R. If rpqq � m is a maximal
ideal, then q is primary. In particular, any power of a maximal ideal is primary.

Proof. Since rpqq is the intersection of all prime ideals containing q, if this
intersection is a maximal ideal m, then m is the unique prime ideal containing q and
R{q is a local ring with nilpR{qq � JpR{qq � m{q. In such a ring an element is a
zero-divisor if and only if it is a nonunit if and only if it is nilpotent, so q is primary.
The “in particular” follows since by Proposition 4.17f), rpmnq � rpmq � m. □

Proposition 10.16. If q is a primary ideal, then its radical rpqq is a prime
ideal, the smallest prime ideal containing q.

Proof. Let xy P rpqq, so that pxyqm � xmym P p for some m P Z�. If xm

is in q then x P rpqq, so assume that xm is not in q. Then ym is a zero divisor in
R{q, so by definition of primary there exists n P Z� such that pymqn P q, and then
y P rpqq. The second statement holds for any ideal I whose radical is prime, since
rpIq is the intersection of all prime ideals containing I. □

A primary ideal is said to be p-primary if its radical is the prime ideal p.

Lemma 10.17. If q1, . . . , qn are p-primary ideals, then q � �n
i�1 qi is p-primary.
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Proof. Let x, y be elements of the ring R such that xy P q and x P Rzq.
Then for all 1 ¤ i ¤ n, since xy P qi there is ai P Z� such that yai P qi, and then
ya1�...�an P q, so q is primary. Moreover, by Proposition 4.17b) we have

rpqq � rp
n£
i�1

qiq �
n£
i�1

rpqiq �
n£
i�1

p � p. □

Exercise 10.6. Give an example of primary ideals q, q1 such that qX q1 is not
primary.

Proposition 10.18. If q is a primary ideal, the quotient ring R{q is connected.

Proof. Indeed, a ring is disconnected if and only if it has an idempotent
element e different from 0 or 1. Such an element is certainly not nilpotent en � e
for all n – but is a zero-divisor, since ep1� eq � e� e2 � 0. □

Exercise 10.7. Let k be a field, let R � krx, ys and put I � pxyq. Show: I is
not primary but “nevertheless” R{I is connected.

Example 10.19. We will find all primary ideals in the ring Z of integers.
Evidently p0q is prime and hence primary. If q is any nonzero primary ideal,
then its radical p � rpqq is a nonzero prime ideal, hence maximal. So, combining
Propositions 10.15 and 10.16 we find that a nonzero ideal in Z is primary if and only
if its radical is maximal. Moreover, for any prime power ppnq, rpppnqq � rpppqq �
ppq is maximal – we use here the elementary and (we hope) familiar fact that if
p is a prime number, ppq is a prime ideal (Euclid’s Lemma); such matters will be
studied in more generality in Chapter 15 – so ppnq is a primary ideal. Conversely, if
n is divisible by more than one prime power, then applying the Chinese Remainder
Theorem, we get that Z{n is disconnected.

Exercise 10.8.

a) Let R be an domain for which each nonzero ideal is a (finite, of course)
product of maximal ideals. Use the above argument to show that an ideal
q of R is primary if and only if it is a prime power.

b) (For those who know something about PIDs) Deduce in particular that
primary � prime power in any principal ideal domain.

Consider the following property of an domain:

(DD) Every ideal can be expressed as a product of prime ideals.

This is a priori weaker than the hypothesis of Exericse 10.8a). Later we will devote
quite a lot of attention to the class of domains satisfying (DD), the Dedekind
domains. Among their many properties is that a Dedekind domain is (either a
field or) a domain in which each nonzero prime ideal is maximal. Thus in fact the
hypothesis of Exercise 10.8a) is equivalent to assuming thatR is a Dedekind domain.

Remark(ably): Another characterization theorem says that any Noetherian domain
in which each primary ideal is a prime power is a Dedekind domain. In particu-
lar, any polynomial ring krx1, . . . , xns in 2 ¤ n   8 variables over a field admits
primary ideals which are not prime powers.
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Exercise 10.9. Let R � Zrts{pt2� 3q (or, equivalently, Zr?�3s). Let q � p2q.
a) Show: there is a unique ideal p2 with R{p2 � Z{2Z. Evidently p2 is

maximal.
b) Show that rpqq � p2, and deduce that I is primary.
c) Show that q is not a prime power, and indeed, cannot be expressed as a

product of prime ideals.

Thus a primary ideal need not be a prime power. Conversely? It is a special case
of Proposition 10.15 that any power of a maximal ideal is primary, but in general
a power of prime ideal need not be primary:

Example 10.20. [AM, p. 51] Let k be a field; put R � krx, y, zs{pxy � z2q.
Denote by x, y, and z the images of x, y, z in R. Put p � xx, zy. Since R{p �
krx, y, zs{px, z, xy � z2q � krys is a domain, p is a prime ideal. Now consider the
ideal p2: we have xy � z2 P p2, but x R p2 and y R p � rpp2q, so p2 is not primary.

4. Primary Decomposition, Lasker and Noether

Let R be a ring and I an ideal of R. A primary decomposition of I is an ex-
pression of I as a finite intersection of primary ideals, say I � �n

i�1 qi.

An ideal that admits at least one primary decomposition is said to be decom-
posable. This is not a piece of terminology that we will use often, but the reader
should be aware of its existence.

For any ring R, let us either agree that R itself admits the “empty” primary de-
composition or that R has no primary decomposition (i.e., it doesn’t matter either
way) and thereafter restrict our attention to proper ideals.

It may not be too surprising that not every ideal in every ring admits a primary
decomposition. Indeed, we will see later that if R is a ring for which p0q admits a
primary decomposition, then the ring R has finitely many minimal primes.

The first important result in this area was proved by Emanuel Lasker in 1905,
roughly in the middle of his 27 year reign as world chess champion. Here it is.

Theorem 10.21. (Lasker [La05]) Let R be a polynomial ring in finitely many
variables over a field. Every proper ideal I of R admits a primary decomposition.

Lasker’s proof of this theorem was a long and intricate calculation. As we will
shortly see, a broader perspective yields considerably more for considerably less
effort. In Lasker’s honor a ring R in which every proper ideal admits a primary
decomposition is called a Laskerian ring.

Exercise 10.10. If R is Laskerian and I is an ideal of R, then R{I is Laske-
rian.

Combining Lasker’s theorem with this exercise, we get that every finitely generated
algebra over a field admits a primary decomposition. This result is of fundamental
(indeed, foundational) importance in algebraic geometry.

However, in 1921 Lasker’s triumph was undeniably trumped by Emmy Noether.
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To see how, we need one further concept. An ideal I is irreducible if whenever I
is written as an intersection of two ideals – i.e., I � J XK – then I � J or I � K.

Exercise 10.11. Let I be a proper ideal in a principal ideal domain R. Show:
the following are equivalent:

(i) I is primary.
(ii) I is irreducible.
(iii) I is a prime power: there exists a in R and n P Z� such that paq is prime

and I � paqn � panq.
Proposition 10.22.

a) A prime ideal is irreducible.
b) An irreducible ideal in a Noetherian ring is primary.

Proof. a) Let p be a prime ideal, and write p � I X J . Since then p � IJ , by
Proposition 4.11 we have p � I or p � J ; WLOG say p � I. Then p � IXJ � I � p,
so that we must have I � p.

b) By passage to the quotient, we may assume that p0q is irreducible and show
that it is primary. So suppose xy � 0 and x � 0. Consider the chain of ideals

annpyq � annpy2q � . . . � annpynq � . . . .

Since R is Noetherian, this chain stabilizes: there exists n such that annpynq �
annpyn�kq for all k. We claim that pxq X pynq � 0. Indeed, if a P pxq then
ay � 0, and if a P pynq then a � byn for some b P R, hence byn�1 � ay � 0, so
b P annpyn�1q � annpynq, hence a � byn � 0. Since the p0q ideal is irreducible, we
must then have yn � 0, and this shows that p0q is primary. □

Exercise 10.12. This exercise is taken from a post of E. Merkulova on
http://math.stackexchange.com/questions/28620. Let k be a field, R � krx, ys and
I � xx2, xy, y2y.

a) Show: I is primary. (Hint: use Proposition 10.15.)
b) Show: I � xx, y2y X xx2, yy.
c) Deduce: I is an ideal in a (very nice) Noetherian domain which is primary

but not irreducible.

Theorem 10.23. (Noether) A proper ideal in a Noetherian ring admits a
primary decomposition.

Proof. Let I be a proper ideal in the Noetherian ring R. We claim I is a finite
intersection of irreducible ideals; in view of Proposition 10.22 this gives the desired
result. To see this: suppose that the set of proper ideals that cannot be written as a
finite intersection of irreducible ideals is nonempty, and choose a maximal element
I. Then I is reducible, so we may write I � JXK where each of J and K is strictly
larger than I. Being strictly larger than I, each of J and K can be written as a
finite intersection of irreducible ideals, hence so can I. Contradiction! □

In other words, a Noetherian ring is Laskerian. Therefore Lasker’s Theorem is
an immediate consequence of Noether’s Theorem together with the Hilbert Basis
Theorem, which we recall, was proved in 1888 and whose remarkably short and
simple – but nonconstructive – proof engendered first controversy and later deep
admiration. The same is true for Noether’s theorem: it is from this theorem, and
the ridiculous simplicity of its proof, that Noetherian rings get their name.
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Exercise 10.13. Let R be a Noetherian ring, with minimal primes p1, . . . , pr.
Show: there is N P Z� such that p0q � �r

i�1 p
N
i . (Hint: use Proposition 4.17g).)

5. Irredundant primary decompositions

If an ideal can be expressed as a product of prime ideals, that product is in fact
unique. We would like to have similar results for primary decomposition. Unfortu-
nately such a uniqueness result is clearly impossible. Indeed, if I � q1 X . . .X qn is
a primary decomposition of I and p is any prime containing I, then q1X . . .XqnXp
is also a primary decomposition, and clearly a different one if p � qi for any i. A
proper ideal I may well be contained in infinitely many primes – e.g. this occurs
with I � p0q for any Noetherian domain of dimension at least 2 – so there may well
be infinitely many different primary decompositions.

But of course throwing in extra primes is both frivolous and wasteful. The fol-
lowing definition formalizes the idea of a primary decomposition which is “frugal”
in two reasonable ways.

A primary decomposition is said to be irredundant1 (or minimal, or reduced)
if both of the following properties hold:

(IPD1) For all i � j, rpqiq � rpqjq.
(IPD2) For all i, qi does not contain

�
j�i qj .

If wastefulness succeeds, so does frugality:

Lemma 10.24. An ideal that admits a primary decomposition admits an irre-
dundant primary decomposition.

Proof. By Lemma 10.17, we may replace any collection of primary ideals
qi with a common radical with their intersection and still have a primary ideal,
thus satisfying (IPD1). Then if (IPD2) is not satisfied, there is some qi which
contains the intersection of all the other qj ’s, hence it can be removed to obtain
a primary decomposition satisfying (IPD1) and with a smaller number of primary
ideals. Proceeding in this way we eventually arrive at an irredundant primary
decomposition. □

The question is now to what extent an irredundant primary decomposition is
unique. The situation here is significantly better: although the primary decom-
position is not in all cases unique, it turns out that there are some important
quantities which are defined in terms of a primary decomposition and which can
be shown to be independent of the choice of irredundant decomposition, i.e., are
invariants of the ideal. Such uniqueness results are pursued in the next section.

6. Uniqueness properties of primary decomposition

Recall that for ideals I and J of a ring R, pI : Jq � tx P R | xJ � Iu, which is also
an ideal of R. We abbreviate pI : pxqq to pI : xq and ppxq : Jq to px : Jq.

Exercise 10.14. Show: for ideals I and J , we have I � pI : Jq.
1It is amusing to note that most dictionaries do not recognize “irredundant” as an English

word, but mathematicians have been using it in this and other contexts for many years.
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Lemma 10.25. Let q be a p-primary ideal and x P R.
a) If x P q then pq : xq � R.
b) If x R q then pq : xq is p-primary.
c) If x R p then pq : xq � q.

Proof. a) If x P q then 1pxq � x � q, so 1 P pq : xq.
b) If y P pq : xq, then xy P q; by assumption x R q, so yn P q for some n and thus
y P rpqq � p. So q � pq : xq � p; taking radicals we get rppq : xqq � p. Moreover, if
yz P pq : xq with y R pq : xq, then xyz � ypxzq P q, so pxzqn � xnzn P q for some n,
and xn R q ùñ pzmqn P q for some n P Z�, thus zmn P q � pq : xq.
c) We have in all cases that q � pq : xq. If x R p � rpqq and y P pq : xq, then xy P q;
since no power of x is q, we must have y P q. □

Theorem 10.26. (First Uniqueness Theorem) Let I � �n
i�1 qi be any irre-

dundant primary decomposition of the ideal I. Let pi � rpqiq. Then the pi’s are
precisely the prime ideals of the form rppI : xqq as x ranges through elements of R.
In particular, they are independent of the choice of irredundant primary decompo-
sition.

Proof. For x P R we have pI : xq � p�i qi : xq �
�
ipqi : xq, so

rppI : xqq �
£
i

rppqi : xqq �
£
xRqj

pj

by Lemma 10.25. If rpI : xq is prime, then rpI : xq �
pj for some j. Conversely, for each i, by irredundancy of the decomposition there
exists xi P

�
j�i qjzqi and then the Lemma implies rpI : xiq � pi. □

Corollary 10.27. Let R be Noetherian, and let I � R be a proper ideal.
Let p1, . . . , pr be the radicals of the primary ideals in an(y) irredundant primary
decomposition of I. Then

tp1, . . . , pru � AssR{I.
Proof. By Theorem 10.26 the pi’s are precisely the elements of weakAssR{I.

Since R is Noetherian, so is R{I and thus by Proposition 10.10b) weakAssR{I �
AssR{I. □

Proposition 10.28. Let I � �n
i�1 qi be a primary decomposition of an ideal

I, with pi � rpqiq. Then any prime ideal p containing I contains pi for some i.

Proof. If p � I � �i qi, then

p � rppq �
£
i

rpqiq �
£
i

pi.

Since p is prime, p � pi for some i. □

Exercise 10.15. Show: an infinite Boolean ring is not Laskerian.

Proposition 10.29. Let I � R be a decomposable ideal, I � �n
i�1 qi an irre-

dundant primary decomposition, and pi � rpqiq. Then

n¤
i�1

pi � tx P R : pI : xq � Iu.
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In particular, if the zero ideal is decomposable, then the set of zero divisors of R is
the union of the minimal associated primes of R.

Proof. By passage to the quotient ring R{I, we may assume that I � 0. Let
0 � �r

i�1 qi be a primary decomposition, with pi � rpqiq. For x P R, pp0q : xq � p0q
if and only if x is a zero-divisor, so it suffices to show the last statement of the
proposition, that the union of the minimal primes is the set of all zero-divisors. Let
D be the set of all zero divisors, so from Exercise 3.X and the proof of Theorem
10.26 we have

D � rpDq �
¤
0�x

rpp0 : xqq �
¤
0�x

£
xRqj

pj �
¤
j

pj .

Conversely, by Theorem 10.26 each pi is of the form rpp0 : xqq for some x P R. □

Theorem 10.30. (Second Uniqueness Theorem) Let I be an ideal of R, and
let

n£
i�1

qi � I �
m£
j�1

rj

be two irredundant primary decompositions for an ideal I. By Theorem 10.26 we
know that m � n and that there is a reordering r1, . . . , rn of the rj’s such that for
1 ¤ i ¤ n, rpqiq � pi � rpriq. Moreover, if pi is minimal, then qi � rj.

In other words, the primary ideals corresponding to the minimal primes are inde-
pendent of the primary decomposition.

We will use the technique of localization to prove this result, so first we need
some preliminaries on the effect of localization on a primary decomposition.

Proposition 10.31. Let R be a ring, S � R a multiplicatively closed set, and
q be a p-primary ideal. Write ι : RÑ S�1R for the localization map.

a) If S X p � H, then ι�pqq � S�1R.
b) If S X p � H, then ι�pqq is ι�ppq-primary, and ι�pι�pqqq � q.

Proof. a) If x P S X p, then for some n P Z�, xn P S X q, so ι�pqq contains a
unit of S�1R and is therefore S�1R. Part b) follows immediately from Proposition
7.4 and Proposition 7.6a). □

Proposition 10.32. Let S � R be a multiplicatively closed set, and let I ��n
i�1 qi be an irredundant primary decomposition of an ideal I. Put pi � rpqiq and

suppose that the numbering is such that S X pi � H for i ¤ m and S X pi � H for
i ¡ m. Then:

ι�pIq �
m£
i�1

ι�pqiq,

ι�ι�pIq �
m£
i�1

qi,

and both of these are irredundant primary decompositions.

Exercise 10.16. Prove Proposition 10.32.
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Proof of Theorem 10.30: let pi be a minimal associated prime, and put S � Rzpi.
Certainly S is a multiplicatively closed set, and moreover by minimality pi is the
unique associated prime which is disjoint from S. Applying Proposition 10.32 to
both primary decompositions gives

qi � ι�ι�pIq � ri.

□

7. Applications in dimension zero

We now give the proof of the uniqueness portion of Theorem 8.37. Let m1, . . . ,mn
be the distinct maximal ideals of the Artinian ring R. As in the proof of Theorem
8.37a) there exists k P Z� such that

±n
i�1 m

k
i � Xni�1m

k
i � 0. For each i, the

radical rpmki q is the maximal ideal mi, so by Proposition 10.15 each mki is an mi-
primary ideal. Thus 0 � �n

i�1 m
k
i is a primary decomposition of the zero ideal

which is moreover immediately seen to be irredundant. Since all the primes mi
are maximal, the desired uniqueness statement of Theorem 8.37b) follows from the
Second Uniqueness Theorem (Theorem 10.30) for primary decompositions.

8. Applications in dimension one

Let R be a one-dimensional Noetherian domain, and I a nonzero ideal. Then by
Theorem 10.23, I has a primary decomposition: I � �n

i�1 qi, where pi � rpqiq �
qi � I is a nonzero prime ideal. But therefore each pi is maximal, so that the pi’s
are pairwise comaximal. By Proposition 4.20, so too are the qi’s, so the Chinese
Remainder Theorem applies to give

I �
n£
i�1

qi �
n¹
i�1

qi,

and

R{I �
n¹
i�1

R{qi.

Thus in this case we can decompose any proper ideal as a finite product of primary
ideals and not just a finite intersection. Moreover, for I � 0, all the associated
primes are minimal over I, so the Uniqueness Theorems (Theorems 10.26 and 10.30)
simply assert that the ideals qi are unique. This observation will be very useful in
our later study of ideal theory in one dimensional Noetherian domains.



CHAPTER 11

Nullstellensätze

Let k be a field. By an affine algebra over k we simply mean a finitely generated
k-algebra. Of all the various and sundry classes of commutative rings we have met
and will meet later in these notes, affine algebras are probably the most important
and most heavily studied, because of their connection to algebraic geometry.

1. Zariski’s Lemma

In 1947 Oscar Zariski published a short note [Za47] proving the following result.

Theorem 11.1. (Zariski’s Lemma) Let k be a field, A a finitely generated
k-algebra, and m P MaxSpecA. Then A{m is a finite degree field extension of k.

Exercise 11.1. Show: the following is an equivalent restatement of Zariski’s
Lemma: let K{k be a field extension such that K is finitely generated as a k-algebra.
Then K{k is an algebraic field extension.

Notwithstanding its innocuous appearance, Zariski’s Lemma is a useful result on
affine algebras over any field. Further, when k is algebraically closed, it carries all
of the content of Hilbert’s Nullstellensatz, the main theorem of this section.

So how do we prove Zariski’s Lemma?

Oh, let us count the ways! The literature contains many interesting proofs, employ-
ing an impressively wide range of ideas and prior technology. We will in fact give
several different proofs during the course of these notes. Of course some pride of
place goes to the first proof that we give, so after much thought (and after changing
our mind at least once!) we have decided on the following.

1.1. Proof of Zariski’s Lemma via the Artin-Tate Lemma.

As in Exercise 11.1, it suffices to prove the following: let K{k be a field exten-
sion that is finitely generated as a k-algebra. We claim K{k is algebraic.

Indeed, if not, let x1, . . . , xn be a transcendence basis for K{k (n ¥ 1 since
K{k is transcendental), put kpxq � kpx1, . . . , xnq and consider the tower of rings

(31) k � kpxq � K.

To be sure, we recall the definition of a transcendence basis: the elements xi are alge-
braically independent over k and K{kpxq is algebraic. But since K is a finitely gen-
erated k-algebra, it is certainly a finitely generated kpxq-algebra and thus K{kpxq
is a finite degree field extension. Thus the Artin-Tate Lemma applies to (31): we
conclude that kpxq{k is a finitely generated k-algebra. But this is absurd. It implies
the much weaker statement that kpxq � kpx1, . . . , xn�1qpxnq is finitely generated

237
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as a kpx1, . . . , xn�1qrxns-algebra, or weaker yet, that there exists some field F such
that F ptq is finitely generated as an F rts-algebra: i.e., there exist finitely many ra-

tional functions triptq � piptq
qiptq uNi�1 such that every rational function is a polynomial

in the ri’s with k-coefficients. But F rts is a PID with infinitely many nonassociate
nonzero prime elements q (e.g. adapt Euclid’s argument of the infinitude of the
primes), so we may choose a nonzero prime element q which does not divide qiptq
for any i. It is then clear that 1

q cannot be a polynomial in the riptq’s: for instance,
evaluation at a root of q in F leads to a contradiction. □

Remark: The phenomenon encountered in the endgame of the preceding proof
will be studied in great detail in §12. What we are actually showing is that for any
field F , the polynomial ring F rts is not a Goldman domain, and indeed this is
closely related to the fact that SpecF rts is infinite. More on this later.

1.2. McCabe’s Proof of Zariski’s Lemma.

We will give one further proof of Zariski’s Lemma now (and more later...), an
extremely elegant and simple one due to J. McCabe [McC76].

Let K{k be a field extension that is finitely generated as a k-algebra, say by
x1, . . . , xn. Reorder the xi’s so that x1, . . . , xt are algebraically independent over
k and xt�1, . . . , xn are algebraic over kpx1, . . . , xnq. We may assume t ¥ 1, for
otherwise K{k is finitely generated algebraic field extension, hence of finite degree.

Let S � krx1, . . . , xts, so S is a polynomial ring and is not a field. There is
y P S such that yxt�1, . . . , yxn are all integral over Sr 1y s. We have k � Sr 1y s and
x1, . . . , xt P Sr 1y s, so K � krx1, . . . , xns is integral over Sr 1y s. Since K is a field, by

Proposition 1.10 so is Sr 1y s.
Let m P MaxSpecS. Since t ¥ 1, m � p0q, so let f P m. Then f is invert-

ible in the field Sr 1y s so there is g P S and N P Z� such that 1
f � g

yN
and thus

yN � fg. Since f P m and maximal ideals are prime, y P m. It follows that y
lies in every maximal ideal of S, hence 1 � y lies in no maximal ideal and is thus
a unit in S. But S� � krx1, . . . , xns� � k�, so 1 � y P k� and y P k. Thus
krx1, . . . , xts � krx1, . . . , xt, 1y s � Sr 1y s is a field: contradiction!

2. Hilbert’s Nullstellensatz

Let k be a field, let Rn � krt1, . . . , tns, and write An for kn. We introduce an anti-
tone Galois connection pV, Iq between subsets of Rn and subsets of An. Namely:

For S � An, we put

IpSq � tf P Rn | @x P S, fpxq � 0u.
In other words, IpSq is the set of polynomials which vanish at every element of S.
Conversely, for J � Rn, we put

V pJq � tx P An | @f P J, fpxq � 0u.
This is nothing else than the Galois relation associated to the relation fpxq � 0 on
the Cartesian product Rn � An.
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As usual, we would like to say something about the induced closure operators
on Rn and An. First, for any subset S of An, IpSq is not just a subset but an ideal
of Rn. In fact IpSq is a radical ideal: indeed, if fn P IpSq then fn vanishes on
every point of S, so f vanishes at every point of S.

This little bit of structure pulled from thin air will quicken the heart of any Bour-
bakiste. But beyond the formalism, the key question is: exactly which sets are
closed? Without knowing this, we haven’t proved the Nullstellensatz any more
than the analogous formalities between sets and groups of automorphisms prove
the Galois correspondence for Galois field extensions.

Indeed, an ideal I is radical if fn P I implies f P I. But if fn vanishes identi-
cally on S, then so does f .

The closed subsets of An are closed under arbitrary intersections (including the
“empty intersection”: An � V pp0qq and under finite unions (including the “empty
union”: H � V pt1uq � V pRnq, and therefore form the closed sets for a unique
topology on An, the Zariski topology.

Exercise 11.2.

a) Prove these facts.
b) Show: the Zariski topology on An{k coincides with the topology it inherits

as a subset of An{k.
c) Show: the Zariski topology is separated: i.e., singleton subsets are closed.
d) Show: when n � 1, the Zariski topology is the coarsest T1 topology on k:

namely, the topology in which a proper subset is closed if and only if it is
finite.

e) For any n ¥ 1, show: the Zariski topology on kn is discrete if and only if
k is finite.

f) For any infinite field and m,n ¥ 1, show: the Zariski topology on km�n

is strictly finer than the product of the Zariski topologies on km and kn.

Exercise 11.3. Let k be a field and n P Z� as above. Explicitly compute the
ideal Ipknq, i.e., the set of all polynomials which vanish at every point of kn. Do
we necessarily have Ipknq � t0u?

Lemma 11.2. For a � pa1, . . . , anq P kn, put ma � xx1 � a1, . . . , xn � any.
Then:

a) We have Rn{ma � k. In particular ma is maximal.
b) ma � Iptauq is the ideal of all functions vanishing at a.
c) The assignment a ÞÑ ma is a bijection from kn to the set of all maximal

ideals m of Rn such that Rn{m � k.

Proof. Part a) is obvious (but important).
b) Certainly each xi � ai vanishes at a, so ma � Iptauq. But by part a) ma is a
maximal ideal, whereas 1 R Iptauq, so we must have ma � Iptauq.
c) The mapping a ÞÑ ma is an injection from kn to the set of maximal ideals with
residue field k. Conversely, let m be an ideal of Rn with Rn{m � k. For 1 ¤ i ¤ n
let ai be the image of xi in Rn{m � k. Then m � ma so we must have equality. □
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We now pause for a very important definition. A ring R is a Jacobson ring if it
is “sufficiently many maximal ideals”: more precisely, such that every prime ideal
p of R is the intersection of the maximal ideals that contain it.

Exercise 11.4.

a) Show: a ring R is a Jacobson ring if and only if for every ideal I, the
intersection of all maximal ideals containing I is radpIq.

b) Show: every homomorphic image of a Jacobson ring is Jacobson.

Proposition 11.3. (Rabinowitsch Trick [Ra30]) Let k be a field and n P Z�.
a) The ring R � krx1, . . . , xns is a Jacobson ring.
b) It follows that any affine k-algebra is a Jacobson ring.

Proof. a) It is sufficient to show that for each prime ideal p of R and a P Rzp,
there exists a maximal ideal m containing p and not containing a.

To show this, put Ra :� Rr 1a s, and let pa � pRa be the pushed forward ideal.
Since p does not meet the multiplicative set generated by a, pa is still prime in
Ra. Let ma be any maximal ideal of Ra containing pa, and let m � ma X R
be its contraction to R: a priori, this is a prime ideal. There is an induced k-
algebra embedding R{m ãÑ Ra{ma. But Ra is still a finitely generated algebra
so by Zariski’s Lemma (Theorem 11.1) Ra{ma is finite dimensional as a k-vector
space, hence so is the subspace R{m. Thus the domain R{m must be a field: let
x P pR{mq, and write out a linear dependence relation of minimal degree among
the powers of x:

xn � cn�1x
n�1 � . . .� c1x� c0, ci P k, c0 � 0.

Thus

x
�
xn�1 � cn�1x

n�2 � . . .� c1
� � �1

c0
,

so x is invertible. Thus m is the desired maximal ideal.
b) This follows immediately from Exercise 11.4. □

Remark: It seems that the author “J.L. Rabinowitsch,” the author of [Ra30] is in
fact George Yuri Rainich, a distinguished Russian-American mathematician.

We prove one last fact before imposing the hypothesis that k is algebraically closed.

Proposition 11.4. Let k be any field and J an ideal of krxs � krx1, . . . , xns.
a) We have V pJq � V prad Jq.
b) For any subset S � kn, the ideal IpSq is radical.
c) IpV pJqq is a radical ideal containing rad J .

Proof. The underlying mechanism here is the following truly basic observa-
tion: for f P krxs, P P kn and m P Z�, we have

fpP q � 0 ðñ fmpP q � 0.

a) Since J � rad J we have V pJq � V prad Jq. Conversely, let P P V pJq and
f P rad J . Then there is m P Z� such that fm P J , so fmpP q � 0 and thus
fpP q � 0. It follows that P P V prad Jq.
b) Similarly, for any f P krxs and m P Z�, if fm P IpSq, then for all P P S,
fmpP q � 0. But this implies fpP q � 0 for all P P S and thus f P IpSq.
c) This follows immediately from parts a) and b) and the tautological fact that for
any ideal J of krxs, IpV pJqq � J . □



2. HILBERT’S NULLSTELLENSATZ 241

Finally we specialize to the case in which the field k is algebraically closed. We have
done almost all the work necessary to establish the following fundamental result.

Theorem 11.5. (Hilbert’s Nullstellensatz) Let k be an algebraically closed
field, let krxs � krx1, . . . , xns. Then:

a) I induces a bijective correspondence between the singleton sets of kn and
the maximal ideals: a P kn ÞÑ ma � xx1 � a1, . . . , xn � any.

b) For any Zariski-closed subset S � kn, we have V pIpSqq � S.
c) For any ideal J of Rn, we have IpV pJqq � radpJq.

Thus there is an inclusion-reversing, bijective correspondence between Zariski-
closed subsets of kn and radical ideals of krxs.

Proof. a) Let m be a maximal ideal of krxs. By Theorem 11.1, the residue
field krxs{m is a finite degree extension of k. Since k is algebraically closed, this
forces krxs{m � k, and now Lemma 11.2 applies.
b) There is no content here: it is part of the formalism of Galois connections.
c) By Proposition 11.4, it is no loss of generality to assume that J is a radical ideal.
Further, by Proposition 11.3, krxs is a Jacobson ring, so any radical ideal J is the
intersection of the maximal ideals m containing it. This is true over any field k.
But combining with part a), we get that J is an intersection of maximal ideals of
the form ma for certain points a P kn. Since ma � Iptauq, J � ma if and only if
every element of J vanishes at a, in other words if and only if a P V pJq. Thus J
is equal to the set of all polynomials f P Rn which vanish at every point of V pJq:
J � IpV pJqq! □

Exercise 11.5. Let k be a field. Show that if either part a) or part c) of
Theorem 11.5 holds for the rings krx1, . . . , xns, then k is algebraically closed. (Hint:
in fact both parts fail for each n P Z�, including n � 1.)

Exercise 11.6. Show: Zariski’s Lemma in the case that k is algebraically
closed is equivalent to the following statement: let J � xf1, . . . , fmy be an ideal in
krx1, . . . , xns. Then either there exists a simultaneous zero a of f1, . . . , fm or there
exist polynomials g1, . . . , gm such that g1f1 � . . .� gmfm � 1.

2.1. The Semirational Nullstellensatz.

Lemma 11.6. (Lang’s Lemma) Let k be a field, L an algebraically closed field,
φ : k Ñ L a field embedding, and R a finitely generated k-algebra. Then there is a
homomorphism Φ : RÑ L extending φ.

Proof. Let m be a maximal ideal of k. By Zariski’s Lemma, R{m is a finite
degree field extension of k, so by basic field theory it embeds as a k-algebra into
any algebraically closed field containing k. □

Remark: In [Lg02, § IX.1], Lang gives a direct proof of Lemma 11.6. It is easy to
see that Lemma 11.6 implies Zariski’s Lemma, so this gives another way to proceed.

Corollary 11.7. Let k be a field, and let R be a domain that is finitely gener-
ated as a k-algebra. For any y1, . . . , yn P R, there is a homomorphism ψ : R Ñ k
such that ψpyiq � 0 for 1 ¤ i ¤ n.

Proof. Apply Lang’s Lemma to the ring Rr 1
y1
, . . . , 1

yn
s. □
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Corollary 11.8. Let J be a proper ideal of krt1, . . . , tns. Then there is x P kn
such that for all f P J , fpxq � 0.

Proof. Let m be a maximal ideal containing J . Zariski’s Lemma gives a k-
algebra embedding ψ : krt1, . . . , tns{m ãÑ k. Let px1, . . . , xnq � pψpt1q, . . . , ψptnqq.

□

For an ideal J of krt1, . . . , tns, let V apJq be the set of x � px1, . . . , xnq P kn with

gpxq � 0 for all g P J . For S � k
n
, let IpSq be the set of g P krt1, . . . , tns such that

gpxq � 0 for all x P S. (Notice that we are extending to the algebraic closure on
the affine space side but not on the ring side, hence the term “semirational”.)

Theorem 11.9. (Semirational Nullstellensatz) For all ideals J of krt1, . . . , tns,
we have IpV apJqq � rad J .

Proof. It is easy to see that IpV apJqq is a radical ideal containing J and
thus IpV apJqq � rad J . Conversely, let f P IpV apJqq. We must show that there
is N P Z� such that fm P J . We may assume f � 0. We introduce a new
indeterminate tn�1 and let J 1 be the ideal xJ, 1� tn�1fy of krt1, . . . , tn, tn�1s. Let
Z � k

n
be the zero set of J , so f |Z � 0. Let px1, . . . , xn, xn�1q P k

n�1
. If

px1, . . . , xnq R Z, then there is g P J � J 1 such that gpx1, . . . , xn, xn�1q � 0.
If px1, . . . , xnq P Z, then 1 � xn�1fpx1, . . . , xnq � 1 � 0. By Corollary 11.8,
J 1 � krt1, . . . , tn, tn�1s, so there are gi P krt1, . . . , tn, tn�1s and hi P J such that

1 � g0p1� tn�1fq � g1h1 � . . .� grhr.
Now substitute tn�1 � f�1 and multiply by an appropriate power fN of f to clear
denominators: we get fN P J . □

Exercise 11.7. The argument used in the proof of Theorem 11.9 is also called
the Rabinowitsch Trick. Explain its relation to the proof of Proposition 11.3.

Exercise 11.8. Can you deduce Theorem 11.9 from Hilbert’s Nullstellensatz?

Exercise 11.9. Let R be a subring of an algebraically closed field k, and let
f1, . . . , fr P Rrt1, . . . , tns. Show that exactly one of the following holds:

(i) There is x P kn such that f1pxq � . . . � frpxq � 0.
(ii) There are g1, . . . , gr P Rrt1, ..., tns and a P R such that

°r
i�1 gifi � a.

In the case of R � Z and k � C, Exercise 11.9 is often called the “Arithmetic
Nullstellensatz.” A more interesting version of it would ask in Case (ii) for explicit
upper bounds on the degrees of the polynomials gj .

3. The Real Nullstellensatz

Recall that a field k is formally real if it is not possible to express �1 as a sum
of (any finite number of) squares in k.

Exercise 11.10. Let k be a formally real field.

a) Show: k is not algebraically closed.
b) Show: each subfield of k is formally real.

A field k is real closed if it is formally real and admits no proper formally real al-
gebraic extension. So e.g. R is real closed and Q is formally real but not real closed.
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As we saw, even the weak Nullstellensatz fails for polynomial rings over any non-
algebraically closed field k. However, when k is formally real one can find coun-
terexamples to the Nullstellensatz of a particular form, and when k is real closed
one can show that these counterexamples are in a certain precise sense the only
ones, leading to an identification of the closure operation J ÞÑ IpV pJqq in this case.

In any commutative ring R, an ideal I is real if for all n P Z� and x1, . . . , xn P R,
x21 � . . .� x2n P I implies x1, . . . , xn P I.

A domain R is real if the zero ideal is real.

Exercise 11.11.

a) Show: a domain is real if and only if its fraction field is formally real.
b) Let R be a ring. Show: p P SpecR is real if and only if the fraction field

of R{p is formally real.

Exercise 11.12. Show: any real ideal is a radical ideal.

So what? The following result gives the connection to the closure operator on ideals
in krt1, . . . , tns.

Proposition 11.10. Let k be a formally real field and krxs � krx1, . . . , xns.
For any ideal J of krxs, its closure J � IpV pJqq is a real ideal.

Proof. Let f1, . . . , fm P krxs be such that f21 � . . . � f2m P J . Then for any
P P V pJq, we have f1pP q2� . . .� fmpP q2 � 0. Since k is formally real, this implies
f1pP q � . . . � fmpP q � 0, and thus f1, . . . , fm P IpV pJqq � J . □

Exercise 11.13. Find a real prime ideal p P Qrts which is not closed.

For an ideal I of a ring R, define the real radical

R adpIq � tx P R |Dn P Z� Db1, . . . , bm P R | x2n � b21 � . . .� b2m P Iu.
Proposition 11.11. [BCR, Prop. 4.1.7] Let I be an ideal in a ring R.

a) A real ideal J contains I if and only if J � R adpIq i.e., R adpIq is the
unique minimal real ideal containing I.

b) The ideal R adpIq is the intersection of all real prime ideals p � I.
c) It follows that every real ideal is equal to the intersection of all the real

prime ideals containing it.

Remark: If there are no real prime ideals containing I, then the intersection over
this empty set is taken to be R.

Proof. Step 1: we show that R adpIq is an ideal. The only nonobvious part
of this is closure under addition. Suppose that

a2n � b21 � . . .� b2m, A2N �B2
1 � . . .�B2

M P I.
We may write

pa�Aq2pn�Nq � pa�Aq2pn�Nq � a2mc�A2MC,

with c, C sums of squares in R. Then

pa�Aq2pn�Nq � pa�Aq2pn�Nq � cpb21 � . . .� b2mq � CpB2
1 � . . .�B2

M q P I,
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so a�A P R adpIq.
Step 2: R adpIq is a real ideal. Indeed, if x21 � . . .� x2k P R adpIq, then there exists
n P Z� and b1, . . . , bm P R such that

px21 � . . .� x2kq2m � b21 � . . .� b2m P I;
for each 1 ¤ i ¤ k, we may rewrite this as x4mi �B2

1 � . . .�B2
N , so xi P R adpIq.

Step 3: Since every real ideal is radical, it is clear that any real ideal containing I
also contains R adpIq.
Step 4: Let a P RzR adpIq. By Zorn’s Lemma, the set of real ideals containing I
but not a has a maximal element, say J . We claim that J is prime. If not, there
exist b, b1 P RzJ such that bb1 P J . Then a P R adpJ � bRq and a P R adpJ � b1Rq,
hence there are j, j1 P J such that

a2m � c21 � . . .� c2q � j � bd, a2m1 � c121 � . . .� c12q � j1 � b1d1.
It follows that

a2pm�m
1q � a sum of squares � jj1 � jb1d1 � j1bd� bb1dd1 P J,

and thus a P R adpJq � J , contradiction. Thus R adpIq is the intersection of all
real prime ideals containing I. □

Theorem 11.12. (Artin-Lang Homomorphism Theorem)

a) Let k ãÑ L be a map of real-closed fields, and let R be a finitely generated
k-algebra. If there is a k-algebra homomorphism φ : RÑ L, then there is
a k-algebra homomorphism ψ : RÑ k.

b) Let k be a real-closed field, and let R be a domain which is a finitely
generated k-algebra. If R is real, there is a k-algebra homomorphism φ :
RÑ k.

Proof. a) For a proof using model-theoretic methods, see e.g. [BCR, Thm.
4.1.2].
b) The fraction field K of R is formally real: let L be a real closure of K. Apply
part a) to the composite k-algebra homomorphism φ : RÑ K Ñ L. □

Remark: For a direct algebraic proof of Theorem 11.12b), see e.g. [S, § 3.3].

Exercise 11.14. Let R � Rrx, ys{px2 � y2q.
a) Show: R is a domain.
b) Show: R is not real.
c) Show: there is a (unique!) R-algebra homomorphism φ : RÑ R.

(Thus the converse of Theorem 11.12b) does not hold.)

In [Lg53], Lang actually proved the following stronger result than Theorem 11.12b),
which we state in more geometric language: the domain R above corresponds to
an integral affine variety V over the real closed field k, and Lang showed that the
function field kpV q is formally real if and only if V has a nonsingular k-rational
point.

Theorem 11.13. (The Nullstellensatz for Real-Closed Fields) Let k be a real-
closed field, and J an ideal in krts � krt1, . . . , tns. Then J � R adpJq.
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Proof. Step 1: Suppose J is a real prime ideal. Let R � krts{J , and let K be
the fraction field of R; by Exercise 11.X, K is formally real; let L be a real closure
of K. For f P RzJ , let S be the localization Rr 1

qpfq s, so S � L. By Theorem

11.12a) there is a k-algebra homomorphism ψ : S Ñ k; let x � pψpt1q, . . . , ψptnqq.
Then x P V pJq and fpxq � 0, so f R IpV pJqq. It follows that J � IpV pJqq � J .
Step 2: Suppose J is a real ideal, and let XJ be the set of all real prime ideals
containing J . By Proposition 11.11c), J � �pPXJ

p, and thus

J � IpV pJqq � IpV p
£

pPXJ

pqq � Ip
¤

pPXJ

V ppqq �
£

pPXJ

IpV ppqq �
£

pPXJ

p � J.

Step 3: Now let J be arbitrary. By Proposition 11.10, J is a real ideal containing
J , so by Proposition 11.11a), R adpJq � J . On the other hand, part b) gives

J � R adpJq � R adpJq,
so J � R adpJq. □

4. The Finite Field Nullstellensatz

For a prime power q, let Fq be a finite field of cardinality q. We will characterize

the closure operation J ÞÑ J � IpV pJqq for ideals in Fqrts � Fqrt1, . . . , tns.

Let I0 � xtq1 � t1, . . . , tqn � tny. Then the key observation is that for any ideal J of

Fqrts, J � I0. Indeed, since x
q � x for all x P Fq, the polynomials tq1�t1, . . . , tqn�tn

each vanish at every point of Fnq , so J � IpV pJqq � IpFnq q � I0. Since of course

J � J , it follows that for all ideals J of krts we have

(32) J � J � I0.
Proposition 11.14. (Finite Field Weak Nullstellensatz) Let Fq be a finite

field, and let n P Z�. For 1 ¤ i ¤ n, let gi � tqi � ti P Fqrt1, . . . , tns, and put
I0 � xg1, . . . , gny. Then I0 � IpFnq q is the ideal of all functions vanishing at every
point of Fnq .

Exercise 11.15. Deduce Proposition 11.14 from the Combinatorial Nullstel-
lensatz.

Proposition 11.14 asserts that the containment of (32) is an equality when J � p0q.
In fact, this holds in all cases.

Lemma 11.15. Let J be an ideal of Fqrt1, . . . , tns. If J contains the ideal I0 �
xtq1 � t1, . . . , tqn � tny, then rad J � J .

Proof. Suppose that for x P R, there is n P Z� with xn P J . Then also

xq
n � pxqn�1qq P J . By Corollary 11.14, for all x P R, fq � f P I0 � J : applying

this with f � xq
n�1

, we find that xq
n �x P I and thus xq

n �pxqn �xq � x P J . □

Theorem 11.16. (Finite Field Nullstellensatz) For any ideal J of R � Fqrt1, . . . , tns,
J � IpV pJqq � J � I0 � xJ, tq1 � t1, . . . , tqn � tny.

We will give two proofs: one using the Semirational Nullstellensatz, and one using
the Finite Field Weak Nullstellensatz.
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Proof. By the Semirational Nullstellensatz (Theorem 11.9) and Lemma 11.15,

IpV apJ � I0qq � radpJ � I0q � J � I0.
Since V apI0q � Fnq , we have

IpV pJqq � IpV apJq X Fnq q � IpV apJq X V apI0qq � IpV apJ � I0qq � J � I0.
□

Proof. By (32) J � J � I0, it suffices to show that for all J � I0, J � J .
By Proposition 11.14, I0 � IpFnq q. For P � px1, . . . , xnq P Fnq , let

mP � IptP uq � xt1 � x1, . . . , tn � xny.
Thus tmP uPPFn

q
are finitely many pairwise comaximal ideals with I0 �

�
PPFn

q
mP .

By the Chinese Remainder Theorem,

(33) R{I0 � R{
£
PPFn

q

mP �
¹
PPFn

q

R{mP � k#Fn
q .

The Correspondence Theorem now gives us canonical bijections between the set of
ideals containing I0 and the set of subsets of Fnq . Since every subset of the finite set

Fnq is Zariski closed, there are precisely 2#Fn
q Zariski-closed subsets and therefore

precisely 2#Fn
q ideals J with J � J . By (33) there are precisely 2#Fn

q ideals J
containing I0, so we must have J � J for all such ideals. □

Remark: It seems that Theorem 11.16 was first stated and proved (as in the first
proof above) in a 1991 technical report of R. Germundsson [Ge91].

5. Terjanian’s Homogeneous p-Nullstellensatz

Theorem 11.17. Let k be an algebraically closed field, let 1 ¤ m   n be
integers, and let f1, . . . , fm P krt1, . . . , tns. Put

V :� V pf1, . . . , fmq � tx � px1, . . . , xnq P kn | f1pxq � . . . � fmpxq � 0u.
Then V is either empty or infinite.

Proof. Put I :� xf1, . . . , fmy. Seeking a contradiction, we suppose that V �
tp1, . . . , pNu is nonempty and finite. For x P kn we have x P V if and only if I is
contained in the maximal ideal mx of polynomials that vanish at x, so the maximal
ideals contaning I are precisely mp1 , . . . ,mpN . Since krt1, ..., tns is Jacobson, we
have

rad I �
N£
i�1

mpi �
N¹
i�1

mpi .

Let p be a minimal prime ideal over I. Then p � rad I �±N
i�1 mpi , so p � mx for

some x � px1, . . . , xnq P kn. Applying the Generalized Principal Ideal Theorem to
p � mx we get that htmxi

¤ m   n. But

p0q � xt1 � x1y � xt1 � x1, t2 � x2y � . . . � xt1 � x1, . . . , tn � xny � mx

shows that mx has height at least n, a contradiction. □

Exercise 11.16. For which fields k does the conclusion of Theorem 11.17 hold?
Evidently not when k is finite!

a) Let f � t21 � t22 P Rrt1, t2s. Show: V pfq � tp0, 0qu is nonempty and finite.
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b) Show: if k is not algebraically closed, there is f P krt1, t2s such that
V pfq � tp0, 0qu.

Corollary 11.18 (Homogeneous Nullstellensatz). Let k be an algebraically
closed field, m,n P Z�, and let f1, . . . , fm P krt0, . . . , tns be homogeneous polynomi-
als of positive degree. If m ¤ n, then there is 0 � x P kn�1 such that

f1pxq � . . . � fnpxq � 0.

Proof. Let V be as in Theorem 11.17. Since each fi is homogeneous we have
0 P V , and thus by Theorem 11.17 the set V is infinite. □

While Theorem 11.18 is a very classical result – it was used (not necessarily with
proper justification) by 19th century mathematicians studying varieties in projec-
tive space – the following generalization is a 1972 theorem of G. Terjanian.

Let p be a prime number. We say that a field k is a p-field if every every fi-
nite extension l{k has degree a power of p.

Example 11.19.

a) Every separably closed field is a p-field.
b) l Every real-closed field is a 2-field.
c) A perfect field k is a p-field if and only if Galpk{kq is a pro-p-group.

Theorem 11.20. (Terjanian’s Homogeneous p-Nullstellensatz) Let k be a p-
field, and let n P Z�. For 1 ¤ i ¤ n, let fi P krt0, . . . , tns be homogeneous of degree
di indivisible by p. Then there is 0 � x � px1, . . . , xnq P kn such that

f1pxq � . . . � fnpxq � 0.

The proof given in [Te72] was rather involved; a significantly simpler proof is given
in [P], but even this involves more graded algebra than we wish to discuss here.
However, following Arason and Pfister [AP82] we will now deduce some striking
consequences of the Homogeneous 2-Nullstellensatz for real-closed fields.

Exercise 11.17. Let k be a field of characteristic different from 2, and let
f P krt1, . . . , tns. We say that f is an odd polynomial if fp�tq � �fptq. Show:
an odd polynomial is a sum of monomials each of odd total degree.

Theorem 11.21. (Algebraic Borsuk-Ulam) Let k be a real closed field, n P Z�,
and for 1 ¤ i ¤ n, let fi P krt1, . . . , tn�1s be an odd polynomial: fip�tq � �fiptq.
Then there is x � px1, . . . , xn�1q P kn�1 such that

x21 � . . .� x2n�1 � 1, f1pxq � . . . � fnpxq � 0.

Proof. So as to be able to apply Terjanian’s Homogeneous p-Nullstellensatz,
we homogenize: let t0 be an additional indeterminate and let f̃i P krt0, . . . , tn�1s
be the unique homogeneous polynomial such that f̃ip1, t1, . . . , tn�1q � fi, of degree
di � deg fi. Being an odd polynomial, each fi only contains monomials of odd
degree; thus each di is odd and t0 occurs in f̃i to even powers only. Thus we
may make the change of variables t20 ÞÑ t21 � . . . � t2n�1 in each f̃i, leading to
homogeneous polynomials g1, . . . , gn P krt1, . . . , tn�1s of odd degrees d1, . . . , dn.
Applying Theorem 11.20 with p � 2, we get 0 � a P kn�1 such that g1paq � . . . �
gnpaq � 0. Since the gi’s are homogeneous, we may scale by

�
a21 � . . .� a2n�1q

��1
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to get an a such that a21 � . . . � a2n�1 � 1 and g1paq � . . . � gnpaq � 0. Thus

fipaq � f̃ip1, aq � gipaq � 0 for all i, and we’re done. □

We now revert to the case of k � R. As usual, for x � px1, . . . , xnq P Rn, we put

||x|| �
b
x21 � . . .� x2nu;

for x, y P Rn, we put

dpx, yq � ||x� y||,
and we define the unit sphere

Sn � tx P Rn | ||x|| � 1u
and the unit disk

Dn � tx P Rn | ||x|| ¤ 1u.
A subset S � Rn is symmetric if x P S ùñ �x P S. If S � Rm and T � Rn are
symmetric subsets, then f : S Ñ T is odd if for all x P S, fp�xq � �fpxq. For
x P Sn, x and �x are antipodal, and tx,�xu is called an antipodal pair.

Corollary 11.22. (Topological Borsuk-Ulam)
Let f : Sn Ñ Rn be a continuous, odd map. Then there is x P Sn with fpxq � 0.

Proof. Write f � pf1, . . . , fnq, for fi : Sn Ñ R an odd continuous map.
Seeking a contradiction, we suppose f has no zero. Since Sn is compact, there is
δ ¡ 0 such that for all x P Sn, maxi |fipxq| ¥ δ. Choose 0   ϵ   δ and apply the
Weierstrass Approximation Theorem to the continuous functions f1, . . . , fn on the
compact space Sn: there are p1, . . . , pn P Rrt1, . . . , tn�1s such that |fipxq�pipxq|   ϵ
for all i and all x P Sn. Put qiptq � 1

2 ppiptq � pip�tqq; then for x P Sn,

|fipxq � qipxq| � |fipxq � fip�xq � pipxq � pip�xq|
2

¤ |fipxq � pipxq| � |fip�xq � pip�xq|
2

  ϵ.

It follows that for all x P Sn, maxi |qipxq| ¥ δ � ϵ ¡ 0, so the qi’s have no simulta-
neous zero on Sn, contradicting Theorem 11.21. □

Corollary 11.23.
The following statements are equivalent – and hence, by Corollary 11.22, all true.

(i) Every continuous, odd map f : Sn Ñ Rn has a zero.
(ii) There is no continuous, odd map g : Sn Ñ Sn�1.
(iii ) Every continuous map f : Sn Ñ Rn identifies some antipodal pair.
(iv) (Lusternik-Schnirelmann-Borsuk) Let tF1, . . . , Fn�1u be a covering family

of closed subsets of Sn. Then some member of the family contains an
antipodal pair.

Proof. (i) ùñ (ii): Let ι : Sn�1 ãÑ Rn be the natural inclusion. If g : Sn Ñ
Sn�1 is continuous and odd, ι � g : Sn Ñ Rn is continuous and odd with no zero.
(ii) ùñ (iii): If f identifies no antipodal pair, then g : Sn Ñ Sn�1 by x ÞÑ
fpxq�fp�xq
||fpxq�fp�xq|| is continuous and odd.

(iii) ùñ (i): Let f : Rn Ñ Sn be odd. By assumption, there is x P Sn such that
fpxq � fp�xq, but since also fpxq � �fp�xq, we conclude fpxq � 0.

(iii) ùñ (iv): Let F1, . . . , Fn�1 be closed subsets of Sn such that
�n�1
i�1 Fi � Sn;
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suppose that none of the sets F1, . . . , Fn contains an antipodal pair: equivalently,
putting Ei � �Fi, we have that Ei X Fi � ∅ for 1 ¤ i ¤ n. For a point x and
a subset Y of Sn, put dpx, Y q � inftdpx, yq | y P Y u. For 1 ¤ i ¤ n � 1, define
fi : S

n Ñ R by fipxq � dpx,Eiq � dpx, Fiq. Observe that

x P Fi ùñ fip�xq   0   fipxq,
x P Ei ùñ fipxq   0   fip�xq.

Applying condition (iii) to f � pf1, . . . , fnq : Sn Ñ Rn, we get x0 P Sn such that
fp�x0q � fpx0q. Thus neither x0 nor �x0 lies in any Fi with 1 ¤ i ¤ n, hence
both x0 and �x0 must lie in Fn�1.
(iv) ùñ (ii): Let f : Sn Ñ Sn�1 be continuous. Observe the following “converse”
to Lusternik-Schnirelmann-Borsuk: there is a covering family tEiun�1

i�1 of closed
subsets of Sn�1, each of diameter less than 2. (We leave the verification of this as
an exercise.) For 1 ¤ i ¤ n�1, put Fi � f�1pEiq. Thus tFiun�1

i�1 is a covering of Sn

by closed subsets, so by condition (iv) for some 1 ¤ i ¤ n� 1 and x0 P Sn we have
x0,�x0 P Fi, i.e., fpx0q, fp�x0q P Ei. Since Ei has diameter less than 2, it contains
no antipodal pair, and thus f cannot be odd, for otherwirse fpx0q,�fpx0q P Ei. □

Exercise 11.18. Verify: for any n P Z�, Sn can be covered by n � 2 closed
subsets each of diameter less than 2.
(Suggestion: take a regular simplex inscribed in Dn and consider the projections of
its faces onto Sn.)

For a function f : Rn Ñ R, let us put

f� � tx P Rn | fpxq ¡ 0u,
f0 � tx P Rn | fpxq � 0u,
f� � tx P Rn | fpxq   0u.

For a Lebesgue measurable subset S � Rn, we denote its measure by VolpSq.

The following result is due to Stone and Tukey [ST42].

Corollary 11.24. (Polynomial Ham Sandwich Theorem) Let d, n P Z� and

put N � �n�dd � � 1. Let U1, . . . , UN P Rn be measurable, finite volume subsets.
There is a polynomial P P Rrt1, . . . , tns of degree at most d which bisects each Ui:

@1 ¤ i ¤ N, VolpUi X P�q � VolpUi X P�q.
Proof. Let Vd � Rrt1, . . . , tns be the R-subspace of polynomials of total degree

at most d, so dimVd � N � 1. Endow Vd with a norm || � || (all norms on a finite-
dimensional real vector space are equivalent, so we need not be more specific than
this). Let SN be the unit sphere in Vd. We define a function

f � pf1, . . . , fN q : SN Ñ RN

by

fipP q � VolpUi X P�q �VolpUi X P�q.
Step 1: We claim that f is continous.
proof of claim: One easily reduces to the claim that for any measurable, finite
volume subset U � Rn, the mapping

M : P P V 
d ÞÑ VolpU X P�q
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is continuous. For this, let tPnu be a sequence in Vd such that Pn Ñ P with respect
to || � ||. It follows that Pn Ñ P pointwise on (Rn hence in particular on) U . Since
VolpUq   8, we may apply Egorov’s Theorem: for each ϵ ¡ 0, there is a measurable
subset E � U with VolpEq   ϵ and such that Pn Ñ P uniformly on UzE. Since
VolpP 0q � 0 and VolpUq   8, there is δ ¡ 0 such that

Volptx P U | |P pxq|   δuq   ϵ.

Take N P Z� such that for all n ¥ N , |Pnpxq � P pxq|   δ for all x P UzE. Then

|VolpU X P�
n q �VolpU X P�q|   2ϵ.

Step 2: It is immediate that f is odd. By Corollary 11.22, there is P P SN such
that fpP q � 0, and such a P bisects each Ui. □

Corollary 11.25. (No Retraction Theorem) There is no retraction from Dn

to Sn�1, i.e., no continuous map r : Dn Ñ Sn�1 such that r|Sn�1 � 1Sn�1 .

Proof. Let π : Rn�1 Ñ Rn, px1, . . . , xn, xn�1q ÞÑ px1, . . . , xnq, and let

H�
n � tpx1, . . . , xn�1q P Sn | xn�1 ¥ 0u, H�

n � tpx1, . . . , xn�1q P Sn | xn�1 ¤ 0u.
Suppose r : Dn Ñ Sn�1 is a retraction, and define g : Sn Ñ Sn�1 by

gpxq �
"
rp�πpxqq, x P H�

n ,
�rpπpxqq, x P H�

n

Then g is well-defined, continuous and odd, contradicting Corollary 11.23b). □

Corollary 11.26. (Brouwer Fixed Point Theorem) Each continuous function
f : Dn Ñ Dn has a fixed point.

Proof. Suppose f : Dn Ñ Dn is continuous with fpxq � x for all x P Dn. For
x P Dn, consider the ray rx with initial point fpxq and lying on the line determined
by fpxq and x. Then rx intersects Sn�1 at a unique point, say rpxq, and x ÞÑ rpxq
defines a retraction r : Dn Ñ Sn�1, contradicting Corollary 11.25. □



CHAPTER 12

Goldman Domains and Hilbert-Jacobson rings

1. Goldman domains

Lemma 12.1.
For a domain R with fraction field K, the following are equivalent:

(i) K is finitely generated as an R-algebra.
(ii) There is f P K such that K � Rrf s.
Proof. Of course (ii) ùñ (i). Conversely, if K � Rrf1, . . . , fns, then write

fi � pi
qi
, and then K � Rr 1

q1���qn s. □

A ring satisfying the conditions of Lemma 12.1 will be called a Goldman domain.

Exercise 12.1. Show: an overring1 of a Goldman domain is a Goldman do-
main.

Lemma 12.2. Let R be a domain with fraction field K, and 0 � x P R. the
following are equivalent:

(i) Every nonzero prime ideal of R contains x.
(ii) Every nonzero ideal contains xn for some n P Z�.
(iii) We have K � Rrx�1s.
Proof. (i) ùñ (ii): let I be a nonzero ideal. If I is disjoint from txnu, then

by Multiplicative Avoidance (5.26), I can be extended to a prime ideal disjoint
from txnu, contradicting (i).

(ii) ùñ (iii): Let 0 � y P R. By (ii), we have pyq contains some power of x,
say xk � yz. But this implies that y is a unit in Rrx�1s.

(iii) ùñ (i): The prime ideals killed in the localization map R ÞÑ Rrx�1s are
precisely those which meet the multiplicatively closed set txku, i.e., contain x. □

Corollary 12.3. For a domain R, the following are equivalent:

(i) R is a Goldman domain.
(ii) The intersection of all nonzero prime ideals of R is nonzero.

Exercise 12.2. Prove Corollary 12.3.

Easy examples of Goldman domains: a field, krrtss, Zppq. In fact we have devel-
oped enough technology to give a remarkably clean characterization of Noetherian
Goldman domains.

Theorem 12.4. Let R be a domain.

a) If R has only finitely many primes, then R is a Goldman domain.
b) If R is a Noetherian Goldman domain, then R has finitely many primes.

1An overring of a domain R is a ring intermediate between R and its fraction field K.
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c) A Noetherian Goldman domain is either a field or a one-dimensional do-
main.

Proof. Throughout we may – and shall – assume that R is not a field.
a) Suppose that R has only finitely many primes, and let p1, . . . , pn be the

nonzero prime ideals of R. For 1 ¤ i ¤ n, let 0 � xi P pi, and put x � x1 � � �xn.
Then the multiplicative set S generated by x meets every nonzero prime of R, so
that S�1R has only the zero ideal. In other words, Rr 1x s is the fraction field of R,
so R is a Goldman domain. (Alternately, this follows quickly from Corollary 12.3.)

b) Similarly, for a Goldman domain R we can write K � Rr 1x s for x P R and
then every nonzero prime of R contains x. Suppose first that pxq itself is prime,
necessarily of height one by the Hauptidealsatz (Theorem 8.49), hence if R has any
primes other than p0q and pxq – especially, if it has infinitely many primes – then it
has a height two prime q. But by Corollary 8.53 a Noetherian ring cannot have a
height two prime unless it has infinitely many height one primes, a contradiction.
So we may assume that pxq is not prime, and then the minimal primes of the
Noetherian ring R{pxq are finite in number – say p1, . . . , pn – and correspond to
the primes of R which are minimal over x, so again by the Hauptidealsatz they all
have height one. Similarly, if R has infinitely many primes there would be, for at
least one i (say i � 1), a height two prime q � p1. But then by Corollary 8.53
the “interval” p0, qq is infinite. Each element of this set is a height one prime ideal
containing pxq, i.e., is one of the pi’s, a contradiction. Part c) follows by again
applying Corollary 8.53: a Noetherian ring of dimension at least two must have
infinitely many primes. □

Remark: a non-Noetherian Goldman domain can have infinitely many primes
and/or primes of arbitrarily large height.

Proposition 12.5. Let R be a domain. Then the polynomial ring Rrts is not
a Goldman domain.

Proof. Let K be the fraction field of R. If Rrts is a Goldman domain, then
by Exercise 12.1, so is Krts. But Krts is a Noetherian domain with infinitely many
primes – e.g., Euclid’s proof of the infinitude of primes in Z carries over verbatim
to Krts – so Theorem 12.4 applies to show that Krts is not a Goldman domain. □

Proposition 12.6. Let R be a domain, and T � R an extension domain which
is algebraic and finitely generated as an R-algebra. Then R is a Goldman domain
if and only if T is a Goldman domain.

Proof. Let K and L be the fraction fields of R and T , respectively. Suppose
first that R is a Goldman domain: say K � Rr 1u s. Then T r 1u s is algebraic over

the field K, so is a field, hence we have L � T r 1u s. Conversely, suppose that T is

a Goldman domain: say L � T r 1v s; also write T � Rrx1, . . . , xks. The elements

v�1, x1, . . . , xk are algebraic over R hence satisfy polynomial equations with coeffi-
cients in R. Let a be the leading coefficient of a polynomial equation for v�1 and
b1, . . . , bk be the leading coefficients of polynomial equations for x1, . . . , xk. Let
R1 :� Rra�1, b�1

1 , . . . , b�1
k s. Now L is generated over R1 by x1, . . . , xk, v

�1, all of
which are integral over R1, so L is integral over R1. Since L is a field, it follows that
R1 is a field, necessarily equal to K, and this shows R is a Goldman domain. □
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Corollary 12.7. Let R � S be an inclusion of domains, with R a Goldman
domain. Suppose that u P S is such that Rrus is a Goldman domain. Then u is
algebraic over R, and R is a Goldman domain.

Theorem 12.8. For a domain R, the following are equivalent:

(i) R is a Goldman domain.
(ii) There is a maximal ideal m of Rrts such that mXR � p0q.
Proof. (i) ùñ (ii): We may assume WLOG that R is not a field. Write

K � Rr 1u s. Define a homomorphism φ : Rrts Ñ K by sending t ÞÑ 1
u . Evidently φ

is surjective, so its kernel m is a maximal ideal, and clearly we have mXR � 0.
(ii) ùñ (i): Suppose m is a maximal ideal of Rrts such that mXR � p0q. Let

v be the image of t under the natural homomorphism Rrts Ñ Rrts{m. Then Rrvs
is a field, so by Corollary 12.7, R is a Goldman domain. □

We define a prime ideal p of a ring R to be a Goldman ideal if R{p is a Goldman
domain. Write GSpecR for the set of all Goldman ideals. Thus a Goldman ideal
is more general than a maximal ideal but much more special than a prime ideal.

Proposition 12.9. Let R be a ring and I an ideal of R.

a) The nilradical of R is the intersection of all Goldman ideals of R.
b) The radical of I is the intersection of all Goldman ideals containing I.

Proof. a) We know that N � �pPSpecR p, so certainly N � �pPG SpecR p.

Conversely, suppose x P RzN . The ideal p0q is then disjoint from the multiplicative
set S � txnu. By multiplicative avoidance, we can extend p0q to an ideal p maximal
with respect to disjointness from S. We showed earlier that p is prime; we now claim
that it is a Goldman ideal. Indeed, let x denote the image of x in R � R{p. By
maximality of p, every nonzero prime of R contains x. By Lemma 12.2, this implies
Rrx�1s is a field, thus R is a Goldman domain, and therefore p is a Goldman ideal
which does not contain x. Part b) follows by correspondence, as usual. □

The following result may seem completely abstruse at the moment, but soon enough
it will turn out to be the key:

Corollary 12.10. An ideal I in a ring R is a Goldman ideal if and only if it
is the contraction of a maximal ideal in the polynomial ring Rrts.

Proof. This follows from Theorem 12.8 by applying the correspondence prin-
ciple to the quotient ring R{I. □

2. Hilbert rings

To put Theorem 8.56 to good use, we need to have a class of rings for which the
contraction of a maximal ideal from a polynomial ring is again a maximal ideal. It
turns out that the following is the right class of rings:

Definition: A Hilbert ring is a ring in which every Goldman ideal is maximal.

Proposition 12.11. Any quotient ring of a Hilbert ring is a Hilbert ring.

Proof. This follows immediately from the correspondence between ideals of
R{I and ideals of R containing I. □

A direct consequence of the definition and Proposition 12.9 is the following:
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Proposition 12.12. Let I be an ideal in a Hilbert ring R. Then the intersection�
m sup I m of all maximal ideals m containing I is radpIq.

Any zero dimensional ring is a Hilbert ring. Especially, a field is a Hilbert ring, as
is any Artinian ring or any Boolean ring.

Exercise 12.3.

a) Let R be a one-dimensional Noetherian domain. The following are equiv-
alent:
(i) The ring R is a Hilbert ring.
(ii) The Jacobson radical of R is 0.
(iii) The ring R has infinitely many prime ideals.
(iv) The ring R is not a Goldman domain.

b) Deduce: the ring Z of integers is a Hilbert domain.

Theorem 12.13. Let R be a Hilbert ring, and S a finitely generated R-algebra.
Then:

a) The ring S is also a Hilbert ring.
b) For every maximal ideal P of S, the ideal p :� PXR is a maximal ideal

of R.
c) The degree rS{P : R{ps is finite.

Proof. a) It suffices to show that R is a Hilbert ring if and only if Rrts is
a Hilbert ring, for then, if R is a Hilbert ring, by induction any polynomial ring
Rrt1, . . . , tns is a Hilbert ring, and any finitely generated R-algebra is a quotient
of Rrt1, . . . , tns and thus a Hilbert ring. Note also that since R is a homomorphic
image of Rrts, if Rrts is a Hilbert domain, then so also is R.

So suppose R is a Hilbert ring, and let q be a Goldman ideal in Rrts; we must
show q is maximal. Put p � qX R. As above, we can reduce to the case p � 0, so
in particular R is a domain. Let a be the image of t in the natural homomorphism
Rrts Ñ Rrts{q. Then Rras is a Goldman domain. By Corollary 12.7, a is algebraic
over R, and R is a Goldman domain. But since we assumed that R was a Hilbert
ring, this means that R is a field, and thus Rras � Rrts{q is a field, so q is maximal.

b) We may write S � Rrt1, . . . , tns{I. A maximal ideal m of S is just a maximal
ideal of Rrt1, . . . , tns containing I. By Corollary 12.10, the contraction m1 of m to
Rrt1, . . . , tn�1s is a Goldman ideal of the Hilbert ring Rrt1, . . . , tn�1s, so is therefore
maximal. Moreover, by Theorem 8.56, m is generated by m1 and an irreducible
polynomial in R{m1rts, so that the residual extension Rrt1, . . . , tns{m has finite
degree over Rrt1, . . . , tn�1{m1. Again, induction gives the full result. □

Applying Theorem 12.13c) in the case R � k is a field, we deduce our second proof
of Zariski’s Lemma (Lemma 11.1).

Theorem 12.14. Let R be a Noetherian Hilbert ring. Then

dimpRrtsq � dimR� 1.

Proof. Let 0 � p0 � p1 � . . . � pd be a chain of prime ideals in R. Then,
with ι : R ãÑ Rrts the natural inclusion,

ι�p0 � . . . � ι�pn � xι�ppnq, ty
is a chain of prime ideals of Rrts of length d � 1, hence for any ring R we have
dimRrts ¥ dimR�1. Conversely, it suffices to show that the height of any maximal
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ideal P of Rrts is at most d � 1. For this, put p � P X R. By Theorem 12.13, p
is maximal in R, so Theorem 8.56 tells us that there exists f P Rrts such that
P � xι�p, fy. Applying Krull’s Hauptidealsatz (Theorem 8.49) in the quotient ring
Rrts{ι�p, we get that the height of P is at most one more than the height of p. □

Corollary 12.15. Let k be a field, and put R � krt1, . . . , tns.
a) Every maximal ideal of R has height n and can be generated by n elements

(and no fewer, by Theorem 8.54).
b) We have dimR � n.

Exercise 12.4. Prove Corollary 12.15.

3. Jacobson Rings

Theorem 12.16. For a ring R, the following are equivalent:

(i) For all I P IpRq, rpIq is the intersection of all maximal ideals containing
I.

(i1) In every quotient ring of R, the nilradical equals the Jacobson radical.
(ii) Every prime ideal p of R is the intersection of all maximal ideals contain-

ing p.
(iii) Every nonmaximal prime ideal p of R is equal to the intersection of all

prime ideals strictly containing p.
If R satisfies these equivalent properties it is called a Jacobson ring.

Proof. (i) ðñ (i1) is immediate from the Correspondence Theorem.
(i) ùñ (ii): If (i) holds, then in particular for any radical ideal I, I � �m�I m,
and prime ideals are radical.
(ii) ùñ (i): for any ideal I of R,

rad I �
£
p�I

p �
£
p�I

£
m�p

m �
£
m�I

m.

(ii) ùñ (iii): If p is prime but not maximal, then p � �m�p m and all the maximal
ideals containing p strictly contain p.
 (ii) ùñ  (iii): Let p be a prime which is not the intersection of the maximal
ideals containing it. Replacing R with R{p, we may assume R is a domain with
nonzero Jacobson radical JpRq. Let x P JpRqzt0u, and choose, by Multiplicative
Avoidance, an ideal p which is maximal with respect to the property that x R p.
Since x R JpRqzp, p is not maximal; since x lies in every ideal properly containing
p, p is not equal to the intersection of prime ideals strictly containing it. □

Corollary 12.17. Every quotient ring of a Jacobson ring is Jacobson.

Proof. This is immediate from condition (i1) of Theorem 12.16. □

4. Hilbert-Jacobson Rings

Proposition 12.18. Suppose R is both a Goldman domain and a Jacobson
ring. Then R is a field.

Proof. Let K be the fraction field of R, and suppose for a conradiction that
R � K. Then there is a nonzero nonunit f P R such that K is the localization of R
at the multiplicative subset S � tf, f2, . . .u. Let m be a maximal ideal of R. Since
R is not a field, m is not zero, and thus the pushforward of R to S�1R is the unit



256 12. GOLDMAN DOMAINS AND HILBERT-JACOBSON RINGS

ideal. By Proposition 7.6, m meets S. Since m is prime, we conclude f P m. It
follows that the Jacobson radical of R contains f is accordingly nonzero. On the
other hand R, being a domain, has zero nilradical. Thus R is not Jacobson. □

Theorem 12.19. For a commutative ring R, the following are equivalent:

(i) R is a Hilbert ring.
(ii) R is a Jacobson ring.
(iii) For all maximal ideals m of Rrts, the ideal mXR is a maximal ideal of R.
(iv) (Zariski’s Lemma) Let K be a field that is finitely generated as an R-

algebra. Then K is finitely generated as a R-module.

Proof. (i) ùñ (ii) by Proposition 12.12.
(ii) ùñ (i): Suppose R is Jacobson and p is a Goldman ideal of R. Then R{p
is a Goldman domain (by definition of Goldman ideal) and a Jacobson ring (by
Corollary 12.17), hence a field (by Proposition 12.18), so p is maximal.
(ii) ùñ (iii) is Theorem 12.13b).
(iii) ùñ (i): Suppose R is a ring such that every maximal ideal of Rrts contracts
to a maximal ideal of R, and let p be a Goldman ideal of R. By Corollary 12.10, p
is the contraction of a maximal ideal of Rrts, hence by assumption p is maximal.
(i) ùñ (iv) by Theorem 12.13c).
(iv) ùñ (ii): By Theorem 12.16, it suffices to show that every nonmaximal prime
p is the intersection of the prime ideals strictly containing it. That is, let x P Rzp:
we will find a prime ideal q � p such that x R q. Let B be the domain R{p, so the
image of x in B (which we continue to denote by x) is nonzero. Then B1 � Br 1x s
is a finitely generated R-algebra. If B1 is a field, then by hypothesis B1 is finitely
generated as an R-module and thus, equivalently, finitely generated as a B-module.
But this implies that B is a field, a basic fact about integral extensions which
will be proved later on in the notes (Theorem 14.1, Propostion 14.8a)) and thus
p is maximal, contradiction. So B1 is not a field and thus it contains a nonzero
maximal ideal, whose pullback to B is a prime ideal q not containing x. The ideal
q corresponds to a prime ideal q � p of R not containing x. □

In the sequel we will use the consolidated terminology Hilbert-Jacobson ring for
a ring satisfying the equivalent conditions of Theorem 12.19.

5. Application: Zero-Dimensional Ideals in Polynomial Rings

Let k be a field with algebraic closure k, and let I be an ideal of the polynomial
ring krt1, . . . , tns. Recall (from §11.2.1) that V apIq denotes the set of simultaneous

zeros of I in k
n
.

Theorem 12.20. For an ideal I of krt1, . . . , tns, the following are equivalent:

(i) dimk krt1, . . . , tns{I is finite.
(ii) The ring krt1, . . . , tns{I is Artinian.
(iii) The ring krt1, . . . , tns{I has Krull dimension 0.
(iv) The ring krt1, . . . , tns{I has only finitely many prime ideals.
(v) The ring krt1, . . . , tns{I has only finitely many maximal ideals.
(vi) The set V apIq is finite.

An ideal satisfying these conditions is called zero-dimensional.
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Proof. (i) ùñ (ii): A finite dimensional k-algebra A has no infinite descend-
ing chains of k-submodules, let alone A-submodules.
(ii) ðñ (iii): By the Hilbert Basis Theorem the ring krt1, . . . , tns is Noetherian
hence so is its quotient krt1, . . . , tns. A ring is Artinian if and only if it is Noetherian
of Krull dimension zero.
(ii) ùñ (iv): An Artinian ring has finitely many prime ideals, all of which are
maximal.
(iv) ùñ (v) is immediate.
(v) ùñ (vi): We have V apIq � V aprad Iq. Since krt1, . . . , tns is a Hilbert-Jacobson
ring, rad I is the intersection of all maximal ideals containing I, so I satisfies con-
dition (v) if and only if rad I does and we may assume that I is a radical ideal.

Because there are finitely many maximal ideals m1, . . . ,mN , we have I � �N
i�1 mi,

so

V apIq �
n¤
i�1

V apmiq,

so it suffices to show that V apmq is finite for a maximal ideal m. By Zariski’s
Lemma, krt1, . . . , tns{m is a finite-degree field extension of k, so there are only

finitely many k-algebra homomorphisms krt1, . . . , tns{m ãÑ k
n
. However, if x �

px1, . . . , xnq P V apmq then the k-algebra homomorphism Ex : krt1, . . . , tns Ñ k that
maps each ti to xi has m in its kernel, hence induces a k-algebra homomorphism
Ex : krt1, . . . , tns{m Ñ k, and the association x P V apmq ÞÑ Ex is injective since
x � pExpt1q, . . . , Exptnqq. Thus V apmq is finite.
(vi) ùñ (i): Let I � Ikrt1, . . . , tns. Then V apIq � V pIq and

krt1, . . .ns{I � krt1, . . . , tns{I bk k
and thus dimk krt1, . . . , tns{I is finite if and only if dimk krt1, . . . , tns{I is finite.
So we may assume that k is algebraically closed, and thus the points x of V pIq
correspond precisely to the maximal ideals of krt1, . . . , tns containing I, so we are
assuming that I is contained in only finitely many maximal ideals, say m1, . . . ,mN .
Thus

krt1, . . . , tns{ rad I � krt1, . . . , tns{m1 � . . .� krt1, . . . , tns{mN ,
so dimk krt1, . . . , tns{ rad I is finite by Zariski’s Lemma. In particular krt1, . . . , tns{ rad I
has Krull dimension zero, hence so does krt1, . . . , tns{I, hence it is Artinian. By
Theorem 8.37, for all sufficiently large a we have

krt1, . . . , tns{I �
n¹
i�1

krt1, . . . , tns{mai .

For each 0 ¤ j ¤ a � 1, mji {mj�1
i is finitely generated over krt1, . . . , tns{mi, hence

finite-dimensional over k, and thus dimk krt1, . . . , tns{I is finite. □

Exercise 12.5. Let I be an ideal of krt1, . . . , tns.
a) Show: I is zero-dimensional if and only if rad I is zero-dimensional.

b) Show: if S � k
n
is finite, then IpSq is a radical zero-dimensional ideal.

c) Show: every radical zero-dimensional ideal of krt1, . . . , tns is of the form
IpSq if and only if k is algebraically closed.

Exercise 12.6.
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a) Let I be an ideal of krt1, . . . , tns. Show: I is zero-dimensional radical
if and only if krt1, . . . , tns{I is a finite product of fields (equivalently, is
semisimple).

b) Let I � J be ideals of krt1, . . . , tns. Show: if I is zero-dimensional, so is
J . If I is zero-dimensional radical, so is J .

According to Corollary 12.15, every maximal ideal of krt1, . . . , tns can be generated
by n elements. In general, if I1, . . . , IN are ideals and for each 1 ¤ j ¤ N , Sj is a
finite set of generators of Ij , then tf1 � � � fn | fj P Sju is a finite set of generators of
I1 � � � IN . Thus a radical zero-dimensional ideal I of krt1, . . . , tns that is contained
in N maximal ideals has a generating set of cardinality nN . But actually we can
do much better than this.

Theorem 12.21. Let I be a radical zero-dimensional ideal of R � krt1, . . . , tns.
Then I can be generated by n elements.

Proof. (Vasconcelos) Let I � �N
i�1 mi with mi maximal ideals of krt1, . . . , tns.

Consider the ideal I X krt1s �
�N
I�1 mi X krt1s. By Theorem 12.13, each mi X krt1s

is a maximal ideal of krt1s, so I X krt1s is a radical ideal of the PID krt1s, so it is
generated by a product of nonassociate irreducible polynomials, say

fpt1q � g1pt1q � � � gspt1q.
For 1 ¤ i ¤ s, let li � krt1s{gi, a finite degree field extension of k. By CRT, we
have

R{pfRq � krt1s{pfqrt2, . . . , tns �
s¹
i�1

lirt2, . . . , tns.

For 1 ¤ i ¤ s, let Ii :� IR{giR � Ilirt2, . . . , tns. Since pR{giRq{Ii � R{xI, giy,
by Exercise 12.6 each Ii is a radical zero-dimensional ideal of lirt2, . . . , tns, so by
induction there are fi,1, . . . , fi,n�1 P I such that xfi,1, . . . , fi,n�1yR{giR � Ii.

For 1 ¤ i ¤ n, put

Gipt1q :�
¹
j�i

gjpt1q,

and for 1 ¤ k ¤ n� 1 put

Hk �
¸

1¤j¤s
Gjpt1qfj,k.

We claim that

I � xfpt1q, H1, . . . ,Hn�1y.
Certainly we have

xfpt1qy � xfpt1q, G1, . . . , Gn�1y � I,

so passing to R{pfpt1qq it is enough to show equality after localizating at each prime
ideal p containing fpt1q. Let p be such a prime ideal. Then p contains gipt1q for
some j, and since the gj ’s are pairwise comaximal, for all j � i, we have that gjpt1q
is a unit modulo p, hence Gipt1q is a unit modulo p, whereas Gjpt1q P pgiq for all
j � i. Therefore

xfpt1q, H1, . . . ,Hn�1yp � xgipt1q, fi,1, . . . , fi,n�1yp.
Since fi,1, . . . , fi,n�1 generate I modulo pgiq, they generate I modulo p and thus Ip
modulo Rp, so by Nakayama’s Lemma they generate Ip, completing the proof. □
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In particular, if S � kn is any finite subset, there are polynomials f1, . . . , fn P
krt1, . . . , tns such that

tx P kn | f1pxq � . . . � fnpxq � 0u � S.

Exercise 12.7. Let I � xt1, t2y2 � xt21, t1t2, t22y in krt1, t2s. Show: I is zero-
dimensional and cannot be generated by 2 elements. (Thus the word “radical” in
the statement of Theorem 12.21 is essential.)





CHAPTER 13

SpecR as a Topological Space

1. The Prime Spectrum

For a ring R, we denote the set of all prime ideals of R by SpecR. Moreover, we
refer to SpecR as the Zariski spectrum – or prime spectrum – of R.

It is important to notice that SpecR comes with additional structure. First, it
has a natural partial ordering, in which the maximal elements are the maximal
ideals, and the minimal elements are (by definition) the minimal primes. Also,
as O. Zariski first observed, SpecR can be endowed with a topology. To see this,
for any ideal I of R, put V pIq � tp P SpecR | p � Iu.

Proposition 13.1. For ideals I, J of R, we have V pIq � V pJq if and only if
rad I � rad J .

Proof. For any ideal I and any prime ideal p, we have p � I if and only if
p � rad I, and therefore V pIq � V prad Iq. Conversely, if V pIq � V pJq, then the set
of prime ideals containing I is the same as the set of prime ideals containing J . So

rad I �
£
p�I

p �
£
p�J

p � rad J. □

Exercise 13.1. Let I and J be ideals of a ring R. Show:

V pIq � V pJq ðñ rad I � rad J.

Now we claim that the family of subsets V pIq of SpecR has the following properties:

(ZT1) We have H � V pRq and SpecR � V pp0qq.
(ZT2) If tIiu is any collection of ideals of R, then

�
i V pIiq � V pxIiyq.

(ZT3) If I1, . . . , In are ideals of R, then
�n
i�1 V pIiq � V pI1 � � � Inq � V p�n

i�1 Iiq.

(ZT1) is clear. As for (ZT2), let p be a prime ideal of R. Then p P �i V pIiq
for all i if and only if p � Ii for all i if and only if p contains the ideal generated
by all Ii. As for (ZT3), p contains a product of ideals if and only if it contains one
of the ideals of the product.

Therefore there is a unique topology on SpecR in which the closed sets are precisely
those of the form V pIq. This is called the Zariski topology.

We will now give a characterization of the open sets in the Zariski topology. Recall
that a base for the open sets of a topology is a collection tBiu of open sets such that:

(BT1) for any point x P Bi XBj , there exists a k such that x P Bk � Bi XBj ;
261
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(BT2) every open set is a union of the Bi’s contained in it.

For f P R, we define Upfq :� SpecRzV ppfqq. In other words, Upfq is the collection
of all prime ideals which do not contain the element f . For f, g P R, Upfq X Upgq
is the set of prime ideals p containing neither f nor g; since p is prime, this is
equivalent to p not containing fg, thus

Upfq X Upgq � Upfgq,
which is a stronger property than (BT1). Moreover, any open set U is of the form
SpecRzV pIq. Each ideal I is the union of all of its elements fi, so V pIq �

�
i V pfiq,

so that

U � SpecRzV pIq � SpecRz
£
i

V pfiq �
¤
i

pSpecRzV pfiqq �
¤
i

Upfiq.

Recall that for a subset A of a topological space X, the closure A is defined to
be the intersection of all closed subsets of X containing A, and A is characterized
as the unique minimal closed subset of X that contains A. (It has several other
characterizations, e.g. as the set of all limits of convergent nets with terms in X.)

Proposition 13.2. Let R be a ring, and let A � SpecR. Then the closure of
A in the Zariski topology is

A � V p
£
pPA

pq.

Proof. It is clear that V p�pPA pq is a Zariski-closed subset of SpecR that
contains A. Conversely, a Zariski-closed subset of SpecR that contains A is of the
form V pIq such that I � p for all p P A, so I � �pPA p and thus V pIq � V p�pPA pq.
Thus V p�pPA pq is the unique minimal Zariski-closed subset of SpecR that contains

A, so V p�pPA pq � A. □

In particular, for p P SpecR, the closure of the singleton set tpu is the set of prime
ideals of R that contain p. It follows that p is a closed point (i.e., the set tpu is
a closed subset) of SpecR if and only if p is maximal, so all points of SpecR are
closed if and only if dimR � 0. Closures of points in the Zariski topology are
studied in detail in §4.

Proposition 13.3. Let R be any ring, and consider the canonical homomor-
phism f : R Ñ Rred � R{nilpRq. Then f�1 : SpecRred Ñ SpecR is a homeomor-
phism.

Exercise 13.2. Prove Proposition 13.3.

Exercise 13.3. Let R1, . . . , Rn be finitely many rings. Show: SpecpR1 � . . .�
Rnq is canonically homeomorphic to the topological space

²n
i�1 SpecRi.

Exercise 13.4. Let R be a Boolean ring. Earlier we defined a topology on the
set “MpRq” of all maximal ideals of R. But, as we know, a Boolean ring all prime
ideals are maximal, so as sets MpRq � SpecR. Show that moreover the topology
we defined on MpRq is the Zariski topology on SpecR.
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2. Properties of the spectrum: quasi-compactness

More than sixty years ago now, N. Bourbaki introduced the term quasi-compact
for a topological space X for which any open covering has a finite subcovering.
The point of this terminology is to reserve compact for a space which is both
quasi-compact and Hausdorff, and thus emphasize that most of the nice properties
of compact spaces in classical topology do rely on the Hausdorff axiom. Nowhere
is this terminology more appropriate than in the class of spectral spaces, which
as we have seen above, are only Hausdorff in the comparatively trivial case of a
zero-dimensional ring. On the other hand:

Proposition 13.4. For any commutative ring R, SpecR is quasi-compact.

Proof. Let tUiu be any open covering of SpecR. For each p P SpecR, there
exists an element U of the cover containing p, and thus a principal open set Xpfq
containing p and contained in U . Therefore there is a refinement of the cover
consisting of principal open subsets, and if this refinement has a finite cover, then
the original cover certainly does as well. Thus it suffices to assume that the Ui’s
are basic open sets.1 So now suppose that SpecR � �i Upfiq. Then we have

SpecR �
¤
i

Upfiq �
¤
i

pSpecRzV pfiqq � SpecRz
£
i

V pfiq,

so that H � �i V pfiq � V pxfiyq. Therefore the ideal I � xfiy contains 1, and this
means that there is some finite subset f1, . . . , fn of I such that xf1, . . . , fny � R.
Thus

�n
i�1 V pfiq � H, or equivalently, SpecR � �n

i�1 Upfiq. □

3. Properties of the spectrum: connectedness

Lemma 13.5. Let EpRq be the set of idempotents in a ring R. Then:

a) If e, f P EpRq, then
(i) e� :� 1� e P EpRq;
(ii) e^ f :� ef P EpRq;
(iii) e_ f :� pe� ^ f�q� � e� f � ef P EpRq.

b) pE ,^,_, �q is a Boolean algebra.

Exercise 13.5. Prove Lemma 13.5.

Exercise 13.6. For a topological space X, let ClopenpXq be the family of clopen
subsets of X.

a) Show: ClopenpXq is a Boolean subalgebra of 2X .
b) Show: if X is compact, then ClopenpXq is the characteristic algebra of

X.

Theorem 13.6. Let R be a ring.

a) If e P EpRq is an idempotent, then Upeq is a clopen subset of SpecR.
b) The map U : EpRq Ñ ClopenpSpecRq given by

e ÞÑ Upeq
is an isomorphism of Boolean algebras.

1This is just the familiar, and easy, fact that it suffices to verify quasi-compactness on any
base for the topology. It is also true, but deeper, that one can verify quasi-compactness on any

subbase: Alexander’s Subbase Theorem.
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Proof. a) For any element f P R, the set Upfq � SpecRzV pfq is open by
definition of the Zariski topology on SpecR. If e is idempotent then ep1� eq � 0,
so every p P SpecR contains exactly one of e and 1� e and it follows that

Upeq � V p1� eq, Up1� eq � V peq.
Thus Upeq is clopen.
b) It is straightforward to see that U is a homomorphism of Boolean algebras: for
an idempotent e, we have Upe�q � Up1 � eq � SpecRzUpeq, and for idempotents
e, f we have Upe^ fq � Upefq � Upeq X Upfq. It then follows formally that

Upe_ fq � Uppe� ^ f�q�q � Upe� ^ f�q� � pUpeq� ^ Upfq�q�

� Upeq�� _ Upfq�� � Upeq _ Upfq.
Indeed a bijective homomorphism of Boolean algebras is an isomorphism.

To check the surjectivity, it will be convenient to work also in R � R{nilR.
Letting q : R Ñ R be the quotient map, we know that for all p P SpecR, qppq P
SpecR and the map q� : SpecRÑ SpecR is a homeomorphism. Let Y be a clopen
set of SpecR, so also Y � � SpecRzY is clopen and qpY q, qpY q� � qpY �q are clopen
subsets of SpecR. For any ring A and a subset Z of SpecA, we put

∆A :�
£
pPA

p,

so A � V p∆Aq. Since vpY q, vpY �q are clopen subsets, we have

V p∆qpY qq � qpY q and V p∆qpY �qq � qpY �q.
For p P SpecR, if p � ∆qpY q � ∆qpY �q, then p � ∆qpY q and p � ∆qpY �q, so

p P qpY q X qpY �q � qpY q X qpY q� � ∅; this shows ∆qpY q � ∆qpY �q � R. Any

p P SpecR lies in eaxctly one of qpY q and qpY �q so contains exactly one of ∆qpY q
and ∆qpY �q; thus p � ∆qpY q X∆qpY �q. Thus ∆qpY q X∆qpY �q is contained in every

prime ideal of R hence is contained in the nilradical of R....which is p0q, so
∆qpY q X∆qpY �q � p0q.

By CRT we get

R � R{∆qpY �q �R{∆qpY q � ∆qpY q �∆qpY �q.

Let e :� p0, 1q be the second idempotent coming from this decomposition. By
Proposition 4.16 there is a unique idempotent e of R such that qpeq � e. For
p P SpecR, we have e P p if and only if e P p if and only if p � ∆qpY �q if and only
if p P qpY �q if and only if p P Y �: thus Y � � V peq � Upe�q, so Y � Upeq.

Now let e P EpRq. Then qpUpeqq is the set of prime ideals of R containing 1� e
and qpUp1� eqq is the set of prime ideals of R containing e, so

R � ∆qpUpeqq �∆qpUp1�eqq.

Since ∆qpUpeqq � p1� eq and ∆qpUp1�eqq � peq and
R � peq � p1� eq,

we must have

∆qpUpeqq � p1� eq.
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An ideal can have at most one idempotent generator: if pe1q � pe2q then e1 � xe2
and e2 � ye1, so

e1 � xe2 � xe2e2 � e1e2 � e1pye1q � ye1 � e2.

So Upeq determines e and thus determines e as the unique idempotent element of
R such that qpeq � e. This shows that the map U is injective. □

Corollary 13.7. For a nonzero ring R, the following are equivalent:

(i) R is connected: EpRq � t0, 1u.
(ii) SpecR is connected.

Exercise 13.7. Prove it.

For the zero ring, we take the convention that it is not connected. This is compatible
with the convention that the empty topological space is not connected.

4. Properties of the spectrum: separation and specialization

For the reader’s convenience we recall the “lower” separation axioms:

A topological space X is Kolmogorov – or T0 – if for any distinct points x, y P X,
the system of neighborhoods Nx and Ny do not coincide. In plainer language,
either there exists an open set U containing x and not containing y, or conversely.

A topological space X is separated – or T1 – if for any distinct points x, y P X,
there exists both an open set U containing x and not y and an open set V contain-
ing y and not x. A space is separated if and only if all singleton sets txu are closed
if and only if for all x P X,

�
UPNx

U � txu.

A topological space X is Hausdorff – or T2 – if for any distinct points x, y P X,
there exist open neighborhoods U of x and V of y with U X V � H. A space is
Hausdorff if and only if for all x P X, the intersection of all closed neighborhoods
of x is txu.

Hausdorff implies separated implies Kolmogorov. In a general topology course
one learns that neither of the converse implications holds in general. On the other
hand most of the spaces one encounters in analysis and geometry are Hausdorff,
and certainly are if they are Kolmogorov. We are about to see that yet a third
state of affairs transpires when we restrict attention to spectra of rings.

Let X be a topological space. We define a relation ÞÑ on X by decreeing that
for x, y P X, x ÞÑ y iff y lies in the closure of the singleton set txu. This relation is
called specialization, and we read x ÞÑ y as “x specializes to y”.

The reader who is familiar with topology but has not seen the specialization relation
before will find an explanation in part f) of the following exercise.

Exercise 13.8.

a) Show: x ÞÑ y if and only if Nx � Ny.
b) Show: specialization satisfies the following properties:

(i) Reflexivity: x ÞÑ x; and
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(ii) Transitivity x ÞÑ y, y ÞÑ z ùñ x ÞÑ z.
A relation R with these properties is called a quasi-ordering. A partial
ordering is a quasi-ordering with the additional axiom of anti-symmetry:
xRy, yRx ùñ x � y.

c) Show: specialization is a partial ordering on X if and only if X is Kol-
mogorov.

d) Show: a point y is closed2 if and only if y ÞÑ x ùñ x � y.
e) A point x for which x ÞÑ y holds for all y P X is called generic. Give an

example of a topological space in which every point is generic.
f) Show: X is separated if and only if x ÞÑ y ùñ x � y.

Exercise 13.9. Let X be a set endowed with a quasi-ordering R. Define a new
relation x � y if x R y and y R x.

a) Show: � is an equivalence relation on X.
b) Write X 1 for the set of � equivalence classes, and let q : X Ñ X 1 be

the natural map – i.e., x ÞÑ ty P X | y � xu. Show that the relation R
descends to a relation ¤ on X 1: i.e., for s1, s2 P X 1, then by choosing
x1 P s1, x2 P s2 and putting

s1 ¤ s2 ðñ x1 R x2,

the relation ¤ is well-defined independent of the choices of x1 and x2.
Show that moreover ¤ is a partial ordering on X 1.

c) Let X be a topological space and R be the specialization relation. Endowing
X 1 with the quotient topology via q, show that the induced relation ¤ on
X 1 is the specialization relation on X 1, and accordingly by the previous
exercise X 1 is a Kolmogorov space. If it pleases you, show that q : X Ñ X 1

is universal for maps from X into a Kolmogorov space Y , hence X 1 (or
rather, q : X Ñ X 1) can be regarded as the Kolmogorov quotient of X.

Exercise 13.10. Let pX,µq be a measure space, and let L1 be the space of
all measurable functions f : X Ñ R with

³
X
|f |dµ   8. For f P L1, define

||f || :� ³
X
|f |dµ, and for ϵ ¡ 0, put Bpf, ϵq � tg P L1 | ||g � f ||   ϵu. Show that

the Bpf, ϵq’s form a base for a topology on L1, but that this topology is, in general,
not Kolmogorov. Show that the Kolmogorov quotient is precisely the usual Lebesgue
space L1, whose elements are not functions but classes of functions modulo µ a.e.
equivalence.

Proposition 13.8. For any ring R, the spectrum SpecR is a Kolmogorov
space. Indeed, for p, q P SpecR we have p ÞÑ q if and only if p � q.

Proof. For prime ideals p and q we have

p ÞÑ q ðñ q P tpu � tf P SpecR | f � pu ðñ p � q.

Thus the specialization relation is just containment of ideals, which certainly sat-
isfies antisymmetry: p � q, p � q ùñ p � q. Now apply Exercise 13.9c). □

Theorem 13.9. For a commutative ring R, the following are equivalent:

(i) The ring R{nilR is absolutely flat, i.e., every R{nilR-module is flat.
(ii) The ring R has Krull dimension zero.
(iii) The topological space SpecR is separated.

2Strictly speaking we mean tyu is closed, but this terminology is common and convenient.
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(iv) The topological space SpecR is Hausdorff.
v) The topological space SpecR is Boolean.

Proof. (i) ðñ (ii) This is Theorem 7.27.
(ii) ðñ (iii): A space is separated if and only if all of its singleton sets are closed.
But if p is prime, V ppq consists of all primes containing p, so V ppq � tpu if and only
if p is maximal.
Certainly (v) ùñ (iv) ùñ (iii).
(i) ùñ (v): Since SpecR � SpecpR{nilRq, we may well assume that R itself
is absolutely flat. Let p and q be distinct prime ideals; since both are maximal,
there exists an element f P pzq. By Proposition 3.103, there is an idempotent e
with peq � pfq, and therefore e P pzq. Then Dp1 � eq, Dpeq is a separation of
SpecR. More precisely, Dpeq XDp1� eq � Dpep1� eqq � Dpe� e2q � Dp0q � H,
whereas for any prime ideal p, since 0 � ep1 � eq P p, we must have e P p or
1� e P p. By construction, p P Dp1� eq, q P Dpeq. This shows SpecR is Hausdorff,
and more: given points P � Q of X, we found a separation X � U

²
V with

P P U, Q P V , so X is zero-dimensional. By Proposition 13.4, every ring has quasi-
compact spectrum, so SpecR is Hausdorff, zero-dimensional and quasi-compact,
i.e., Boolean. □

Exercise 13.11.

a) Let R be a product of fields. Show: SpecR is a Boolean space.
b) Let tRiuiPI be a family of rings, each of which has Krull dimension 0, and

put R �±iRi. Must SpecR be Boolean?

4.1. Gelfand Rings. Let R be any ring, let m P MaxSpecR, and put

Om :�
£

pPSpecR, p�m

p

be the intersection of all prime ideals contained in m. We claim that Om is the
set of all x P R such that there is y P Rzm such that xy is nilpotent. To see
this, suppose that x P R is such that xy is nilpotent for some y P Rzm. Then
x is nilpotent in R{m, so xN P m for some N P Z�, so x P m. Conversely, if
x P R is such that xy is not nilpotent for any y P Rzm, then the multiplicative
set S � txny | n P N, y P Rzmu does not contain 0 and contains Rzm, so there is
p P SpecR such that p � RzS � m and x R p, so x R Om.

Theorem 13.10. For a ring R, the following are equivalent:

(i) Every prime ideal of R is contained in a unique maximal ideal.
(ii) For all m1 � m2 P MaxSpecR, there is x1 P m1zm2 and x2 P m2zm1 such

that x1x2 � 0.
(iii) MaxSpecR is a retract of SpecR.
(iv) For all m P MaxSpecR, the only maximal ideal containing Om is m.
(v) SpecR is quasi-normal: two disjoint closed sets can be separated by two

disjoint open sets.
(vi) For all x P R, there are r, s P R such that p1� rxqp1� sp1� xqq � 0.

A ring satisfying these equivalent conditions is called a Gelfand ring.

Proof. (i) ùñ (ii): Assume (i), let m1 and m2 be distinct maximal ideals
and consider the multiplicative subset

S :� pRzm1q � pRzm2q.



268 13. SpecR AS A TOPOLOGICAL SPACE

If S did not contain 0, then by Multiplicative Avoidance there would be a prime
ideal p � RzS � m1Xm2, contradicting our assumption. Thus there are x2 P Rzm1

and x1 P Rzm2 such that x1x2 � 0. Because m1 and m2 are prime, it follows that
x1 P m1 and x2 P m2.
(ii) ùñ (i): Suppose that (ii) holds, and seeking a contradiction, suppose there is
a prime ideal p and distinct maximal ideals m1 � m2 such that p � m1Xm2. Then
we may write 0 � x1x2 with x1 R mm2 and x2 R m1, and since 0 P p we have that
p contains either x1 or x2, but since p is contained in both m1 and m2, this is a
contradiction.
(iii) ùñ (i): Let τ : SpecR Ñ MaxSpecR be a retraction. Let p P SpecR, and
put m :� τppq. Then p P τ�1ptmuuq, and since τ�1ptmuq is closed, also for any
specialization q of p we have τpqq � m. Because τ fixes every maximal ideal, we
conclude that the only maximal ideal containign p is m.
(iv) ùñ (i): Suppose that (iii) holds, and let p � m be a prime ideal contained
in a maximal ideal. If m1 is another maximal ideal containing p then m1 � Om, so
m1 � m by hypothesis.
(i) ùñ (iii) and (iv): Suppose that (i) holds, and let µ : SpecR Ñ MaxSpecR
be the function that maps p P SpecR to the unique maximal ideal that contains it.
We claim that µ is continuous. If so, since µpmq � m for all m P MaxSpecR, the
map µ : SpecRÑ MaxSpecR is a retraction, establishing (iii). Also if so, we have
that µ�1ptmuq � tp P SpecR | p � mu is closed in SpecR, so

µ�1ptmuq � µ�1ptmuq � V pOmq,
so no maximal ideal other than m contains Om, establishing (iv).

Now we establish that µ is continuous. LetW be a closed subset of MaxSpecR,
and put J :� �mPW m, soW � ZMaxSpecpJq (i.e., the set of maximal ideals contain-
ing J). Put V :� µ�1pW q and put I :� �pPSpecR|µppqPV p. We want to show that

V � V pIq: that is, if for p P SpecR we have p � I then µppq P W . If q P SpecR
and q � B :� �mPW m, then µpqq P W : indeed, q � J � B � R, so there is
m P MaxSpecR such that q� J � m; since m � J and W � ZMaxSpecpJq, we have
m P W , and since q � m we have µpqq � m. Now let p be a prime ideal containing
I: we will show that p contains a prime ideal q such that q � B, hence by what
was just done we get µppq � µpqq PW . Put

S :� RzB and T :� Rzp
and choose s P S and t P T . Since p � I, there is p1 P µ�1pW q such that t R p1, and
since s R p1 we have st R p1, so st R I. Thus the multiplicative system ST does not
meet I, so by Multiplicative Avoidance there is a prime ideal q containing I and
disjoint from ST , and we have q X p X B, establishing the continuity of µ. This
completes the proof of the equivalence of conditions (i) through (iv).
(i) ùñ (v): Suppose (i) holds. Then MaxSpecR is Hausdorff: let m1 and m2 be
distinct maximal ideals of R, and since (i) ùñ (ii) there is x1 P m1zm2 and x2 P
m2zm1 such that x1x2 � 0. Then UMaxSpecpx2q is an open neighborhood of m1 and
UMaxSpecpx1q is an open neighborhood of m2, and UMaxSpecpx1q X UMaxSpecpx2q �
UMaxSpecpx1x2q � UMaxSpecp0q � ∅. Now let V1 and V2 be disjoint closed subsets
of SpecR. Since SpecR is quasi-compact, V1 and V2 are both quasi-compact. If
m P µpV1qXµpV2q, then for i � 1, 2 there is pi P Vi such that µppiq � m. Since m is a
specialization of pi and Vi is closed, we have m P V1XV2, a contradiction. So µpV1q
and µpV2q are disjoint quasi-compact subsets of the compact space MaxSpecR, so
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they are closed. Since compact spaces are normal, there are disjoint open subsets
U1 � µpV1q and U2 � µpV2q, and then µ�1pU1q and µ�1pU2q are disjoint open
subsets containing V1 and V2 respectively.
(v) ùñ (i): Suppose SpecR is quasi-normal, and let m1 and m2 be disjoint
maximal ideals of R. Then tm1u and tm2u are disjoint closed subsets of SpecR,
so there are disjoint open subsets U1 and U2 with m1 P U1 and m2 P U2. Let
p P SpecR. Then p cannot lie in both of U1 and U2, so p must lie in at least one of
the cloesd subsets SpecRzU1 and SpecRzU2. If p lies in SpecRzU1, then this is a
closed subset containing p and not containing m1, so m1 does not lie in the closure
of p and thus m1 does not contain p; similarly, if p lies in SpecRzU2 then m2 does
not contain p. Thus p cannot be contained in more than one maximal ideal.
(i) ùñ (vi): Suppose (i) holds, and let x P R. Put x1 :� 1 � x. Let S (resp.
S1) be the multiplicative subset of R consisting of elements that are congruent to 1
modulo x (resp. modulo x1), and put T :� SS1. If T did not contain 0, then there
is a prime ideal p of R that is disjoint from T . Moreover the ideal p�pxq is proper:
if not we would have 1 � p�ax with p P p and a P R and then p P S � T . Similarly
the ideal p � px1q is proper. So there is a maximal ideal m containing p � pxq and
a maximal ideal m1 containing p � px1q. We must have m � m1, for otherwise m
would contain x� x1 � 1, and thus p is contained in two different maximal ideals:
contradiction. So there are r, s P R such that

0 � p1� rxqp1� sp1� xqq.
(vi) ùñ (i): Suppose (vi) holds, and, seeking a contradiction, that some prime
ideal p is contained in distinct maximal ideals m and m1. Then there are m P m and
m1 P m1 such that m�m1 � 1, so there are r, s P R such that 0 � p1�rmqp1�sm1q.
Then p contains either 1 � rm or 1 � sm1; in the former case 1 P m, while in the
latter case 1 P m1: either way, a contradiction. □

Exercise 13.12. Show: the class of Gelfand rings is closed under quotients,
localizations and direct products.

Exercise 13.13. (E. Wofsey3) Show: if R is a Gelfand ring, then MaxSpecR
is a deformation retract of SpecR. In particular, the two spaces are homotopy
equivalent.

Any local ring is a Gelfand ring, and a Gelfand domain must be local: in a
domain, p0q is a prime ideal contained in every maximal ideal. The following result
gives a much more interesting class of Gelfand rings:

Corollary 13.11. Let X be a topological space. The ring CpXq of real-valued
continuous functions on X is a Gelfand ring.

Proof. We will verify condition (vi) of Theorem 13.10. Let f P CpXq. Put
u :� maxpf, 1 � fq. First of all, u P CpXq, e.g. because for a, b P R we have

maxpa, bq � a�b�|a�b|
2 . Moreover upxq ¡ 0 for all x P R, so u P CpXq�. Consider

g :� p1�
��1
u



fqp1�

��1
u



p1� fqq.

Then for all x P X, either upxq � fpxq and the first factor of g is 0 or upxq � p1�
fqpxq and the second factor of g is 0. So condition (vi) applies with r � s � �1

u . □

3Cf. http://math.stackexchange.com/questions/1586745
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In the course of the proof of Theorem 13.10 we saw that for any Gelfand ring
R, the space MaxSpecR is compact (once again we emphasize: quasi-compact
plus Hausdorff!). Conversely, if X is a compact space, then we saw in §5.2 that
MaxSpecCpXq, when endowed with the Zariski topology, is homeomorphic to X.
Thus the spaces that are homeomorphic to MaxSpecR for a Gelfand ring R are
precisely the compact spaces. This raises several further questions: (i) which non-
Hausdorff spaces are homeomorphic to MaxSpecR for some ring R; and (ii) what is
the class of rings R for which MaxSpecR is compact? We will state the answer to
the first question later in this chapter, and we will now answer the second question:

Theorem 13.12. For a ring R, the following are equivalent:

(i) The ring R{JpRq is Gelfand.
(ii) The topological space MaxSpecR is compact
(iii) The topological space MaxSpecR is Hausdorff.

Proof. (i) ùñ (ii): For a ring R, let q : R Ñ R{JpRq be the quotient map.
Then q� : MaxSpecR{JpRq Ñ MaxSpecR is essentially the identity map: it is cer-
tainly a homeomorphism. So if R{JpRq is Gelfand, then by the proof of Theorem
13.10 the space MaxSpecR{JpRq is compact, hence so is MaxSpecR.
(ii) ðñ (iii): We know that MaxSpecR is quasi-compact, so this is immediate.
(ii) ùñ (i): Suppose that MaxSpecR is Hausdorff. Let m1 � m2 be dis-
tinct maximal ideals of R; beacuse MaxSpecR is Hausdorff and the principal
open sets tUpfqufPR form a base for the topology, there must be x1, x2 P R
such that Upx1q X Upx2q � ∅, m1 P Upx2q and m2 P Upx1q. Then Upx1x2q �
Upx1qXUpx2q � ∅, which means that every maximal ideal of R contains x1x2, i.e.,
x1x2 P JpRq, so x1 P m1 and x2 P m2. Keeping in mind the canonical homeomor-
phism MaxSpecR{JpRq Ñ MaxSpecR, this shows that R{JpRq satisfies condition
(ii) of Theorem 13.10 and is thus a Gelfand ring. □

Exercise 13.14. Show: a Boolean ring is a Gelfand ring.

A clean ring (also called an exchange ring) is a ring in R in which for all x P R
there is an idempotent e P R such that x� e P R�.

Exercise 13.15.

a) Show: every Boolean ring is a clean ring.
b) Show: every clean ring is a Gelfand ring. (Hint: for x P R, let e be an

idempotent such that e� x P R�. Show:
�
1� x

e�x
	�

1� 1�x
e�x
	
� 0.)

c) Show: every local ring is a clean ring.
d) Show: if SpecR is connected, then R is clean if and only if it is local.

5. Irreducible spaces

A topological space is irreducible if it is nonempty and if it cannot be expressed
as the union of two proper closed subsets.

Exercise 13.16. Show: for a Hausdorff topological space X, the following are
equivalent:

(i) The space X is irreducible.
(ii) We have #X � 1.

Proposition 13.13. For a topological space X, the following are equivalent:
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(i) The space X is irreducible.
(ii) Every finite intersection of nonempty open subsets (including the empty

intersection!) is nonempty.
(iii) Every nonempty open subset of X is dense.
(iv) Every open subset of X is connected.

Exercise 13.17. Prove Proposition 13.13.

Proposition 13.14. Let X be a nonempty topological space.

a) If X is irreducible, then every nonempty open subset of X is irreducible.
b) If a subset Y of X is irreducible, so is its closure Y .
c) If tUiu is an open covering of X such that Ui X Uj � H for all i, j and

each Ui is irreducible, then X is irreducible.
d) If f : X Ñ Y is continuous and X is irreducible, then fpXq is irreducible

in Y .

Proof. a) Let U be a nonempty open subset of X. By Proposition 13.13, it
suffices to show that any nonempty open subset V of U is dense. But V is also a
nonempty open subset of the irreducible space X.
b) Suppose Y � AY B where A and B are each proper closed subsets of Y ; since
Y is itself closed, A and B are closed in X, and then Y � pY X Aq Y pY X Bq. If
Y XA � Y then Y � A and hence Y � A � A, contradiction. So A is proper in Y
and similarly so is B, thus Y is not irreducible.
c) Let V be a nonempty open subset of X. Since the Ui’s are a covering of X, there
exists at least one i such that V X Ui � H, and thus by irreducibility V X Ui is a
dense open subset of Ui. Therefore, for any index j, V XUi intersects the nonempty
open subset Uj XUi, so in particular V intersects every element Uj of the covering.
Thus for all sets Ui in an open covering, V XUi is dense in Ui, so V is dense in X.
d) If fpXq is not irreducible, there exist closed subsets A and B of Y such that
AXfpXq and BXfpXq are both proper subsets of fpXq and fpXq � AYB. Then
f�1pAq and f�1pBq are proper closed subsets of X whose union is all of X. □

Proposition 13.15. Let R be a ring. Let V � SpecR be a Zariski-closed
subset, so V � V pIq for a unique radical ideal I. The following are equivalent:

(i) The subspace V pIq is irreducible.
(ii) The ideal I is prime.

Proof.  (ii) ùñ  (i): Let a, b P R such that ab P R and a, b P RzI. Then
I contains neither radpaq nor radpbq, so V pIq is contained in neither V paq nor V pbq,
but V paq Y V pbq � V pabq � V pIq. Thus V paq X V pIq and V pbq X V pIq are two
proper closed subsets whose union is V pIq, so V pIq is reducible.
(ii) ùñ (i): Suppose p is a prime ideal. We claim that V ppq is irreducible. If not,
there are ideals I and J such that V pIq and V pJq are both proper subsets of V ppq
and V ppq � V pIq Y V pJq � V pIJq. But then p � radpIJq � IJ and since p is
prime this implies p � I or p � J . Without loss of generality, suppose p � I; then
V ppq � V pIq, so that V pIq is not proper in V ppq, contradiction. □

Let x be a point of a topological space, and consider the set of all irreducible sub-
spaces of X containing x. (Since txu itself is irreducible, this set is nonempty.) The
union of a chain of irreducible subspaces being irreducible, Zorn’s Lemma says that
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there exists at least one maximal irreducible subset containing x. A maximal irre-
ducible subset (which, by the above, is necessarily closed) is called an irreducible
component of X. Since irreducible subsets are connected, each irreducible com-
ponent lies in a unique connected component. It is not true in general that the
connected component of x is the union of the irreducible components containing x:
the way that irreducible components are combined to form connected components
is slightly more complicated and explored in Exercise 13.22.

However, unlike connected components, it is possible for a given point to lie in
more than one irreducible component. We will see examples shortly.

In the case of the Zariski topology on SpecR, it follows from Proposition 13.15
that the irreducible components of SpecR are the subsets V ppq for a minimal
prime ideal p. Above we showed that every nonempty topological space has at
least one irreducible component, so this argument shows that every nonzero ring
admits minimal primes. Thus we have deduced a commutative algebraic result as a
consequence of a topological result. However we showed this earlier in Proposition
4.26 and the two proofs are essentially the same Zorn’s Lemma argument. A more
interesting topological argument is coming up soon.

6. Noetherianity

6.1. Noetherian topological spaces. We now introduce a property of topo-
logical spaces which, from the standpoint of conventional geometry, looks com-
pletely bizarre:

Proposition 13.16. For a topological space X, the following are equivalent:

(i) Every ascending chain of open subsets is eventually constant.
(ibis) Every descending chain of closed subsets is eventually constant.
(ii) Every nonempty family of open subsets has a maximal element.

(iibis) Every nonempty family of closed subsets has a minimal element.
(iii) Every open subset is quasi-compact.
(iv) Every subset is quasi-compact.

A space satisfying any (and hence all) of these conditions is called Noetherian.

Proof. The equivalence of (i) and (ibis), and of (ii) and (iibis) is immediate
from taking complements. The equivalence of (i) and (ii) is a general property of
partially ordered sets.

(i) ðñ (iii): Assume (i), let U be any open set in X and let tVju be an open
covering of U . We assume for a contradiction that there is no finite subcovering.
Choose any j1 and put U1 :� Vj1 . Since U1 � U , there exists j2 such that U1 does
not contain Vj2 , and put U2 � U1YVj2 . Again our assumpion implies that U2 � U ,
and continuing in this fashion we will construct an infinite properly ascending chain
of open subsets of X, contradiction. Conversely, assume (iii) and let tUiu8i�1 be an
infinite properly ascending chain of subsets. Then U � �i Ui is not quasi-compact.

Obviously (iv) ùñ (iii), so finally we will show that (iii) ùñ (iv). Suppose
that Y � X is not quasi-compact, and let tViuiPI be a covering of Y by relatively
open subsets without a finite subcover. We may write each Vi as UiXY with Ui open
in Y . Put U � �i Ui. Then, since U is quasi-compact, there exists a finite subset
J � I such that U � �jPJ Uj , and then Y � U XY � �jPJ Uj XY �

�
jPJ Vj . □
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Corollary 13.17. A Noetherian Hausdorff space is finite.

Proof. In a Hausdorff space every quasi-compact subset is closed. Therefore,
using the equivalence (i) ðñ (iv) in Proposition 13.16, in a Noetherian Hausdorff
space every subset is closed, so such a space is discrete. But it is also quasi-compact,
so it is finite. □

Proposition 13.18. Let X be a topological space.

a) The following are equivalent:
(i) There is a finite partition of X into connected clopen subsets.
(ii) The space X has finitely many connected components.
(iii) The space X has finitely many clopen subsets.

b) The equivalent conditions of part a) hold when X is Noetherian.

Proof. a) (i) ùñ (ii): Whenever a topological space admits a partition into
connected clopen subsets, these subsets are the connected components of X.
(ii) ùñ (i): In any topological space, each connected component is closed. If
there are only finitely many connected components then the complement of each
component is a finite union of closed sets, so each connected component is clopen.
(i) ùñ (iii): Intersecting any clopen set with a connected component Cpxq gives
either the empty set or Cpxq, and the result follows easily from this.
(iii) ùñ (i): A partition of X into clopen sets is maximal if and only if each
clopen set in the partition is connected, so in any nonmaximal partition we can
partition one of the clopen sets in the partition into two clopen subsets, increasing
the number of clopen sets in the partition by 1. So if X has finitely many clopen
subsets then this process, starting with tXu, must terminate after finitely many
steps, yielding a finite partition into connected clopen subsets.
b) Suppose X is Noetherian, and let F be the family of closed subsets of X which
have infinitely many connected components. If F is nonempty, then since X is
Noetherian, F has a minimal element Y . Then Y is nonempty and disconnected,
so Y � Y1

²
Y2 with Y1, Y2 nonempty. By minimality of Y , the proper closed

subsets Y1 and Y2 each have finitely many connected components, hence so does
Y : contradiction. Applying this to X, we get that X has finitely many connected
components. □

Just to be sure: if a topological space X has infinitely many connected components,
it may or may not admit a partition into clopen subsets. This does hold if X is
a paracompact topological manifold. Notice though that this holds for a totally
disconnected space iff the space is discrete, and there are many totally disconnected
spaces that are not discrete, e.g. any infinite boolean space or the rational numbers
as a subspace of the real numbers.

Proposition 13.19. Let X be a Noetherian topological space.

a) There are finitely many closed irreducible subsets tAiuni�1 such that X ��n
i�1Ai.

b) Starting with any finite family tAiuni�1 as in part a) and eliminating all
redundant sets – i.e., all Ai such that Ai � Aj for some j � i – we arrive
at the set of irreducible components of X. In particular, the irreducible
components of a Noetherian space are finite in number.

Proof. a) Let X be a Noetherian topological space. We first claim that X
can be expressed as a finite union of irreducible closed subsets. Indeed, consider
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the collection of closed subsets of X which cannot be expressed as a finite union
of irreducible closed subsets. If this collection is nonempty, then by Proposition
13.16 there exists a minimal element Y . Certainly Y is not itself irreducible, so is
the union of two strictly smaller closed subsets Z1 and Z2. But Z1 and Z2, being
strictly smaller than Y , must therefore be expressible as finite unions of irreducible
closed subsets and therefore so also can Y be so expressed, contradiction.

b) So write

X � A1 Y . . .YAn
where each Ai is closed and irreducible. If for some i � j we have Ai � Aj , then
we call Ai redundant and remove it from our list. After a finite number of such
removals, we may assume that the above finite covering ofX by closed irreducibles is
irredundant in the sense that there are no containment relations between distinct
Ai’s. Now let Z be any irreducible closed subset. Since Z � �n

i�1pZ X Aiq and Z
is irreducible, we must have Z � Z X Ai for some i, i.e., Z � Ai. It follows that
the “irredundant” Ai’s are precisely the maximal irreducible closed subsets, i.e.,
the irreducible components. □

6.2. Applications to Noetherian rings.

Proposition 13.20. For a ring R, the following are equivalent:

(i) R satisfies the ascending chain condition on radical ideals.
(ii) SpecR is a Noetherian space.

In particular if R – or even Rred � R{nilpRq – is a Noetherian ring, then SpecR
is a Noetherian space.

Proof. Since I ÞÑ V pIq gives a bijection between radical ideals and Zariski
closed subsets, (ACC) on radical ideals is equivalent to (DCC) on closed subsets.
Evidently these conditions occur if R is itself Noetherian, or, since SpecR is canon-
ically homeomorphic to SpecRred, if Rred is Noetherian. □

Corollary 13.21. Let I be a proper ideal in a Noetherian ring R. The set
of prime ideals p which are minimal over I (i.e., minimal among all prime ideals
containing I) is finite and nonempty.

Exercise 13.18. Prove Corollary 13.21.

Exercise 13.19. Let I be an infinite set, and for all i P I, let ri be a nonzero
ring. Show: the ring

±
iPI ri is not Noetherian.

The following result shows that every Noetherian ring is a finite product of con-
nected Noetherian rings in an essentially unique way.

Theorem 13.22. Let R be a nonzero Noetherian ring.

a) There is a unique n P Z� for which there are I1, . . . , In P IpRq such that:
(i) For all 1 ¤ i ¤ n the ring R{Ii is connected.
(ii) For all 1 ¤ i ¤ n there is an idempotent ei P R such that Ii � xeiy.
(iii) We have

�n
i�1 Ii � p0q and Ii � Ij � Rf or all 1 ¤ i � j ¤ n. Thus

we have a canonical isomorphism

(34) R
�Ñ

n¹
i�1

R{Ii.
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b) Let N P Z� and let r1, . . . , rN be nonzero rings such that R �±N
i�1 ri.

Then N ¤ n. Moreover, if each ri is connected, then we have N � n
and after reordering the ri’s we have for all 1 ¤ i ¤ n an R-algebra
isomorphsim ri � R{Ii.

Proof. a) By Proposition 13.18 there is n P Z� such that SpecR �²n
i�1Xi

with each Xi nonempty connected, and the Boolean algebra Clopen SpecR has
order 2n. For 1 ¤ i ¤ n, put Yi :� SpecRzXi �

²
1¤j¤n, j�iXj P Clopen SpecR.

By Theorem 13.6, for all 1 ¤ i ¤ n there is an idempotent ei P R such that
Yi � Upeiq. We know that e ÞÑ Upeq gives an isomorphism of Boolean algebras, so
for all 1 ¤ i � j ¤ n we have

Upe1 � � � enq � Upe1 ^ . . .^ enq �
n£
i�1

Upeiq �
n£
i�1

Yi � ∅ � Up0q,

so e1 � � � en � 0. If x P �n
i�1 Ii, then for all 1 ¤ i ¤ n we have x � eixi for some

xi P R and thus eix � e2ixi � eixi � x. It follows that x � e1 � � � enx � 0, so�n
i�1 Ii � p0q. For 1 ¤ i � j ¤ n we have

Upei ^ ejq � Upeiq Y Upejq � Yi Y Yj � X � Up1q,
so ei ^ ej � 1. Thus

1 � ei ^ ej � ei � ej � eiej P Ii � Ij .
So we may apply the Chinese Remainder Theorem to get (34). Moreover we have

SpecR{Ii � SpecR{xeiy � V peiq � SpecRzUpeiq � SpecRzYi � Xi.

Finally, (34) implies that nmust be the number of connected components of SpecR.

b) Suppose there are nonzero rings r1, . . . , rN such that R � ±N
i�1 ri. Each ri is a

quotient of R hence Noetherian, so by part a) is itself a finite product of connected
nonzero rings. So if N ¡ n then this would express R as a product of more than
n connected nonzero rings, contradicting part a). Let us now assume that each ri
is connected. Again, this forces N � n. For 1 ¤ i ¤ n let Ji be the kernel of the
natural map R Ñ ri, so we get an R-algebra isomorphism ri � R{Ji. By Exercise
4.14 we have Ji � Jj � R for all 1 ¤ i � j ¤ n. Thus for all 1 ¤ i � j ¤ n we have

n¤
i�1

SpecR{Ji �
n¤
i�1

V pJiq � V p
n£
i�1

Jiq � V p0q � SpecR

and

SpecR{Ji X SpecR{Jj � V pJiq X V pJjq � V pJi � Jjq � V pRq � ∅.
Thus the V pJiq’s are precisely the connected components of SpecR, so after re-
ordering we have V pJiq � V pIiq and thus rad Ji � rad Ii for all 1 ¤ i ¤ n. Both Ii
and Ji are ideals genearted by an idempotent element: this was the construction
of Ii, while Ji � tpr1, . . . , ri�1, 0, ri�1, . . . , rnq | rj P rju so it is generated by the
element of R corresponding to p1, 1, . . . , 0, 1, . . . , 1q P±n

i�1 ri. Since both Ii and Ji
are finitely generated, by Proposition 4.17g) this implies that there is M P Z� such
that IMi � Ji and J

M
i � Ii. It follows that Ji � Ii for all 1 ¤ i ¤ n. □

The above result continues to hold under weaker hypotheses.

Exercise 13.20. Let R be a nonzero ring, and let κ be the number of connected
components of SpecR.
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a) Show that the following are equivalent:
(i) We have κ   ℵ0.
(ii) The ring R has 2κ   ℵ0 idempotents.
(iii) The ring R is a finite product of connected rings.

b) When the equivalent conditions of part a) hold, if R is a product of α
nonzero rings, then α ¤ κ. If R is a product of β connected rings, then
β � κ. Moreover if we have connected rings r1, . . . , rκ, s1, . . . , sκ such that

κ¹
i�1

ri � R �
κ¹
i�1

si,

then after permuting the indices we have R-algebra isomorphisms ri � si
for all 1 ¤ i ¤ κ.

Exercise 13.21. Let R1, R2, R3 be nonzero rings such that R1�R2 � R1�R3.

a) Show: if each Ri is Noetherian (or indeed is a finite product of connected
rings), show that R2 � R3.

b) Give an example to show that we need not have R2 � R3 in general.

Exercise 13.22. Let X be a Noetherian topological space, and let x P X.

a) Show: every irreducible component containing x is contained in the con-
nected component of x. Deduce: every connected component is a finite
union of irreducible components.

b) Show: the union of the irreducible components containing x may be a
proper subset of the connected component of x.

c) For two irreducible components of X, write Ai � Aj if AiXAj � ∅. Show:
� need not be transitive. Let � be the transitive closure of �: explicitly,
A � B if there is a finite chain A � A1 � . . . � An � B. Show: � is
an equivalence relation on the set of irreducible components of X and the
unions of the components in any one equivalence class are precisely the
connected components of X.

7. Krull Dimension of Topological Spaces

The Krull dimension dimX of a topological space is the supremum of lengths of
chains of irreducible closed subsets of X. This is a cardinal number. In a ring R we
have a bijective correspondence between prime ideals of R and irreducible closed
subspaces of SpecR, which gives

dimR � dimSpecR.

Example 13.23. Let X be the topological space with underlying set Z� and
with nonempty open sets

Upnq � tm P Z� | m ¥ nu
as n ranges over all positive integers. Then families of nonempty open sets are
indexed by subsets A � Z�. If A � ∅ then

�
nPA Upnq � UpminAq. If A is

finite, then
�
nPA Upnq � UpmaxAq, whereas if A is infinite then

�
nPA Upnq � ∅.

Thus X is an Alexandroff topological space: the family of open sets is closed under
arbitrary unions and intersections.

Since every nonempty open subset of X is cofinite, X is Noetherian. For n P
Z�, the proper closed sets containing x are the intervals r1,ms � t1, . . . ,mu with
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n ¤ m, so n � r1, ns. Thus every nonempty closed subset of X is irreducible,
and an irreducible closed subset has a generic point if and only if it is proper, and
dimX � ℵ0.

Let X̃ � X
²tηu, where η is some point not in X. We define a nonempty

subset of X̃ to be open if it is of the form UpnqYtηu for some n P Z�. This gives a

topology on X̃. Since every nonempty open subset of X̃ contains η, we have η � X̃.
Let ι : X ãÑ X̃. The map ι�1 gives an order-preserving bijection from the open
subsets of X̃ to the open substs of X. Thus X̃ is Noetherian and dim X̃ � ℵ0.

8. Jacobson spaces

Let X be a topological space. We denote by X0 the subset of closed points of X.
We endow X0 with the subspace topology.

Exercise 13.23. Let X be a topological space.

a) Show: if X is finite, then X0 is closed in X.
b) Exhibit a topological space X for which X0 is not closed in X.

(Suggestion: take X � SpecR for a suitable ring!)

A subset Y � X is locally closed if it is the intersection of an open set with a
closed subset. A subset Z � X is strongly dense if Z X Y � ∅ for all nonempty
locally closed subsets Y � X. A topological space X is Jacobson if X0 is strongly
dense in X.

Notice that X is separated if and only if X0 � X; such spaces are certainly Jacob-
son. The concept is only interesting when not all points are closed.

Lemma 13.24. For a topological space X, the following are equivalent:

(i) X0 is strongly dense in X.
(ii) For all closed subsets Z � X, we have Z � Z XX0.

(iii) For all x P X, we have txu � txu XX0.

A space satisfying these equivalent properties is called a Jacobson space.

Exercise 13.24. Prove Lemma 13.24

Exercise 13.25.

a) Let X be at topological space, and let tUiuiPI be an open cover of X. Show:
X is Jacobson if and only if Ui is Jacobson for all i.

b) Suppose X is Jacobson and Y � X is a union of locally closed subspaces
of X. Show: Y is Jacobson.

c) Show: a finite Jacobson space is discete.

Exercise 13.26. For a topological space X, we define the Jacobson subspace

JpXq � tx P X | txu � txu XX0u.
a) Show: X is Jacobson if and only if JpXq � X.
b) Show: JpXq is a Jacobson space.

Lemma 13.25. Let X be a Jacobson topological space, and let ι : X0 Ñ X be
the inclusion map.

a) The map Y � X ÞÑ ι�1pY q � Y X X0 s a bijection from the closed
subspaces of X to the closed subspaces of X0.
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b) A closed subset Y � X is irreducible if and only if Y XX0 is irreducible.
c) We have dimX0 � dimX.

Proof. a) Certainly if Y � X is closed in X, then Y XX0 is closed in X0, and
by definition of the subspace topology every closed subset ofX0 is of the form Y XX0

for some closed Y � X. Suppose Y1, Y2 are closed in X and Y1 XX0 � Y2 XX0. If
Y1 � Y2, then pY1zY2q Y pY2zY1q is a nonempty locally closed set, so it meets X0:
contradiction.
b), c) Left to the reader. □

Proposition 13.26. For a ring R, the following are equivalent:

(i) R is a Jacobson ring.
(ii) SpecR is a Jacobson space.

Proof. Let p P SpecR. Then p � tq P SpecR | q � pu and
tpu XMaxSpecR �

£
mPMaxSpecR, m�p

m,

so the equivalence follows from Lemma 13.25. □

For a ring R, we define the Jacobson spectrum JSpecR to be the set of all prime
ideals which are intersections of maximal ideals.4 Thus MaxSpecR � JSpecR �
SpecR, and JSpecR � SpecR if and only if R is Jacobson. We endow JSpecR with
the topology it receives as a subspace of SpecR. Since JSpecR consists precisely of
the prime ideals of R which lie in the closure of the set of maximal ideals containing
them, we have that

JSpecR � JpSpecRq,
i.e., JSpecR is the Jacobson subspace of SpecR. In particular, JSpecR is a Jacob-
son space.

A topological space X is sober if for every irreducible closed subspace Y of X,
there exists a unique point y P Y such that Y � tyu. Equivalently, a sober space is
one for which every irreducible closed subset has a unique generic point.

Exercise 13.27.

a) Show that a Hausdorff space is sober.
b) Show that a sobser space is Kolmogorov.
c) Show that the cofinite topology on an infinite set is separated but not sober.

A map f : pX, τXq Ñ pY, τY q of topological spaces is a quasi-homeomorphism if
it is continuous and f�1 : V P τY ÞÑ f�1pV q P τX is a bijection.

Exercise 13.28. (Sobrification) For a topological space X, let X� denote the
set of irreducible closed subspaces of X. If Y � X is closed, then Y � � X�.
Consider the family C � tY � | Y � X is closed u of subsets of X�.

a) Show: C contains ∅ and X� and is closed under finite unions and ar-
bitrary intersections, thus forms the closed sets for a unique topology on
X�.

4The Jacobson spectrum was introduced by R.G. Swan [Sw67].
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b) Define a map j : X Ñ X� by j : x ÞÑ txu. Show: if Y � X is closed, then
j�1pY �q � Y . Deduce: V ÞÑ V � is a bijection from the family of closed
subsets of X to the family of closed subsets of X�, with inverse bijection
V � ÞÑ f�1pV �q � V . In particular, j is quasi-homeomorphism.

c) Show: X has the initial topology coming from the map j : X Ñ X�, i.e.,
the coarsest topology that makes j continuous.

d) Show: if V � X is closed, then V is irreducible if and only if V � is
irreducible, so V ÞÑ V � gives a bijection from the closed irreducible subsets
of X to the closed irreducible subsets of X�. Deduce: X� is sober.

e) Show: the map j : X Ñ X� is the universal continuous function from X
into a sober topological space: if f : X Ñ Y is continuous and Y is sober,
then there is a unique F : X� Ñ Y such that f � F � j. We say that
j : X Ñ X� ( and, by a standard abuse of terminology, X� itself) is the
sobrification of X.

f) Show: j is injective if and only if X is Kolmogorov and j is surjective
if and only if every irreducible closed subset of X has a generic point
(quasi-sober).

g) Show: the following are equivalent:
(i) X is sober.
(ii) j is a homeomorphism.
(iii) j is bijection.
(iv) j is a closed injection.

Proposition 13.27. Let f : X Ñ Y be a quasi-homeomorphism.

a) If X is Kolmogorov, then f is injective.
b) If X is sober and Y is Kolmogorov, then f is a homeomorphism.

Proof. a) Seeking a contradiction, we suppose there are x1 � x2 in X such
that fpx1q � fpx2q. After interchanging x1 and x2 if necessary, we may assume
there is an open subset U � X containing x1 and not x2. Let V � Y be open such
that q�1pV q � U . Then qpx1q P V and qpx2q R V : contradiction.
b) It suffices to show f is bijective, since a bijective quasi-homeomorphism is a

homeomorphism. By part a), f is injective. Let y P Y . Then f�1ptyuq is irreducible
and closed in the sober space X, so it has a generic point x. Thus

txu � f�1ptfpxquq � f�1ptyuq � txu,
so f�1ptfpxquq � f�1ptyuq. Since f is quasi-homeomorphism, we have tfpxqu �
tyu, and since Y is Kolmogorov we conclude fpxq � y. □

Corollary 13.28. If f : X Ñ Y is a quasi-homeomorphism and Y is sober,
then f is the sobrification of X.

Proof. The universal property of the sobrification j : X Ñ X� gives us a
factorization f � F�j for a continuous map F : X� Ñ Y . We have f�1 � j�1�F�1.
Since f�1 and j�1 are each bijections between lattices of open sets, so is F�1. Thus
F is a quasi-homeomorphism of sober spaces, hence a homeomorphism. □

Example 13.29. Let X be a topological space which is Kolmogorov but not
sober: e.g. take X to be an inifnite endowed with the cofinite topology. Let j :
X Ñ X� be the sobrification, so j is a quasi-homeomorphism. There is no quasi-
homeomorphism f : X� Ñ X: indeed, the previous result implies that f would have
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to be a homeomorphism and thus X would be sober, contradiction.
So beware: as a relation, quasi-homeomorphism is not symmetric, hence not an

equivalence relation. However, if � is the equivalence relation on topological spaces
generated by quasi-homeomorphism, then it is easy to see that X � Y if and only
if X� and Y � are homeomorphic.

We come now to the following result, which is the main payoff of the material of
this section and will be used in our treatment of the Forster-Swan Theorem.

Theorem 13.30. For any ring R, the inclusion map ι : MaxSpecR ãÑ JSpecR
is the sobrification of MaxSpecR.

Proof. We leave it to the reader to check that the argument that shows
SpecR is sober carries over to show the sobriety of JSpecR. By the above corol-
lay it is enough to show that ι is a quasi-homeomorphism. Since ι is an inclu-
sion map, certainly ι�1 is surjective on closed sets, so it’s enough to see injectiv-
ity. If Z is a closed subset of JSpecR, then since JSpecR is Jacobson, we have
Z � Z XMaxSpecR � ι�1pZq, giving the injectivity. □

Corollary 13.31. Let R be a ring.

a) The following conditions are equivalent:
(i) The space MaxSpecR is Noetherian.
(ii) The space JSpecR is Noetherian.
(iii) The ascending chain condition holds on intersections of maximal

ideals in R.
b) If SpecR is Noetherian, then the conditions of part a) hold.
c) The supremum of lengths of chains in JSpecR is the Krull dimension of

both JSpecR and of MaxSpecR.
d) We have dimMaxSpecR ¤ dimSpecR.

Exercise 13.29. Prove Corollary 13.31.

9. Hochster’s Theorem

A topological space X is spectral if:
(SS1) X is quasi-compact,
(SS2) X is sober, and
(SS3) The family of quasi-compact open subsets of X is closed under finite inter-
sections and is a base for the topology.

Exercise 13.30. Show: a finite topological space is spectral if and only if it iis
Kolmogorov (or T0).

The following result gives an arguably cleaner characterization of spectral spaces.

Proposition 13.32. For a topological space X, the following are equivalent:

(i) The space X is homeomorphic to an inverse limit of finite T0 spaces.
(ii) The space X is spectral.

Exercise 13.31. Prove Proposition 13.16.

Proposition 13.33. For every ring R, the space SpecR is spectral.
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Exercise 13.32. Prove Proposition 13.33.
(Hint: you will find the needed results in the previous subsections. Especially, use
Proposition 13.15 to prove sobriety.)

For any ring R we endow the set MaxSpecpRq of maximal ideals of R with the
topology it inherits as a subset of SpecpRq. When necessary, we describe MaxSpecR
as the “maximal spectrum” of R.

Proposition 13.34. For any ring R, the space MaxSpecR is separated and
quasi-compact.

Exercise 13.33. Prove Proposition 13.34.

Theorem 13.35. (Hochster’s Thesis [Ho69]) Let X be a topological space.

a) The following are equivalent:
(i) The space X is homeomorphic to SpecR for some ring R.
(ii) The space X is spectral.

b) The following are equivalent:
(i) The space is homeomorphic to MaxSpecR for some ring R.
(ii) The space X is quasi-compact and separated.

We do not aspire to give a proof of Theorem 13.35 at this time.

Exercise 13.34.

a) Show: the specialization relation gives an equivalence of categories between
the category of T0 finite spaces and the category of finite partially ordered
sets.

b) Formulate a generalization of part a) in which T0 finite spaces are replaced
by T0 Alexandroff spaces. (A topological space is Alexandroff if an
arbitrary intersection of closed subsets is closed.)

Exercise 13.35. Let n P Z�.
a) Use Hochster’s Thesis and the previous exercise to show: there exists a

ring R with exactly n prime ideals p1, . . . , pn such that p1 � p2 � . . . � pn.
b) For n � 1, 2, exhibit Noetherian rings with these properties. For n ¥ 3,

show: there is no such Noetherian ring.

10. Rank functions revisited

Theorem 13.36. Let M be a finitely generated module over a ring R.

a) For each n P N, the set

Ur � tp P SpecR | Mp can be generated over Rp by at most r elementsu
is open in SpecR.

b) If M is finitely presented (e.g. if R is Noetherian), then the set

UF � tp P SpecR | Mp is a free Rp-moduleu
is open in SpecR.

Proof. (Matsumura) Suppose Mp � xω1, . . . , ωryRp
. Each ωi is of the form

mi

si
with mi P M and si P Rzp. But since si P R�p for all i, we also have

xm1, . . . ,mryRp
� Mp. Thus it is no loss of generality to assume that each ωi
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is the image in Mp of an element of M . Let φ : Rr ÑM be the R-linear map given
by pa1, . . . , arq ÞÑ

°
i aiωi, and put C � cokerφ, whence an exact sequence

Rr ÑM Ñ C Ñ 0.

Localizing this at a prime q of R gives an exact sequence

Rrq ÑMq Ñ Cq Ñ 0.

When q � p we of course have Cq � 0. Moreover, C is a quotient of M hence
a finitely generated R-module, so by Proposition 10.11 its support suppC is a
Zariski-closed set. It follows that there exists an open neighborhood V of p such
that Cq � 0 for all q P V .
b) Suppose that Mp is a free Rp-module with basis ω1, . . . , ωr. As above it is no
loss of generality to assume that each ωi is the image in Mp of an element of M .
Moreover, as we have also just seen, there exists a basic open neighborhood Upfq
such that for all q P Upfq, the images of ω1, . . . , ωr in Mq generate Mq as an Rq-
module. Replacing R by Rf and M by Mf we may assume that this occurs for all
q P SpecR. Thus M{xω1, . . . , ωryR is everywhere locally zero, so it is locally zero:
M � xω1, . . . , ωry. Defining an R-linear map φ : Rr Ñ M as above and setting
K � Kerφ, we have the exact sequence

0Ñ K Ñ Rr ÑM Ñ 0.

Since M is finitely presented, according to Proposition 3.6 K is a finitely generated
R-module. Moreover we have Kp � 0 hence as above Kq � 0 for all q on some open
neighborhood V of p. By construction, for each q P V , the images of ω1, . . . , ωr in
Mq give an Rq-basis for Mq. □

Let M be a finitely generated, locally free module over a ring R. Earlier we defined
the rank function r : SpecR Ñ N. Applying Theorem 13.36a) to the locally free
module M says that the rank function is upper semicontinuous: it can jump up
upon specialization, but not jump down.

We now ask the reader to look back at Theorem 7.30 and see that for a finitely
generated module M over a general ring R, M is projective if and only if it is
locally free and finitely presented. When R is Noetherian, being finitely presented
is equivalent to being finitely generated, so being projective is the same as being
locally free. We have had little to say about the distinction between finitely gen-
erated and finitely presented modules. Is there some way to rephrase the subtly
stronger property of finite presentation, perhaps a more geometric way?

Indeed there is:

Theorem 13.37. Let M be a finitely generated locally free R-module. the fol-
lowing are equivalent:

(i) The rank function rM : SpecRÑ N is locally constant.
(ii) M is a projective module.

Proof. (i) ùñ (ii): By Theorem 7.30, it is enough to show that for all
m P MaxSpecR, there is f P Rzm such that Mf is a free module. Let n � rpmq,
and let x1, . . . , xn be an Rm-basis forMm. Choose X1, . . . , Xn PM such that for all
i, the image of Xi in Mm is of the form uixi for uu P R�m. Let u : Rn ÑM be the
map sending the ith standard basis element ei to Xi. SinceM is finitely generated,
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by Proposition 7.28 there is f P Rzm such that uf : Rnf Ñ Mf is surjective. It

follows that for all g P Rzm, ufg is surjective. Moreover, by hypothesis there is
some such g such that rppq � n for all p P Xpgq. Replacing f by fg we may assume
that rppq � n for all p P Xpfq. For all such p, up : Rnp Ñ Mp is therefore a sur-
jective endomorphism from a rank n free module to itself. Since finitely generated
modules are Hopfian, up is an isomorphism. By the local nature of isomorphisms
(Proposition 7.15) we conclude uf is an isomorphism, so Mf is free.
(ii) ùñ (i): By Theorem 7.30, M is Z-locally free: there exists a finite Z-family
tfiuiPI such that for all i P I, Mfi is finitely generated and free. Thus the mod-
ule
±n
i�1Mfi is finitely generated and projective over the faithfully flat R-algebra±n

i�1Rfi , so by faithfully flat descent (Theorem 3.114) M itself is projective. □

Corollary 13.38. Let R be a ring with SpecR irreducible (e.g. a domain).
For a finitely generated R-module M , the following are equivalent:

(i) The module M is projective.
(ii) The module M is Z-locally free.
(iii) The module M is locally free.
(iv) The module M is flat.

Exercise 13.36. Prove Corollary 13.24.

11. The Forster-Swan Theorem

For a prime ideal p of a ring R, put kppq � Rp{pRp. For a fnitely generated
R-module M , we let µpMq denote the minimal cardinality of a set of R-module
generators for M . Recall that if pR,mq is local, then by Nakayama’s Lemma we
have

µpMq � dimR{mM{mM.

For p P SpecR let µppMq be the minimal cardinality of a set of generators for the
Rp-module Mp.

Lemma 13.39. Let M be a finitely generated R-module, and let S be a finite
subset of suppM . Then there is m PM such that for all p P S, the image of M in
Mp{pMp is nonzero, and thus

@p P S, µppM{xmyq � µppMq � 1.

Proof. We go by induction on the number of elements s of S. The base case
s � 0 is clear, so let s ¥ 1 and suppose the statement holds when #S � s � 1.
We may order the elements of S as p1, . . . , ps so as to have p1 � � � ps�1 � ps; choose
xs P p1 � � � ps�1zps. By induction, there is m1 P M such that for all 1 ¤ i ¤ s � 1,
the image of m1 in Mpi

{piMpi
is nonzero. We are done if the image of m1 in

Mps
{psMps

is nonzero, so assume otherwise. Let m2 P M have nonzero image in
Mps{psMps . Thenm1�xsm2 has nonzero image inMpi{piMpi for all 1 ¤ i ¤ s. □

Theorem 13.40. (Forster-Swan [Fo64], [Sw67]) Let R be a ring such that
the space MaxSpecR is Noetherian, and let M be a finitely generated R-module.
Then

(35) µpMq ¤ sup
pPJSpecR

pµppMq � dimJSpecR{pq .
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Proof. We follow an exposition of Swan’s proof due to C.-L. Chai.
We may assume that suppPJSpecR dimJSpecR{p   ℵ0, for otherwise the con-

clusion is trivial. Since µppMq ¤ µpMq for all p P SpecR, we have

µFSpMq :� sup
pPJSpecR

pµppMq � dimJSpecR{pq   ℵ0.

We go by induction on µFS. If µFSpMq � 0 then µmpMq � 0 for all m P MaxSpecR,
so M � 0 and thus µpMq � 0.
Induction Step: Suppose µFSpMq ¥ 1 and suppose the result holds for finitely
generated modules R-modules N with µFSpNq   µFSpMq. Let

S � tp P JSpecR | µppMq � dimJSpecR{p � µFSpMqu.
For n P N, put

XnpMq � tp P JSpecR | µppMq ¥ nu.
Theorem 13.21 implies that XnpMq is closed in JSpecR. For q P S, put n � µqpMq
and Z � tqu, so Z � XnpMq. We claim that Z is an irreducible component of
XnpMq: if not, there is p P XnpMq such that p � q and

µppMq � dimJSpecR{p ¡ µqpMq � dimJSpecR{q � µFSpMq,
contradiction. Because MaxSpecR is Noetherian, so is JSpecR and thus also
XnpMq. It follows (JSpecR is sober, hence Kolmogorov) that S is finite. By
Lemma 13.39, there is m P M such that µqpM{xmyq � µqpMq � 1 for all q P S.
Thus for all p P JSpecR we have

µFSpM{xmyq ¤ k � 1,

so µpM{xmyq ¤ k � 1 by induction. It follows that µpMq ¤ k. □

Corollary 13.41. Let M be a finitely generated module over a semilocal ring.

a) We have µpMq � supmPMaxSpecR µmpMq.
b) If M is projective, then M is free if and only if the rank function rM is

constant.

Proof. a) Since MaxSpecR is finite and separated, it is Noetherian and dis-
crete. So dimJSpecR � 0 and JSpecR � MaxSpecR. Apply Forster-Swan.
b) Free modules have constant rank. Conversely, suppose rM pmq � n for all
m P MaxSpecR. By part a), µpMq � n, so M is free by Proposition 7.20. □



CHAPTER 14

Integral Extensions

1. First properties of integral extensions

If S is a ring extension of R – i.e., R � S – we will say that an element α of S is
integral over R if there exist a0, . . . , an�1 P R such that

αn � an�1α
n�1 � . . .� a1α� a0 � 0.

Note that every element α P R satisfies the monic polynomial t � α � 0, so is
integral over R.

Theorem 14.1. Let R � T be an inclusion of rings, and α P T . The following
are equivalent:

(i) The element α is integral over R.
(ii) Rrαs is finitely generated as an R-module.
(iii) There is an intermediate ring R � S � T such that α P S and S is finitely

generated as an R-module.
(iv) There is a faithful Rrαs-submodule M of T that is finitely generated as an

R-module.

Proof. (i) ùñ (ii): If α is integral over R, there are a0, . . . , an�1 P R such
that

αn � an�1α
n�1 � . . .� a1α� a0 � 0,

or equivalently

αn � �an�1α
n�1 � . . .� a1α� a0.

This relation allows us to rewrite any element of Rrαs as a polynomial of degree at
most n� 1, so that 1, α, . . . , αn�1 generates Rrαs as an R-module.
(ii) ùñ (iii): Take S :� Rrαs.
(iii) ùñ (iv): Take M :� S.
(iv) ùñ (i): Letm1, . . . ,mn be a finite set of generators forM over R, and express
each of the elements miα in terms of these generators:

αmi �
ņ

j�1

rijmj , rij P R.

Let A be the n� n matrix αIn � prijq; then recall from linear algebra that

AA� � detpAq � In,
where A� is the “adjugate” matrix (of cofactors). If m � pm1, . . . ,mnq (the row
vector), then the above equation implies 0 � mA � mAA� � mdetpAq � In. The
latter matrix equation amounts to mi detpAq � 0 for all i. Thus detpAq � 0 on
M , and by faithfulness this means detpAq � 0. Since so that α is a root of the
monic polynomial detpT � In � paijqq. □

285
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Exercise 14.1. Let S be a finitely generated R-algebra. Show that the following
are equivalent:

(i) S{R is integral.
(ii) S is a finitely generated R-module.

Deduce: if S{R is an extension and α1, . . . , αn are all integral over R, then Rrα1, . . . , αns
is a finitely generated R-module.

Proposition 14.2. (Integrality is preserved under quotients and localizations)
Let S{R be an integral ring extension.

a) Let J be an ideal of S. Then S{J is an integral extension of R{pJ XRq.
b) Let T be a multiplicatively closed subset of nonzero elements of R. Then

ST is an integral extension of RT .

Proof. a) First note that the kernel of the composite map R ãÑ S Ñ S{J is
J XR, so that R{pJ XRq ãÑ S{J is indeed a ring extension. Any element of S{J is
of the form x� J for x P S, and if P ptqtn � an�1t

n�1 � . . .� a1t� a0 � 0 P Rrts is
a polynomial satisfied by x, then reducing coefficientwise gives a monic polynomial
P ptq P R{pJ XRq satisfied by x.

b) Let J � ts P S | Dt P T | ts � 0u, an ideal of S. Let T be the image of T in
R{pJ X Rq. Then ST � pS{JqT and JT � pR{pJ X RqqT , so we may assume that
the maps R Ñ RT and S Ñ ST are injective. Let x

y P ST with x P S, y P T . Let

P ptq � tn � an�1t
n�1 � . . .� a0 P Rrts be a monic polynomial satisfied by x. Then�

x

y


n
� an�1

y

�
x

y


n�1

� . . .� a0
yn
� 0,

showing that x
y is integral over RT . □

Lemma 14.3. Let R � S � T be an inclusion of rings. If α P T is integral over
R, then it is also integral over S.

Proof. If α is integral over R, there exists a monic polynomial P P Rrts such
that P pαq � 0. But P is also a monic polynomial in Srts such that P pαq � 0, so α
is also integral over S. □

Lemma 14.4. Let R � S � T be rings. If S is a finitely generated R-module
and T is a finitely generated S-module, then T is a finitely generated R-module.

Proof. If α1, . . . , αr generates S as an R-module and β1, . . . , βs generates T
as an S-module, tαiβju1¤i¤r,1¤j¤s generates T as an R-module: for α P T ,

α �
¸
j

bjβj �
¸
i

¸
j

paijαiqβj ,

with bj P S and aij P R. □

Corollary 14.5. (Transitivity of integrality) If R � S � T are ring exten-
sions such that S{R and T {S are both integral, then T {R is integral.

Proof. For α P T , let αn � bn�1α
n�1 � . . . � b1α � b0 � 0 be an integral

dependence relation, with bi P S. Thus Rrb1, . . . , bn�1, αs is finitely generated over
Rrb1, . . . , bn�1s. Since S{R is integral, Rrb1, . . . , bn�1s is finite over R. By Lemma
14.4, Rrb1, . . . , bn�1, αs is a subring of T containing α and finitely generated over
R, so by Theorem 14.1, α is integral over R. □
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Corollary 14.6. If S{R is a ring extension, then the set ISpRq of elements
of S which are integral over R is a subring of S, the integral closure of R in S.
Thus R � ISpRq � S.

Proof. If α P S is integral over R, Rrα1s is a finitely generated R-module.
If α2 is integral over R it is also integral over Rrα1s, so that Rrα1srα2s is finitely
generated as an Rrα1s-module. By Lemmma 14.4, this implies that Rrα1, α2s is a
finitely generated R-module containing α1�α2 and α1 �α2. By Theorem 14.1, this
implies that α1 � α2 and α1α2 are integral over R. □

If R � S such that ISpRq � R, we say R is integrally closed in S.

Proposition 14.7. Let S be a ring. The operator R ÞÑ ISpRq on subrings of
R is a closure operator in the abstract sense, namely it satisfies:
(CL1) R � ISpRq,
(CL2) R1 � R2 ùñ ISpR1q � ISpR2q.
(CL3) ISpISpRqq � ISpRq.

Proof. (CL1) is the (trivial) Remark 1.1. (CL2) is obvious: evidently if R1 �
R2, then every element of S which satisfies a monic polynomial with R1-coefficients
also satisfies a monic polynomial with R2-coefficients. Finally, suppose that α P S
is such that αn � an�1α

n�1 � . . . � a1α � a0 � 0 for ai P ISpRq. Then each ai
is integral over R, so Rra1, . . . , ans is finitely generated as an R-module, and since
Rra1, . . . , an, αs is finitely generated as an Rra1, . . . , ans-module, applying Lemma
14.4 again, we deduce that α lies in the finitely generated R-module Rra1, . . . , an, αs
and hence by Theorem 14.1 is integral over R. □

2. Integral closure of domains

Until further notice we restrict to the case in which R � S are domains.

Proposition 14.8. Let R � S be an integral extension of domains.

a) R is a field if and only if S is a field.
b) An extension of fields is integral if and only if it is algebraic.

Proof. a) Suppose first that R is a field, and let 0 � α P S. Since α is
integral over R, Rrαs is finitely generated as an R-module, and it is well-known in
field theory that this implies Rrαs � Rpαq. Indeed, taking the polynomial of least
degree satisfied by α, say αpαn�1 � an�1α

n�2 � . . .� a1q � �a0, then 0 � a0 P R
is invertible, so

�pαn�1 � an�1α
n�2 � . . .� a1q

a0
� 1

α
,

and S is a field. Conversely, if S is a field and a P R, then Rra�1s is finite-
dimensional over R, i.e., there exist ai P R such that

a�n � an�1a
�n�1 � . . .� a1a�1 � a0.

Multiplying through by an�1 gives

a�1 � an�1 � an�2a� . . .� a1an�2 � a0an�1 P R,
completing the proof of part a). Over a field every polynomial relation can be
rescaled to give a monic polynomial relation, whence part b). □
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Remark: A more sophisticated way of expressing Proposition 14.8 is that if S{R is
an integral extension of domains, then dimR � 0 if and only if dimS � 0. Later
we will see that in fact dimR � dimS under the same hypotheses.

If R � S are fields, ISpRq is called the algebraic closure of R in S.

Exercise 14.2.

a) Let L{K be a field extension. Show: if L is algebraically closed, so is
ILpKq.

b) Deduce: if K � Q and L � C, then ICpQq is an algebraically closed field
extension of Q. This field is denoted Q and called the field of algebraic
numbers.

Theorem 14.9. Let S{R be an extension of domains, and let T � R be a
multiplicatively closed subset. Then IT�1SpT�1Rq � T�1ISpRq. In other words,
localization commutes with integral closure.

Proof. Let K be the fraction field of R and L the fraction field of S. Then
T�1ISpRq is the subring of L generated by T�1 and the elements of S which are inte-
gral over R. Since both of these kinds of elements of T�1S are integral over T�1R
and integral elements form a subring, we must have T�1ISpRq � IT�1SpT�1Rq.
Conversely, let x P T�1S be integral over T�1pRq, so there are b0, . . . , bn�1 P
T�1pRq such that

xn � bn�1x
n�1 � . . .� b1x� b0 � 0.

We may take a common denominator t P T such that x � s
t and for all 0 ¤ i ¤ n�1,

bi � ai
t . Making this substitution and multiplying through by tn, we get

sn � an�1s
n�1 � tan�2s

n�2 � . . .� tn�2a1s� tn�1 � 0.

Thus s is integral over R and x � s
t P T�1ISpRq. □

Proposition 14.10. Let R be a domain with fraction field K, let L{K be a
field extension, and let S be the integral closure of R in L. Then the fraction field
of S is ILpKq.

Proof. We write M for the fraction field of S.
Step 1: Every element of S is an element of L that is integral over R, hence also
integral over K, so S � ILpKq. Proposition 14.8 gives that ILpKq is a field, so also
the fraction field M of S is contained in ILpKq.
Step 2: Let x P ILpKq, so there are a0, . . . , an�1 P K such that

xn � an�1x
n�1 � . . .� a1x� a0 � 0.

Each ai may be written as quotient of two elements of R; multiplying by the product
of the denominators of these elements and relabelling, there are b0, . . . , bn P R with
bn � 0 such that

bnx
n � . . .� b1x� b0 � 0.

Multiplying through by bn�1
n , we get

pbnxqn � bn�1pbnxqn�1 � . . .� b1bn�2
n pbnxq � bn�1

n b0 � 0,

and thus bnx P S. Also bn P R � S, so bnx, b
�1
n P L, so x P L. □
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Remark 7. The proof of Proposition ?? establishes the following result, which
is occasionally useful in its own right: let R be a domain with fraction field K, let
L{K be an algebraoc field extension, and let T be the integral closure of R in L.
Then for all x P L, there is a P R such that ax P T .

Example 14.11. If R � Z, S � C, then ISpRq � Z, the ring of all algebraic
integers.

Exercise 14.3. Show: Z is not finitely generated as a Z-module.1

Let R be a domain with fraction field K. We say that R is integrally closed
if IKpRq � R, i.e., if any element of the fraction field satisfying a monic integral
polynomial with R-coefficients already belongs to R.

Corollary 14.12. Let R be a domain with fraction field K, let L{K be a field
extension, and let S � ILpRq. Then S is integrally closed.

Proof. Let M be the fraction field of S, and let S̃ be the integral closure of
S in M . By Corollary 14.5, S̃{R is integral, so S̃ � S and thus S̃ � S. □

Exercise 14.4. Let R � Zr?�3s � Zrts{pt2�3q. Show that R is not integrally
closed, and compute its integral closure.

The geometric terminology for an integrally closed domain is normal. The process
of replacing R by its integral closure IKpRq is often called normalization.

Exercise 14.5. Let R be a domain.

a) Suppose the polynomial ring Rrts is integrally closed. Show: R is integrally
closed.

b) Suppose the formal power series ring Rrrtss is integrally closed. Show: R
is integrally closed.

Theorem 14.13. Let R be an integrally closed domain. Then the polynomial
ring Rrts is integrally closed.

Proof. Let K be the fraction field of R, so Kptq is the fraction field of Rrts.
The ring Krts is a PID, hence a UFD, hence integrally closed (these facts will be
reviewed in Chapter 15). Let f P Kptq be integral over R; then f is also integral
over Krts, so f lies in Krts. We must show that f P Rrts, which we do by induction
on n � degpfq. The base case is n � 0: then f lies in K and is integral over
R, so f P R � Rrts because R is integrally closed. Now suppose n ¥ 1 and that
every g P Krts that is integral over R and of degree less than n lies in Rrts. The
ring Rrtsrf s is finitely generated as an R-algebra and integral over R so is finitely
generated as an R-module. It follows from this that the ring T of leading coefficients
of elements of pRrtsrf sq is finitely generated over R. For

f � ant
n � . . .� a1t� a0,

we have that Rrans � T , so an is integral over R and thus – because R is integrally
closed – we have an P R. Then f � ant

n is integral over Rrts and has degree less
than n, so by induction f � antn P Rrts, hence f P Rrts. □

1In fact it is not even a Noetherian ring, so not even finitely generated as a Z-algebra.
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It is now natural to ask: if R is an integrally closed domain, must Rrrtss be integrally
closed? Surprisingly, the answer is in general negative. Before adddressing this, we
make an important remark: let K be the fraction field of R. Then the fraction
field of Krrtss is Krrtssr 1t s �: Kpptqq, the field of formal finite-tailed Laurent series.
(The ring Krrtss is a local PID, hence its fraction field is obtained by adjoining
a generator of its maximal ideal.) However, the fraction field of Rrrtss may be a
proper subfield of Kpptqq. Now here is the first piece of the answer:

Theorem 14.14. (Seidenberg [Se66]) Let R be an integrally closed domain
containing a field k. Suppose there is x P RzR� such that

�
nPZ�pxnq � p0q. Then

the formal power series domain Rrrtss is not integrally closed.

Proof. LetK be the fraction field Choose an integer n ¥ 2 that is not divisible
by the characteristic of k, so n P R�. There is a sequence tcnu8n�1 in the prime
subfield of k such that c1 � 0 and�

1� c1p t
x2
q � . . .� cmp t

x2
qm � . . .


n
� 1� t

x2
,

so taking

α :� x

�
1� c1p t

x2
q � . . .� cmp t

x2
qm � . . .



,

we have

αn � xnp1� t

x2
q � xn � txn�2.

Let a P �n�Z�pxnqzt0u. Then aα P Rrrtss, so α lies in the fraction field of Rrrtss,
but α does not lie in Rrrtss since its coefficient of t is c1

x and we have c1 P R� and
x R R�. □

We still need to find a domain satisfying the hypotheses of Theorem 14.14. We
will do so in Chapter 17 in the course of our study of valuation rings. Later in
this chapter we will see that if R is integrally closed and Noetherian, then Rrrtss is
integrally closed.

3. Spectral properties of integral extensions

Going down (GD): If we have I1 � I2 of R and J1 P SpecS such that J1 XR � I1,
there exists J2 P SpecS such that J2 � J1 and J2 XR � I2.

Lemma 14.15. Let R be a local ring with maximal ideal p and S{R an integral
extension. Then the pushed forward ideal pS is proper.

Proof. Suppose not: then there exist pi P p, si P S such that 1 � °i sipi.
Therefore any counterxample would take place already in the finite R-module
Rrs1, . . . , sds. By induction on d, it is enough to consider the case of n � 1:
S � Rrss. Consider as usual a relation

(36) sn � an�1s
n�1 � . . .� a1s� a0, ai P R

of minimal possible degree n. If 1 P pS then we have

(37) 1 � p0 � p1s� . . .� pksk, pi P p.
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In view of (36) we may assume k ¤ n� 1. Since 1� p0 is not in the maximal ideal
of the local ring R, it is therefore a unit; we may therefore divide (37) by 1 � p0
and get an equation of the form

1 � p11s� . . .� p1qsq, p1i P p.
This shows that s P S�. Replacing a0 � a0 � 1 in (36) by a0pp11s � . . . � p1qs

q), we
get an integral dependence relation which is a polynomial in s with no constant
term. Since s is a unit, we may divide through by it and get an integral dependence
relation of smaller degree, contradiction. □

Theorem 14.16. An integral ring extension S{R satisfies property (LO):2 every
prime ideal p of R is of the form S X P for a prime ideal P of S.

Proof. For p a prime ideal of R, we denote – as usual – by Rp the localiza-
tion of R at the multiplicatively closed subset Rzp. Then Rp is local with unique
maximal ideal pRp, and if we can show that there exists a prime ideal Q of Sp lying
over pRp, then the pullback P � QX S to S is a prime ideal of S lying over p. By
Lemma 14.15, there exists a maximal ideal Q � pS and then Q X R is a proper
ideal containing the maximal ideal p and therefore equal to it. □

Corollary 14.17. (Going Up Theorem of Cohen-Seidenberg [CS46]) Let S{R
be an integral extension and p � q be two prime ideals of R. Let P be a prime ideal
of S lying over p (which necessarily exists by Theorem 14.16). Then there exists a
prime ideal Q of S containing P and lying over q.

Proof. Apply Theorem 14.16 with R � R{p S � S{P and p � q{p. □

Corollary 14.18. (Incomparability) Suppose S{R is integral and P � Q are
two primes of S. Then P XR � QXR.

Proof. By passage to S{P, we may assume that P � 0 and S is a domain,
and our task is to show that any nonzero prime ideal P of S lies over a nonzero
ideal of R. Indeed, let 0 � x P P, and let P ptq � tn� an�1t

n�1� . . .� a0 P Rrts be
a monic polynomial satisfied by x; we may assume a0 � 0 (otherwise divide by t).
Then a0 P xS XR � P XR. □

Corollary 14.19. Let S{R be an integral extension, P a prime ideal of S
lying over p. Then P is maximal if and only if p is maximal.

Proof. First proof: Consider the integral extension S{P{pR{pq; we want
to show that S{P is a field if and only if R{p is a field. This is precisely Proposition
14.8a).
Second proof: If p is not maximal, it is properly contained in some maximal
ideal q. By the Going Up Theorem, there exists a prime Q � P lying over q, so
P is not maximal. Conversely, suppose that p is maximal but P is not, so there
exists Q � P. Then Q X R is a proper ideal containing the maximal ideal p, so
QXR � p � P XR, contradicting the Incomparability Theorem. □

Invoking Going Up and Incomparability to (re)prove the elementary Corollary 14.19
is overkill, but these more sophisticated tools also prove the following

Corollary 14.20. Let S{R be an integral extension of rings. Then the Krull
dimensions of R and S are equal.

2Or, lying over.
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Proof. Suppose p0 � p1 � . . . � pd are primes in R. Applying Theorem 14.1,
we get a prime P0 of S lying over p0, and then repeated application of the Going Up
Theorem yields a chain of primes P0 � P1 � . . . � Pd, so that dimpSq ¥ dimpRq.
Similarly, if we have a chain of prime ideals P0 � . . . � Pd of length d in S, then
Theorem 14.18 implies that for all 0 ¤ i   d, Pi XR � Pi�1. □

4. Integrally closed domains

Let R � S be domains. Immediately from the definition of integrality, there is a
concrete way to show that x P S is integral over R: it suffices to exhibit a monic
polynomial P P Rrts with P pxq � 0. What if we want to show that x P S is not
integral over R? It would suffice to show that Rrxs is not a finitely generated R-
module, but exactly how to do this is not clear.

As an example, it is obvious that α � ?
2 is an algebraic integer, but unfortu-

nately it is not obvious that β �
?
2
2 is not an algebraic integer. (And of course we

need to be careful, because e.g. γ � 1�?5
2 is an algebraic integer, since it satisfies

t2� t� 1 � 0.) One thing to notice is that unlike α and γ, the minimal polynomial
of β, t2 � 1

2 , does not have Z-coefficients. According to the next result, this is
enough to know that β is not integral over Z.

Theorem 14.21. Let R be a domain with fraction field K, let S{R be an
extension domain, and x P S an integral element over R.

a) Let P ptq P Krts be the minimal polynomial of x over K. Then P ptq P
IKpRqrts.

b) If R is integrally closed, the minimal polynomial of x has R-coefficients.

Proof. a) Let g P Rrts be a monic polynomial satisfied by x. Let K be the
fraction field of R, and let P P Krts be the minimal polynomial of x over K,
and let M{K be the splitting field of P , so there are α1, . . . , αd P M such that

P � ±d
i�1pt � αiq. There is h P Krts such that g � Ph in Krts. For all 1 ¤ i ¤ d

we have gpαiq � 0, so each αi is integral over R. Since the roots of P lie among
the αi’s they are also integral over R, hence so too are the coefficients of P , being
polynomial expressions in the roots.
b) This follows immediately from part a). □

Exercise 14.6. Let R be a domain with fraction field K. Let S{R be an
extension such that for every x P S that is integral over R, the minimal polynomial
P ptq P Krts has R-coefficients. Show: R is integrally closed.

Theorem 14.22. (Local nature of integral closure) For a domain R, the fol-
lowing are equivalent:

(i) R is integrally closed.
(ii) For all prime ideals p of R, Rp is integrally closed.
(iii) For all maximal ideals m of R, Rm is integrally closed.

Proof. Let K be the fraction field of R. Assume (i), and let p P SpecR. By
Theorem 14.9, the integral closure of Rp in K is Rp. Evidently (ii) ùñ (iii).
Assume (iii), and let x be an element of K which is integral over R. Then for every
maximal ideal m of R, certainly x is integral over Rm, so by assumption x P Rm

and thus x P �mRm. By Corollary 7.16 we have
�

mRm � R. □
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Exercise 14.7. Let R be an integrally closed domain with fraction field K, L{K
an algebraic field extension, S the integral closure of R in L and G � AutpL{Kq.

a) Show: for every σ P G, σpSq � S.
b) For P P SpecS and σ P G, show σpPq � tσpxq | x P Pu is a prime ideal

of S.
c) Show: P XR � σpPq XR.

In conclusion, for every p P SpecR, there is a well-defined action of G on the
(nonempty!) set of prime ideals P of S lying over p.

Lemma 14.23. Let R be a domain with fraction field K of characteristic p ¡ 0,
let L{K be a purely inseparable algebraic extension of K (possibly of infinite degree),
and let S be the integral closure of R in L. For any p P SpecR, radppRq is the
unique prime of S lying over p.

Exercise 14.8. Prove Lemma 14.23.
(Suggestions: recall that since L{K is purely inseparable, for every x P L, there
exists a P N such that xp

a P K. First observe that radppRq contains every prime
ideal of S which lies over p and then show that radppRq is itself a prime ideal.)

Theorem 14.24. (Going Down Theorem of Cohen-Seidenberg [CS46]) Let R be
an integrally closed domain with fraction field K, and let S be an integral extension
of R. If p1 � p2 are prime ideals of R and P2 is a prime ideal of S lying over p2,
then there is a prime ideal P1 of S which is contained in P2 and lies over p1.

Proof. Let L be a normal extension of K containing S, and let T be the
integral closure of R in L. In particular T is integral over S, so we may choose
Q2 P SpecT lying over P2 and also Q1 P SpecT lying over p1. By the Going Up
Theorem there exists Q1 P SpecT containing Q1 and lying over p2. Both Q2 and Q1

lie over p2, so by Theorem 14.42 there exists σ P AutpL{Kq such that σpQ1q � Q2.
Thus σpQ1q � σpQ1q � Q2 and σpQ1q lies over p1, so that setting P1 � σpQ1q X S
we have P1 XR � p1 and P1 � σpQ1q X S � Q2 X S � P2. □

Remark: In [AM, Chapter 5] one finds a proof of Theorem 14.24 which avoids all
Galois-theoretic considerations. However it is significantly longer than the given
proofs of Theorems 14.42 and 14.24 combined and – to me at least – rather opaque.

Corollary 14.25. Let R be an integrally closed domain, and let S be a domain
that is an integral extension of R. If Q P SpecS, then the height of the ideal Q of
S is the height of the ideal P :� QXR of R.

Proof. Let

Q0 � Q1 � . . .Qn�1 � Q
be a chain of prime ideals of S having length n and terminating in Q. By Corollary
14.18, the contraction of this chain to R (i.e., we intersect each ideal with R) is a
chain of prime ideals of R having length n and terminating in P, so the height of
P is at least that of Q.

Conversely, let

P0 � P1 � . . .Pn�1 � P
be a chain of prime ideals of R having length n and terminating in P. By Theorem
14.24 and Corollary 14.18, this is the contraction of a chain of prime ideals of S
having length n and terminating in Q, so the height of Q is at least that of P. □
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5. The Noether Normalization Theorem

5.1. The classic version.

Theorem 14.26. (Noether Normalization) Let k be a field, and let R be a
domain with fraction field K. Suppose that R is moreover a finitely generated k-
algebra, generated say by elements x1, . . . , xm. Then:

a) There is d P Z, 0 ¤ d ¤ m, and algebraically independent elements
y1, . . . , yd P R such that R is finitely generated as a module over the
polynomial ring kry1, . . . , yds – or equivalently, that R{kry1, . . . , yds is an
integral extension.

b) We have dimR � d � trdegpK{kq (the transcendence degree of K{k).
Proof. a) (Jacobson) The result is trivial if m � d, so we may suppose m ¡ d.

Then the yi are algebraically dependent over k: there exists a nonzero polynomial

fps1, . . . , smq �
¸
aJs

j1
1 � � � sjmm , aJ P krs1, . . . , sms

with fpx1, . . . , xmq � 0. Let X be the set of monomials sJ � sj11 � � � sjmm occuring
in f with nonzero coefficients. To each such monomial we associate the univariate
polynomial

j1 � j2t� . . .� jmtm�1 P Zrts.
The polynomials obtained in this way from the elements of X are distinct. Since
a univariate polynomial over a field has only finitely many zeroes, it follows that
there exists a ¥ 0 such that the integers j1� j2a� . . .� jmam�1 obtained from the
monomials in X are distinct. Now consider the polynomial

fps1, sa1 � t1, . . . , sa
m�1

1 � tmq P krs, ts.
We have

fps1, sa1 � t1, . . . , sa
m�1

1 � tmq �
¸
J

aJs
j1
1 psd1 � t2qj2 � � � psa

m�1

1 � tmqjm

�
¸
J

aJs
j1�j2a�...�jmam�1

1 � gps1, t2, . . . , ymq,

in which the degree of g in s1 is less than that of
°
J aJs

j1�j2a�...�jmam�1

1 . Hence

for suitable β P k�, βfps1, sa1� t2, . . . , sa
m�1

1 � tmq is a monic polynomial in x1 with

krt2, . . . , tms-coefficients. Putting wi � xi � xai�1

1 for 2 ¤ i ¤ m, we get

βfpx1, xd1 � w2, . . . , x
am�1

1 � wmq � 0,

so that x1 is integral overR
1 � krw2, . . . , wms. By induction on the number of gener-

ators, R1 has a transcendence base tyiudi�1 such that R1 is integral over kry1, . . . , yds.
Thus R is integral over kry1, . . . , yds by transitivity of integrality.
b) Since R{kry1, . . . , yds is integral, by Corollary 14.20 the Krull dimension of R is
equal to the Krull dimension of kry1, . . . , yds, which by Corollary 12.15 is d. Since
R is finitely generated as a kry1, . . . , yds algebra, by Proposition 14.10 K is finitely
generated as a kpy1, . . . , ydq-module, so trdegK{k � trdeg kpy1, . . . , ydq � d. □
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5.2. Separable Noether Normalization.

Let K be a field and let K an algebraic closure of K. A field extension L{K
is regular if LbK K is a field (equivalently, a domain).

For a field extension L{K, we say K is algebraically closed in L if any ele-
ment of L which is algebraic over K lies in K. It is an easy exercise to show that if
L{K is regular, K is algebraically closed in L. The converse is true in characteristic
zero, but in positive characteristic we need a further hypothesis:

Theorem 14.27. Let L{K be a field extension.

a) The following are equivalent:
(i) The extension L{K is regular.
(ii) The extension L{K is separable and K is algebraically closed in L.

b) In particular, if K is perfect and algebraically closed in L, then L{K is
regular.

Proof. a) The key result here is Mac Lane’s Theorem [FT, §12]: a field

extension L{K is separable if and only if L and Kp�8 are linearly disjoint over K.
(i) ùñ (ii): If L{K is regular, then K is algebraically closed in L. Further, L and

K are linearly disjoint over K, hence L and Kp�8 are linearly disjoint over K.

(ii) ùñ (i): LetK 1 � Kp�8 and L1 � LbKK 1. Since LbKK � pLbKK 1qbK1K �
L1bK1K, it is enough to show that L1 is a field and L1bK1K is a field. Now L1 is a
field by Mac Lane’s Theorem, and since K 1 is perfect, K{K 1 is a Galois extension,
and thus by [FT, §12.3], since L1XK � K 1, L1 and K are linearly disjoint over K 1.
b) If K is perfect, every extension of K is separable. Apply part a). □

Theorem 14.28. (Separable Noether Normalization) Let k be a field, and let
R be a domain that is finitely generated as a k-algebra. Assume moreover that the
fraction field L of R is a regular extension of k.

a) There is d P Z, 0 ¤ d ¤ m, and algebraically independent elements
y1, . . . , yd P R such that R is finitely generated as a kry1, . . . , yds-module
and L{kpy1, . . . , ydq is a finite separable field extension.

b) The integer d is equal to both the Krull dimension of R and the transcen-
dence degree of K{k.

For now we refer the reader to [Ei, Cor. 16.18] for the proof.

5.3. Noether normalization over a domain.

Theorem 14.29. (Noether Normalization II) Let R � S be domains with S
finitely generated as an R-algebra. There exists a P R and y1, . . . , yd P S alge-
braically independent over the fraction field of R such that Sa (the localization of
S at the multiplicative subset generated by a) is finitely generated as a module over
T � Rary1, . . . , yds.

Proof. (K.M. Sampath) Let K be the fraction field of R and let x1, . . . , xm
be a set of R-algebra generators for S. Then

S1 :� S bR K � Krx1, . . . , xms
is finitely generated over K (as above, the xi’s need not be algebraically inde-
pendent). Applying Theorem 14.26, we get algebraically independent elements
y1, . . . , yd P S1 such that S1 is a finitely generated T 1 :� Kry1, . . . , yds-module.
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Multiplying by a suitable element of R�, we may assume yi P S for all i.
Since S1 is finitely generated as a T 1-module, it is integral over T 1. For 1 ¤ i ¤

m, xi satisfies a monic polynomial equation with coefficients in T 1:

yn1 � Pi,1py1, . . . , ydqyn�1
i � . . .� Pi,n � 0.

Let a be the product of the denominators of all coefficients of all the polynomials
Pi,k. It follows that Sa is integral and finitely generated as a T � Rary1, . . . , yds-
algebra, hence it is finitely generated as a T -module. □

Exercise 14.9. In the setting of Theorem 14.29 suppose S is a graded R-
algebra. Show: we may take all the yi to be homogeneous elements.

5.4. Applications.

The Noether Normalization Theorem is one of the foundational results in algebraic
geometry: geometrically, it says that every integral affine variety of dimension d is
a finite covering of affine d-space Ad. Thus it allows us to study arbitrary varieties
in terms of rational varieties via branched covering maps. It is almost as important
as a theorem of pure algebra, as even the “soft” part of the result, that the Krull
dimension of an integral affine k-algebra is equal to the transcendence degree of its
fraction field, is basic and useful.

One of the traditional applications of Noether Normalization is to prove Hilbert’s
Nullstellensatz. As we have seen, it is fruitful to channel proofs of the Nullstellen-
satz through Zariski’s Lemma, and this is no exception.

Proposition 14.30. Noether Normalization implies Zariski’s Lemma.

Exercise 14.10. Prove Proposition 14.30.

For the next result, we write htppq for the height of a prime ideal p.

Theorem 14.31. Let k be a field, and let R be a domain that is finitely generated
as a k-algebra.

a) For all p P SpecR, we have

(38) dimR � htppq � dimR{p.
b) Every maximal chain of prime ideals in R has length dimR.

Proof. a) We claim that in any Noetherian ring R of finite Krull dimension,
for any p P SpecR we have

dimR ¥ htppq � dimR{p.
Indeed, let C1 be a chain of prime ideals teminating at p of length htppq, and let C2
be a chain of prime ideals starting at p of length dimR{p. Then C1 Y C2 is a chain
of prime ideals of length htppq � dimR{p, so htppq � dimR{p ¤ dimR.

Let d � dimR. We will prove that

d ¤ htppq � dimR{p
by induction on d. The case d � 0 is trivial. Let us inductively suppose that the
inequality holds for all finitely generated k-algebras of dimension less than d.

Step 1: By Noether normalization, there are algebraically independent elements
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x1, . . . , xd of R such that R is finitely generated as a krx1, . . . , xds-module, hence
R is integral over krx1, . . . , xds. Let p :� pX krx1, . . . , xds. The natural map

krx1, . . . , xds{pÑ R{p
is an integral extension of domains, so dimR{p � dim krx1, . . . , xds{p. Moreover
by Corollary 14.25 we have htppq � htppq. Thus we may assume without loss of
generality that R � krt1, . . . , tds is a polynomial ring.
Step 2: Since p is a nonzero prime ideal of the UFD krt1, . . . , tds, there is a nonzero
prime element f P p, and by Krull’s Hauptidealsatz, pfq is a height one prime ideal.
We claim that dim krt1, . . . , tds{pfq � d� 1. By Noether Normalization, it suffices
to show that if K is the fraction field of the domain krt1, . . . , tds{pfq, then the
transcendence degree of K{k is d� 1. The polynomial f must have positive degree
in at least one indterminate; without loss of generality, suppose it has positive xd-
degree. For 1 ¤ i ¤ d let xi be the image of xi in K. We claim that x1, . . . , xd � 0.
The polynomial f itself shows that xd is algebraic over kpx1, . . . , xd�1q. Now let
Q P krx1, . . . , xd�1s be a polynomial such that Qpx1, . . . , xd�1q � 0. This means
Q P pfq, but then if Q were nonzero its degree in td would be be positive since the
degree of f in xd is positive...so Q � 0. Thus x1, . . . , xd�1 is a transcendence basis
for K{k, so dim krx1, . . . , tds{pfq � d� 1 as claimed.
Step 3: Put R1 :� krx1, . . . , xds{xfy and p1 :� p{xfy. Then R{p � R1{p1 and

htppq ¥ htpp1q � 1,

so by induction we have

dimR � 1�dimR1 � 1�htpp1q�dimR{p1 � 1�htpp1q�dimR{p ¤ htppq�dimR{p,
completing the proof of part a).
b) Let

p0 � p1 � . . . � pn

be a maximal chain of prime ideals of R. Then p0 � p0q and pn P MaxSpecR. We
argue by induction on n.

If n � 0, then pn � p0q, so R is a field and n � dimR. Now suppose that
n ¥ 1. The chain p0 � p1 must be maximal among chains terminating at p1, so
htpp1q � 1. Then

p1{p1 � p2{p1 � pn{p1
is a maximal chain of length n� 1 in R{p1, so by induction and part a) we have

n� 1 � dimR{p1 � dimR� htpp1q � dimR� 1,

so n � dimR. □

We say that a partially ordered set pX,¤q is catenary if for two elements x1 ¤ x2
there is a uniform bound on lengths of finite chains starting at x1 and ending at x2
and all maximal finite chains from x1 to x2 have the same length.

Exercise 14.11.

a) Let A be a set, and let X � 2A be the set of all finite subsets of X,
partially ordered under inclusion. If Y1 � Y2 are finite subsets of A, show
that every chain from Y1 to Y2 in X is finite and every maximal such
chain has length #Y2 �#Y1. Thus X is catenary.
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b) Let κ be a cardinal number. Show: if κ ¤ 2 then every partially ordered
set of cardinality κ is catenary, while if κ ¥ 3 there is a partially ordered
set of cardinality κ that is not catenary.

Exercise 14.12. Let pX,¤q be a partially ordered set. Suppose there is d P N
such that every finite chain in X has length at most d and that every maximal finite
chain in X has length d. Show: X is catenary.

We say that a ring R is catenary if SpecR, partially ordered under inclusion, is
catenary.

Exercise 14.13. Let k be a field, and let R be a finitely generated k-algebra.
Let p � q be prime ideals of R. Show: every maximal chain of primes from p to q
has length htpqq � htppq. Deduce: R is caternary.

Exercise 14.14. Let R be a ring that is not catenary. Show that there is an
ideal I such that R{I is a non-catenary domain with dimR � dimpR{Iq.
By the previous exercise, to look for noncatenary rings we may restrict attention to
domains. Clearly any domain of Krull dimension 0 or 1 is catenary. Already there
are noncatenary domains of dimension 2: by Exercise 15.16b), if R is a semilocal
PID, then Rrts is a noncatenary domain of Krull dimension 2. Notice that Rrts is
otherwise a very nice ring: e.g. it is a UFD. Catenarity is in fact a very strong
property; that finitely generated algebras over a field satisfy it is an important
foundational result for algebraic geometry.

6. Some Classical Invariant Theory

Let R be a commutative ring, let G be a finite group, and suppose G acts on R by
automorphisms, i.e., we have a homomorphism ρ : GÑ AutpRq. We define

RG � tx P R |@g P G, gx � xu,
the ring of G-invariants – it is indeed a subring of R.

Remark: As in the case of rings acting on commutative groups, we say that G-
action on R is faithful if the induced homomorphism ρ : GÑ AutpRq is injective.
Any G-action induces a faithful action of G{ kerpρq, so it is no real loss of general-
ity to restrict to faithful G-actions. We will do so when convenient and in such a
situation identify G with its isomorphic image in AutR.

The simplest case is that in which R � K is a field. Then KG is again a field
and K{KG is a finite Galois extension. Conversely, for any finite Galois extension
K{F , F � KAutpK{F q. This characterization of Galois extensions was used by
E. Artin as the foundation for an especially elegant development of Galois theory
(which swiftly became the standard one). Note also the analogy to topology: we
have the notion of a finite Galois covering Y Ñ X of topological spaces as one for
which the group G � AutpY {Xq of deck transformations acts freely and properly
discontinuously on Y such that Y {G � X.

The branch of mathematics that deals with invariant rings under linear group ac-
tions is called classical invariant theory. Historically it was developed along
with basic commutative algebra and basic algebraic geometry in the early 20th
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century, particularly by Hilbert. Especially, Hilbert’s work on the finite generation
of invariant rings was tied up with his work on the Basis Theorem.

For a P R, put NGpaq �
±
σPG σpaq. Then NGpaq P RG, so we have a map

NG : RÑ RG.

Note that NG is not a homomorphism of additive groups. However, when R is a
domain, there is an induced map

NG : R Ñ pRGq
which is a homomorphism of monoids, so induces a homomorphism on unit groups.

Exercise 14.15. Let Rrts be the univariate polynomial ring over R. Show:
there is a unique action of G by automorphisms of G on Rrts extending the G-
action on R and such that gt � t. Show that pRrtsqG � RGrts.

Proposition 14.32. For a finite group G acting on R, R{RG is integral.

Proof. For x P R, define
Φxptq � NGpt� xq �

¹
gPG
pt� gxq,

so Φxptq P pRrtsqG � RGrts. Thus Φxptq is a monic polynomial with RG-coefficients
which is satisfied by x. □

Base extension: Suppose that G is a finite group acting faithfully on R. Moreover,
let A be a ring and f : A Ñ R be a ring homomorphism, so R is an A-algebra.
Suppose moreover that fpAq � RG. In such a situation we say that G acts on R
by A-automorphisms and write G � AutpR{Aq.

Suppose we have another A-algebra A1. We can define an action of G on R bA A1
by putting gpxb yq :� gxb y. We say that the G-action is extended to A1.

Proposition 14.33. In the above setup, suppose that A1 is a flat A-algebra.
Then there is a natural isomorphism

RG bA A1 �Ñ pRbA A1qG.
Proof. Madapusi p. 65-66. □

Corollary 14.34. Let G be a finite group acting on the ring R, and let S � RG

be a multiplicatively closed set. Then pS�1RqG � S�1RG.

Exercise 14.16. Prove Corollary 14.34.

In particular, suppose R is a domain with fraction field K, and let F be the fraction
field of RG. Then the G-action on R extends to a G-action on K, and Corollary
14.34 gives KG � F . Thus the invariant theory of domains is compatible with the
Galois theory of the fraction fields.

Proposition 14.35. If R is integrally closed, so is RG.

Proof. Let x P K be integral over RG. Then x is also integral over R, and
since R is integally closed in L we have x P R. Thus x P RXK � RXLG � RG. □
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Theorem 14.36. (Noether [No26]) Suppose that R is a finitely generated
algebra over some field k with k � kG. Then:

a) R is finitely generated as an RG-module.
b) RG is a finitely generated k-algebra.

Proof. a) Since R is a finitely generated k-algebra and k � RG, R is a finitely
generated RG-algebra. But by Proposition 14.32 R{RG is integral. So R is finitely
generated as an RG-module.
b) By part a), the Artin-Tate Lemma (Theorem 8.62) applies to the tower of rings
k � RG � R. The conclusion is as desired: RG is a finitely generated k-algebra. □

Remark: The title of [No26] mentions “characteristic p”. In fact, when k has char-
acteristic 0 the result had been proven by Hilbert significantly earlier [Hi90], and
moreover for certain actions of infinite linear groups, like SLnpkq. But Noether’s
formulation and proof give an excellent illustration of the economy and power of
the commutative algebraic perspective.

Let us make contact with the setup of classical invariant theory : let k be a field,
V a finite-dimensional vector space and ρ : G Ñ AutkpV q a linear representation
of G on V . Let krV s � SympV _q be the algebra of polynomial functions on V . If
we choose a k-basis e1, . . . , en of V and let x1, . . . , xn be the dual basis of V _, then
krV s � krx1, . . . , xns is a polynomial ring in n independent indeterminates. There
is an induced action of G on krV s, namely for f P krV s we put pgfqpxq � fpg�1xq.

All of our above results apply in this situation. Especially, Theorem 14.36 ap-
plies to tell us that the ring krV sG is finitely generated as a k-algebra, or a finite
system of invariants. Of course, we did not so much as crease our sleeves, let
alone roll them up, to establish this: for a concretely given finite group G and action
on a k-vector space V , it is of interest to explicitly compute such a finite system.
Moreover, the polynomial ring krV s is integrally closed: in the next section we will
see that it is a unique factorization domain and that this is a stronger property.
Therefore Proposition 14.35 applies to show that krV sG is integrally closed. This is
actually quite a robust and useful procedure for producing integrally closed rings.

Example 14.37. Let k be a field, n P Z�, let V � kn, G � Sn be the symmetric
group, and let G act on V by permuting the standard basis elements e1, . . . , en. We
will compute krV sG. Namely, for 1 ¤ i ¤ n, we define the ith elementary sym-
metric function sipt1, . . . , tnq as follows: let X be an independent indeterminate
and put

fpXq :�
n¹
i�1

pX � tiq � Xn �
ņ

i�1

p�1qisipt1, . . . , tnqXn�i.

Theorem 14.38. The invariant ring krV sSn is a polynomial k-algebra on the
elementary symmetric functions s1, . . . , sn.

Proof. Step 1: Explicitly, we have

s1 � t1 � . . .� tn,
s2 �

¸
i j

titj ;
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each si is the sum of all
�
n
k

�
monomials of degree k. Clearly krs1, . . . , sns � krV sSn .

Step 2: For any finite group G of automorphisms of a field L, L{KG is a Galois
extension with AutpL{LGq � G. Take L � kpV q and note that kpV q is the splitting
field of the separable polynomial f P kps1, . . . , snqrxs, so kpV qG � kps1, . . . , snq.
Step 3: Because kpt1, . . . , tnq{kps1, . . . , snq is a finite extension, the transcendence
degree of kps1, . . . , snq{k is equal to the transcendence degree of kpt1, . . . , tnq{k,
namely n. It follows that the elements s1, . . . , sn are algebraically independent,
i.e., krs1, . . . , sns is a polynomial ring.
Step 4: As in the proof of Proposition 14.35,

krt1, . . . , tnsSn � krt1, . . . , tns X kps1, . . . , snq � krs1, . . . , sns. □

The above example is well-known and extremely useful, but gives a misleadingly
simple impression of classical invariant theory. One can ask how often the ring
of invariants of a finite group action on a polynomial ring is again a polynomial
ring, and there is a nice answer to this. But let’s back up a step and go back to
“rational invariant theory”: if G acts on krx1, . . . , xns, then as above it also acts on
the fraction field kpx1, . . . , xnq and we know that kpx1, . . . , xnq{kpx1, . . . , xnqG is a
finite Galois extension. But must kpx1, . . . , xnqG itself be a rational function field,
as it was in the example above? This is known as Noether’s Problem: it was first
posed by E. Noether in 1913. It is natural and important, for an affirmative answer
would allow us to realize every finite group as a Galois group (i.e., the automorphism
group of a Galois extension) of Q thanks to a famous theorem of Hilbert. For more
than half of the twentieth century, Noether’s problem remained open. Finally, in
1969 R.G. Swan (yes, the same Swan as before!) found a representation of the cyclic
group of order 47 on a finite-dimensional Q-vector space for which the invariant field
is not a rational function field [Sw69]. Too bad – this was arguably the best shot
that anyone has ever taken at the Inverse Galois Problem over Q.3

Example 14.39. Let k be a field of characteristic different from 2, let V � k2,
and consider the action of the two-element group G � t�1u on V by �1 acting as
the scalar matrix �1. The induced action on krV s � krx, ys takes x ÞÑ �x and
y ÞÑ �y. This is, apparently, a not very interesting representation of a not very
interesting group. But the invariant theory is very interesting!

Exercise 14.17.

a) Show: krV sG is generated as a k-algebra by x2, y2 and xy.
b) Show: krV sG is isomorphic to the k-algebra krA,B,Cs{pAB � C2q.
c) Show: krV sG is not isomorphic to krx, ys.4
d) Show that nevertheless the fraction field of krV sG is rational, i.e., is iso-

morphic to kpX,Y q for independent indeterminates X and Y .

Before signing off on our quick glimpse of classical invariant theory, we cannot resist
mentioning one more classic theorem in the subject. It answers the question: when
is the invariant subalgebra krV sG isomorphic to a polynomial algebra over k?

3Serre’s Topics in Galois Theory describes a conjecture of J.-L. Colliot-Thélène – roughly
a weaker form of Noether’s problem – that would still imply that every finite group is a Galois

group over Q. I am not aware of any progress on this conjecture.
4Suggestion: the proof of Theorem 15.62 shows that CrA,B,Cs{pAB � C2q is not a unique

factorization domain. The argument goes through with C replaced by k.
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Let ρ : G ãÑ GLpV q be a faithful representation of G on a finite-dimensional
k-vector space V . An element g P GLpV q is a pseudoreflection if it has finite
order and pointwise fixes a hyperplane W in V . (Equivalently, a pseudoreflection
has characteristic polynomial pt� 1qdimV�1pt� ζq, where ζ is a root of unity in k.)

Exercise 14.18. If k is formally real, any nontrivial pseudoreflection has order
2 – i.e., it really is a hyperplane reflection.

A faithful representation ρ of G is a pseudoreflection representation of G if
ρpGq is generated by pseudorflections.

Theorem 14.40. (Shephard-Todd-Chevalley-Serre) Let k be a field, and let
ρ : G ãÑ GLpV q be a faithful finite-dimensional k-linear representation.

a) If krV sG is a polynomial algebra, then ρ is a pseudoreflection representa-
tion.

b) If ρ is a pseudoreflection representation and char k ∤ #G, then krV sG is a
polynomial algebra.

Proof. See [Be, §7.2]. □

In the modular case char k | #G, there are pseudoreflection representations for
which krV sG is not a polynomial algebra. However, work of Kemper and Malle
[KM99] shows that even in the modular case, if ρ is an irreducible pseudoreflection
representation then the invariant field kpV qG is purely transcendental over k.

Exercise 14.19. It follows from Theorem 14.40 the fundamental theorem on
symmetric functions that the standard permutation representation of the symmetric
group Sn on kn is a pseudoreflection representation. Show this directly.

7. Galois extensions of integrally closed domains

Proposition 14.41. Let G be a finite group acting by automorphisms on a
ring R, with invariant subring RG. Let ι : RG ãÑ R, and let p P SpecRG.

a) There is a natural action of G on the fiber pι�q�1ppq – i.e., on the set of
primes P of R such that ι�P � p.

b) The G-action on the fiber pι�q�1ppq is transitive.

Proof. Let P P SpecR and σ P G. Define

σP � tσx | x P Pu.
It is straightforward to verify that σP is a prime ideal of R (if you like, this follows
from the fact that Spec is a functor). Moreover pσPqXRG is the set of all elements
σx with x P P such that for all g P G, gσx � σx. As g runs through all elements
of G, so does gσ�1, hence pσPq XRG � P XRG � p.
b) Let P1,P2 be two primes of R lying over a prime p of RG. Let x P P1. Then
NGpxq P P1 X RG � p � P2. Since P2 is prime, there exists at least one σ P G
such that σx P P2, and thus P1 �

�
σPG σP2. By Prime Avoidance (Lemma 8.52),

there exists σ P G such that P1 � σP2. Since R{RG is integral, Incomparability
(Corollary 14.18) yields P1 � σP2. □

Theorem 14.42. Let R be an integrally closed domain with fraction field K,
let L{K be a normal algebraic field extension (possibly of infinite degree), and let S
be the integral closure of R in L. Let p P SpecR, and let Xp be the set of all prime
ideals of S lying over p. Then G � AutpL{Kq acts transitively on Xp.
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Proof. Step 1: Suppose rL : Ks � n   8, and write G � tσ1 � 1, . . . , σru.5
Seeking a contradiction, suppose there are P1,P2 P Xp such that P2 � σ�1

j P1 for

all j. By Corollary 14.18, P2 is not contained in any σ�1
j P1, so by Prime Avoidance

(Lemma 8.52) there is x P P2z
�
j σ

�1
j P1. Let q be the inseparable degree of L{K

and put y �
�±

j σjpxq
	q

. Thus y � NL{Kpxq, so y P K. Moreover y is integral

over R, so y P R. Since σ1 � 1, y P P2, so y P P2 XR � p � P1, and thus, since P1

is prime, σjpxq P P1 for some j: contradiction!
Step 2: We will reduce to the case in which L{K is a Galois extension. Let G �
AutpL{Kq and K 1 � LG, so that L{K 1 is Galois and K 1{K is purely inseparable.
Let R1 be the integral closure of R in K 1. Then by Lemma 14.23 SpecR1 Ñ SpecR
is a bijection. So we may as well assume that K 1 � K and L{K is Galois.
Step 3: For each finite Galois subextension M of L{K, consider the subset

F pMq :� tσ P G | σpP1 XMq � P2 XMu.
Observe that F pMq is a union of cosets of GalpL{Mq hence is (open and) closed
in the Krull topology. By Step 1, we have F pMq � H. Moreover, the compositum
M �±iMi of any finite number tMiu of finite Galois subextenions is again a finite
Galois subextension, and we have

�
i F pMiq � F pMq � ∅. Therefore as Mi ranges

through all finite Galois subextensions of L{K, tF pMiquiPI is a family of closed
subsets of the compact space G satisfying the finite intersection condition, and it
follows that there exists σ P �i F pMiq � F pLq i.e., σ P G such that σP1 � P2. □

8. Almost Integral Extensions

We come now to a technical variant of the notion of integrality. This variant will
not be used until §19.4 on divisorial ideals. We honestly recommend that the reader
skip past this section for now and return only when the concept of complete integral
closure is needed and used.

Let R � T be rings. An element x P T is almost integral over R if there is
a finitely generated R-submodule of T that contains xn for all n P Z�. We say that
T is almost integral over R if every element of S is almost integral over R.

Proposition 14.43. Let R be a domain with fraction field K. For x P K�,
the following are equivalent:

(i) The element x is almost integral over R.
(ii) There is a P R such that for all n P Z� we have axn P R.
(iii) There is a nonzero ideal I of R such that x P pI : Iq.
Proof. (i) ùñ (ii): If x is almost integral over R, then there are elements

y1, . . . , yN P K and for all n P Z� elements an,1, . . . , an,N P R such that

xn � an,1y1 � . . .� aN,nyN .
We may assume that each yi is nonzero and then write yi � bi

ci
with bi, ci P R.

Clearing denominators, we get

c1 � � � cNxn � c2 � � � cNan,1b1 � . . .� c1 � � � cN�1aN,NbN P R.
5We are assuming that L{K is normal, so L{K is separable if and only if L{K is Galois if

and only if r � n.
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(ii) ùñ (i): If a P R is such that axn P R for all n P Z�, then x 1ayR is a finitely
generated R-submodule of K that contains xn for all n P Z�.
(ii) ùñ (iii): Suppose there is a P R such that axn P R for all n P Z�. Then if
we take I :� xaxn | n P Z�y, then I is a nonzero ideal of R such that xI � I.
(iii) ùñ (ii): Suppose there is a nonzero ideal I of R such that x P pI : Iq. Since
pI : Iq is a subring of K, we have xn P pI : Iq for all n P Z�, and let a P I. Then
for all n P Z� we have axn P I � R. □

Proposition 14.44. Let R � S be rings, and let x P S.
a) If x is integral over R, then it is almost integral over R.
b) If R is Noetherian and x is almost integral over R, then x is integral over

R.

Proof. Let M � xR, xy. By Theorem 14.1, x is integral over R if and only if
M is a finitely generated R-module.
a) If x is integral over R, thenM is a finitely generated R-submodule of S containing
xn for all n P Z�, so x is almost integral over R.
b) Suppose x is almost integral over R: there is a finitely generated R-submodule
N of S containing xn for all n P Z�. Then M � N , and since R is Noetherian and
N is finitely generated, M is finitely generated and x is integral over R. □

Remark: As the proof shows, an equivalent – and perhaps more perspicuous – way
of expressing the almost integrality condition is that, while integrality of x means
that M � xR, xyR is a finitely generated submodule of S, almost integrality means
that there is some finitely generated R-submodule of S containing M .

For rings R � T , the complete integral closure of R in T is the set of all
elements of T that are almost integral over R.

Exercise 14.20. Let R � T be rings. Show: the complete integral closure of
R in T is an R-subalgebra of T .

A domain R is completely integrally closed if its complete integral closure in
its fraction field is R itself. By Proposition 14.43, the complete integral closure of
a domain R with fraction field K is the set of elements x P K for which there is
a P R such that axn P R for all n P Z�.

Exercise 14.21. Show: a UFD is completely integrally closed.

Exercise 14.22. Let U � C be a domain (i.e., a connected open subset). Show:
the ring HolU of holomorphic functions on U is completely integrally closed.

Exercise 14.23. Let R be a domain.

a) (Seidenberg) Suppose R is completely integrally closed. Show: Rrrtss is
completely integrally closed.

b) (Nagata) Deduce: if R is Noetherian and integrally closed, then Rrrtss is
integrally closed.

Proposition 14.45. Let R � T be rings, and let R̃ be the complete integral
closure of R in T . Then R̃ is integrally closed in T .

Proof. Let x P T be integral over R̃, so there are a0, . . . , an�1 P R̃ such
that xn � an�1x

n�1 � . . . � a1x � a0 � 0. Then x is also integral over the ring
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Rra0, . . . , an�1s. For 0 ¤ i ¤ n � 1, there is a finitely generated R-submodule Mi

of T containing all non-negative powers of ai. Let M be the R-submodule of T
generated by all products b0 � � � bn�1 with bi P Mi. Then M is a finitely generated
R-module and

Rra0, . . . , an�1s �M � T.

Let M̃ be the R-module generated by elements mxi for m PM and 0 ¤ i ¤ n� 1.
Because M is finitely generated, so is M̃ . Moreover

Rrxs � xx0, . . . , xn�1yRra0,...,an�1s � M̃,

so Rrxs is contained in a finitely generated R-submodule of T . Thus x is almost

integral over R and x P R̃. □

However, complete integral closure lacks of some of the good properties of integral
closure. First of all, Proposition 14.45 is not what one probably would have wanted
to show: rather it is natural to expect that the complete integral closure of R in
T is completely integrally closed. Unfortunately this is not generally true: in fact
there is a domain R whose complete integral closure in its fraction field is not com-
pletely integrally closed [LM, p. 98, Exc. IV.14]. Thus complete integral closure is
somewhat of a misnomer in that it is not a closure operator on the set of subrings
of a field in the sense given in §2.1. Moreover, whereas being integrally closed is a
local property, being completely integrally closed is not even a localizable property:
by Exercise 14.22, the ring HolC of entire functions is completely integrally closed,
but Exercise d) shows that the localization at one of its maximal ideals is not.

This makes one wonder whether and how much business we should have with the
complete integral closure concept. It will make exactly two more crucial appear-
ances in this text: it will turn out that complete integral closure is the necessary
and sufficient on a domain for the divisorial fractional ideals modulo the prinicpal
fractional ideals to form a group, the divisor class group of R. It also appears in
a characterization theorem of Krull domains.





CHAPTER 15

Factorization

Let R be a domain, and x a nonzero, nonunit element of R. We say that x is
irreducible if for any y, z P R such that x � yz, one of y or z is a unit.

For any unit u P R�, we get factorizations of the form x � u � pu�1xq, so ev-
ery x has at least these factorizations, which we wish to regard as “trivial”. On the
other hand, y and z cannot both be units, for then x would also be a unit. Let us
then define a factorization of a nonzero nonunit a P R as a product

a � x1 � � �xn,
such that each xi is irreducible. We say that two factorizations

a � x1 � � �xn � y1 � � � ym
are equivalent if the multisets of associated principal ideals ttpxiquu � ttpyjquu
are equal. More concretely, this means that m � n and that there is a bijection
σ : t1, . . . , nu Ñ t1, . . . ,mu such that pyσpiqq � pxiq for all 1 ¤ i ¤ n.

If factorizations always exist and any two factorizations of a given element are
equivalent, we say R is a unique factorization domain (UFD).

1. Kaplansky’s Theorem (II)

A basic and important result that ought to get covered at the undergraduate level
is that PID implies UFD. In fact this is easy to prove. What is more difficult is to
get a sense of exactly how UFDs are a more general class of rings than PIDs. In
this regard, an elegant theorem of Kaplansky seems enlightening.

Exercise 15.1. Let x be an element of a domain which can be expressed as

x � p1 � � � pn,
such that for 1 ¤ i ¤ n, pi � ppiq is a prime ideal. If then there exist principal
prime ideals q1, . . . , qm such that pxq � q1 � � � qm, then m � n and there exists a
permutation σ of the integers from 1 to n such that qi � pσpiq for all i.

Exercise 15.2. Let R be a domain, and let S be the set of all nonzero elements
x in R such that pxq can be expressed as a product of principal prime ideals. Show:
S is a saturated multiplicatively closed subset.

Theorem 15.1. (Kaplansky) A domain is a UFD if and only if every nonzero
prime ideal in R contains a prime element.

Proof. Suppose R is a UFD and 0 � p P SpecR. Let x P p, and write

x � p1 � � � pr
307
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a product of prime elements. Then x P p implies pi P p for some i, so ppiq � p.
Conversely, assume each nonzero prime ideal of R contains a principal prime.

Let S be the set of all products of prime elements, so that by Exercise 15.2, S is
a saturated multiplicative subset. By Exercise 15.1, it is enough to show that S
contains all nonzero nonunits of R. Suppose for a contradiction that there exists
a nonzero nonunit x P RzS. The saturation of S implies S X pxq � H, and then
by Theorem 5.26 there is a prime ideal p containing x and disjoint from S. But by
hypothesis, p contains a prime element p, contradicting its disjointness from S. □

Corollary 15.2. Let R be a domain.

a) If R is a UFD, then every height one prime ideal is principal. If R is
Noetherian and every height one prime ideal is principal, then R is a
UFD.

b) If every ideal of R is principal, R is a UFD.
c) Conversely, if R is a UFD of dimension one, every ideal of R is principal.

Proof. We begin by recalling that in a domain R the height one primes are
the nonzero prime ideals p such that there is no prime ideal q with p0q � q � p.
a) If R is a UFD and p is a height one prime ideal, then by Theorem 15.1 p has
a prime element pπq. Then pπq � p is a containment of prime ideals, and since p
has height one we have p � pπq is principal. Conversely, suppose R is Noetherian
and every height one prime ideal is principal. Let x P R be irreducible: i.e., x is
a nonzero nonunit and x � yz implies y P R� or z P R�. Let p be a minimal
prime over pxq. By Krull’s Hauptidealsatz, p has height one and so by assumption
p � pπq. Thus π | x and since x is irreducible we must have pπq � pxq. Thus we
have shown that every irreducible element of R is prime. As we will see §3 (and as
the reader may know from “general algebra”), a Noetherian domain in which each
irreducible element is prime is a UFD.
b) If every ideal of R is principal, then every ideal of R is finitely generated. So R
is Noetherian and part a) applies.
c) In a UFD of dimension one, part a) implies that every prime ideal is principal.
By Theorem 4.30, every ideal is principal. □

One may ask: in a not necessarily Noetherian domain, if every height one prime is
principal, must R be a UFD? The answer turns out to be negative. Later on, when
we study valuation rings, we will be able to construct: (i) a domain R in which
every nonzero prime ideal has infinite height. Such a domain vacuously has the
property that every height one prime is principal, has no nonzero prime elements
(and is not a field!) so cannot be a UFD. And we will be able to construct (ii): for
each n ¥ 2 a domain of Krull dimension n with a unique height one prime ideal,
that is principal. In a UFD R with a unique height one prime p, we must have
p � pπq and then every nonunit element of R is divisible by π, so p is maximal and
dimR � 1.

Corollary 15.2 shows in particular that a one-dimensional UFD is Noetherian. We
will see later in this chapter that a UFD need not be Noetherian: indeed, we
will show that for any UFD R, the polynomial ring Rrt1, . . . , tn, . . .s in infinitely
many indeterminates is also a UFD, and this ring is certainly not Noetherian. The
ring Rrt1, . . . , tn, . . .s moreover has infinite Krull dimension: indeed the prime ideal
p � xt1, . . . , tn, . . .y has infinite height. So one may then ask whether there are
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non-Noetherian UFDs of finite Krull dimension. In fact, for all n P Z¥2, Gilmer
constructed a non-Noetherian UFD of Krull dimension n [Gi74, Thm. 2].

Exercise 15.3. Let R be a UFD with finitely many height one primes. Show:
R is a semilocal PID.
(Hint: every prime ideal in a UFD is generated by prime elements.)

2. Atomic domains, ACCP

A domain in which every nonzero nonunit can be factored into irreducibles is an
atomic domain.

Exercise 15.4. Show: the ring Z of all algebraic integers is not an atomic
domain. Indeed, since for every algebraic integer x, there exists an algebraic integer
y such that y2 � x, there are no irreducible elements in Z!

The condition of factorization into irreducibles (in at least one way) holds in every
Noetherian domain. In fact, a much weaker condition than Noetherianity suffices:

Proposition 15.3. Let R be a domain in which every ascending chain of prin-
cipal ideals stabilizes. Then every nonzero nonunit factors into a product of irre-
ducible elements. In particular, a Noetherian domain is atomic.

Proof. Let R be a domain satisfying the ascending chain condition for prin-
cipal ideals (ACCP for short), and suppose for a contradiction that R is not an
atomic domain. Then the set of principal ideals generated by unfactorable ele-
ments is nonempty, so by our assumption there exists a maximal such element, say
I � paq. Evidently a is not irreducible, so we can begin to factor a: a � xy where
x and y are nonunits. But this means precisely that both principal ideals pxq and
pyq properly contain paq, so that by the assumed maximality of paq, we can factor
both x and y into irreducibles: x � x1 � � �xm, y � y1 � � � yn. But then

a � x1 � � �xmy1 � � � yn
is a factorization of a, contradiction. □

This proposition motivates us to consider also the class of domains which satisfy
the ascending chain condition for principal ideals (ACCP).

Exercise 15.5. Suppose R ãÑ S is an extension of rings such that S� X
R � R�. (In particular, this holds for integral extensions.) Show that S satisfies
(ACCP) implies R satisfies (ACCP). Does the converse hold?

We have just seen that (ACCP) implies atomicity. The proof shows that under
(ACCP) we can always obtain an expression of a given nonzero nonunit by a finite
sequence of “binary factorizations” i.e., replacing an element x with y1 � y2, where
y1 and y2 are nonunits whose product is x. After a bit of thought, one is inclined to
worry that it may be possible that this factorization procedure fails but nevertheless
irreducible factorizations exist. This worry turns out to be justified:

Theorem 15.4. There is an atomic domain that is not an ACCP-domain.

Proof. See [Gr74]. □
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However, the following strenghtening of atomicity does imply ACCP:

A domain R is a bounded factorization domain BFD if it is atomic and for
each nonzero nonunit a P R, there exists a positive integer Npaq such that in any
irreducible factorization a � x1 � � �xr we have r ¤ Npaq.

Proposition 15.5. A UFD is a BFD.

Proof. An immediate consequence of the definitions. □

Proposition 15.6. A BFD satisfies (ACCP).

Proof. Let R be a BFD. Suppose for a contradiction that pxiqiPZ� is a strictly
ascending chain of principal ideals. We therefore have

x0 � y1x1 � y1y2x2 � . . . � y1 � � � ynxn � � � � ,
with each xi, yi a nonunit. Since R is atomic, we can refine each factorization into
an irreducible factorization, but clearly an irreducible refinement of y1 � � � ynxn has
at least n� 1 irreducible factors, contradicting BFD. □

3. EL-domains

An element x of a domain R is prime if the principal ideal pxq is a prime ideal.
Equivalently, x satisfies Euclid’s Lemma: if x | yz, then x | y or x | z.

Proposition 15.7. A prime element is irreducible.

Proof. If x is reducible, then x � yz with neither y nor z a unit, so that
yz P pxq but y R pxq, z R pxq. □

However, it need not be the case that irreducible elements are prime!

Example: Let R � Zr?�5s. Then 2, 3 and 1�?�5 are all irreducible, but

2 � 3 � p1�?�5qp1�?�5q
shows that none of them are prime.

Exercise 15.6. Check all these assertions. Hint: Define Npa � b
?�5q �

a2 � 5b2. Check that Nppa � b
?�5qpc � d

?�5qq � Npa � b
?�5qNpc � d

?�5q.
Show that α | β (in R) ùñ Npαq | Npβq (in Z), and use this to show that
2, 3, 1�?�5 are irreducible but not prime.

It is tempting to call a domain in which all irreducible elements are prime “Eu-
clidean,” but this terminology is already taken for domains satisfying a generaliza-
tion of the Euclidean algorithm (c.f. §16.3). So we will, provisionally, call a ring in
which irreducible elements are prime an EL-domain. (EL = Euclid’s Lemma).

Theorem 15.8. For a domain R, the following are equivalent:

(i) R is a UFD.
(ii) R satisfies (ACCP) and is an EL-domain.
(iii) R is an atomic EL-domain.
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Proof. i) ùñ (ii): In the previous section we saw UFD ùñ BFD ùñ
(ACCP). We show UFD implies EL-domain: let x P R be irreducible and suppose
x | yz. Let y � y1 � � � ym and z � z1 � � � zn be irreducible factorizations of y and z.
Then the uniqueness of irreducible factorization means that x must be associate to
some yi or to some zj , and hence x | y or x | z: R is an EL-domain.

(ii) ùñ (iii) follows immediately from Proposition 15.3.
(iii) ùñ (i): This is nothing else than the usual deduction of the fundamental

theorem of arithmetic from Euclid’s Lemma: in a factorization domain we have at
least one irreducible factorization of a given nonzero nonunit x. If we also assume
irreducibles are prime, we may compare any two irreducible factorizations: suppose

x � y1 � � � ym � z1 � � � zn.
Then y1 is a prime element so divides zj for some j. WLOG, relabel to assume
j � 1. Since z1 is irreducible, we have y1 � u1z1 and thus we may cancel to get

y2 � � � ym � pu�1
1 z2qz3 � � � zn.

Continuing in this way we find that each yi is associate to some zj ; when we get
down to 1 �±j zj we must have no factors of zj left, som � n and R is a UFD. □

We can now deduce the following important result, a characterization of Noetherian
UFDs among all Noetherian domains.

Theorem 15.9. For a Noetherian domain R, the following are equivalent:

(i) Every height one prime ideal of R is principal.
(ii) R is a UFD.

Proof. (i) ùñ (ii): By Theorem 15.8, it is sufficient to prove that R is an
EL-domain, so let x P R be irreducible. Let p be a minimal prime containing x. By
Krull’s Hauptidealsatz (Theorem 8.49), p has height one, so by assumption p � ppq
is principal. Thus x � up for some u P R, and since x and p are both irreducible,
u P R�, pxq � p, and x is a prime element.
(ii) ùñ (i): This implication is a special case of Kaplansky’s Theorem 15.1 (and
thus holds without the Noetherian assumption on R). □

4. GCD-domains

For elements a and b of a domain R, a greatest common divisor is an element
d of R such that: d | a, d | b and for e P R with e | a, e | b, e | d.

Exercise 15.7. Show: if d is a gcd of a and b, then an element d1 of R is a
gcd of a and b if and only if pdq � pd1q. In particular, any two gcd’s are associate.

If a and b have a gcd, it would be more logically sound to write gcdpa, bq to mean
the unique principal ideal whose generators are the various gcd’s of a and b. It
is traditional however to use the notation gcdpa, bq to denote an element, with the
understanding that in general it is only well-defined up to multiplication by a unit.1

More generally, for elements a1, . . . , an in a domain R, a greatest common divi-
sor is an element d of R such that d | ai for all i and if e | ai for all i then e | d.

1In some rings, principal ideals have canonical generators: e.g. in the integers we may take
the unique positive generator and in krts we may take the unique monic generator. Under these

circumstances, a common convention is to let gcdpa, bq stand for this canonical generator.
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If a GCD of pa1, . . . , anq exists, it is unique up to associates, and we denote it by
gcdpa1, . . . , anq. As above, it can be characterized as the unique minimal principal
ideal containing xa1, . . . , any. Moreover, these setwise GCDs can be reduced to
pairwise GCDs.

Exercise 15.8. Let a, b, c be elements of a domain R and assume that all
pairwise GCD’s exist in R. Then gcdpa, b, cq exists and we have gcdpa, gcdpb, cqq �
gcdpa, b, cq � gcdpgcdpa, bq, cq.
A domain R is a GCD-domain if for all a, b P R, gcdpa, bq exists. By the above
remarks, it would be equivalent to require that gcdpa1, . . . , anq for all n-tuples of
elements in R.

Proposition 15.10. (GCD Identities) Let R be a GCD-domain. Then:

a) For all a, b, c P R, gcdpab, acq � a gcdpb, cq.
b) For all a, b P Rzt0u, gcdp a

gcdpa,bq ,
b

gcdpa,bq q � 1.

c) For all a, b, c P R, gcdpa, bq � gcdpa, cq � 1, then gcdpa, bcq � 1.
d) For all a, b, c P R, gcdpa, b� acq � gcdpa, bq.
e) For all a, a1, . . . , an, b1, . . . , bn, c P R, gcdpa, b1 � ca1, . . . , bn � canq �

gcdpa, b1, . . . , bnq.
Proof. a) Let x � gcdpab, acq. Then a | ab and a | ac so a |x: say ay � x.

Since x | ab and x | ac, y | b and y | c, so y | gcdpb, cq. If z | b and z | c, then az | ab
and az | ac, so az | x � ay and z | y. Therefore gcdpb, cq � y � 1

a gcdpab, acq.
b) This follows immediately from part a).
c) Suppose gcdpa, bq � gcdpa, cq � 1, and let t divide a and bc. Then t divides ab
and bc so t | gcdpab, bcq � b gcdpa, cq � b. So t divides gcdpa, bq � 1.
d) If d divides both a and b, it divides both a and b� ac. If d divides both a and
b� ac, it divides b� ac� cpaq � b.
e) We have

gcdpa, b1 � ca1, . . . , bn � canq � gcdpa, gcdpa, b1 � ac1q, . . . , gcdpa, bn � acnqq
� gcdpa, gcdpa, b1q, . . . , gcdpa, bnqq � gcdpa, b1, . . . , bnq. □

Proposition 15.11. A GCD-domain is an EL-domain.

Proof. This follows from: gcdpx, yq � gcdpx, zq � 1 ùñ gcdpx, yzq � 1. □

Theorem 15.12. Consider the following conditions on a domain R:

(i) R is a UFD.
(ii) R is a GCD-domain.
(iii) R is an EL-domain: irreducible elements are prime.

a) We have (i) ùñ (ii) ùñ (iii).
b) If R is an ACCP-domain, (iii) ùñ (i).

Proof. a) (i) ùñ (ii): Let x, y be nonzero elements of R. We may write

x � f1 � � � frg1 � � � gs, y � uf1 � � � frh1 � � �ht,
where the f ’s, g’s and h’s are prime elements, pgjq � phkq for all j, k and u P R�.
Then f1 � � � fr is a gcd for x and y.
(ii) ùñ (iii): This is Proposition 15.11.
b) (iii) + (ACCP) ùñ (i): This is Theorem 15.8. □
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Corollary 15.13. For a Noetherian domain R, the following are equivalent:

(i) R is a UFD.
(ii) R is a GCD-domain.
(iii) R is an EL-domain.

We now present some simple results that are long overdue. An extremely useful
fact in algebra is that any UFD is integrally closed in its fraction field. We give a
slightly stronger result and then recall a classical application.

Theorem 15.14. A GCD-domain is integrally closed.

Proof. Let R be a GCD-domain with fraction fieldK. Suppose x P K satisfies

xn � an�1x
n�1 � . . .� a1x� a0 � 0, ai P R.

Write x � s
t with s, t P R, t � 0. By Proposition 15.10b), after dividing by the gcd

we may assume gcdps, tq � 1. Plugging in x � s
t and clearing denominators gives

sn � � �an�1ts
n�1 � . . .� a1tn�1s� a0tn

�
,

so t | sn. But by Proposition 15.10c) gcdpsn, tq � 1, so t P R� and x P R. □

Corollary 15.15. An algebraic integer which is a rational number is an in-
teger: ZXQ � Z.

Exercise 15.9. Prove Corollary 15.15.

Thus e.g. one can derive the irrationality of
?
2: it is a root of the monic polynomial

equation t2 � 2 � 0 but evidently not an integer, so cannot be rational.

Proposition 15.16. (Compatibility of GCD’s with localization) Let R be a
GCD-domain and S a multiplicative subset of R. Then:

a) The localization S�1R is again a GCD-domain.
b) For all x, y P R, if d is a GCD for x and y in R, then it is also a GCD

for x and y in S�1R.

Exercise 15.10. Prove Proposition 15.16.

Theorem 15.17. Let R be a UFD with 2 P R�. Let f P R be squarefree – i.e.,
not divisible by the square of any nonunit – and not a square. Then

S � Rr
a
f s :� Rrxs{xx2 � fy

is an integrally closed domain.

Proof. Let K be the fraction field of R. By Theorem 15.14 R is integrally
closed, and thus f is not a square in K – if so, it would also be a square in R –
so x2 � f is irreducible in Krxs and thus L :� Krxs{px2 � fq is a quadratic field
extension of K. Write

?
f for the element x � px2 � fq of L, so L � Kp?fq and

S � Rr?f s. In particular, S is a domain.
Let α be an element of L that is integral over R, so α � a� b?f with a, b P K.

If b � 0 then α P K hence α P R since R is integrally closed in K, so assume b � 0.
Then the minimal polynomial of α is

P ptq � t2 � 2at� pa2 � b2fq.
By Theorem 14.21 we have �2a P R and a2 � b2f P R. Since 2 P R�, we get
that a P R and then that b2f P R. Since f is squarefree, this implies that b P R:
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otherwise, ordppbq ¤ �1 for some prime element p, so ordppb2fq ¤ �2� 1   0. So
α P S. Thus S is integrally closed. □

Exercise 15.11. Show: in Theorem 15.17 the hypothesis 2 P R� is necessary.
(E.g. show: Zr?3s is not integrally closed.)

5. GCDs versus LCMs

The definition of GCDs in a domain has an evident analogue for least common
multiples. Namely, if a and b are elements of a domain R, a least common mul-
tiple of a and b is an element l such that for allm P R with a |m and b |m then l |m.

Many of the properties of GCD’s carry over immediately to LCM’s. For instance,
if l is an LCM of a and b, then l1 P R is an LCM of a and b if and only if l1 is
associate to l.

Proposition 15.18. Let a and b be elements in a domain R. Then lcmpa, bq
exists if and only if the ideal paqXpbq is principal, in which case the set of all LCM’s
of a and b is the set of all generators of paq X pbq.

Proof. This is straightforward and left to the reader. □

LCM’s exist in any UFD: if

a � xa11 � � �xarr , b � xb11 � � �xbrr ,
with ai, bi P N. Then

l � x
maxpa1,b1q
1 � � �xmaxpar,brq

r

is a greatest common divisor of a and b. Now the simple identity

@a, b P N,minpa, bq �maxpa, bq � a� b
implies that for a, b in any UFD R we have

gcdpa, bq lcmpa, bq � ab.

This identity further suggests that the existence of either one of gcdpa, bq, lcmpa, bq
implies the existence of the other. However, this turns out only to be half correct!

Theorem 15.19. For a, b in a domain R, the following are equivalent:

(i) lcmpa, bq exists.
(ii) For all r P Rzt0u, gcdpra, rbq exists.

Proof. Step 1: i) ùñ (ii). Suppose that there exists a least common multiple
of a and b, say l. We claim that d :� ab

l is a greatest common divisor of a and b.
(Since ab is a common divisor of a and b, l | ab, so indeed d P R.) Indeed, suppose
that e | a and e | b. Then since ab

e is a common multiple of a and b, we must have

l | abe and this implies e | abl . Thus d is a GCD of a and b.
Step 2: Suppose that for r P Rzt0u and a, b P R, gcdpra, rbq exists. Then we claim

that gcdpa, bq exists and gcdpra, rbq � r gcdpa, bq. Put g :� gcdpra,rbq
r , which is

clearly an element of D. Since gcdpra, rbq divides ra and rb, g divides a and b.
Conversely, if e | a and e | b, then re | ra and re | rb so er | gcdpra, rbq and e | g.
Step 3: We claim that if l :� lcmpa, bq exists then so does lcmpra, rbq for all
r P Rzt0u. First observe that rl is a common multiple of ra and rb. Now suppose
m is a common multiple of ra and rb, say m � xra � yrb � rpxa� ybq. Thus r | m
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and a | mr , b | mr . So l | mr and rl | m. Thus lcmpra, rbq � r lcmpa, bq.
Step 4: (ii) ùñ (i). We may assume that a and b are nonzero, since the other cases
are trivial. Suppose gcdpra, rbq exists for all r P Rzt0u. We claim that l :� ab

gcdpa,bq
is an LCM of a and b. Clearly l is a common multiple of a and b. Now suppose
that m is a common multiple of a and b. Then ab divides both ma and mb, so
ab | gcdpma,mbq. By Step 2, gcdpma,mbq � m gcdpa, bq. Thus ab

gcdpa,bq | m. □

Theorem 15.20. (Khurana, [Kh03, Thm. 4]) Let d ¥ 3 be an integer such
that d � 1 is not prime, and write d � 1 � pk for a prime number p and k ¥ 2.
Then in the domain R � Zr?�ds, the elements p and 1 � ?�d have a GCD but
no LCM.

Proof. Step 1: We claim that p is irreducible as an element of R. Indeed, if
it were reducible, then by the multiplicativity of the norm map Npa � b

?�dq �
a2 � dp2 we could write it as p � αβ, with

p2 � Nppq � Npαβq � NpαqNpβq,
and, since α, β are nonunits, Npαq, Npβq ¡ 1. But then Npαq � Npβq � p, i.e.,
there would be a, b P Z such that a2 � db2 � p. But this is not possible: either
ab � 0, in which the left hand side is a perfect square, or a2 � db2 ¥ d� 1 ¡ p.
Step 2: gcdpp, 1�?�dq � 1. Indeed, since 1

p � 1
p

?�d R R, p ∤ 1�?�d.
Step 3: We claim that kp and kp1 � ?�dq do not have a GCD. Indeed, by Step
2 of the proof of Theorem 15.19, if any GCD exists then k is a GCD. Then, since
1�?�d divides both p1�?�dqp1�?�dq � 1�d � kp and kp1�?�dq, 1�?�d
divides gcdpkp, kp1�?�dq � k, i.e., there exist a, b P Z such that

k � p1�
?
�dqpa� b

?
�dq � pa� dbq � pa� bq

?
�d,

i.e., a � �b and k � a � db � a � da � ap1 � dq and d � 1 | k, contradicting the
fact that 1   k   d� 1.
Step 4: It follows from Theorem 15.19 that lcmpp, 1�?�dq does not exist. □

Khurana produces similar examples even when d � 1 is prime, which implies that
for no d ¥ 3 is Rd � Zr?�ds a GCD-domain. (In fact, since pRd,�q � Z2, Rd
is an abstract number ring and hence Noetherian, so the notions of EL-domain,
GCD-domain and UFD are all equivalent.) Let us give an independent proof:

Theorem 15.21. For no d ¥ 3 is Rd � Zr?�ds an EL-domain.

Proof. As in the proof of Theorem 15.20 above, the easy observation that
the equation a2 � db2 � 2 has no integral solutions implies that the element 2
is irreducible in Rd. Now, since (quite trivially) �d is a square modulo 2, there
exists x P Z such that 2 | x2 � d � px�?�dqpx�?�dq. But now, if Rd were an
EL-domain, the irreducible element 2 would be prime and hence Euclid’s Lemma
would apply to show that 2 | x�?�d, i.e., that x

2 � 1
2

?�d P Rd, which is a clear

contradiction ( 12 is not an integer!). □

Theorem 15.19 has the following immediate consequence:

Corollary 15.22. (Cohn, [?, Thm. 2.1]) For a domain R, the following are
equivalent:

(i) Any two elements of R have a greatest common divisor.
(ii) Any two elements of R have a least common multiple.
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Thus we need not define an “LCM-domain”: these are precisely the GCD domains.

6. Polynomial rings over UFDs

Our goal in this section to show that if R is a UFD, then a polynomial ring in any
number (possibly infinite) of indeterminates is again a UFD. This result generalizes
a familiar fact from undergraduate algebra: if k is a field, krts is a UFD. The cor-
responding fact that polynomials in krt1, . . . , tns factor uniquely into irreducibles
is equally basic and important, and arguably underemphasized at the pre-graduate
level (including high school, where factorizations of polynomials in at least two
variables certainly do arise).

If we can establish that R a UFD implies Rrts a UFD, then an evident induc-
tion argument using Rrt1, . . . , tn, tn�1s � Rrt1, . . . , tnsrtn�1s gives us the result for
polynomials in finitely many indeterminates over a UFD. It is then straightforward
to deduce the case for an arbitrary set of indeterminates.

There are several ways to prove the univariate case. Probably the most famous
is via Gauss’s Lemma. For this we need some preliminary terminology.

Let R be a domain, and consider a nonzero polynomial

f � ant
n � . . .� a1t� a0 P Rrts.

We say f is primitive if x P R, x | ai for all i implies x P R�. In a GCD-
domain, this is equivalent to gcdpa1, . . . , anq � 1. In a PID, this is equivalent
to xa0, . . . , any � R. For a general domain, this latter condition is considerably
stronger: e.g. the polynomial xt� y P krx, ysrts is primitive but the coefficients do
not generate the unit ideal. Let us call this latter – usually too strong condition –
naively primitive.

Proposition 15.23. Let R be a domain, and f, g P Rrts be naively primitive.
Then fg is naively primitive.

Proof. We go by contraposition: suppose that fg is not naively primitive, so
there is a maximal ideal m of R such that f, g P mrts. For h P Rrts, write h for its
image in the quotient ring Rrts{mrts � R{mrts, which is a domain. Then we have

fg � fg � 0,

so at least one of f, g is 0, and thus at least one of f, g is not naively primitive. □

If R is a GCD-domain and 0 � f P Rrts, we define the content cpfq of f to be the
gcd of the coefficients of f , which we view as a principal ideal of R, but by a slight
abuse of notation we will often write cpfq � a to mean that a is a generator of this
ideal. Thus a polynomial is primitive if and only if cpfq � 1.

Exercise 15.12. Let R be a GCD-domain and 0 � f P Rrts.
a) Show: f factors as cf1, where f1 is primitive and cpfq � c.
b) Let a P R. Show: cpafq � acpfq.

Theorem 15.24 (Gauss’s Lemma). Let R be a GCD-domain. If f, g P Rrts are
nonzero polynomials, we have cpfgq � cpfqcpgq.
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If we assume the stronger hypothesis that R is a UFD, we can give a very trans-
parent proof along the lines of that of Proposition 15.23 above. Since this special
case may be sufficient for the needs of many readers, we will give this simpler proof
first, followed by the proof in the general case.

Proof. (Classical proof for UFDs) The factorization f � cf1 of Exercise 15.12
reduces us to the following special case: if f and g are primitive, then so is fg.
Suppose that fg is not primitive, i.e., there exists a nonzero nonunit x which
divides all of the coefficients of fg. Since R is a UFD, we may choose a prime
element π | x. Now we may argue exactly as in the proof of Proposition 15.23:
pR{pπqrts is a domain, f and g are nonzero, but fg � fg � 0, a contradiction. □

The proof of the general case uses the GCD identities of Proposition 15.10.

Proof. (Haible) As above, we may assume that f � ant
n� . . .� a1t� a0, g �

bmt
m � . . . � b1t � b0 P Rrts are both primitive, and we wish to show that fg �

cm�ntm�n� . . .� c1t� c0 is primitive. We go by induction on n. Since a primitive
polynomial of degree 0 is simply a unit in R, the cases m � 0 and n � 0 are both
trivial; therefore the base case m � n � 0 is doubly so. So assume m,n ¡ 0. By
Proposition 15.10, we have

cpfgq � gcdpcn�m, . . . , c0q �
gcdpanbm, gcdpcn�m�1, . . . , c0qq | gcdpan, gcdpcn�m�1, . . . , c0qq�gcdpbm, gcdpcn�m�1, . . . , c0qq.
Now

gcdpan, gcdpcn�m�1, . . . , c0qq � gcdpan, cn�m�1, . . . , c0q
� gcdpan, cn�m�1 � anbm�1, . . . , cn � anb0, cn�1, . . . , c0q

� gcdpan, cppf � antnqgq.
Our induction hypothesis gives cppf � antnqgq � cpf � antnqcpgq � cpf � antnq, so
gcdpan, cn�m�1�anbm�1, . . . , cn�anb0, cn�1, . . . , c0q � gcdpan, cpf�antnqq � cpfq � 1.

Similarly we have gcdpbm, gcdpcn�m�1, . . . , c0qq � 1, so cpfgq � 1. □

Corollary 15.25. Let R be a GCD-domain with fraction field K, and let
f P Rrts be a polynomial of positive degree.

a) The following are equivalent:
(i) f is irreducible in Rrts.
(ii) f is primitive and irreducible in Krts.

b) The following are equivalent:
(i) f is reducible in Krts.
(ii) There are g, h P Rrts such that degpgq,degphq   degpfq and f � gh.

Proof. a) (i) ùñ (ii): Suppose that f is irreducible in Rrts. If f is not prim-
itive, then the factorization f � cf1 of Exercise 15.12a) shows that f is reducible.
Now suppose that f is reducible in Krts: i.e., it is a product of two polynomials of
smaller degree. If both polynomials have coefficients in R, we have a contradiction.
Otherwise we can multiply by a P R to get a factorization

af � gh with g, h P Rrts,
and uising Exercise 15.12a) we may write

af � cfcgg1h1
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with cf , cg P R and g1, h1 P Rrts primitive polynomials. By Gauss’s Lemma, g1h1
is primitive, so taking contents of both sides gives

paq � pcfcgq.
Thus

cf cg
a P R� and the factorization

f � pcfcg
a

g1qh1
shows that f is reducible.
(ii) ùñ (i) is similar but much simpler and left to the reader.
b) That (ii) ùñ (i) is obvious, so assume (i). Because we can factor out the
content, it is no loss of generality to assume that f is primitive. Let f � g1h1
with g1, h1 P Krts and degpg1q,degph1q   degpfq. Because R is a GCD-domain, we

may write g � g̃
d1
, h � h̃

d2
with g̃, h̃ P Rrts primitive. Then we have d1d2f � g̃h̃,

and equating contents gives pd1d2q � p1q, so d1, d2 P R� and thus the factorization
f � gh has the properties we seek. □

We now give Gauss’s proof that a univariate polynomial ring over a UFD is a UFD.

Theorem 15.26. If R is a UFD, so is Rrts.
Proof. Let K be the fraction field of R, and let f P Rrts. We know that

Krts is a PID hence a UFD, so we get a factorization

f � cg1 � � � gr,
with c P R and each gi P Rrts is primitive and irreducible. Then factoring c into
irreducibles gives an irreducible factorization of f . If we had another irreducible
factorization f � dh1 � � �hs, then unique factorization in Krts gives that we have
r � s and after permuting the factors have gi � uihi for all i, where ui P K�. Since
both gi and hi are primitive, we must have ui P R�, whence the uniqueness of the
factorization. □

This proof relies on knowing that Krts is a UFD, which of course follows from
the fact that polynomial division gives a Euclidean algorithm, as one learns in an
undergraduate course. This is of course an adaptation of the proof that the ring Z
is a UFD (the Fundamental Theorem of Arithmetic) essentially due to Euclid.

It is interesting to find alternate routes to such basic and important results.

Theorem 15.27. Let R be a domain with fraction field K.

a) If R is an ACCP-domain, so is Rrts.
b) If R is a GCD-domain, so is Rrts.
c) Thus, once again, if R is a UFD, so is Rrts.

Proof. a) In an infinite ascending chain tpPiqu of principal ideals of Rrts,
degPi is a descending chain of non-negative integers, hence eventually constant.
Therefore for sufficiently large n we have Pn � anPn�1 with an P R and pan�1q �
panq. Since R is an ACCP domain, we have panq � pan�1q for sufficiently large n,
hence also pPnq � pPn�1q for sufficiently large n.
b) (Haible, [Ha94]) Let f, g P Rrts. We may assume that fg � 0. As usual, write

f � cpfqf̃ and g � cpgqg̃. Since Krts is a PID, may take the gcd of f̃ and g̃ in

Krts, say d̃. The choice of d̃ is unique only up to an element of K�, so by choosing

the unit appropriately we may assume that d̃ lies in Rrts and is primitive. We put
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d � gcdpcpfq, cpgqqqd̃.
Step 1: We claim that d̃ is a gcd of f̃ and g̃ in Rrts. Since d̃ | f in Krts, we

may write f̃

d̃
� a

b q with a, b P Rzt0u and q P Rrts primitive. Since bf̃ � ad̃, we

have pbq � cpbf̃q � cpad̃q � paq, i.e., b
a P R� and thus d̃ | f̃ in Rrts. Similarly

d̃ | g̃. Moreover, sice d̃ P f̃Krts � g̃Krts, there exist u, v P Rrts and c P Rzt0u
with cd̃ � uf̃ � vg̃. Suppose h P Rrts divides both f̃ and g̃. Then h | cd̃, and
cphq | cpf̃q � p1q. Writing cd

h � a
b q with q P Rrts primitive, and equating contents

in bcd̃ � ahq, we get pbcq � paq, hence d̃
h � ab

c q P Rrts, so h | d̃.
Step 2: We claim that d is a gcd of f and g in Rrts. Certainly we have

pdq � pgcdpcpfq, cpgqd̃q | pcpfqf̃q � pfq,
so d | f . Similarly d | g. Conversely, let h P Rrts divide f and g. Write h � cphqh̃ for

h̃ P Rrts primitive. From h | f it follows that cphq | cpfq and thus h̃ | f̃ . Similarly

h | f so h̃ | g̃. Thus cphq | gcdpcpfq, cpgqq, h̃ | d̃ and thus finally h | d.
c) If R is a GCD domain and an ACCP domain, it is also an atomic EL-domain,
hence a UFD by Theorem 15.8. □

Lindemann [Li33] and Zermelo [Ze34] (independently) gave (similar) striking proofs
of the Fundamental Theorem of Arithmetic avoiding all lemmas and packaging the
Euclidean division into a single inductive argument. Later several authors have
recorded analogous proofs of Gauss’s Theorem (Theorem 15.26): the earliest in-
stance we are aware of in the literature is due to S. Borofsky [Bo50]. We give a
third, “lemmaless” proof of Theorem 15.26 here.

Proof. It suffices to show that Rrts is an ACCP domain and an EL-domain.
By Theorem 15.27a), Rrts is an ACCP domain. Now, seeking a contradiction, we
suppose that Rrts is not an EL-domain. Among the set of all elements in Rrts
admitting inequivalent irreducible factorizations, let p be one of minimal degree.
We may assume

p � f1 � � � fr � g1 � � � gs,
where for all i, j, pfiq � pgjq and

m � deg f1 ¥ deg f2 ¥ . . . ¥ deg fr,

n � deg g1 ¥ deg g2 ¥ . . . ¥ deg gs,

with n ¥ m ¡ 0. Suppose the leading coefficient of f1 (resp. g1q is a (resp. b). Put

q � ap�bf1xn�mg2 � � � gs � f1paf2 � � � fr�bxn�mg2 � � � gsq � pag1�bf1xn�mqg2 � � � gs.
Thus q � 0 implies ag1 � bf1x

n�m. If, however, q � 0, then

degpag1 � bf1xn�mq   deg g1,

hence deg q   deg p and q has a unique factorization into irreducibles, certainly
including g2, � � � , gs and f1. But then f1 must be a factor of ag1 � bf1x

n�m and
thus also of ag1. Either way ag1 � f1h for some h P Rrts. Because a is constant, it
can be factored into a product of prime elements a � p1 � � � pr of R, each of which
remains prime in Rrts: Rrts{ppiq � R{ppiqrts is a domain. Since each pi is constant
and f1 is irreducible, we have pi ∤ f1 for all i and it follows that h � ah2. So
ag1 � f1ah2, or g1 � f1h2, contradiction. □
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Theorem 15.28. Let R be a domain and let ttiuiPI be any set of indeterminates.
We will write RrtsI for the polynomial ring RrttiuiPI . Then:

a) R is an ACCP-domain ðñ RrtsI is an ACCP-domain.
b) R is a GCD-domain ðñ RrtsI is a GCD-domain.
c) R is a UFD ðñ RrtsI is a UFD.

Proof. The following simple facts will be useful to us: let ttjujPJ be a set of
indeterminates, let R be a domain, let f, g P R. Then f divides g in R if and only
if f divides g in RrtsJ . The implication ùñ holds for any extension of domains.
Conversely, suppose that there is P P RrtsJ such that g � fP . Then

0 � degpgq � degpfP q � degpfq � degpP q � degpP q,
so degP � 0, i.e., P P R. Similarly, if f, g P RrtsJ such that f divides g and
moreover g lies in R, then the same degree considerations show that f lies in R.

From this it follows: (i) for f P R we have f P R� ðñ f P Rrts�J . (ii) For
a nonzero nonunit f P R, we have that f is irreducible as an element of R if and
only if f is irreducible as an element of RrtsJ . (iii) For f, g P R, f and g have a
GCD in R if and only if they have a GCD in RrsJ. (iv) If tanu8n�1 is a sequence in
R then tanRu8n�1 is a strictly ascending chain of principal ideals in R if and only
if tanRrtsJu8n�1 is a strictly ascending chain of prinicpal ideals in RrtsJ .

Thus if RrtsI is an ACCP-domain then so is R, and if RrtsI is a GCD-domain
then so is R. Since a UFD is precisely a domain that is an ACCP-domain and a
GCD-domain, we also get that if RrtsI is a UFD, then so is R.

Suppose that R is an ACCP-domain. Theorem 15.27a) asserts that Rrts is
an ACCP-domain. The proof works verbatim to show that RrtsI is an ACCP-
domain. Alternately, using Theorem 15.27a) we get that a polynomial ring over
R in any finite number of indeterminates is an ACCP-domain. If RrtsI is not an
ACCP-domain, then we have an infinite strictly ascending chain pf1q � pf2q � . . .
of principal ideals of RrtsI . Let J be a finite subset of I such that f1 P RrtsJ .
For n P Z� we have that fn strictly divides f1, so each fn lies in RrtsJ and
strictly divides f1 in RrtsJ . Thus RrtsJ does not satisfy ACCP, contradiction.
This completes the proof of part a).

Suppose that R is a GCD-domain and let f, g P RrtsI . There is a finite subset J
of I such that f and g lie in RrtsJ . By induction on Theorem 15.27b), the ring RrtsJ
is a GCD-domain, so h � gcdpf, gq exists in RrtsJ . Since RrtsI � pRrtsJqrtsIzJ , it
follows that h is also a GCD of f and g in RrtsI . This completes the proof of part
b), and part c) is immediate from parts a) and b). □

In particular, for any field k and any set I, the polynomial ring krtsI is a UFD.
By totally ordering the elements of I and defining for i P I the ideal pi to be the
ideal generated by the indeterminates tj with j   i, we get a chain tpiuiPI of prime
ideals in krtsI , so carddim krtsI ¥ #I. Thus not only are there UFDs that are not
Noetherian, but there are UFDs of arbitrarily large cardinal Krull dimension.

Exercise 15.13. Let f : RÑ S be a homomorphism of domains.

a) Find examples in which:
(i) f is injective, S is an ACCP-domain, and R is not an ACCP-domain.
(ii) f is surjective, S is an ACCP-domain, and R is not an ACCP-

domain.
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(iii) f is surjective, R is an ACCP-domain, and S is not an ACCP-
domain.

(iv) f is injective, R is an ACCP-domain, and S is not an ACCP-domain.
b) Suppose that is injective and unit-faithful (for x P R we have x P R� ðñ

fpxq P S�). Show: if S is an ACCP-domain, then R is an ACCP-domain.
c) Let I be a set, and for i P I let fi : R Ñ Si be a unit-faithful homomor-

phism to an ACCP-domain Si. Suppose also that for each x P R there is
i P I such that fipxq � 0. Show: R is an ACCP-domain.2

Exercise 15.14. Let pI,¤q be a directed set, and let tRi, φiju be a directed
system of UFDs with injective transition maps. Let R � limÝÑRi be the direct limit,
which is a domain. We may identify each Ri with a subring of R, and then R ��
iPI Ri.

a) Show: R need not be a UFD. (Hint: cf. Exercise 8.44.)
b) Suppose: for all i ¤ j and all prime elements pi of Ri, the element φijppiq

is a prime element of Rj. Show: R is a UFD.
c) Let R be a domain, let I be a set, and let RrtsI be a polynomial ring in

indetermines ti indexed by i P I. Show: if p is a prime element of R, then
p is a prime element of RrtsI .
(Hint: RrtsI{ppq � R{ppqrtsI .)

d) Use parts b) and c) to give a different proof (still using Theorem 15.26)
that if R is a UFD, then RrtsI is a UFD.

Exercise 15.15. Let R be a domain, let I be a set, and let RrtsI be a polynomial
ring in indetermines ti indexed by i P I.

a) Show: if RrtsI is atomic, then so is R.
b) Show: if RrtsI is an EL-domain, then so is R.

The conspiciuously missing converses of the previous exercise are addressed by the
following results, which we quote without proof.

Theorem 15.29.

a) (Roitman [Ro93]) There is an integrally closed atomic domain R such
that Rrts is not atomic.

b) (Anderson-Quintero-Zafrullah) There is an EL-domain R such that Rrts
is not an EL-domain.

7. Application: the Schönemann-Eisenstein Criterion

The most famous criterion for irreducibility of univariate polynomials is named
after Ferdinand Eisenstein [Ei50]. However, the version for polynomials over Z
was proven several years earlier by Theodor Schönemann [Sc45], [Sc46]. Few
anglophone texts have associated Schönemann’s name with this result, and his
contribution might have been in real danger of being forgotten were it not for the
beautiful recent article of Cox [Co11] on the early history of this result.

Nowadays it is common to state and prove a version of Eisenstein’s criterion
with respect to a prime ideal in a UFD. We give a slight generalization:

2Notice that this is a generalization of part b).
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Theorem 15.30. (Schönemann-Eisenstein Criterion) Let R be a domain with
fraction field K, and let fptq � adt

d � . . . � a1t � a0 P Rrts. Suppose that there
exists a prime ideal p of R such that ad R p, ai P p for all 0 ¤ i   d and a0 R p2.

a) If f is primitive, then f is irreducible over Rrts.
b) If R is a GCD-domain, then f is irreducible over Krts.

Proof. a) Suppose to the contrary that f is primitive and reducible over Rrts:
i.e., there exists a factorization f � gh with gptq � bmt

m � . . . � b1t � b0, hptq �
cnt

m� . . .�c1t�c0, degpgq,degphq   degpfq and bmcn � 0. Since a0 � b0c0 P pzp2,
it follows that exactly one of b0, c0 lies in p: say it is c0 and not b0. Moreover, since
ad � bmcn R p, cn R p. Let k be the least index such that ck R p, so 0   k ¤ n.
Then b0ck � ak �pb1ck�1� . . .� bkc0q P p. Since p is prime, it follows that at least
one of b0, ck lies in p, a contradiction.
b) Suppose R is a GCD-domain and (seeking a contradiction) that f is reducible
over Krts. By Corollary 15.25b), we may write f � gh with g, h P Rrts and
degpgq,degphq   degpfq. Then the proof of part a) goes gives a contradiction. □

Corollary 15.31. Let R be a GCD-domain containing a prime element π.
Then the fraction field K of R is not separably closed.

Proof. The element π is prime if and only if the principal ideal p � pπq is a
nonzero prime ideal. Then π R p2, so for all n ¡ 1, Pnptq � tn � π is Eisenstein
with respect to p and hence irreducible in Krts. Choosing n to be prime to the
characteristic of K yields a degree n separable field extension Ln :� Krts{pPnq. □

8. Application: Determination of SpecRrts for a PID R

Let R be a PID. We wish to determine all prime ideals of the ring Rrts. Let us
begin with some general structural considerations. First, R is a one-dimensional
Noetherian UFD; so by Theorems 8.38, 15.27 and 8.60, Rrts is a two-dimensional
Noetherian UFD. Being a UFD, its height one ideals are all principal. Since it
has dimension two, every nonprincipal prime ideal is maximal. Therefore it comes
down to finding all the maximal ideals.

It turns out that we can proceed without using the Dimension Theorem, following
[R, pp. 22-23]. Namely, let P be a nonzero prime ideal of Rrts. We assume – only!
– that P is not principal. By Theorem 15.1, we are entitled to a prime element f1 of
P. Since P � pf1q, let f2 P Pzpf1q. Then gcdpf1, f2q � 1: since gcdpf1, f2q | f1, the
only other possibility is pgcdpf1, f2qq � pf1q, so f1 | f2 and f2 P pf1q, contradiction.

first claim Let K be the fraction field of R. The elements f1 and f2 are
also relatively prime in the GCD-domain Krts. Indeed, suppose that f1 � hg1,
f2 � hg2 with h, g1, g2 P Krts and h a nonunit. By Gauss’ Lemma, we may write
h � ah0, g1 � b1γ1, g2 � b2γ2 with a1, b1, b2 P K and h0, γ1, γ2 primitive el-
ements of Rrts. Again by Gauss’ Lemma, h0γ1 and h0γ2 are also primitive, so
f1 � hg1 � pab1qph0γ1q P Rrts, which implies that ab1 P R. Similarly, ab2 P R, so
h0 is a nonunit of Rrts which divides both f1 and f2, contradiction.

Let M :� xf1, f2y, and put m � M X R. It remains to show that, as the
notation suggests, M is a maximal ideal of Rrts and m is a maximal ideal of R.

second claim m � 0. Since Krts is a PID and f1, f2 are relatively prime in
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Krts, there exist a, b P Krts such that af1 � bf2 � 1. Let 0 � c P R be an el-
ement which is divisible by the denominator of each coefficient of a and b: then
pcaqf1 � pcbqf2 � c with ca, cb P R, so that c P m.

Now put p � P XR, so p � ppq is a prime ideal of the PID R. Moreover,

p � P XR �MXR � m � 0,

so p is maximal. Since P � p, P corresponds to a prime ideal in Rrts{pRrts �
pR{pqrts, a PID. Therefore P is generated by p P p and an element f P Rrts whose
image in pR{pqrts is irreducible.

We therefore have proved:

Theorem 15.32. Let R be a PID, and let P P SpecRrts. Exactly one of the
following holds:

(0) P has height 0: P � p0q.
(i) P has height one: P � pfq, for a prime element f P Rrts.
(ii) P has height two: P � xp, fy, where p is a prime element of R and

f P Rrts is an element whose image in pR{pqrts is irreducible. Moreover
both P and p :� P XR are maximal, and rRrts{P : R{ps   8.

Exercise 15.16.

a) Suppose R has only finitely prime ideals, so is not a Hilbert-Jacobson ring.
By Theorem 12.19, there is m P MaxSpecRrts such that mXR � p0q. Find
one, and explain where m fits in to the classification of Theorem 15.32.

b) (Zanello [Za04]) Deduce: for a PID R, the following are equivalent:
(i) R has infinitely many prime ideals.
(ii) Every maximal ideal of Rrts has height two.

9. The Weierstrass-Bourbaki Preparation Theorem

In this section we will discuss a result involving complete local rings, despite the
fact that (unlike most commutative algebra texts) we do not discuss the completion
of a ring with respect to an ideal. The situation is (more than) analogous to that
of discussing complete metric spaces but not the completion of a metric space.

Still we need to define and briefly discuss I-adic topologies, so here goes: let R
be a ring, and let I be an ideal of R. Then the I-adic topology on R is the topol-
ogy for which for x P R, a neighborhood base at x is given by tx� In | n P Nu. In
more words, the neighborhoods of 0 in the I-adic topology are precisely the subsets
containing some power of I, and this topology is “homogeneous” in the sense that
for all x P R, a subset U � R is a neighborhood of x if and only if �x � U is a
neighborhood of 0. The I-adic topology makes R into a topological ring: that is,

� : R�RÑ R,� : RÑ R by x ÞÑ �x, � : R�RÑ R

are all continuous. Moreover this topology is manifestly first-countable, since it is
defined by a countable neighborhood base at each point, hence it is a sequential
space in the sense of [Cl-GT, §5.2.2].

Exercise 15.17. Let I be an ideal of R.



324 15. FACTORIZATION

a) Show: the I-adic topology on R is indiscrete (i.e., the only nonempty open
subset of R is R itself) if and only if I � R.

b) Show: the I-adic topology on R is discrete if and only if I is nilpotent.

Lemma 15.33. Let I be an ideal of R, and let τ be the I-adic topology on R.
The following are equivalent:

(i) The space pR, τq is Hausdorff.
(ii) The space pR, τq is separated: that is, for all x P R, txu is closed.
(iii) The space pR, τq is Kolmogorov: for all x, y P R, if x and y have the same

open neighborhoods, then x � y.
(iv) We have

�8
n�1 I

n � t0u.
When these equivalent conditions hold, we say that R is I-adically separated.

Proof. (i) ùñ (ii) ùñ (iii) holds for all topological spaces.
(iii) ùñ (i) holds in any topological group G. We show this by arguing the
contrapositive: suppose that G is not Hausdorff. Then the diagonal ∆ :� tpx, xq |
x P Gu is not closed in G. On the other hand, the map M : G � G Ñ G by
pg1, g2q ÞÑ g�1

1 g2 is continuous, and ∆ � M�1pteuq, so it follows that teu is not

closed, so G is not separated; that is, the closed normal subgroup K :� teu is
nontrivial. In any topological space, the closure of a point consists of the intersection
of all neighborhoods of that point: indeed, for x in a topological space X, a net
x : I Ñ X such that xi � x for all i P I converges to y P X if and only if y lies in
every open neighborhood of x. So the subgroup K is the set of points of G having
the same neighborhoods as the identity e, and thus the nontriviality of K means
that G is not Kolmogorov.
(iii) ðñ (iv): We just saw that a topological group G is Kolmogorov if and only
if the intersection of all neighborhoods of e is precisely teu. For our topological
group pR, τq, this condition is precisely that

�8
n�1 I

n � t0u. □

Every topological space X has a Kolmogorov quotient X: this a topological space
equipped with a continuous map q : X Ñ X that is universal for continuous maps
into a Kolmogorov space. More explicitly, q : X Ñ X̃ is the quotient under the
equivalence relation � of topological indistinguishability: x � y if and only if x
and y have precisely the same neighborhoods. Thus for a topological group G, if
K :� teu, then its Kolmogorov quotient is the quotient topological groupG :� G{K.
In particular: R is not I-adically separated, we may replace pR, Iq with pR, Iq with
R :� R��8

n�1 I
n and I � I ��8

n�1 I
n, and then R is I-adically separated.

However, being I-adically separated is a mild condition at least when R is
Noetherian. Indeed, the Krull Intersection Theorem immediately implies:

Corollary 15.34. Let I be a proper ideal of the Noetherian ring R. If either
R is a domain or I is contained in the Jacobson radical JpRq of R, then the I-adic
topology on R is separated.

In fact, the true business of this section concerns a Noetherian local ring pR,mq,
which as above will always be m-adically separated.

Let I be an ideal of R. The I-adic topology of course allows us to define con-
vergence of sequences in R. We cannot of course define Cauchy sequences in an
arbitrary topological space. The most familiar setting in which Cauchy sequences
can be defined is that of metric spaces. We can also define Cauchy sequences in
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any commutative topological group pG,�q, as follows: we say that txnu is Cauchy
if and only if for every open neighborhood U of 0, there is N P Z� such that for
all m,n ¥ N we have xm � xn P U . As usual, it is easy to see that convergent
sequences are Cauchy, and the more interesting question is whether the converse
holds. In a commutative topological group pG,�) we can also define convergence
(resp. Cauchyness) of infinite series

°8
n�1 xn just be requiring the sequence of par-

tial sums to be convergent (resp. Cauchy).

In the case of the I-adic topology on R, this simplifies to: the squence txnu is
Cauchy if for all E P Z� there is N P Z� such that for all m,n ¥ N we have
xm�xn P IE . Moreover, the condition of Cauchyness of an infinite series turns out
to be remarkably simple in this context:

Lemma 15.35. Let I be a proper ideal of the ring R. For an infinite series°
n xn in R, the following are equivalent:

(i) The series
°
n xn is Cauchy in the I-adic topology.

(ii) In the I-adic topology, we have xn Ñ 0.

Proof. (i) ùñ (ii): This holds in any commutative topological group pG,�q,
using the familiar argument from freshman calculus: let Sn :� °n

k�1 xk. If the
sequence tSnu is Cauchy, then in particular, for every open neighborhood U of 0,
there is N P Z� such that for all n ¥ N we have xn � Sn � Sn�1 P U . So xn Ñ 0.
(Of course the converse does not hold in every commutative topological group: e.g.
it does not hold in R!)
(ii) ùñ (i): Suppose xn Ñ 0, and let E P Z�. Then there is N P Z� such that
for all n ¥ N we have xn P IE . Let m,n ¥ N ; we may suppose that m ¥ n. Then
Sm � Sn � xn�1 � . . .� xm P IE , so the series

°
n xn is Cauchy. □

This last result suggetss the presence of an ultrametric, which is very nearly the
case. For a proper ideal I of R and x, y P R, we can define V px, yq to be the least
n P N such that x� y R In or 8 if x� y P �8

n�1 I
n. Then we can define

d : R�RÑ R, px, yq ÞÑ 2�V px,yq.

Exercise 15.18. With notation as above:

a) Show: for all x, y, z, show: dpx, zq ¤ max dpx, yq, dpy, zq.
b) Show: d is a metric on R if and only if R is I-adically separated.
c) Show: if R is I-adically separated, the I-adic topology is the topology

induced by the ultrametric d.

When R is not I-adically separated, the function d is what is called a pseudo-metric:
it satisfies every property of a metric except we may have dpx, yq � 0 for x � y. A
pseudo-metric that is not a metric also induces a topology, that is not Kolmogorov.
It induces a metric on the Kolmogorov quotient, which is the quotient under the
equivalence relation x � y if and only if dpx, yq � 0.

For an ideal I of a ring R, we say that R is I-adically complete if in the I-
adic pseudometric, every Cauchy sequence in convergent. When pR,mq is local
ring, we say that R is complete if it is complete for the m-adic topology and sep-
arated if it is separated for the m-adic topology.
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All of this is highly formal. To come back to earth, let k be a field, let R :� krts,
and let I � ptq. In this case t is a prime element of the PID krts, which gives rise
to a valuation vt on kptq. For x, y P krts we have V px, yq � vtpx� yq and the above
metric is (one normalization of) the ultrametric induced by a discrete valuation.
We find that a series

°
n fnptq is Cauchy if and only if for all N P Z�, all but

finitely many of the terms fnptq are diviisble by tN . So for instance
°8
n�0 t

n is
Cauchy. If in the I-adic topology on krts we have a convergent sequence xn Ñ x,
then for all N P Z� and all sufficiently large n we have xn � x is divisible by tN .
Equivalently, for all d ¥ 0, for all sufficiently large n we have that the coefficient
of td in xn is equal to the coefficient of td in x. In the sequence of partial sums°n
k�0 t

k indeed we have that for all d, the sequence of coefficients of td is eventually
constant: indeed, all but finitely many of these coefficients are equal to 1. This
however means that the series does not converge in krts, because it would have to
converge to 1 � t � t2 � . . . � tn � . . ., which is not a polynomial. This krts is not
complete for the t-adic topology.

This example suggests a clear remedy: instead of considering the t-adic valua-
tion on krts, we consider the t-adic valuation on the formal power series ring krrtss,
which is again a PID. Almost the same argument as above now shows that Cauchy
sequences converge: again, being Cauchy means that for each d P N the sequence
of coefficients of td is eventually constant, say to cd; then the Cauchy sequence
converges to

°8
n�0 cdt

d. It is easy to see that krrtss with the ptq-adic metric is the
completion of krts with the ptq-adic metric: that is, the map krts ãÑ krrtss is an
isometric embedding with dense image.

Proposition 15.36. Let pR,mq be a local ring, let N P Z�and put T :�
Rrrt1, . . . , tN ss.

a) The ring T is local, with maximal ideal M :� xm, t1, . . . , tN y.
b) The ring T is Noetherian if and only if the ring R is Noetherian.
c) If R is m-adically complete, then T is M-adically complete.
d) If R is m-adically separated, then T is M-adically separated.

Exercise 15.19. Prove Proposition 10.

With these preliminaries in place, we now come to the actual setup of this section.
Let pR,mq be a local ring that is complete and separated for the m-adic topol-
ogy (recall the latter is automatic if R is Noetherian), and put T :� Rrrtss and
M :� xm, ty. By Proposition 10 we have that pT,Mq is a complete, separated local
ring that is Noetherian if and only if R is. Put k :� R{m.

There is an evident map T � Rrrtss Ñ krrtss; namely we mod out by mT . For any
power series f � °8

n�0 ant
n P T , we define the reduced series f � °8

n�0 ant
n P

krrtss. We say that f P T is regular if f � 0 – that is, if not all coefficients of f
lie in m – and if so we define the order ordpfq of f to be the least n P N such that
an R m. If f is not regular, we put ordpfq � 8. In other words, the order of a
regular element f is the t-adic valuation of f P krrtss.

Exercise 15.20. Let f, g P T .
a) Show: f P T� if and only if ordpfq � 0.
b) Show: ordpfgq � ordpfq � ordpgq. Deduce that fg is regular if and only

if f and g are both regular.
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c) Show: ordpf � gq ¥ minpordpfq, ordpgqq.
c) Show: if ordpgq   ordpfq, then ordpf � gq � ordpgq.

Theorem 15.37 (Weierstrass-Bourbaki Division Theorem). Let f P T be reg-
ular of order s ¥ 1, and put M :� x1, t, . . . , ts�1yR. Then:

a) For all g P T , there is unique q P T and r PM such that g � qf � r.
b) It follows that f is not a zero-divisor in T and that the R-module T {fT

is free of rank s.

Proof. a) Step 1: Suppose that q P T is such that qf P M . We claim that
q � 0. Suppose for the moment that this claim holds. Then, if we have q1, q2 P T
and r1, r2 PM such that q1f � r1 � g � q2f � r2, then

pq1 � q2qf � pr2 � r1q PM,

so the claim implies that q1 � q2 and that r1 � r2.
Now we prove the claim. Let us be more concrete: supposem0, . . . ,ms�1b0, b1, . . . , bn, P
A are such that

(39) p
8̧

n�0

bnt
nqf � m0 �m1t� . . .�ms�1t

s�1.

We need to show that bn � 0 for all n. Because A is separated, it suffices to show
that bi P mn for all i, n P N. Inductively, we may assume that bi P mn�1 for all i and
that bi P mn for all i   k and show that bk P mn. For this, we write f � °8

n�0 ait
i

and equate coefficients of ts�k in (39) to get:

(40) pb0as�k � . . .� bk�1as�1q � bkas � pbk�1as�1 � . . .� bk�sa0q � 0.

In the above equation, each term in the first parenthesized group lies in mn because
bi P mn for i   k and every term in the second parenthesized group lies in mn

because bi P mn�1 for all i and aj P m for j   s. Thus bkas PP mn, and because
as P R� we get bk P mn, completing the induction.
Step 2: We show that fT �M � T . Still taking f � °8

n�0 ant
n, we put

g :�
8̧

n�s
ant

n�s � as � as�1t� . . . P T�,
so

f � tsg � a0 � a1t� . . .� as�1t
s�1 P mrts.

Put 8̧

n�0

hnt
n � h :� ts � fg�1 � �pf � tsgqg�1 P mrrtss.

Now let r P T . We will recursively define a sequence tqpmqu8m�0 in T . Let qp0q be
the unique element of T satisfying

(41) r � tsqp0q PM.

Then we put

q
pmq
i :�

i�ş

j�0

hjq
pm�1q
i�s�j

and

(42) qpmq :�
8̧

n�0

qpmqn tn.
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Immediately from (42) we get for all m ¥ 1 that

(43) tsqpmq � hqpm�1q pmod Mq.
Since hn P m for all n, (42) and induction gives q

pmq
n P mm for all m,n. Because T

is complete, the series

q :�
8̧

m�0

qpmq

converges to an element of T . Using (41) and (43) we get:

(44) tspqp0q � qp1q � . . .� qpmq � r � hpqp0q � . . .� qpm�1qq pmod Mq.
SinceM is closed in T , the quotient space T {M is Hausdorff, so limits of convergent
sequences are unique, and thus from (44) we deduce r � pts � hqq P M , so r P
M � pts � hqqT �M � fg�1qT �M � fT .
Step 3: By Step 2, there is q P T such that g � fq P M , and Step 1 implies
the uniqueness of this q, establishing part a). In particular, if for q P T we have
qf � 0 P M , so by Step 1 we have q � 0 and thus f is not a zero-divisor. Part a)
implies that T � fT `M . Since M �R Rs, we get T {fT �Ms. □

Let f P T � Rrrtss be regular of order s ¥ 1. We say that f is distinguished
if f � ts � as�1t

s�1 � . . . a1t � a0 with a0, . . . , as�1 P m. Thus a polynomial of
positive degree is distinguished if and only if it is monic and regular of order equal
to its degree.

Theorem 15.38 (Weierstrass-Bourbaki Preparation Theorem). Let f P T �
Rrrtss be regular of order s. Then there is a unique u P T� such that uf is a
distinguished polynomial (necessarily of degree s).

Proof. Apply Theorem 15.37a) with f :� ts and g :� f : there is a unique
q P T and a unique r P Rrts of degree less than s such that ts � qf � r. Thus

qf � ts � r.
Since degprq   s, if r � 0 then ordprq   s and thus by Exercise 15.20 we have

s � ordpfq ¤ ordpfq � ordpqq � ordpqfq � ordpts � rq � ordprq   s,

a contradiction. So r � 0 and thus ts � r is a distinguished polynomial. Moreover
we have

ordpqq � s � ordpqfq � ordpts � rq � s,

so ordpqq � 0 and thus q P T� by Exercise 15.20. So we may take u :� q.
Conversely, suppose u1 P T� is such that u1f is dstinguished polynomial, nec-

essarily of degree f , so we may write u1f � ts � r1 where degpr1q   s. Then
ts � u1f � r1, so by the uniqueness part of Theorem 15.37 we have u1 � u and
r1 � r. □

Above we mentioned that if f, g, h P Rrrtss with f � gh, then f is regular if and
only if both g and h are regular. If g, h P Rrts are distinguished polynomials, then
gh is also distinguished. However, the converse is not true for rather trivial reasons:
if g, h P Rrts are distinguished polynomials and f � gh, then also f � pugqpu�1hq
for any u P R�, and if u � 1 then ug fails to be distinguished precisely insofar as
it is not monic. Being monic is clearly needed for the uniqueness part of Theorem
15.38. For many other purposes it will be convenient to make use of a slightly
weaker property: a polynomial f P Rrts of positive degree is quasi-distiguished
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if it is regular of order equal to its degree. A polynomial of degree s ¥ 1 is
quasidistinguished if and only if it is of the form uts � r with u P R�, degprq   s
and r � 0 if and only if it is a unit times a distinguished polynomial.

Lemma 15.39. If R is a domain and f, g, h P Rrts are polynomials of positive
degree such that f � gh, then f is quasi-distinguished if and only if g and h are
both quasi-distinguished.

Proof. If g and h are quasi-distinguished, then there are u1, u2 P R� such
that u1g and u2h are distinguished, so u1u2f � pu1g1qpu2h2q is distinguished, so f
is quasi-distinguished.

Suppose f is quasi-distinguished of degree d, so f � utd for some u P R�. Since
f � gh, we must have g � u1t

s1 and h � u2t
s2 for u1, u2 P R� and s1 � s2 � d.

Thus g is regular of order s1, so has degree d1 ¥ s1 and h is regular of order s2,
so has degree d2 ¥ s2. Since R is a domain, we have d � d1 � d2 � s1 � s2, so we
must have s1 � d1 and s2 � d2 and thus g and h are quasi-distinguished. □

Corollary 15.40. Let f, g1, g2 P T � Rrrtss, and suppose that f is a distin-
guished polynomial and f � g1g2. Then there is u P T� such that ug1 and u�1g2
are distinguished polynomials and f � pug1qpu�1g2q.

Proof. By Theorem 15.38 there are u1, u2 P T� such that for i � 1, 2 we have
that uigi is a distinguished polynomial. Thus

u1u2f � pu1g1qpu2g2q
is a product of distinguished polynomials and thus itself a distinguished polynomial.
Since f is also a distinguished polynomial, the uniqueness part of Theorem 15.38
gives u1u2 � 1, so we may take u � u1. □

Corollary 15.41. Let f P Rrts be a quasi-distinguished polynomial. Then f
is a prime element of Rrts if and only if f is a prime element of Rrrtss.

Proof. Suppose f has order s ¥ 1. Because f is distinguished, its degree is
also s. Consider the natural R-algebra homomorphism

(45) ι : Rrts{fRrts ãÑ Rrrtss{fRrrtss.
It follows from Theorem 15.37a) that ι is surjective: indeed, for any g P Rrrtss
there is q P Rrrtss and r P Rrts such that g � qf � r, so g � fRrrtss � ιpr� fRrtsq.
Moreover, as an R-module, Rrts{fRrts is isomorphic to Rdegpfq, while by Theorem
15.37b) we have Rrrtss{fRrrtss � Rordpfq � Rdegpfq. So there is an isomorphism of

R-modules α : Rrrtsr{fRrrtss �Ñ Rrts{fRrts, and thus α � ι is a surjective R-module
endomorphism of Rrts{fRrts. By Theorem 3.47 the map α � ι is an isomorphism,
and thus also ι is an isomorphism. Thus f is a prime element of R if any only if
Rrts{fRrts is a domain if and only if Rrrtss{fRrrtss is a domain if and only if f is
a prime element of Rrrtss. □

10. Power series rings over UFDs

For a ring R and a set I, we let RrrtssiPI be the ring of formal power series inde-
terminates ti indexed by i P I, with coefficients in R. These can be defined as “big
monoid rings” as in §5.6 (see especially Exercises 5.38 and 5.39), but let us give
some further details.
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First we define the formal power series ring Rrrt1, . . . , tn, . . .ss in a countably infi-
nite set of indeterminates as follows: let d � pd1, d2, . . . , dn, . . .q be a sequence of
natural numbers such that dn � 0 for all but finitely many n, and we define the
monomial

td :�
8¹
n�1

tdnn .

The key here is that this is not really an infinite product, because for all but finitely
many n we have tdnn � t0n � 1. For two monomials td and te, we say that td divides
te if d ¤ e, meaning that dn ¤ en for all n. Then Rrrt1, . . . , tn, . . .ss is the free
R-module with basis ttdu. We multiply basis elements in the most evident way:
td � te :� td�e, and we “extend R-linearly” to get a product on Rrrt1, . . . , tn, . . .ss.
The scare quotes are there because multiplication requires us to distribute over infi-
nite sums, so we need to take a moment to be sure that this product is well-defined.
It is: for x, y P Rrrt1, . . . , tn, . . .ss and any monomial td, in order to compute the
coefficient of td in the product xy, we only need to consider the coefficients of the
monomials of x and y that divide td, and the number of monomials that divide td

is
±8
n�1pdn � 1q, which is finite.

Here the set of monomials is indexed by
À

nPZ�pN,�q, which is a free commu-
tative semigroup. The elements of Rrrt1, . . . , tn, . . .ss may be viewed as functions
f :
À

nPZ�pN,�q: namely the value of the function at d is the coefficient of d. This

evidently gives an isomorphism of R-modules from Rrrt1, . . . , tn, . . .s to R
À

nPZ� N.
Moreover the product operation can nicely be expressed in terms of these functions:
namely, for f, g :

À
nPZ� NÑ R, we define

(46) pf � gqpdq :�
¸

d1�d2�d
fpd1qgpd2q.

Again, this sum is well-defined because we need only sum over pairs d1, d2 such
that di ¤ d in the natural “componentwise” partial ordering on

À
nPZ�pN,�q, and

for each fixed d there are only many e with e ¤ d.

Looking back at this construction, we see that the fact that the index set of the set
of indeterminates is Z� is not playing a crucial role. Now for any set I, we define
a formal power series ring RrrtssI in indeterminates ti with i P I and coefficients
lying in a ring R. From the first perspective, our definition of monomial is very
similar: td :� ±iPI t

di
i with again the condition that di � 0 for all but finitely

many i P I. Still each monomial td has a degree
°
iPI di. And again we may regard

the elements as functions from
À

iPI N to R and define the product via the same
equation (46). Now, even though each d may have uncountably many components,
still all but finitely many of them are 0 so the number of e with e ¤ d is again±
iPIpdi � 1q. One minor comment: we have #

À
iPI N � maxp#I,ℵ0q, so when

I is uncountable, a single element of RrrtssI is allowed to have uncountably many
nonzero terms, thus stretching the traditional meaning of the term “series.” Also,
if #I1 � #I2 then RrrtssI1 and RrrtssI2 are isomorphic.

Exercise 15.21. a) Let I1 and I2 be disjoint sets. Show: there is a
canonical isomorphism from pRrtsIqrtJ s to RrtsIYJ , which we will use to
identify them.
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b) Exhibit a ring R such that for all m,n P N we have Rrrt1, . . . , tmss �
Rrrt1, . . . , tnss.

Exercise 15.22. Let R be a ring, and let RrtsI be a formal power series ring, as
above. For f P RrtsI , let a0pfq denote its constant coefficient. Let T :� xti | i P Iy.

a) Let f P RrtsI . Show: f P Rrts�I ðñ a0pfq P Rrts�I . Observe that
we may identify a0pfq with the image of f in RrtsI{T . Deduce that the
homomorphism q : RrtsI Ñ RrtsI{T is unit-faithful (cf. §4.2).

b) (Recall that for a ring A, JpAq denotes its Jacobson radical.) Show: f P
JpRrtsIq ðñ a0pfq P JpRq. Deduce:

JpRrrtssIq � xJpRq, T y.
c) Deduce: R is local if and only if RrrtssI is local.

Lemma 15.42. Let I be a set. Then the formal power series ring RrrtssI is a
domain if and only if R is domain.

Proof. Since R is a subring of RrrtssI , certainly R must be a domain if RrrtssI
is a domain. The converse is not as obvious as for polynomial rings. We proceed
as follows:
Step 1: If R is a domain, then Rrrtss is domain. We define a function ord : Rrrtss Ñ
N Y t8u as follows: if f � 0, we define ordpfq to be the least n P N such that tn

appears in f with nonzero coefficient; also we define ordp0q � 8. It is immediate
that for all f, g P Rrrtss we have ordpfgq � ordpfq � ordpgq, which shows that for
f, g � 0 we have fg � 0. Step 2: Since Rrrt1, . . . , tn�1ss � pRrrt1, . . . , tnssqrrtn�1ss,
it follows by induction that RrrtssI is a domain for all finite sets I.
Step 3: Let I be an infinite set, and let f, g P RrrtssI . There is a finite subset
J of I such that rJpfq, rJpgq P RrrtsJ . (This is true because only finitely many
indeterminates appear in any given monomial hence also in any finite number of
monomials.) Step 2 gives rJpfgq � rJpfqrJpgq � 0, so certainly fg � 0. □

Henceforth we assume that R is a domain.

Proposition 15.43. Let R be a domain, and let I be a set. Then R is an
ACCP-domain if and only if RrrtssI is an ACCP-domain.

Proof. First suppose that RrrtssI is an ACCP-domain. The inclusion map
ι : R ãÑ RrrtssI is unit-faithful, so if RrrtssI is an ACCP-domain, then also R is
an ACCP-domain by Exercise 15.13b). Let’s spell it out: under ι, an ascending
chain pa1q � pa2q � . . . � panq � of nonzero principal ideals of R pushes forward to
an ascending chain of principal ideals of RrrtssI , which must stabilize since RrrtssI
satisfies ACCP. So there is N P Z� such that for all n ¥ N we have that ιpan�1

an
q is

a unit of RrrtssI , hence an�1

an
is a unit of R and the sequence stabilizes.

Now suppose that R is an ACCP-domain. Since the map r : RrrtssI Ñ R
is unit-faithful, one might try to apply the above argument to show that RrrtssI
is an ACCP-domain. This will work unless each an lies in T � Kerprq. This is
what Exercise 15.13c) is for: for every f P RrrtssI , there is a finite subset J of I
such that rJpfq � 0 (and then also if g | f then rJpgq � 0), and moreover each
rJ : RrrtssI Ñ RrrtssJ is unit-faithful. So it suffices to show that each RrrtssJ is
an ACCP-domain for each finite J . By induction, it suffices to show that if R is an
ACCP-domain then so is Rrrtss.

Suppose we have a sequence tfnu8n�1 of elements of Rrrtss such that fn�1 | fn
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for all n P Z�. Then the sequence tordpfnqu8n�1 is a descending sequence in N, so
there is N1 P Z� and o P N such that ordpfnq � o for all n ¥ N1. For n ¥ N1,
fn�1 | fn implies aopfn�1q | aopfnq. So we get an ascending chain of nonzero
principal ideals taopfnqu in the ACCP-domain R, which must therefore stabilize:

for all n ¥ N2 ¥ N1 we have aopfn�1q
aopfnq P R�. For all n ¥ N2 the element fn�1

fn
of

Rrrtss has order 0 and leading term a unit of R, hence is a unit of Rrrtss, so the
sequence pfnq stabilizes. □

Lemma 15.44. Let R be a domain, let I be a set, and let a P R be a nonzero,
nonunit element.

a) The element a is irreducible in R if and only if it is irreducible in RrrtssI .
b) The element a is prime in R if and only if it is prime in RrtssI .

Proof. a) Suppose a is irreducible in R and that there are g1, g2 P RrrtssI
such that a � g1g2. Let r : RrrtssI Ñ R be the quotient map by the ideal T , which
is unit-faithful. In R we have

a � rpaq � rpg1qrpg2q,
so one of rpg1q and rpg2q is a unit, so by unit-faithfulness at least one of g1 and g2
is a unit, so a is irreducible in RrrtssI .

Suppose a is reducible in R: a � b1b2 for b1, b2 P RzR�. By Exercise 15.22,
neither b1 nor b2 lies in Rrrtss�I , so a remains irreducible in RrrtssI .
b) For any a P R we have RrrrtsssI{paq � pR{paqqrrtssI , so R{paq is a domain if and
only if RrtssI{paq is a domain. □

All of this was just warmup. The real questions are: if R is a UFD, must Rrrtss be
a UFD? If so, can we prove that for any set I, the ring RrrtsI is a UFD?

In contrast to the case of UFDs, whereas the argument to prove that R a UFD
implies Rrts a UFD even predated the modern definitions involved, whether a uni-
variate formal power series ring over a UFD must be a UFD was a perplexing
problem that remained open well into the 20th century. Some special cases were
known relatively early on.

Theorem 15.45. If R is a PID, then Rrrtss is a UFD.

Proof. By Theorem 15.1, it suffices to show that every nonzero prime ideal
P of Rrrtss has a prime element. If t P P, we’re done. Otherwise, let q : Rrrtss Ñ R
be the quotient map and p � q�P. Since R is a PID, p can be generated by one
element, and then by Theorem 8.40a), so can P. □

In particular, if k is a field then krrt1ss is a PID, so krrt1, t2ss � krrt1ssrrt2ss is a UFD.

The following result shows a potential plan of attack in the local case:

Theorem 15.46. Let pR,mq be a local UFD that is complete and separated. Let
f P Rrrtss be regular of order s ¥ 1. Then f is a product of prime elements.

Proof. By Theorem 15.38, there is u P Rrrtss� such that g :� uf is a distin-
guished polynomial of degree s. By Theorem 15.26, since R is a UFD so is Rrts, so
there are prime elements p1, . . . , pr of Rrts such that g � p1 � � � pr. By Lemma 15.39
each pi is quasi-distinguished, so by Corollary 15.41 each pi is also a prime element
of Rrrtss. Thus f � pu�1p1qp2 � � � pr is a product of prime elements of Rrrtss. □
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In order to use Theorem 15.46 to show that Rrrtss is a UFD, we would need to some-
how show that if every regular element of Rrrtss is a product of prime elements,
then every nonzero nonunit is a product of prime elements. In the case where R � k
is a field, this is trivial: every nonzero element of krrtss is regular. One step up
from this is if R is a PID, so the maximal ideal is principal, say m � pπq. Then π
is prime element. Since

�8
n�1 m

n � p0q, every nonzero element f of Rrrtss is of the
form πng with g a regular element. Since g is a product of prime elements, so is f .
This is the special case of Theorem 15.45 in which R is moreover a complete local
ring: e.g. it applies to show that Zprrtss is a UFD, where Zp is the ring of p-adic
integers.

Bourbaki employs this strategy more cleverly to prove the following result:

Theorem 15.47. (Rückert [Rü33], Krull [Kr37]) Let k be a field, and let
n P Z�. Then krrt1, . . . , tnss is a UFD.

Proof. By Proposition , the ring krrt1, . . . , tnss is a Noetherian local ring with
maximal ideal xt1, . . . , tny that is complete and separated. We will go by induction
on n. We already know the cases n � 0, 1 (also n � 2, but the present argu-
ment will prove this again), so suppose that n ¥ 2 and that we already know that
R :� krrt1, . . . , tn�1ss is a UFD. Put T :� Rrrtnss; since T � krrt1, . . . , tnss, our
task is to show that T is a UFD. Let f P T be a nonzero nonunit. If f is regular
(necessarily of order s ¥ 1 since it is not a unit) then by Theorem 15.46 we know
that f is a product of prime elements. We claim that there is an automorphism α
of T such that αpfq is regular. If so, then there are prime elements p1 � � � pr such
that αpfq � p1 � � � pr, and then f � α�1pp1q � � �α�1ppnq is also a product of prime
elements, completing the proof.
Step 1: Let A be a ring, and let f P Arrt1, . . . , tnss. We will show that there are
u1, . . . , un�1 P Z� such that fptu1 , . . . , tun�1 , tq � 0.
To show this, we proceed inductively: assuming there are u1, . . . , uk�1 P Z�
such that fptu1

n , . . . , t
uk�1
n , tk, . . . , tnq � 0, it suffices to find uk P Z� such that

fptu1
n , . . . , t

uk
n , tk�1, . . . , tnq � 0. Moreover, viewing fptu1

n , . . . , t
uk�1
n , tk, . . . , tnq as

an element of Rrrtk�1, . . . , tn�1ssrrtk, tnss, we reduce to the case n � 2.
Thus let f � °i,j eijx

iyk P Arrx, yss. Let G be the support of f , i.e., the set

of pi, jq P N2 such that eij � 0. We order N� N lexicographically, let pc, dq be the
least element of G and choose an integer p ¡ d. In the expression

fptp, tq �
¸

pi,jqPG
eijt

ip�j ,

let us consider the coefficient of cp�d: it is the sum of the eij ’s iwth ip�j � cp�d.
We claim that the only such term is pi, jq � pc, dq. Indeed, if i ¥ c� 1 then

ip� j ¥ pc� 1qpj ¥ pc� 1qp ¡ cp� d,
while if i   c then because pc, dq is the lexicographically least element in the support
of G we must have eij � 0. Therefore we must have i � c and then ip� j � cp� d
implies j � d. Therefore the coefficient of tcp�d in fptp, tq is epc,dq � 0, so fptp, tq �
0, completing this step of the proof.
Step 2: Let A be a ring, and let T be the ideal xt1, . . . , tny of the ring Arrt1, . . . , tnss,
and let w1, . . . , wn P T . If f P Arrt1, . . . , tnss, then fpw1, . . . , wnq is a well-defined
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element of Arrt1, . . . , tnss, and the map

φ : f P Arrt1, . . . , tnss ÞÑ fpw1, . . . , wnq
is a A-algebra endomorphism of Arrt1, . . . , tnss that for 1 ¤ i ¤ n maps ti to
wi. We claim moreover that φ is the unique such A-algebra endomorphism. In-
deed, any such A-algebra endomorphism is uniquely determined on the subalge-
bra Art1, . . . , tns by the universal property of polynomial rings. The subalge-
bra Art1, . . . , tns is dense in the Arrt1, . . . , tnss in the T -adic topology. Because
Arrt1, . . . , tnss is T -adically separated – that is, is a Hausdorff space – it suffices to
show that any A-algebra endomorphism φ of Arrt1, . . . , tnss mapping each ti to wi is
continuous for the T -adic topology. Like any homomorphism of topological groups,
it suffices to check continuity at 0, which means that for all k P N there is K � Kpkq
such that φpT Kq � T k. Indeed we may take Kpkq � k for all k: a set of generators
for T k is tta11 � � � tann | a1 � . . . � an ¥ ku and φpta11 � � � tann q � wa11 � � �wann P T k,
so any finite Arrt1, . . . , tnss-linear combination of these generators gets mapped to
a finite Arrt1, . . . , tnss-linear combination of elements of T k, which is of course an
element of T k.
Step 3: Let f P krrt1, . . . , tnss be a nonzero nonuit. By Step 1, there are u1, . . . , un�1 P
Z� such that fptu1

1 , . . . , t
un�1

n�1 , tq � 0. By Step 2, there are unique k-algebra endo-
morphisms φ and ψ of krrt1, . . . , tnss such that:

@1 ¤ i ¤ n� 1, φptiq � ti � tui
n and φptnq � tn

and

@1 ¤ i ¤ n� 1, ψptiq � ti � tui
n and ψptnq � tn.

Then ψ�φ is a k-algebra endomorphism of krrt1, . . . , tnss that maps each ti to itself,
so by the uniqueness part of Step 2, ψ � φ � 1, so φ is a k-algebra automorphism
of krrt1, . . . , tnss. Let g :� φpfq. Then we have

gp0, . . . , 0, tnq � fptu1
n , . . . , t

un�1
n , tnq � 0.

Finally, we observe that evaluating g P krrt1, . . . , tnss at t1 � . . . � tn�1 � 0
is equivalent to reducing modulo the maximal ideal m � xt1, . . . , tn�1y of R �
krrt1, . . . , tn�1ss, so gp0, . . . , tnq � 0 means precisely that g is regular. This com-
pletes the proof. □

Exercise 15.23. Let R be a complete discrete valuation ring, and let n P Z�.
Adapt the above proof to show that the ring Rrrt1, . . . , tnss is a UFD.

The same method can be used to show that if R is any PID, then for all n P Z�
the ring Rrrt1, . . . , tnss is a UFD [B, Exercise §7.3.9].

However, it turns out not to be true in general that if R is a UFD then Rrrtss
must also be a UFD. The first counterexamples were found by Samuel:

Theorem 15.48. (Samuel, 1961) Let k be a perfect field of characteristic 2, let

R :� krx, y, zs{xz2 � x3 � y7y
and let m :� xx, y, zy � xz2 � x3 � y2y, a maximal ideal of R. Then:

a) The ring R is a UFD, hence so is its localization Rm.
b) Neither Rrrtss nor Rmrrtss is a UFD.

Proof. See [Sa61, Thm. 4.1 and Thm. 4.3]. □
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The most penetrating results of this kind come from making use of the following
imporatnt definition: a Noetherian ring R is regular if for all m P MaxSpecR,
the height of m is dimR{m m{m2. This is a local property: a Noetherian ring R
is regular if and only if Rm is regular for all m P MaxSpecR (this follows almost
immediately from the definition) if and only if Rp is regular for all p P SpecR (this
does not, but se e.g. [Ei, Cor. 19.14]). So it suffices to understand the concept of
regularity for a Noetherian local ring pR,mq. In this case, the height of m is just the
Krull dimension dimR, by Nakayama’s Lemma dimR{m m{m2 is the least number
of generators for M , so the Generalized Principal Ideal Theorem gives

(47) htpmq ¤ dimR{m m{m2.

Thus pR,mq is regular if and only if equality holds in (47). It is then immediate
that a PID is a regular ring. Soon we will study PIDs, discrete valuation rings
and Dedekind domains in detail. Our results will imply that a one-dimensional
local Noetherian domain is regular if and only if it is a discrete valuation ring and
a one-dimensional Noetherian domain is regular if and only if it is a Dedekind
domain. The 2-dimensional Noetherian domain Rm of Theorem 15.48 is not reg-
ular: indeed, Rm{m2 � krx, y, zs{xx2, y2, z2, xy, xz, yz, z2 � x3 � y2y. But since
z2�x3� y7 P xx, y, zy2, we have Rm{pmRmq2 � krx, y, zs{xx, y, zy2, which is a local
ring for which a k-vector space basis is 1, x, y, z. It follows that (the images of)
x, y, z are k-basis for m{m2, so dimR{m m{m2 � 3 ¡ dimRm. (Notice that the same
conclusion holds for krx, y, zs{pfq for any polynomial f each of whose monomials
has degree at least 2.)

The following breakthrough result was proved independently by Buchsbaum [Bu61]
and Samuel [Sa61].

Theorem 15.49 (Buchsbaum-Samuel). If R is a regular UFD, then so is Rrrtss.
The local case of Theorem 15.49 was known slightly earlier, as we will now explain.
The following is a quick consequence of Theorems 8.40b) and Theorem 8.60b):

Exercise 15.24. Show: if R is a regular local ring, so is Rrrtss.
The following result of Auslander-Buchsbaum [AB59], building on earlier work of
Nagata [Na58], is probably the most important theorem about UFDs.

Theorem 15.50 (Auslander-Buchsbaum). A regular local ring is a UFD.

If R is a regular local ring, then by Exercise 15.24 also Rrrtss is a regular local
ring, hence a UFD by Theorem 15.50. In particular Theorem 15.47 is essentially a
consequence of Theorem 15.50.

The proof of Theorem 15.50 uses homological methods that we will unfortunately
not discuss here. However, it is (to say the least!) covered in many other commu-
tative algebra texts: see e.g. [M, Thm. 20.3] or [Ei, Thm. 19.19]. Notice that it is
not even obvious that a regular local ring is a domain.

We now return to the case of power series in infniitely many indeterminates.

Lemma 15.51. Let R be a domain, and let α be an infinite limit ordinal. Sup-
pose that for all ordinals β   α, the formal power series ring Rrrtssβ is a UFD. For
β   α, let rβ : Rrrtssα Ñ Rrrtssβ be the quotient by the ideal generated by ti for
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i P αzβ. Let f be irreducible. Then the set of β   α such that rβpfq is irreducible
is cofinal in α.

Proof. We observe that since f is not a unit and rβ is unit-faithful, no rβpfq
is a unit. Since f is nonzero and α is a limit ordinal, there is some δ0   α such
that rδ0pfq � 0 and thus rδ � 0 for all δ ¥ δ0. Since the set of all ordinals less than
α that are greater or equal to any fixed ordinal is cofinal in α, it suffices to work
with δ0 ¤ β   α.
Step 1: Suppose that for all δ0 ¤ β   α, the element rβpfq is reducible: that is a
product of at least two irreducible elements. We will show that f is reducible.

We define an inverse system tSβuδ0¤β α of sets. For β   α, Sβ is the set of all
principal ideals Iβ of Rrrtssβ such that

fRrrtssβ � Iβ � Rrrtssβ ,
so each Sβ is nonempty. Because Rrrtssβ is a UFD, the element rβpfq is a product
of nβ prime elements for some nβ P Z¥2. Then #Sβ ¤ 2nβ � 2 (with equality
if and only if the prime elements are pairwise nonassociate), so each Sβ is finite.
For δ0 ¤ β1 ¤ β2   α, we define the transition map φβ2,β1

: Sβ2
Ñ Sβ1

just by
pushing forward Iβ2

via the map rβ2,β1
: Rrrtssβ2

Ñ Rrrtssβ1
: by unit-faithfulness,

this principal ideal is still proper and properly contains the ideal generated by f .
It is a corollary of Tychonoff’s Theorem that an inverse limit of compact (=

quasicompact Hausdorfff) spaces with continuous transition maps is a nonempty
compact, Hausdorff space [ES, p. 217]. It follows that any inverse limit of finite
sets is nonempty: just endow each set with the discrete topology.

An element P � tPβu P limÐÝSβ is almost a compatible choice of a nontrivial
proper factor of f in each Rrrtssβ : it remains to resolve the issue of choosing
compatible generators for the principal ideals Pβ , which we will do by transfinite
recursion. If β � γ � 1 is a successor ordinal, then having chosen a generator gγ
of Pγ , we can certainly choose a generator gβ of Pβ such that rβ,γpgβq � gγ . And
if β is a lmit ordinal then β � tγ | γ   βu and Rrrtssβ � limÐÝRrrtssγ , so there is
a unique such choice in this case. We get an element g P Rrrtssα such that for all
δ0 ¤ β   α we have rβpgq � gβ . For all δ0 ¤ β   α there is a unique element hβ of
Rrrtssβ , not a unit, such that gβhβ � rβpfq, so this uniquely determines h P Rrrtssα
such that f � gh. By unit-faithfulness, neither g nor h is a unit, completing Step
1.
Step 2: After Step 1, since f is irreducible, we know there is some δ0 ¤ β0   α
such that rβ0

pfq is irreducible. We claim that for all β0 ¤ β   α, also rβpfq is
irreducible, which suffices to prove the result, since this set of β is certainly cofinal
in α. This is easy: using unit-fatihfulness several more times we see that rβ0

pfq
must have at least as many prime factors as rβpfq. □

Theorem 15.52 (Cashwell-Everett). For a domain R, the following are equiv-
alent:

(i) For all n P N, the ring Rrrt1, . . . , tnss is a UFD.
(ii) For all sets I, the ring RrrtssI is a UFD.

Proof. (i) ùñ (ii): Suppose that Rrrt1, . . . , tnss is a UFD for all n P N, and
let I be any set. We want to show that RrrtssI is a UFD. We may assume that
I is infinite and then replace I by its cardinal number κ, i.e., the least ordinal of
cardinality #I. Inductively, we may assume that Rrrtssβ is a UFD for all β   κ.
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By Proposition 15.43 we have that Rrrtssκ is an ACCP-domain, so it suffices to
let f P Rrrtssκ be any irreducible element and show that f is prime. For this, let
g, h P Rrrtssκ be such that f | gh. By Lemma 15.51, the set of β   κ such that
rβpfq is a prime element of Rrrtssβ is cofinal in α. For each such β, we have that
rβpfq | rβpgqrβphq, so rβpfq divides at least one of rβpgq and rβphq. In any directed
set, if we write a cofinal subset as a finite union of subsubsets, then at least one of
those subsubsets is cofinal, so without loss of generality we may assume that the set
of β   α such that rβpfq divides rβpgq is cofinal. For each such β there is therefore
a unique qβ P Rrrtssβ such that rβpfqqβ � rβpgq, and by uniqueness we must have
rβ2,β1

pqβ2
q � qβ1

for all such β1 ¤ β2. It follows that there is q P Rrrtssκ such that
fq � g, so f is a prime element of Rrrtssκ. Thus Rrrtssκ is a UFD.
(ii) ùñ (i): It suffices to show: for any set I, if RrrtssI is a UFD, then so is R.
Suppose RrrtssI is a UFD. Then R is an ACCP-domain by Proposition 15.43; in
particular it is an atomic domain. By Lemma 15.44, we know that for all a P R, if
a is irreducible, then a is irreducible as an element of RrrtssI , and if a is prime as
an element of RrrtssI then a is prime as an element of R. We claim that for any
extension R ãÑ S fo domains in which R is atomic, S is a UFD, every irreducible
element of R remains irreducible in S and every element of R that is prime in S
is also prime in R, it follows that R is a UFD. Indeed, let a P R be a nonzero
nonunit. By atomicity there are irreducibles f1, . . . , fr such that a � f1 � � � fr. By
assumption eaech fi is also irreducible in the UFD S, so each fi is prime in f , so
by assumption each fi is prime in R. □

In [CE59], Cashwell-Everett gave a striking consequence of Theorem 15.52, which
indeed seems to have been there original motivation. For a ring R, we define the

Dirichlet ring DR as follows: the underlying set is RZ� , the set of all functions
f : Z� Ñ R. We give it the evident R-module structrure: i.e., addition and scalar
multiplication is componentwise. The product is however the convolution product:

f � g : n P Z� ÞÑ
¸

d1d2�n
fpd1qgpd2q.

The case of D :� DC appears in elementary number theory, at which point one may
solve the following exercises (but you, the reader, may want to read on a little bit
to learn why these are not new results for us).

Exercise 15.25. Let R be a ring.

a) Show that for all f, g, h P DR and all n P Z� we have

ppf � gq � hqpnq �
¸

d1d2d3�n
fpd1qgpd2qhpd3q � pf � pg � hqqpnq.

b) Define ι : R Ñ DR by ιprqpnq :�
#
r n � 1

0 n ¥ 2
. Show: DR is an R-algebra,

and if DR is a domain then R is a domain.

Exercise 15.26. Let R be a domain.For f P D
R, define Npfq to be the least

n P Z� such that fpnq � 0; and put Np0q :� 0.

a) Show: For all f, g P D
R, we have Npfgq � NpfqNpgq. Deduce: R is a

domain.
b) Show: if f P D�

R if and only if fp1q P R�.
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c) Show: if f P D�
R then Npfq � 1. Show that the converse holds for all f if

and only if R is a field.
d) Let k be a field. Show: Dk is an ACCP-domain.

The point of all this is the following simple but crucial observation:

Proposition 15.53 (Cashwell-Everett). For a ring R, the Dirichlet ring DR

is isomorphic to the ring Rrrt1, . . . , tn, . . .ss of formal power series in a countably
infinite set of indeterminates.

Proof. The ring DR is the big monoid ring RrrpZ�, �qss, while the formal
power series ring Rrrt1, . . . , tn, . . .ss is the big monoid ring

À
nPZ�pN,�q. To com-

plete the proof it suffices to show that the monoid pZ�, �q is isomorphic to
À

nPZ�pN,�q,
i.e., that pZ�, �q is a free commutative monoid on a countably infinite set of gener-
ators. Indeed it is, and the (unique!) generators are the prime numbers. □

Combining Proposition 15.53 and Theorem 15.52 we get:

Corollary 15.54. Let R be a domain.

a) For a domain R, the Dirichlet ring DR is a UFD if and only if for all
n P N, the formal power series ring Rrrt1, . . . , tnss is a UFD.

b) If R is a regular UFD, then DR is a UFD. Thus DR is a UFD if R is a
field or a PID. In particular, D � DC is UFD.

Let us say a little bit about how D is used in number theory. A function f : Z� Ñ C
is called multiplicative fp1q � 0 and for all n1, n2 with gcdpn1, n2q � 1 we have
fpn1n2q � fpn1qfpn2q. One then gets immediately that fp1q � 1.

From an abstract algebraic perspective, this definition would look more natural
without the coprimality condition on n1 and n2: such functions are called strongly
multiplicative and are indeed just the monoid maps from pZ�, �q to pC, �q. However
some of the most important arithmetic functions are multiplicative but not strongly
multiplicative.

Proposition 15.55. Let M be the subset of D consisting of multiplicative
functions. Then pM, �q is a commutative group.

Proof. Step 1: Let f, g P M and let n1, n2 P Z� have gcdpn1, n2q � 1. The
basic observation here is that (by unique factorization!), the divisors of n1n2 are
precisely d1d2 with d1 | n1 and d2 | n2. So:

pf � gqpn1n2q �
¸

d|n1n2

fpdqgpn{dq �
¸

d1|n1,d2|n2

fpd1d2qgpn1
d1

n2
d2
q

�
¸

d1|n1,d2|n2

fpd1qfpd2qgpn1
d1
qgpn2

d2
q �
�� ¸
d1|n1

fpd1qgpn1
d1
q
��� ¸

d2|n2

fpd2qgpn2
d2
q
�

� pf � gqpn1qpf � gqpn2q
and thus f � g PM.
Step 2: Let f PM. Then fp1q � 1 � 0, so there is a unique function g : Z� Ñ C
such that f � g � 1. Indeed we have gp1q � 1, while for all n ¥ 2 we have

(48) gpnq � �
¸

d|n, d�n
fpn
d
qgpdq.
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From this recursive formula, it is easy to prove by induction that g is multiplicative,
similarly to Step 1. □

An important multiplicative function is the constant function 1, which we denote
as 1. (Note that this is not the multiplicative identity, 1, which evaluates to 1 at 0
and to 0 at all n ¥ 2.) For f P D, we put

F :� f � 1 : n ÞÑ
¸
d|n

fpdq.

By Proposition 15.55, if f is multiplicative, then so is F . The function 1 is cer-
tainly completely multiplicative, so if f is completely multiplicative, then F is the
convolution of two completely multiplicative functions...but need not be completely
multiplicative. Indeed,

σ0 :� 1 � 1 : n ÞÑ
¸
d|n

1

is the number of (positive) divisors of n. For any prime number p we have

3 � σ0pp2q � σ0ppqσ0ppq � 22.

Exercise 15.27. Let f P D be a compltely multiplicative function. Then f�1

is completely multiplicative if and only if f � 1.

T. MacHenry showed [Ma99, Cor. 1.3.2] that the subgroup M■ of M generated
by the completely multiplicative functions is a free commutative group on the set
of completely multiplicative functions and a proper subgroup of M.

Let µ :� 1�1. By Proposition 15.55, the function µ is also multiplicative, so to
evaluate it, it suffices to know its values at n � pa for a prime number p and
a P Z�. By (48) we have

µppaq � �
¸

d|pa,d�pa
1pp

a

d
qµpdq � �

a�1̧

i�0

µppiq.

By induction on a, we find that µppq � �1 and µppaq � 0 for all a ¥ 2. This
function is called the Möbius function, and it appears in the following result:

Proposition 15.56 (Möbius Inversion Formula). Let f P D, and let F :� f �1 :
n ÞÑ °d|n fpdq. Then

f �
¸
d|n

F pdqµpn{dq.

Proof. By our definition of µ we have 1 � µ � 1. This is the entire content of
the formula:

f � f � 1 � f � p1 � µq � pf � 1q � µ � F � µ. □

The name Dirichlet ring comes from the following observation: to f P D we can
associate the formal Dirichlet series

Dpf, sq :�
8̧

n�1

fpnq
ns

.

We then have

Dpf, sq �Dpg, sq � Dpf � g, sq and Dpf, sqDpg, sq � Dpf � g, sq,
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so we may view DC as the ring of formal Dirichlet series. For instance, we have

Dp1, sq �
8̧

n�1

1

ns

is the Riemann zeta function, so its inverse is

Dp1�1, sq � Dpµ, sq �
8̧

n�1

µpnq
ns

.

Exercise 15.28. Let f PM � D be a multiplicative function. Show:

Dpf, sq �
¹

p prime

¸
n¥0

fppnq
pns

.

To sum up: unique factorization plays a crucial role in the study of individual arith-
metic functions, as seen for instance in Exercise 15.28. The fact that the ring D
of all arithmetic functions also has unique factorization is one of the more striking
mathematical results that I know. The literature contains some interesting refine-
ments and generalizations, of which we now briefly mention just a few.

For a ring R and an infinite set I, there are many proper subrings S of RrrtssI
with the property that for all finite subsets J of I we have RrrtssJ � S � RrrtssI ,
and we can ask whether the Cashwell-Everett Theorem continues to hold for them:
i.e., is S a UFD if and only if each RrtssJ is a UFD? There is a unique smallest
such S, namely S1 :� �J RrrtssI . This is the ring of formal power series in which
only finitely many indeterminates appear in any one series. Another such ring is
S2, the ring of formal power series f P RrrtssI in which for each n P N, only finitely
many monomials of degree n appear in f . We have S1 � S2 � RrrtssI : e.g. when
I � Z� we have

t1 � t22 � . . .� tnn � . . . P S2zS1 and t1 � t2 � . . .� tn � . . . P RrrtssIzS2.

It is known that both S1 and S2 are UFDs if and only if RrrtssJ is a UFD for each
finite set. For S1, this is easy: we have S1 � limÝÑRrrtssJ . The proof that if each
RrtsJ is a UFD then also RrtsI is a UFD outlined in Exercise 15.14 also works
to show that S1 is a UFD. As for S2, if we again define T :� xti | i P Iy, then
we observe that – like RrrtssI – the ring S2 is T -adically complete, but – unlike
RrrtssI – the ring S2 is the T -adic completion of the polynomial ring RrtsI . In this
text we have not given a ring-theoretic definition of completion with respect to an
ideal, but we have a T -adic metric on RrrtssI hence also on S2 whose restriction
to RrtsI is the pT X RrtsIq-adic metric on RrtsI , so both RrtsI ãÑ RrrtssI and
RrrtssI ãÑ S2 are isometric embeddings from a metric space int oa complete metric
space. However RrtssI is dense in S2 but not in RrrtssI : again t1� t2� . . .� tn� . . .
is not the limit of a sequence from RrtsI . That S2 is a UFD if and only if RrrtssJ
is a UFD for each finite J is a result of Nishimura [Ni73].

Next recall that the Dirichlet ring D be may be viewed as the ring of formal
Dirichlet series

°8
n�1

an
ns with an P C. We call such a formal Dirichlet series con-

vergent if the series converges in C for at least one s P C. It is known that then
either the series converges for all s P C or there is a smallest real number σ (the
“abscissa of absolute convergence”) such that the series converges absolutely in the
half-plane ℜpsq ¡ σ. From this it follows that the convergent Dirichlet series form
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a subring, say Dc, of the Dirichlet ring D. It is a theorem of Bayart-Mouze [BM03]
that Dc is also a UFD.

11. Nagata’s Criterion

Proposition 15.57. Let R be a domain, S a saturated multiplicative subset,
and f P RzS. If f P R is a prime element, then f is a prime element of RS.

Proof. Since f P RzS, f is not a unit in RS . Let α, β P RS be such that
f | αβ in RS . So there exists γ P RS such that γf � αβ; putting α � x1

s1
, β � x2

s2
,

γ � x3

s3
and clearing denominators, we get s1s2x3f � s3x1x2, so f | r3x1x2. If

f | s3, then since S is saturated, f P S, contradiction. So, being prime, f divides
x1 or x2 in R, hence a fortiori in RS and therefore it also divides either x1

s1
or x2

s2
in RS , since these are associates to x1 and x2. □

Theorem 15.58. Every localization of a UFD is again a UFD.

Exercise 15.29. Prove Theorem 15.58.
(Suggestions: one gets an easy proof by combining Theorem 15.1 with Proposition
15.57. But the result is also rather straightforward to prove directly.)

A saturated multiplicative subset S of R is primal3 if it is generated by the units
of R and by the prime elements of S.

Lemma 15.59. An irreducible element of a primal subset is prime.

Proof. Suppose S is primal and f P S is irreducible. By definition, there
exists a unit u and prime elements π1, . . . , πn such that f � uπ1 � � �πn. Since uπ1
is also prime, we may as well assume that u � 1. Then, since f is irreducible, we
must have n � 1 and f � π1. □

Theorem 15.60. For an atomic domain R, the following are equivalent:

(i) Every saturated multiplicative subset of R is primal.
(ii) R is a UFD.

Proof. Since the set R� of units is trivially generated by the empty set of
prime elements, both conditions hold if R is a field, so let us now assume otherwise.

Assume (i). Then, since R is a factorization domain which is not a field, there
exists an irreducible element f of R. Let S be the saturated multiplicative subset
generated by S, which consists of all units of R together with all divisors of positive
powers fn of f . Since S is primal and strictly contains R�, there must exist a
prime element π which divides fn for some n. In other words, fn P πR, and since
πR is prime, we must have that f � xπ for some x P R. Since f is irreducible we
must have x P R�, i.e., f � π and is therefore a prime element. So R is an ACCP
domain and an EL-domain and hence a factorization domain by Theorem 3.3.

Assume (ii), let S be a saturated multiplicative subset of R, and suppose that
f P SzR�. Then f � uπa11 � � �πann where the πi’s are prime elements. Since each
πi | f , πi P S for all i. It follows that indeed S is generated by its prime elements
together with the units of R. □

Because of Theorem 15.60, it is no loss of generality to restate Theorem 15.58 as:
the localization of a UFD at a primal subset is again a UFD. The following elegant
result of Nagata may be viewed as a converse.

3This terminology is my invention: do you like it?
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Theorem 15.61. (Nagata [Na57]) Let R be a factorization domain and S � R
a primal subset. If the localized domain RS is a UFD, then so is R.

Proof. By Theorem 15.8 it’s enough to show: if f P R is irreducible, then f
is prime.
Case 1: f R S, so f is not a unit in RS . Since RS is a UFD, it is enough to show
that f is irreducible in RS . So assume not: f � x1

s1
� x2

s2
with x1, x2 P RzS and

s1, s2 P S. hen s1s2f � x1x2. By assumption, we may write s1 � up1 � � � pm and
s2 � vq1 � � � qn, where u, v P R� and pi, qj are all prime elements of R. So p1 | x1x2;
since p1 is a prime, we must have either x1

p1
P R or x2

q2
P R. Similarly for all the

other pi’s and qj ’s, so that we can at each stage divide either the first or the second
factor on the right hand side by each prime element on the left hand side, without
leaving the ring R. Therefore we may write f � p 1

uv qx1

t1
x2

t2
where t1, t2 are each

products of the primes pi and qj , hence elements of S, and also such that t1 | x1,
t2 | x2, i.e., the factorization takes place in R. Moreover, since xi P RzS and ti P S,
xi

ti
is not even a unit in RS , hence a fortiori not a unit in R. Therefore we have

exhibited a nontrivial factorization of f in R, contradiction.
Case 2: f P S. Since S is primal, by Lemma 15.59, f is prime. □

Remark: If S is the saturation of a finitely generated multiplicative set, the hy-
pothesis that R is a factorization domain can be omitted.

Application: Let A be a UFD and consider R � Arts. Put S � Azt0u. As for
any multiplicative subset of a UFD, S is generated by prime elements. But more-
over, since Arts{pπArtsq � pA{πAqrts, every prime element π of A remains prime
in Arts, so viewing S as the multiplicative subset of Arts consisting of nonzero con-
stant polynomials, it too is generated by prime elements. But if F is the fraction
field of A, RS � pArtsqS � F rts which is a PID and hence a UFD. Nagata’s theo-
rem applied to R and S now tells us – for the third time! – that R � Arts is a UFD.

Nagata used Theorem 15.61 to study the coordinate rings of affine quadric cones.
Let k be a field of characteristic different from 2, and let fpxq � fpx1, . . . , xnq P

krx1, . . . , xns be a quadratic form, i.e., a homogeneous polynomial of degree
2 with k coefficients. We assume that f the associated bilinear form px, yq ÞÑ
1
2 pfpx� yq� fpxq� fpyqq is nonsingular. Equivalently, by making an invertible lin-
ear change of variables every quadratic form can be diagonalized, and a quadratic
form is nonsingular if and only if it admits a diagonalization

(49) fpxq � a1x
2
1 � . . .� anx2n with a1, . . . , an P k�.

We wish to study the affine quadric cone associated to f , namely Rf � krxs{pfq.
If quadratic forms f and g are isometric – i.e., differ by an invertible linear change
of variables – then Rf � Rg, so we assume if we like that f is in diagonal form as
in (49) above. If n ¥ 3 then every nonsingular diagonal quadratic polynomial is
irreducible, so Rf is a domain.

Theorem 15.62. Let f � fpx1, . . . , xnq P Crx1, . . . , xns be a nondegenerate
quadratic form. Then Rf :� Crx1, . . . , xns{pfq is a UFD if and only if n ¥ 5.

Proof. By the remarks above, Rf is a domain if and only if n ¥ 3, so we may
certainly restrict to this case. Because C is algebraically closed, every quadratic
form in n ¥ 2 variables is isotropic, i.e., there exists 0 � a P kn such that fpaq � 0:
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indeed, the first n�1 coordinates of a may be chosen arbitrarily. By an elementary
theorem in the algebraic theory of quadratic forms [La06, Thm. I.3.4], we may
make a change of variables to bring f into the form:

fpxq � x1x2 � gpx3, . . . , xnq.
Case 1: Suppose n � 3, so that

fpxq � x1x2 � ax23
for some a P k�. In this case, to show that Rf is not a UFD it suffices to show
that the images x1, x2, x3 of x1, x2, x3 in Rf are nonassociate irreducibles, for
then x1x2 � ax3

2 exhibits a non-unique factorization! To establish this, regard
krx1, x2, x3s as a graded C-algebra in the usual way – with x1, x2, x3 each of degree
1 – so that the quotient Rf by the homogeneous ideal pfq inherits a grading. Since
x1 has degree 1, if it were reducible, it would factor as the product of a degree one
element c1x1 � c2x2 � x3x3 � pfq and a degree zero element r � pfq, and thus

prc1 � 1qx1 � rc2x2 � rc3x3 P pfq.
But the left hand side has degree 1, whereas all nonzero elements in pfq have degree
2 or higher, so r P Crxs� and therefore the factorization is trivial. The irreducibility
of x2 and x3 is proved in the same way. If x1 � x3 in Rf , then we may divide both
sides of x1x2 � ax32 by x1 and deduce that also x2 � x3. But in the quotient ring
Rf {px3q, x3 maps to 0 and x1 and x2 do not, contradiction. So Rf is not a UFD.
Case 2: Suppose n � 4, so fpxq � x1x2�gpx3, x4q, where gpx3, x4q is a nonsingular
binary form. Here for the first time we use the full strength of the quadratic closure
of k: since k� � k�2, any two nonsingular quadratic forms in the same number of
variables are isometric, so we may assume WLOG that

fpxq � x1x2 � x3x4.
Now we argue exactly as in Case 1 above: in Rf , the images x1, x2, x3, x4 are all
non-associate irredcuble elements, so x1x2 � x3x4 is a non-unique factorization.
Case 3: n ¥ 5. Then n� 2 ¥ 3, so g is irreducible in the UFD Crx3, . . . , xns, hence
also in Crx2, x3, . . . , xns. ThereforeRf {px1q � Crx1, . . . , xns{px1, fq � Crx2, . . . , xns{pgq
is a domain, i.e., x1 is a prime element. Moreover,

Rrx1�1s � Crx1, . . . , xn, x�1
1 s{px1x2 � gq

� Crx1, . . . , xn, x�1
1 s{px2 � g

x1
q � Crx1, x3, . . . , xn, x�1

1 s
is a localization of the UFD Crx1, x3, . . . , xns hence a UFD. By Nagata’s Criterion
(Theorem 15.61), Rf itself is a UFD. □

Now let k be a field of characteristic not 2 and f P krx1, . . . , xns a nondegenerate
quadratic form. Without changing the isomorphism class of Rq we may diagonalize
f ; moreover without changing the ideal pfq we may scale by any element of k�, so
without loss of generality we need only consider forms x21 � a2x22 � . . .� anx2n.

Theorem 15.63. Let k be a field of characteristic different from 2, let a2, . . . , an P
k�, and let

f � x21 � a2x22 � . . .� anx2n,
so f is a nonsingular form over k. Put Rf :� krx1, . . . , xns{pfq.

a) If n ¤ 2 then Rf is not a UFD.
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b) If n � 3, then Rf is a UFD if and only if f is aniostropic:
for all a P kn, if fpaq � 0 then a � 0.

c) Suppose f � x21 � ax22 � bx23 � cx24.
(i) If a is a square in k, then Rf is a UFD if and only if �bc is not a

square in k.
(ii) If none of a, b, c, �ab, �ac, �bc is a square in k, then Rf is a UFD

if and only if �abc is not a square.
d) If n ¥ 5, then Rf is a UFD.

Proof. a) If n ¤ 2, Rf is never an integrally closed domain. Indeed, if n � 1,
then Rf � krx1s{px21q is not a domain. If n � 2, then Rf � krx1, x2s{px21� a2x22q is
a domain if and only if x21 � a2x22 is irreducible if and only if x21 � a2 is irreducible
if and only if �a2 is not a square in k. If �a2 is not a square in k, then Rf �
krx2sr

a
�a2x22s � krx2srx2

?�as. Thus
?�a lies in the fraction field of Rf and is

integral over Rf but does not lie in Rf .
b) The proof of Theorem 15.62 goes through to show that if f is isotropic (i.e., not
anisotropic), Rf is not a UFD. The anisotropic case is due to Samuel [Sa64].
Part c) is due to T. Ogoma [O74].
Part d) goes back at least to van der Waerden [vdW39]. In [Na57], M. Nagata
gives a short proof using Theorem 15.61. □

It is also interesting to consider affine rings of inhomogeneous quadric hypersurfaces.
For instance, we state without proof the following result.

Theorem 15.64. For n ¥ 1, let Rn :� Rrt1, . . . , tn�1s{pt21 � . . .� t2n�1 � 1q be
the ring of polynomial functions on the n-sphere Sn.

a) (Bouvier [Bo78]) If n ¥ 2, then Rn is a UFD.
b) (Trotter [Tr88]) R1 is isomorphic to the ring Rrcos θ, sin θs of real trigono-

metric polynomials, in which psin θqpsin θq � p1 � cos θqp1 � cos θqq is an
explicit non-unique factorization into irreducible elements. Hence R1 is
not a UFD.

12. The Euclidean Criterion

In this section we give a commutative algebraic generalization of Euclid’s proof that
there are infinitely many prime numbers, following [Cl17a]. Euclid’s result on the
face of it pertains to irreducible elements. It happens that in Z every irreducible
element is prime, but that is a different (and deeper) result of Euclid.

It will be helpful to slightly adjust our terminology: here an atom will be the
principal ideal generated by an irreducible element, so two irreducible elements de-
termine the same atom if and only if they are associate. It seems more interesting
to count atoms than irreducible elements, since in particular whenever an atomic
domain that is not a field has infinite unit group it necessarily has infinitely many
irreducible elements but not necessarily infinitely many atoms.

In fact our generalization works in some domains in which not all nonzero nonunits
factor into irreducibles. A Furstenberg domain is a domain R in which every
nonzero nonunit has an irreducible divisor.
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We call a ring semiprimitive if it has zero Jacobson radical: i.e., if the only
element lying in every maximal ideal is zero.

Exercise 15.30. a) Show: every atomic domain is a Furstenberg do-
main.

b) Show: the ring HolpCq of holomorphic functions on the complex plane is
a semiprimitive Furstenberg domain that is not an atomic domain.

Exercise 15.31. a) Show that for a ring R the following conditions are
equivalent:
(i) There is an infinite sequence tInu8n�1 of pairwise comaximal, proper

ideals of R.
(ii) The set MaxSpecR is infinite.

b) Let R be a semiprimitive domain that is not a field. Show: MaxSpecR is
infinite.

Theorem 15.65. (Euclidean Criterion [Cl17a, Thm. 2.3]) Let R be a semiprim-
itive domain that is not a field.

a) There is a sequence tanu8n�1 of pairwise comaximal nonunits.
b) Suppose moreover that R is a Furstenberg domain. Then there is a se-

quence tpnu8n�1 of pairwise comaximal irreducible elements. In particular
R has infinitely many atoms.

Proof. a) We go by induction on n. Since R is not a field there is a1 P RzR�.
Having chosen a1, . . . , an that are pairwise comaximal nonunits, because JpRq � p0q
and R is a domain, there is y P R such that

an�1 :� ya1 � � � an � 1 P RzR�.
(Because a1 R R� we cannot have an�1 � 0.) Evidently we have xai, an�1y � R for
all 1 ¤ i ¤ n.
b) Again we go by induction on n. Since R is a Furstenberg domain and not a field
there is some irreducible element p1. Having chosen pairwise comaximal irreducible
elements p1, . . . , pn, because JpRq � 0 there is y P R such that

x :� yp1 � � � pn � 1 P RzR�.
Because we are in a Furstenberg domain, the element x has an irreducible divisor
pn�1. Then for all 1 ¤ i ¤ n we have

1 �
�

x

pn�1



pn�1 � y

�¹
j�i

pj

�
pi,

which shows that xpi, pn�1y � 1. Comaximal irreducible elements are nonassociate,
so R has infinitely many atoms. □

Corollary 15.66. For any domain R, the domain Rrts has infinitely many
atoms.

Exercise 15.32. Prove Corollary 15.66. (Hint: the most interesting case is
when R is finite!)

Corollary 15.67. Let R be a Furstenberg domain, not a field, such that #R ¡
#R�. Show: R has infinitely many atoms.
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Exercise 15.33. a) Prove Corollary 15.67. (Suggestion: make use of
the fact that #I � #R for every nonzero ideal of R.)

b) Deduce that if R � Z or if R � Zr?�1s then R has infinitely many atoms.

Exercise 15.34. Let K be a number field – i.e., a finite degree extension of
Q – and let ZK be the integral closure of Z in K. Can you use Theorem 15.65 to
show that ZK has infinitely many atoms?4

Exercise 15.35. Let Z be the ring of all algebraic integers – i.e., the integral
closure of Z in C. Show: Z is a semiprimitive domain that is not a field that
has no irreducible elements. Thus in Theorem 15.65b) the hypothesis that R is a
Furstenberg domain cannot be omitted.

Exercise 15.36. Let R be an integrally closed, Noetherian domain of Krull
dimension one. (In other words, R is a Dedekind domain that is not a field. See
Chapter 20 for more on Dedekind domains. Results from this chapter may be helpful
in solving this exercise.) Show that the following are equivalent:

(i) R is semiprimitive.
(ii) R has infinitely many maximal ideals.
(iii) R has inifnitely many atoms.

Proposition 15.68. Let R be a Noetherian domain of Krull dimension one.
Then R is semiprimitive if and only if MaxSpecR is infinite. When these conditions
hold, R has infinitely many atoms.

Proof. For any domain R, if MaxSpecR � tm1, . . . ,mnu is finite, then

JpRq �
n£
i�1

mi �
n¹
i�1

mi � p0q,

so R is not semiprimitive. Conversely, if JpRq � p0q, then maximal ideals of R
are minimal prime ideals of the Noetherian ring R{JpRq hence are finite in nubmer
by Theorem 10.14. Since Noetherian domains are atomic and atomic domains are
Furstenberg, when MaxSpecR is infinite the Euclidean Criterion applies to show
that R has infinitely many atoms. □

Lemma 15.69. In an atomic domain, every prime ideal is generated by irre-
ducible elements.

Proof. Let p be a prime ideal of the atomic domain R, and let txsusPS be a
set of nonzero generators for p. Since R is atomic, we may factor xs � fs,1 � � � fs,ns

into irreducibles. Since fs,1 � � � fs,ns
lies in the prime ideal p, some fs,js does. By

replacing txsusPS by tfs,jsusPS we get a set of irreducible generators for p. □

Theorem 15.70. Let R be an atomic domain with finitely atoms. Then R is
semilocal Noetherian and dimR ¤ 1.

Proof. By Lemma 15.69, every prime ideal of R is generated by irreducibles.
Since replacing a generator by an associate element does not change the ideal gen-
erated, we conclude that every prime ideal is finitely generated – so R is Noetherian
by Cohen’s Theorem (Theorem 4.32) – and that there are only finitely many prime
ideals. If the Noetherian domain R had a nonzero, nonmaximal prime ideal p,

4In fact ZK has infinitely many principal prime ideals, but this is a rather deep theorem in
algebraic number theory.
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then let m be a maximal ideal strictly containing p. By Corollary 8.53, there are
infinitely many prime ideals q with p0q � q � m, contradiction. □

Here is what we have shown so far: if R is an atomic domain, not a field, with
finitely many atoms, then R must be semilocal, Noetherian and of Krull dimension
1. Conversely, if R is semilocal, Noetherian of Krull dimension 1 and integrally
closed, then R has finitely many atoms. It’s natural to attempt to remove the
integral closure hypothesis and thereby get a characterization of atomic domains
with finitely many atoms. However, things are not so simple:

Example 15.71. Let k be a field, and consider the subring

R � krrt2, t3ss � k � t2krrtss
of the formal power series ring krrtss. For 0 � f � °8

n�0 ant
n P krrtss, we define

vpfq to be the least n such that an � 0. Then v is a discrete valuation on krrtss,
and the only nonzero prime ideal of krrtss is ptq � tf P R | vpfq ¡ 0u Y t0u. The
element t is integral over R – it satisfies the monic polynomial x2 � t2 – and from
this it follows that the only nonzero prime ideal of R is

m � ptkrrtssq XR � t2krrtss � tf P R | vpfq ¥ 2u Y t0u � xt2, t3y.
and R� � ta0 �

°
n¥2 ant

n | a0 � 0u. We will give a complete description of the
irreducibles of R. First we claim that f P R is irreducible if and only if vpfq P t2, 3u.
Indeed a nontrivial factorization f � xy involves vpxq, vpyq ¥ 2 hence vpfq ¥ 4;

conversely, if vpfq ¥ 4 then f � t2 ft2 is a nontrivial factorization. Since k� � R�,
every irreducible is associate to one of the form

t2 �
¸
n¥3

ant
n, pvpfq � 2 caseq

or one of the form

t3 �
¸
n¥4

ant
n, pvpfq � 3 caseq.

Associate elements have the same valuation, so certainly no irreducible of the first
type is associate to an irreducible of the second type. We claim that t2�°n¥3 ant

n

is associate to t2�°n¥3 bnt
n if and only if a3 � b3 and t3�°n¥3 ant

n is associate

to t3 �°n¥3 bnt
n if and only if a4 � b4. This can be done by direct computation:

pt2 � a3t3 � a14t4 � a5t5 � . . .qp1� u2t2 � u3t3 � . . .q
� t2 � a3t3 � pa4 � u2qt4 � pa5 � a3u2 � u3qt5 � . . . ,

so a3 � b3 and there is a unique choice of u2, u3, . . . leading to an � bn for all
n ¥ 4. The vpfq � 3 case is similar. Thus there are precisely 2#k atoms, and
hence a finite number if and only if k is finite.





CHAPTER 16

Principal Rings and Bézout Domains

A ring R in which every ideal is principal is called a principal ring. If R is
moreover a domain, it is called a principal ideal domain (PID).

1. Principal ideal domains

Proposition 16.1. Let R be a UFD.

a) If every maximal ideal of R is principal, then R is a PID.
b) The ring R is a PID if and only if dimR ¤ 1.

Proof. a) Let R be a UFD in which every maximal ideal is principal. By
Theorem 4.31 it is enough to show that every prime ideal in R is principal. Let
p P SpecR be a nonzero prime ideal. By Theorem 15.1, p contains a prime element
p. But also p lies in a maximal ideal m � pℓq, so

ppq � p � m � pℓq.
Thus ℓ | p; since p is a prime element we get ppq � pℓq, so p � m � pℓq is principal.
b) The proof of part a) shows that in no domain can one have a proper containment
of nonzero principal prime ideals. From this it follows that a PID has dimension
at most 1. Conversely, Theorem 15.1 implies that every height one prime ideal in
a UFD is prinicpal, so if dimR ¤ 1 then every prime ideal in R is principal, so –
again by Theorem 4.31 – we get that R is a PID. □

Exercise 16.1. We develop an alternate proof of Proposition 16.1a) following
W. Dubuque.

a) Let R be a UFD, and let S � R be any subset. Show: gcdpSq exists.
b) Let R be a UFD in which all maximal ideals are principal, let I be a

nonzero ideal in R. Show that we may write I � gcdpIqJ for an ideal
J which is not contained in any proper principal ideal, and conclude that
I � gcdpIq is principal.

We now follow with some very familiar examples.

Proposition 16.2. The integer ring Z is a principal ideal domain.

Proposition 16.3. For any field k, the univariate polynomial ring krts is a
principal ideal domain.

Surely the most reasonable way to prove Propositions 16.2 and 16.3 is by exploiting
the division algorithms that both rings are well known to possess. We will consider
Euclidean rings later in this chapter, so for now we take it as a challenge to bring
the theory we have developed so far to bear to give other, less reasonable, proofs!
For a property P of rings, a ring R is residually P if for all nonzero ideals I of R,
the quotient R{I has property P.

349
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Lemma 16.4.

a) The ring Z is residually Artinian.
b) For any field k, the ring krts is residually Artinian.
c) If a ring R is residually Artinian, then dimR ¤ 1.

Proof. a) For any nonzero n P Z, the ring Z{nZ is finite and thus Artinian.
b) For any nonzero nptq P krts, the ring krts{pnptqq is a k-vector space of dimension
equal to the degree of nptq. So krts{pnptqq is Artinian as a k-module hence a fortiori
is Artinian as a ring.
c) By contraposition: if p0 � p1 � p2 are prime ideals, then the chain p1 � p2
shows that dimR{p1 ¥ 1, so R{p1 is not Artinian. □

Combining Proposition 16.1 and Lemma 16.4 we find that it suffices to show that
the rings Z and krts are PIDs it suffices to show that they are UFDs. Indeed we
have already seen that krts is a UFD, a special case of Theorem 15.27. As for
showing that Z is a UFD, here are two proofs the reader may not have seen before:

First proof: Indeed a decomposition n � p1 � � � pr corresponds to a composition
series for the Z-module Z{nZ. Since Z{nZ is finite, it is certainly Noetherian
and Artinian, so composition series exist. Moreover the Jordan-Hölder theorem
implies that any two composition series have the same number of terms – i.e.,
r � s � ℓpZ{nZq – and that after a permutation the sequences of isomorphism
classes of composition factors become identical.

Second proof (Lindemann [Li33], Zermelo [Ze34]): We prove both the existence
and uniqueness of the factorization by an inductive argument, specifically by appeal
to the well-ordering of the positive integers under ¤.

Existence: let S be the set of integers n ¡ 1 which do not have at least one
prime factorization. We wish to show that S is empty so, seeking a contradiction,
suppose not. Then by well-ordering S has a least element, say N . If N is prime,
then we have found a prime factorization, so suppose it is not prime: that is, we
may write N � N1N2 with 1   N1, N2   N . Thus N1 and N2 are too small to lie
in S so each have prime factorizations, say N1 � p1 � � � pr, N2 � q1 � � � qs, and then
N � p1 � � � prq1 � � � qs gives a prime factorization of N , contradiction!

Uniqueness: we claim that the factorization of a positive integer is unique.
Assume not; then the set of positive integers which have at least two different
standard form factorizations is nonempty, so has a least element, say N , where:

(50) N � p1 � � � pr � q1 � � � qs.
Here the pi’s and qj ’s are prime numbers, not necessarily distinct from each other.
However, we must have p1 � qj for any j. Indeed, if we had such an equality, then
we could cancel and, by an inductive argument we have already rehearsed, reduce
to a situation in which the factorization must be unique. In particular p1 � q1.
Without loss of generality, assume p1   q1. Then, if we subtract p1q2 � � � qs from
both sides of (50), we get

(51) M :� N � p1q2 � � � qs � p1pp2 � � � pr � q2 � � � qsq � pq1 � p1qpq2 � � � qsq.
By the assumed minimality of N , the prime factorization of M must be unique.
However, (51) gives two different factorizations of M , and we can use these to
get a contradiction. Specifically, M � p1pp2 � � � pr � q2 � � � qsq shows that p1 | M .
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Therefore, when we factor M � pq1 � p1qpq2 � � � qsq into primes, at least one of the
prime factors must be p1. But q2, . . . , qj are already primes which are different from
p1, so the only way we could get a p1 factor is if p1 | pq1 � p1q. But this implies
p1 | q1, and since q1 is also prime this implies p1 � q1. Contradiction!

Exercise 16.2. Let R be a ring, and suppose that the univariate polynomial
ring Rrts is a PID. Show: R is a field.

Proposition 16.5. Let R be a Noetherian local ring with a principal maximal
ideal m � paq. Then every nonzero ideal of R is of the form paiq for some i P N.
In particular, R is a principal ring.

Proof. The Krull Intersection Theorem gives
�
im

i � �ipaiq � 0. It follows
that for any nonzero r P R, there exists a largest i P N such that r P paiq, i.e., there
exists s P R such that r � sai. But if s were not a unit then it would lie in m and
thus r would lie in mi�1, contradiction. So s is a unit and prq � mi. Thus to every
nonzero element r of I we attach a non-negative integer ir. Now if I is any nonzero
ideal of R, choose a nonzero element r of I with ir minimal among elements of I.
Then I � prq � mi, and the other containment follows by minimality of ir. □

Proposition 16.6. For any field k, the formal power series ring krrtss is a
PID.

Exercise 16.3. Give several proofs of Proposition 16.6.
(Suggestions: (i) Use Theorem 8.40a). (ii) Use Theorem 8.40b) and Proposition
16.5.) (iii) Let I be a nonzero ideal in krrtss and let f P I be an element whose
“order of vanishing” – i..e., the index of the least nonzero Laurent series coefficient
– is minimal among elements of I. Show: I � xfy.)

1.1. Dedekind-Hasse Norms. Let R be a domain. A map

| � | : RÑ N
is a norm if all of the following hold:
(N0) For all x, y P R, we have |xy| � |x||y|.
(N1) For all x P R, we have |x| � 0 ðñ x � 0.
(N2) For all x P R, we have |x| � 1 ðñ x P R�.

A field k admits a unique norm: we must have |0| � 0 and |x| � 1 for all x P k.
In general, a norm | � | on a domain R extends to its fraction field K as a map

| � | : K Ñ Q¥0,
x

y
ÞÑ |x|
|y| .

This is the unique such extension that retains property (N0): for all x, y P K we
have |xy| � |x||y|. This extension retains property (N1) but property (N2) may be
lost: for x P K�, we may have |x| � 1 without having x P R.

Example 16.7.

a) The standard absolute value defines a norm | � | : ZÑ N.
b) Let k be a field. We define a map | � | : krts Ñ N by |0| :� 0 and, for

f P krts, |f | :� 2deg f . This is a norm on krts.
c) Let R be a UFD, and let tπiuiPI be a family of prime elements of R

such that for every prime element π there is exactly one i P I such that
pπq � pπiq. (Such a family always exists.) If | � | : RÑ N is a norm on R,
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then for all i P I there is an integer ni ¥ 2 such that |πi| � ni. This data
determines the norm: any x P R may be written as uπi1 � � �uπir and we
have |x| �±r

i�1 ni. Conversely, for each i P I let ni P Z¥2. Then

|uπi1 � � �πir | :�
r¹
i�1

ni

is a norm on R.

Let R be a domain with fraction field K. A Dedekind-Hasse norm on a domain
R is a norm |�| : RÑ N satisfying the following additional property: for all x P KzR
there are a, b P R such that 0   |ax� b|   1.

Proposition 16.8. Let R be a domain with fraction field K.

a) R is a PID if and only if it admits a Dedekind-Hasse norm.
b) If R is a PID, then every norm is Dedekind-Hasse norm.

Proof. Step 1: Suppose that R admits a Dedekind-Hasse norm | � |. Let I be
a nonzero ideal of R, and let d P I be an element on which |d| is minimal among
nonzero elements of I. We claim that I � pdq: if not, there is x P I such that
x
d P KzR, and since | � | is a Dedekind-Hasse norm there are a, b P R such that
0   |axd � b|   1. Thus ax � bd P I and 0   |ax � bd|   |d|, so ax � bd P I has
smaller norm than the norm of d: contradiction.
Step 2: If R is a PID, then it is a UFD, so by Example 16.7c) it admits a norm
| � |. To complete the proof it suffices to show that the (arbitrary) norm | � | is
Dedekind-Hasse. Let x P KzR. We may write x � p

q with p, q P R, q R R� and

gcdpp, qq � 1; since R is a PID there are a, b P R such that ap� bq � q. Thus

|ax� b| �
����apq � b

���� � ����1q
���� P p0, 1q. □

2. Structure theory of principal rings

Proposition 16.9. Let R be a principal ring.

a) For any multiplicative subset S, the localization RS is principal.
b) For any ideal I of R, the quotient R{I is principal.

Exercise 16.4. Prove Proposition 16.9.

Proposition 16.10. For rings R1, . . . , Rn, the following are equivalent:

(i) Each Ri is a principal ring.
(ii) The direct product

±n
i�1Ri is a principal ring.

Exercise 16.5.

a) Prove Proposition 16.10.
b) Show: no infinite product of nonzero principal rings is a principal ring.

A principal ring pR,mq is special if it is a local Artinian ring, i.e., if it is local
and the maximal ideal is principal and nilpotent. The complete structure of ideals
in special principal rings can be deduced from Proposition 16.5: if n is the least
positive integer such that mn � 0, then the ideals of R are precisely the powers
mi � pπiq for 0 ¤ i ¤ n.

We now give a structure theorem for principal rings, due originally to Krull [Kr24],
as a byproduct of a striking result of Kaplansky [Ka49].
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Theorem 16.11.

a) (Kaplansky) Let R be a Noetherian ring in which each maximal ideal is
principal. Then R is the direct product of a finite number of PIDs and
special principal rings.

b) (Krull) A ring is principal if and only if it is a finite direct product of
rings, each of which is either a PID or a special principal ring.

Proof. It suffices to prove part a), for then part b) follows immediately.
Step 1: Since R is Noetherian of dimension at most 1, it has finitely many minimal
primes p1, . . . , pr, and all other primes are maximal. The irreducible components
of SpecR are V pp1q, . . . , V pprq. We claim that the irreducible components are
pairwise disjoint: if not there is P P MaxSpecR containing two distinct minimal
primes, and then RP is a Noetherian local ring with principal maximal ideal and
more than one minimal prime. In particular its ideals are not totally ordered under
inclusion, which contradicts Proposition 16.5.

In other words, the minimal primes are pairwise comaximal. By Exercise 10.13
there is N P Z� such that

�r
i�1 p

N
i � p0q. Taking Ri :� R{pNi , the Chinese

Remainder Theorem gives

R �
r¹
i�1

Ri.

The maximal ideals of Ri are precisely the pushforwards under the quotient map
of the maximal ideals of R containing pi, so each Ri is a Noetherian ring in which
each maximal ideal is principal and having a unique minimal prime. So it suffices
to show that a Noetherian ring R having a unique minimal prime in which each
maximal ideal is principal is either a PID or a special principal ring.
Step 2: If dimR � 0 then R is Artinian local with principal maximal ideal, so
Proposition 16.5 implies that R is a special principal ring. So suppose dimR � 1.
If nilR � p0q then we are assuming that all the prime ideals of R are principal, so
R is a PID by Theorem 4.31. If nilR � p0q, let x be a nonzero nilpotent element,
and let P be a maximal ideal containing annpxq. Then the image of x in RP is a
nonzero nilpotent. The ring RP is one-dimensional local with principal maximal
ideal PRP � xay, say, so by Proposition 16.5 every nonzero ideal of RP is of the
form xaiy for some i P N. In such a ring the only nonzero prime ideal is xay, so
since RP has dimension 1, the zero ideal must be prime and RP must be a domain,
contradicting the existence of nonzero nilpotent elements. □

Having studied PIDs, let us now turn to the case of special principal rings and prin-
cipal Artinian rings: to be sure a ring is principal Artinian if and only if it is a finite
product of special principal rings.. The most familiar examples of principal Artinian
rings (resp. of special principal rings) are Z{nZ (resp. Z{paZ for a prime number
p). Any quotient of a PID by a nonzero ideal is a principal Artinian ring (Exercise
16.9a)) and any quotient of a PID by a prime power ideal is a special principal ring.

A ring R is self-injective if R is an injective R-module. By Exercise 3.51d), a
domain is self-injective if and only if it is a field.

Exercise 16.6. Let tRiuiPI be a family of nonzero rings, and put R :�±iPI Ri.
Show: R is self-injective if and only if Ri is self-injective for all i P I.

Proposition 16.12. A principal Artinian ring is self-injective.
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Proof. Every special principal ring is a finite product of local special principal
rings, so by Exercise 16.6 we reduce to the case of a local special principal ring
pR, pπqq. By Proposition 16.5 if N is the least positive integer such that πN � 0
then the ideals of R are precisely pπaq for 0 ¤ a ¤ N . By Baer’s Criterion it is
enough to extend every R-module homomorphism φ : pπaq Ñ R to all of R. The
R-module pπaq is cyclic with annihilator pπN�aq, hence pπaq �R R{pπN�aq, so each
such homomorphism is uniquely specified by mapping πa to any element of R killed
by πN�a, i.e., to any element of pπaq. Thus φ maps πa to xπa for some x P R, and
we can extend it to rxs : RÑ R, i.e., y P R ÞÑ xy. □

Proposition 16.12 implies that for N ¡ 1 the ring Z{NZ is self-injective. It follows
that if A is an N -torsion commutative group and x P A has order N , then there
is a subgroup B of A such that A � xxy ` B. This is precisely what is needed
in order to write a finite commutative group as a direct sum of cyclic subgroups.
More generally, we can recover the following well known structure theorem.

Theorem 16.13. Every finitely generated module over a PID is a finite direct
sum of cyclic modules.

Proof. Let R be a PID, and let M be a finitely generated R-module. As
usual, we have the short exact sequence

0ÑM rtorss ÑM ÑM{M rtorss Ñ 0.

The module M{M rtorss is finitely generated and torsionfree, hence by Theorem
3.64 is free, i.e., is isomorphic to a finite direct sum of copies of R itself. Since
R is Noetherian and M is finitely generated, the torsion submodule T :� M rtorss
is also finitely generated, hence it has nonzero annihilator I � paq. Thus T is a
finitely generated module over the special principal ring R{paq. We claim that it
has an element x with annihilator paq, so that the R-submodule xxy is isomorphic
to R{paq. Assuming the claim for the moment, we have an R-submodule T2 of T
such that T � xxy ` T 1. The submodule T 1, also being a quotient of T , is again a
finitely generated torsion submodule, so we can argue as above splitting off direct
summands. Since xx1y � xx1y ` xx2y � an ascending chain of submodules in the
Noetherian module T , it must terminate, showing that T is a finite direct sum of
cyclic modules.

To see that T has an element annihilated by a: we can easily reduce – e.g.
using the CRT for modules; we leave the details to the reader – to the case of
a � πk a prime power, and then the result is clear, since the annihilator of T is
the ideal generated by the annihilators of the elements of T , so if the annihilator
of each element of T were contained in pπk�1q then the annihilator of T would be
contained in pπk�1q, a contradiction. □

Exercise 16.7. Let R be a PID, and let M be an R-module.

a) Show: M has finite length if and only if it is a finitely generated torsion
R-module.

b) Suppose M is finitely generated. Show: M is indecomposable if and only
if M is free of rank 1 or M is cyclic with prime power annihilator.

c) Let T be a finitely generated torsion R-module. Use the Krull-Schmidt
Theorem to show that T admits a decomposition as a finite direct sum of
cyclic modules with prime power annihilator. Explain the sense in which
this decomposition is unique. Check the fine print of the structure theorem
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for finitely generated modules over a PID in a standard algebra text, and
confirm that Theorem 16.13 and this exercise recover that full result.

Earlier we said that quotients of PIDs are the main examples of special principal
rings. In fact they are the only examples:

Theorem 16.14. (Hungerford [Hu68]) Every special principal ring is the quo-
tient of a PID.

Hungerford’s Theorem relies on Cohen’s structure theorem for complete Noetherian
local rings, a topic which we unfortunately do not treat in this text, so the proof
must be omitted.

Exercise 16.8. Show: for a commutative ring R, the following are equivalent:

(i) R is a special principal ring.
(ii) R is the quotient of a discrete valuation ring by a nonzero ideal.

Exercise 16.9.

a) Show that a PID is residually Artinian principal: i.e., every quotient of a
PID by a nonzero ideal is an Artinian principal ring.

b) Hungerford’s Theorem says that the quotients of PIDs by prime power
ideals are precisely the local Artinian principal ring. Show: not every
Artinian principal ring is a quotient of a PID.
(Suggestion: use Exercise 8.45.)

Exercise 16.10. Let k be a field. Let R � krx, ys, and m be the maximal ideal
xx, yy in R. Show that the quotient ring S � R{m2 is nonprincipal. In particular,
if k is finite, then S is a finite nonprincipal local ring.

Exercise 16.11. For n P Z�, show that the following are equivalent:

(i) Every finite ring of order n is principal.
(ii) The integer n is cubefree, i.e., it is not divisible by the cube of any prime

number.

Exercise 16.12. It follows from the previous exercise that the least cardinality
of a nonprincipal ring is 8.

a) Show that up to isomorphism there are 10 rings of order 8, of which two
are nonprincipal: Z{2Zrx, ys{xx2, xy, y2y and Z{4Zrxs{x2x, x2y.

b) Show that there is up to isomorphism a unique noncommutative ring of
order 8.

c) Show that for any prime p ¥ 3 there are up to isomorphism 11 rings of
order p3 and one noncommutative ring of order p3. How many of these
rings are principal?

Exercise 16.13. (Inspired by http://math.stackexchange.com/questions/361258)
Show: for a ring R the following are equivalent:

(i) The polynomial ring Rrts is principal.
(ii) R is a finite product of fields.

(Suggestions: (ii) ùñ (i) is easy. For (i) ùñ (ii), show: if Rrts is principal, then
R is principal Artinian; then reduce to showing that if R is a local principal Artinian
ring with nonzero maximal ideal p � xπy, then Rrts is not principal. For this let
m :� xπ, ty P MaxSpecRrts and show: dimRrts{m m{m2 � dimR{πRm{m2 � 2.)
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3. Euclidean functions and Euclidean rings

3.1. Euclidean functions. If R is a domain, then a Euclidean function is
a function φ : R Ñ N such that: for all a P R and b P Rzt0u, there are q, r P R
such that a � qb� r with r � 0 or φprq   φpbq.

Proposition 16.15. Let R be a domain that admits a Euclidean function φ.
Then R is a PID.

Proof. Let I be a nonzero ideal of R, and let x P I be an element such that
φpxq is minimal among elements of I. Let y P I. We may write

y � qx� r
with either r � 0 or φprq   φpxq. Since x, y P I, we have r � y� qx P I, so because
x has minimal norm among nonzero elements we must have r � 0 and y P pxq.
Thus I � pxq. □

Exercise 16.14. Let R be a domain.

a) Suppose R is a field. Show: every function φ : R Ñ N is a Euclidean
function.

b) Suppose that φ : R Ñ N is a classical Euclidean function that is constant:
there is n P N such that φpxq � n for all x P R. Show: R is a field.

Exercise 16.15. For each of the following rings R, we give a function φ :
Rzt0u Ñ N. Verify that φ : R Ñ N is a Euclidean function.

a) R � Z, φpxq :� |x|.
b) R � krts, φppptqq :� degppptqq.
c) R � krrtss, φp°8

n�0 ant
nq :� the least n such that an � 0.

Exercise 16.16. Let pR,mq be a local PID and let π be a generator of the
maximal ideal m. For x P R, there is a unique n P N such that x P mnzmn�1, and
we put φpxq :� n. Show: φ is a Euclidean function on R.

The following result of Samuel [Sa71, Prop. 5] generalizes Exercise 16.14:

Example 16.16. Let R be a semilocal PID that is not a field, and let π1, . . . , πr
be the mutually nonassociate prime elements of R. Then every x P R may be
uniquely expresse as

x � uπe11 � � �πerr with u P R�, e1, . . . , er P N.
We claim that φ : R Ñ N by x ÞÑ °r

i�1 ei is a Euclidean function on R. Indeed:

let a P R and b � ubπ
b1
1 � � �πbrr P R� with b ∤ a. In particular a � 0, so we may

write a � uaπ
a1
1 � � �πarr and the set

I :� t1 ¤ i ¤ r | ai   biu
is nonempty. By CRT, there is r P R with

r �
#
a pmod πbii q if i P I
b pmod πbi�1

i q if i P t1, . . . , ruzI .

Then

φprq �
¸
iPI
ai �

¸
iRI
bi  

ŗ

i�1

bi � φpbq.
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Moreover for all 1 ¤ i ¤ r we have that πbii | a � r, so there is q P R such that
a� r � qb.

A Euclidean domain is a domain that admits a Euclidean function. The Eu-
clidean function is not part of the structure of a Euclidean domain. The Euclidean
function is most certainly not unique:

Exercise 16.17. Let R be a domain, let φ : R Ñ N be a Euclidean function,
and let ι : N Ñ N be strictly increasing. Show: ι � φ : R Ñ N is a Euclidean
function.

If R is a finite domain, then it is a finite field, so by Exercise 16.14, every function
from R� to N is a Euclidean function, so the set EucpRq of Euclidean functions on
R is countably infinite. If R is an infinite field, then the same considerations show
that #EucpRq ¥ c � 2ℵ0 . We will see shortly that if R is a domain that is not a
field, then for any Euclidean function φ : R Ñ N we have φpRq is infinite, which
together with Exercise 16.17 implies that #EucpRq ¥ c.

Exercise 16.15 shows that Euclidean functions are bound up in the history of PIDs:
indeed the Euclidean algorithm predates (by thousands of years) the concept of a
principal ideal domain, so when trying to decide whether a domain R is a PID it
seems only natural to ask whether it admits a Euclidean function. From the mod-
ern perspective though, this is half correct and half incorrect. The correct half is:
if we know that a domain admits a Euclidean function, we should certainly use it:
the Euclidean algorithm can be used to compute gcd’s, generators of ideals and so
forth. Though we do not discuss Smith and Hermite normal forms in this text, they
exist over any PID but over a general PID are not guaranteed to be algorithmic.
However, the existence of a Euclidean function yields algorithms. The incorrect
half is: the specific PIDs we’ve considered thus far in this section are misleadingly
simple. For most domains R – e.g. for the ring of integers ZK of a number field K
– it is much easier to determine whether R is a PID than to determine whether R
is Euclidean. We will see some examples later on.

3.2. Euclidean norms and strictly isotone Euclidean functions. A Eu-
clidean norm is a Euclidean function | � | : R Ñ Z� such that if we extend it to
0 by |0| :� 0, then | � | becomes a norm in the senseof §16.1.

Exercise 16.18. In each case, show that the given norm is a Euclidean norm.

a) R � Z, | � | the usual absolute value.
b) k a field, R � krts, |f | :� 2deg f . (By convention, we put degp0q � �8

and 2�8 � 0.)
c) R a local PID with maximal ideal m � pπq. For x P R, let npxq P N be

such that x P mnzmn�1, and put np0q :� �8. For x P R, put |x| :� 2npxq.
d) Let d P t�2,�1, 2, 3u, R � Zr?ds and |a� b?d| :� |a2 � db2|.

Proposition 16.17 (Samuel). Let R be a domain, and let φ : R Ñ N be a
Euclidean function. We define

φ1 : R Ñ N, x ÞÑ min
yPpxq

φpyq.

Then φ1 is a Euclidean function satisfying:

(i) For all x P R, φ1pxq ¤ φpxq.
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(ii) For all x, y P R, φ1pxq ¤ φ1pxyq, with equality if and only if y P R�.
Proof. The function φ1 is well-defined since N is well-ordered. Let us check

that φ1 is a Euclidean function: let x P R and y P R be such that y ∤ x. There is
z P R such that φ1pyq � φpyzq, and since φ is Euclidean, we may write

x � qyz � r � pqzqy � r
with r P R and φprq   φpyzq. We have

φ1prq ¤ φprq   φpyzq � φ1pyq,
which shows that φ1 is a Euclidean function. That it satisfies (i) is immediate
from the definition, as is the fact that for all x, y P R we have φ1pxq ¤ φ1pxyq.
If also y P R� then φ1pxyq ¤ φ1pxyy�1q � φ1pxq, so φ1pxq � φ1pyq. Finally, if
φ1pxq � φ1pxyq, we may write xy � qx � r with r � 0 or φ1prq   φ1pxq. Since
r � xpy � qq, we have φ1pxq ¤ φ1prq, so r � 0 and thus y P R�. □

For a domain R and elements x, y P R, we say that x strictly divides y if
pxq � pyq. We call a Euclidean function φ : R Ñ N strictly isotone if whenever
x strictly divides y we have φpxq   φpyq.

Let R be a domain that is not a field, so there is x P RzR�. If ψ : R Ñ N is
a strictly isotone Euclidean function, then

ψpxq   ψpx2q   . . .   ψpxnq   . . . ,

so ψpRq is infinite. If now φ : R Ñ N is any Euclidean function, then the
Euclidean function φ1 of Proposition 16.17 is strictly isotone, so φ1pNq is infinite.
Since φ1pxq ¤ φpxq for all x P R, it follows that φpRq is infinite. As mentioned
above, it now follows from Exercise 16.17 that the set EucpRq of Euclidean functions
on R has at least continuum cardinality.

Exercise 16.19. Let R be a domain that is not a field, and let φ : R Ñ N be
a Euclidean function on R. For each p P MaxSpecR, choose πp such that p � pπpq.
Let x P R. We may write

x � u
¹

pPMaxSpecR

π
vppxq
p

for a unique vppxq P N and such that vppxq � 0 for all but finitely many p (for each
fixed x). Show:

φpxq ¥ 1�
¸

pPMaxSpecR

vppxq.

3.3. Transfinite Euclidean Functions. In another direction, P. Samuel
considered the notion of a W-Euclidean function on a domain R. Here W
is a well-ordered set and N : RÑW is a function such that for all a P R, b P Rzt0u
such that b ∤ a, D q, r P R with a � qb� r and Nprq   Npbq. If R admits, for some
W , a W -Euclidean function, then R is a PID.

Exercise 16.20. Show: a domain is W -Euclidean for some finite W if and
only if it is a field.

Say that a domain is Samuel-Euclidean if it isW -Euclidean for some well-ordered
set W . Samuel remarks that the an imaginary quadratic fields Qp?�dq has a
Samuel-Euclidean ring of integers Rd if and only if d � 1, 2, 3, 7, 11. On the other
hand, it goes back at least to Gauss that for each of d � 19, 43, 67, 163 the ring
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Rd is a PID. Thus there are PIDs which are not Samuel-Euclidean. Samuel further
showed that any Samuel-Euclidean ring is W -Euclidean for a unique minimal well-
ordered set (up to canonical order isomorphism) WR and asked the question of
whether one has WR ¤ N for all domains R. This was answered in the negative by
Hiblot [Hi75], [Hi77].

4. Bézout domains

Proposition 16.18. Let a, b be elements of a domain R. If the ideal xa, by is
principal, then its generator is a greatest common divisor of a and b.

Proof. In other words, we are assuming the existence of some d P R such that
dR � aR � bR. Then a, b P dR, so d is a common divisor of a and b. If e | a and
e | b then since there are x, y P R such that d � xa� yb, we have e | d. □

Corollary 16.19. For a domain R, the following are equivalent:

(i) Every finitely generated ideal is principal.
(ii) For any two elements a and b of R, their gcd exists and is an R-linear

combination of a and b.

Proof. (i) ùñ (ii) is immediate from Proposition 16.18: gcdpa, bq will be a
generator of the ideal xa, by. Conversely, if d � gcdpa, bq exists and is of the form
d � xa � yb for some x, y P R, then clearly pdq � xa, by, so that every ideal with
two generators is principal. By an obvious induction argument, we conclude that
any finitely generated ideal is principal. □

At least according to some, it was Étienne Bézout who first explicitly noted that
for polynomials P,Q P krts, gcdpa, bq exists and is a linear combination of a and
b: this fact is called Bézout’s identity or Bézout’s Lemma. For this (some-
what tenuous) reason, a possibly non-Noetherian domain satisfying the equivalent
conditions of Corollary 16.19 is called a Bézout domain.

Exercise 16.21. Show: a localization of a Bézout domain is again a Bézout
domain.

Theorem 16.20. For a Bézout domain R, the following are equivalent:

(i) R is a PID.
(ii) R is Noetherian.
(iii) R is a UFD.
(iv) R is an ACCP domain.
(v) R is an atomic domain.

Proof. (i) ðñ (ii) immediately from the definitions.
(i) ùñ (iii): this is Corollary 15.2.
(iii) ùñ (iv) ùñ (v) holds for all domains.
(v) ùñ (iii): A Bézout domain is a GCD-domain (Corollary 16.19), a GCD-
domain is an EL-domain (Proposition 15.11), and an atomic EL-domain is a UFD
(Theorem 15.8), so a Bézout atomic domain is a UFD.
(iv) ùñ (ii): assume that R is not Noetherian. Then it admits an infinitely
generated ideal I, which we can use to build an infinite strictly ascending chain of
finitely generated ideals I1 � I2 � . . . � I. Since R is Bézout, each Ii is principal,
contradicting ACCP. □
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Let us say that a domain is properly Bézout if it is Bézout but not a PID.

We have already seen some examples of properly Bézout domains: the ring of
entire functions (Theorem 5.23) and the ring of all algebraic integers (Theorem
5.1). To get further examples we move on to the next topic: valuation rings.



CHAPTER 17

Valuation Rings

1. Basic theory

Consider the divisibility relation – i.e., a | b – on a domain R. Evidently it is
reflexive and transitive, so is a quasi-ordering.1 Divisibility need not be a partial
ordering because a | b and b | a does not imply that a � b but only that a and b
are associates: paq � pbq. However, one of the first ideas of ideal theory is to view
associate elements as being somehow “equivalent.” This motivates us to consider
the equivalence relation on R in which a � b if and only if paq � pbq. This is easily
seen to be a monoidal equivalence relation. In plainer language, if pa1q � pa2q
and pb1q � pb2q, then pa1b1q � pa2b2q. We can therefore consider the commutative
monoid of principal ideals of R under multiplication, on which the divisibility rela-
tion is a partial ordering.

Having made a quasi-ordering into a partial ordering, it is natural to ask for
conditions under which the divisibility relation induces a total ordering. Equiv-
alently, for any a, b P R either a | b or b | a.

Proposition 17.1. Let R be a domain with fraction field K. the following are
equivalent:

(i) For every a, b P R, a | b or b | a.
(ii) For every 0 � x P K, x P R or x�1 P R.
Exercise 17.1. Prove Proposition 17.1.

A domain R satisfying the conditions of Proposition 17.1 is called a valuation
domain or valuation ring.

Note that any field is a valuation ring. This is a trivial example which is often
implicitly excluded from consideration (we will try our best to be explicit in our
exclusion of trivial cases). Apart from this, in a first algebra course one may not
see examples of valuation rings. But we have: if p is a prime number, then the ring
Zppq of integers localized at p is such an example. Define x |p y if ordpp yx q ¥ 0. Then
p-divisibility is immediately seen to be a total quasi-ordering: given two integers,
at least one p-divides the other. The fundamental theorem of arithmetic implies

x | y ðñ @ primes p, x |p y.
However, in Zppq, we have x | y ðñ x |p y, i.e., we have localized the divisibility
relation to get a total quasi-order: Zppq is a valuation domain.

1By definition, a quasi-ordering is a reflexive, transitive binary relation on a set.

361
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This argument generalizes as follows: let R be a PID2 and p � pπq be a prime
ideal of R. We define ordppxq to be the least n such that pxq � pn, and extend it
to a map on K� by ordppxy q � ordppxq � ordppyq. (One should check that this is

well-defined; this is easy.) Finally, we define x |p y to mean ordpp yx q ¥ 0. Arguing
as above, we see that the localization Rp is a valuation ring.

In showing that Rp was a valuation domain we proceeded by constructing a map
ordp on the nonzero elements of the fraction field K. This can be generalized,
as follows: if R is a domain with quotient field K, we can extend the divisibility
relation to K� by saying that x | y if and only if y

x P R. Clearly x | y and y | x
if and only if y

x is a unit in R. Therefore the quotient of pK�, �q on which divis-
ibility (from R!) becomes a partial ordering is precisely the quotient group K�{R�.

For rxs, rys P K�{R�, let us write rxs ¤ rys if r yx s P R. (Take a second and
check that this is well-defined.)

Exercise 17.2. Show: the divisibility quasi-ordering on R is a total quasi-
ordering if and only if the ordering on K�{R� is a total ordering.

In other words, if R is a valuation ring, then the canonical map v : K� Ñ K�{R�
is a homomorphism onto a totally ordered commutative group. Let us relabel the
quotient group by G and denote the group law by addition, so that the homomor-
phism property gets recorded as

(VRK1) @x, y P K� vpabq � vpaq � vpbq.

We recover R as

R � tx P K� | vpxq ¥ 0u Y t0u.
Everything that has been said so far takes into account only the multiplicative
structure on R. So the following additional property is very important:

(VRK2) @x, y P K� | x� y � 0, vpx� yq ¥ minpvpxq, vpyqq.

Indeed, suppose without loss of generality that vpxq ¤ vpyq, i.e., y
x P R. Then

x�y
x � 1� y

x P R so vpxq ¤ vpx� yq.
Exercise 17.3. Suppose vpxq � vpyq. Show that vpx� yq � minpvpxq, vpyqq.
Exercise 17.4. Show: a valuation ring is integrally closed.

Let pG,�,¤q be a totally ordered commutative group. We write G� � tg P G | g ¥
0u, so G� is a totally ordered submonoid of G. A (G-valued) valuation on a field
K is a surjective map v : K� Ñ G satisfying (VRK1) and (VRK2) above.

Exercise 17.5. Let v : K� Ñ G be a valuation. Let R be the set of elements
of K� with non-negative valuation, together with 0. Show: R is a valuation ring
with fraction field K.

2In fact we can take R to be any Dedekind domain, as soon as we know what such a thing
is. See §18.



1. BASIC THEORY 363

Exercise 17.6. Let R be a domain, G a totally ordered group and v : Rzt0u Ñ
G� be a map which satisfies both of the following properties:
(VRR1) For all x, y P R, vpxyq � vpxq � vpyq.
(VRR2) For all x, y P R, if x� y � 0 then vpx� yq ¥ minpvpxq, vpyqq.
Show: there is a unique extension of v to a valuation v : K� Ñ G, namely vpx{yq �
vpxq � vpyq.
The ideal theory of a valuation ring can be entirely understood in terms of its value
group, as we now explain. Recall that in a partially ordered set pX,¤q an upset
is a subset Y of X such that for all y P Y and x P X, if y ¤ x then x P Y . For any
subset Y of X, there is an upset generated by Y , which we denote by Y Ò: this is
the intersection of all upsets of X containing Y . For x P X we write xÒ in place of
txuÒ.An upset is called principal if it is generated by a single element.

Things simplify if X is totally ordered. Then an upset is principal if and only
if it has a minimum, and since every nonempty finite subset of X has a minimum,
every finitely generated upset is principal. Infinitely generated upsets need not
be principal: indeed, pX,¤q is well-ordered if and only if every nonempty upset
is principal. Recall that a partially ordered set Noetherian if the ascending chain
condition holds and Artinian if the descending chain condition holds. A totally
ordered set is well-ordered if and only if it is Artinian.

Lemma 17.2. Let pX,¤q be a partially ordered set. Let UppXq be the set of all
upsets of X and let PrinUppXq be the set of all principal upsets of X, each partially
ordered by inclusion.

a) The map x ÞÑ xÒ is an antitone bijection from X to PrinUppXq.
b) The following are equivalent:

(i) X is totally ordered.
(ii) PrinUppXq is totally ordered.
(iii) UppXq is totally ordered.

c) The following are equivalent:
(i) X is well-ordered.
(ii) PrinUppXq is totally ordered and Noetherian.
(iii) UppXq is totally ordered and Noetherian.

Proof. a) The map x ÞÑ xÒ is by definition a surjection from X to PrinUppXq.
If xÒ1 � xÒ2 then x1 ¤ x2 and x2 ¤ x1, so x1 � x2. Thus the map is a bijection.

Moreover we have x1 ¤ x2 if and only if x2 P xÒ1 if and only if xÒ2 � xÒ1.
b) By part a) we know that X and PrinUppXq are order-anti-isomorphic, so (i)
ðñ (ii) is clear. (iii) ùñ (ii) because PrinUppXq is a subset of UppXq. (i) ùñ
(iii): Seeking a contradiction, suppose that X is totally ordered but UppXq is not.
Then there are upsets U1 and U2 of X and x1 P U1zU2, x2 P U2zU1. Since X is
totally ordered, we have either x1 ¤ x2 or x2 ¤ x1. If x1 ¤ x2, then since x1 P U1,
also x2 P U1, a contradiction. Similarly, if x2 ¤ x1, we get x1 P U2, a contradiction.
c) Again, (i) ðñ (ii) because X and PrinUppXq are order-anti-isomorphic, and
(ii) ùñ (ii) because a subset of a totally ordered Noetherian set is also totally
ordered Noetherian.
(i) ùñ (iii): If X is well-ordered then every nonempty upset is principal, so

UppXq � PrinpXq
º
t∅u.
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Thus UppXq is obtained from a totally ordered Noetherian set by adjoining a bot-
tom element. This preserves the condition of being totally ordered Noetherian. □

Proposition 17.3. Let R be a valuation ring, with value group G. Let

G� :� tg P G | g ¥ 0u.
To an ideal I of R, we put

UpIq :� vpIq.
To an upset U of G�, we put

IpUq :� v�1pUq Y t0u.
Then U and I are mutually inverse isotone bijections from the set of ideals of I
(ordered under inclusion) to the set of upsets of G� (ordered under inclusion).

Proof. Let us first check that if I is an ideal then vpIq is an upset, and if U
is an upset then v�1pUq Y t0u is an ideal. Let g, h P G� with g ¤ h and g � vpxq
for some x P I. By definition of G we have h � vpyq for some y P R. We have
vp yx q � vpyq � vpxq � h � g ¥ 0, so y

x P R; since y � x � yx , we get x P I. Thus

vpIq is an upset. Let x, y P v�1pUq Y t0u. To see that x � y P v�1pUq Y t0u, we
may assume that x, y P v�1pUq and x� y � 0. Then vpx� yq ¥ minpvpxq, vpyqq, so
vpx � yq P U , so x � y P v�1pUq. Now let x P v�1pUq Y t0u and y P R. Again, we
may assume that x, y � 0. Then vpxyq � vpxq � vpyq ¥ vpxq, so xy P v�1pUq.

Consider the quotient map v : R Ñ R{R� � G¥0. Since v is surjective, for
any subset Y of G¥0 we have Y � vpv�1pY qq, while for a subset X of R we have
v�1pvpXqq � X if and only if for all x P X and u P R� we have ux P X. The
latter condition holds for I for any ideal I of R. Up to removing the zero element,
the map I ÞÑ UpIq is just vpIq, and up to adding back the zero element, the map
U ÞÑ IpUq is just v�1pUq, so these are mutally inverse isotone maps. □

A chain ring is a ring R in which the set of ideals of R is totally ordered under
inclusion.

Theorem 17.4. For a domain R with fraction field K, the following are equiv-
alent:

(i) R is a chain ring.
(ii) The set of principal ideals of R is totally ordered under inclusion.
(iii) R is a valuation ring.

Proof. (i) ùñ (ii): a subset of a a totally ordered set is totally ordered.
(ii) ðñ (iii): The principal ideals of a domain R are totally ordered under
inclusion if and only if for any x, y P R we have either x | y or y | x if and only if
for any x P K� we have either x P R or x�1 P R.
(iii) ùñ (i): Applying Lemma 17.2 with X � G� we get that the set of upsets
of G� is totally ordered under inclusion. By Proposition 17.3 this implies that the
set of ideals of R is totally ordered under inclusion. □

Exercise 17.7. Let R be a ring.

a) Show: if R is a chain ring, then so is every quotient and localization.
b) Deduce: if R is a valuation ring and p P SpecR, then R{p is a valuation

ring.
c) Suppose that R is a principal ring. Show: R is a chain ring if and only if

R is a quotient of a DVR.
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Let R be a valuation ring. Of course the smallest and largest ideals of R are t0u and
R; correspondingly, the smallest and largest upsets of G� are ∅ and G�. There is
a unique maximal proper upset of G�, namely

G¡0 :� tg P G | g ¡ 0u.
It follows that

m :� tx P R | vpxq ¡ 0u
is the unique maximal ideal of R. Thus a valuation ring is a local ring.

Exercise 17.8. Let R be a valuation ring with value group G.

a) Let S be a set of generators for an ideal I of R. Show: tvpxq | x P Su is
a set of generators for the upset UpIq � vpIq.

b) Let T be a set of generators for an upset U of G¥0. For each g P U , choose
any xg P R with vpxgq � g. Show: txg | g P Uu is a set of generators for
the ideal IpUq � v�1pUq Y t0u.

Proposition 17.5. Let R be a local domain. The following are equivalent:

(i) R is a valuation ring.
(ii) R is a Bézout domain.

Proof. (i) ùñ (ii): Let R be a valuation ring, and let I be an ideal of R that
is generated by finitely many elements x1, . . . , xn P R. By Theorem 17.4 there is
some 1 ¤ i ¤ n such that pxiq � pxjq for all 1 ¤ j ¤ n, and then I � pxiq.
(ii) ùñ (i): Suppose R is a local Bézout domain. To show that R is a valuation
ring, by Theorem 17.4 it is enough to show that for x, y P R either x | y or y | x.
Let d :� gcdpx, yq. Then xxd , yd y � R; since R is local, one of xd ,

y
d must be a unit.

If xd P R� then pxq � pdq � pyq, and if yd P R�, then pyq � pdq � pxq. □

2. Discrete Valuation Rings

2.1. Characterizing DVRs. The next question is when a valuation ring is
Noetherian. Again we must be able to extract this information from the value group
G: more precisely, Lemma 17.2 and Proposition 17.3 tell us that R is Noetherian
if and only if G� is well-ordered. Although there are of course many well-ordered
sets, a little thought shows that it is much harder for the positive cone G� of an
ordered commutative group to be well-ordered, other than the trivial case G � teu
(i.e., when R is a field), there is just one obvious example: when G � Z endowed
with its standard ordering (in fact Z can be endowed with the structure of an or-
dered commutative group is a unique way, up to isomorphism) we have G� � N
which is indeed well-ordered. A valuation ring R with value group G � Z is called
a discrete valuation ring or DVR. In a DVR, the maximal ideal of all elements
of positive valuation is generated by any element π of valuation 1; such an element
is called a uniformizer. Since every nonempty upset of N is principal, every ideal
of a DVR is principal, and every nonzero ideal is of the form pπnq for a unique n P N.

We will study ordered commutative groups more systematically in the next sec-
tion. If we borrow one result from the next section, we can prove now that a
Noetherian valuation ring is (a field or) a DVR. Namely, what we need is the fol-
lowing (Theorem 17.17): in any ordered commutative group pG,¤q, exactly one
of the following holds: I. G is isomorphic as an ordered commutative group to a
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subgroup of R; or II. there are elements 0   g   h in G such that ng   h for all
n P Z�. We will also make use of:

Exercise 17.9. Let G be a nontrivial subgroup of R. Show: exactly one of the
following holds:

a) G has a least positive element x, and then G is infinite cyclic with gener-
ator x.

b) G is dense in R in the order topology: for all x   y in R there is g P G
with x   g   y.

Theorem 17.6. Let R be a valuation ring with nontrivial value group G and
maximum ideal m. The following are equivalent:

(i) R is a discrete valuation ring: that is G � Z.
(ii) R is a PID.
(iii) R is Noetherian.
(iv) R satisfies (ACCP), the ascending chain condition on principal ideals.
(v) The positive cone G� of G is well-ordered.
(vi) We have

�8
n�1 m

n � p0q.
Proof. (i) ùñ (ii): If G � Z, then because G� � N is well-ordered, every

nonempty upset in N is principal. By Exercise 17.14 this implies that every ideal
of R is principal.
(ii) ùñ (iii) ùñ (iv) is immediate for all rings.
(iv) ðñ (v): By Theorem 17.4 and Proposition 17.3, the set of principal ideals
of R is totally ordered and order-isomorphic to the set PrinUppG�q of principal
upsets of G�. Thus R satisfies (ACCP) if and only if PrinUppG�q is Noetherian,
which by Lemma 17.2c) holds if and only if G� is well-ordered.
(v) ùñ (i): We go by contraposition: suppose that G is not isomorphic to Z. By
our “borrowed fact” (Theorem 17.17 from the following section), then exactly one
of the following holds: I. G is isomorphic (as an ordered group) to a subgroup of
R or II. has elements 0   x   y such that nx   y for all n P Z�. If (i) holds,
then since G is not cyclic, by Exercise 17.14 we have that G is order-dense in R.
In particular G� contains a strictly decreasing sequence converging to 0, so G� is
not well-ordered. If (ii) holds, then

h ¡ h� g ¡ h� 2g ¡ . . . ¡ h� nh ¡ . . . ¡ 0

is an infinite descending chain in G�, again showing that G� is not well-ordered.
(i) ùñ (vi): As we saw, if R is a discrete valuation ring then R is a local PID, so
m � pπq for some π P R. The nonempty upsets of G� � N are Z¥n for n P N, so
every nonzero ideal of R is of the form mn � pπnq for a unique n P N. So �8

n�1 m
n

is strictly contained in every nonzero ideal of R, so it is the zero ideal.
(vi) ùñ (i): Let n P Z�. The ideal mn is generated by elements of the form
x1 � � �xn where x1, . . . , xn P m. The corresponding upset Upmnq of G� is the
upset generated by elements g1 � . . . � gn for g1, . . . , gn P G¡0. We again go by
contraposition: suppose G is not isomorphic to Z.

First suppose that I. above holds: then G is isomorphic to an order-dense
subgroup of R. In this case, for any g P G¡0 there are h1, . . . , hn P G¡0 such that
h1 � . . .� hn   g, so it follows that Upmnq � G¡0 and thus mn � m for all n P Z�.
In this case we have

�8
n�1 m

n � m � p0q.
Now suppose that II. above holds: there are 0   g   h in G such that ng   h
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for all n P Z�. Let n P Z�. Then ng P Upmnq, so h P Upmnq. Let x P R be an
element with vpxq � h. Then x P �8

n�1 m
n, so

�8
n�1 m

n � p0q. □

Exercise 17.10. Show directly: a local PID is a valuation ring with value group
Z.

2.2. Further characterizations of DVRs. In many ways, discrete valuation
rings are – excepting only fields – the simplest class of rings. Nevertheless they have
an important role to play in algebra and arithmetic and algebraic geometry. One
reason for this is as follows: every DVR is a one-dimensional Noetherian local ring.
The converse does not hold.

Example 17.7. Let k be a field, and let R :� krt2, t3s � krts. Then m � xt2, t3y
and even after localizing at m, the ideal mm of Rm is not principal, as we have seen
before. Here is another argument: there is a discrete valuation ordt on the fraction
field kptq: ordtpf{gq is the multiplicity of 0 as a root of f minus the multiplicity of
0 as a root of g. The valuation ring T of this valuation contains Rm and if M is
the maximal ideal of T , then M X Rm � mm. Since mm contains elements t2 and
t3 with ordtpt2q � 2 and ordtpt3q � 3, if mmm had a single generator π then we
would have ordtpπq � 1. But there is no such element in Rm.

Thus, whereas in the previous section we gave conditions for a valuation ring to be
a DVR, now we want conditions for a one-dimensional Noetherian local domain to
be a DVR. Remarkably, it turns out if a local, one-dimensional Noetherian domain
has any one of a large number of good properties, it will necessarily be a DVR:

Theorem 17.8. (Recognition Theorem for DVRs) Let R be a one-dimensional
Noetherian local domain, with maximal ideal m. the following are equivalent:

(i) R is regular: the dimension of m
m2 as an R{m-vector space is 1.

(ii) m is principal.
(iii) R is a PID.
(iv) R is a UFD.
(v) R is integrally closed.
(vi) Every nonzero ideal is of the form mn for some n P N.
Proof. (i) ðñ (ii): Choose t P πzπ2. By assumption, t generates m{m2,

so by Nakayama’s Lemma t generates m. Conversely, if m is monogenic as an R-
module, certainly m{m2 is monogenic as an R{m-module.
Evidently (iii) ùñ (ii). Proposition 16.5 gives (ii) ùñ (iii) and also (ii) ùñ
(vi). Moreover (iii) ðñ (iv) by Proposition 16.1 and (iv) ùñ (v) by 15.14.
Next, for all n P N we have pπqn{pπqn�1 � R{m, thus R is regular.

(vi) ùñ (i): Assume that dimR{m m{m2 ¡ 1. Choose u P mzm2. Then

m � xu,m2y � m2.

So we have (i) ðñ (ii) ðñ (iii) ðñ (iv) ðñ (vi) ùñ (v).
Finally, we show (v) ùñ (ii): Let 0 � x P m. Since m is the only prime ideal

containing pxq we must have rppxqq � m. Since R{pxq is Noetherian, its radical,
m{pxq, is nilpotent, so there is a unique least n P Z� such that mn � pxq. Let
y P mn�1zpxq and consider the element q � x

y of the fraction field K of R. Since

y R pxq, q�1 � y
x R R; since R is integrally closed in K, q�1 is not integral over R.

Then q�1m is not contained in m, for otherwise m would be a faithful Rrq�1s-module
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which is finitely generated as an R-module, contradicting Theorem 14.1. But by
construction, q�1m � y

xm � R, hence q�1m � R and then m � Rx � pxq. □

2.3. Extensions of Discrete Valuations. Let L{K be a field extension. If
G is a totally ordered commutative group and w : L� ↠ G is a G-valued valuation,
then v :� w|�K : K� Ñ G is a valuation on K with value group wpK�q, which may
be a proper subgroup of G (indeed, it may even be trivial). We also say that the
valuation w on L is an extension of the valuation v on K.

There is a whole theory of extensions of valuations, of which we need only a
small piece here. First:

Lemma 17.9. Let L{K be a field extension of finite degree n, let G be a totally
ordered commutative group, and let v : L� ↠ G be a G-valued valuation on L.
Let H :� vpK�q. Then G is, as an ordered commutative group, isomorphic to a
subgroup of H.

Proof. ([J2, p. 582]) For any nonzero x P L, we have a relation of the form°k
i�1 αix

ni , where αi P K and the ni are integers such that rL : Ks � n ¥ n1 ¡
n2 ¡ . . . ¡ nk ¥ 0. If there existed any index j such that for all i � j we had

vpαixniq ¡ vpαjxnj q, then 8 � vp°k
i�1 αix

niq � vpαjxxj q and thus αjx
nj � 0, a

contradiction. Thus there exist i ¡ j such that vpαixniq � vpαjxnj q, so
pni � njqvpxq � vpαjα�1

i q P H.
Thus, for x P L�, we have pn!qvpxq P H. Since G is torsionfree, the endomorphism
rn!s : GÑ G given by g ÞÑ n!g is injective, and thus rn!s : G ãÑ rn!sG � H. □

In consequence:

Corollary 17.10. Let L{K be a finite field extension, let v be a valuation on
K, and let w be an extension of v to a valuation on L. Then v is discrete if and
only if w is discrete.

Exercise 17.11. Prove Corollary 17.10.

For the rest of this section we will be working exclusively with rank 1 valuations,
so we take all of our value groups to be subgroups of R. With this very slightly
different viewpoint, a discrete valuation on a field is a map v : K� Ñ R satisfying
(VRK1) and (VRK2) such that vpK�q is infinite cyclic. We say that two valuations
on K are equivalent if they have the same valuation ring. We say that a discrete
valuation v is normalized if vpK�q � Z.

Exercise 17.12. Let K be a field.

a) Let v, w : K� Ñ R be discrete valuations on K. Show: v and w are
equivalent if and only if there is α P R¡0 such that for all x P K�,
wpxq � αvpxq.

b) Let v : K� Ñ R be a discrete valuation on K. Show: there is a unique
normalized discrete valuation w on K that is equivalent to v.

Now let L{K be a field extension of finite degree n, and w : L� Ñ R a rank 1
valuation on L, and let v be the restriction of w to K. As we just saw, v is discrete
if and only if w is. Now the point is: we may replace either v or w by an equivalent
normalized discrete valuation, but we cannot necessarily do both while keeping the
condition that v is the restriction of w to K. Indeed, let m be the maximal ideal of
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the valuation ring R of K and let M be the maximal ideal of the valuation ring T
of L. Then mT is a nonzero ideal generated by elements of positive valuation, so it
is proper in T . Thus there is a unique e P Z� such that

mT �Me.

The positive integer e is called the ramification index of w over v. We say that
w|v is unramified if e � 1. If v is normalized – so vpK�q � Z – then wpK�q � 1

eZ,
so w is normalized if and only if w|v is unramified. Similarly, if w is normalized
– so wpL�q � Z – then vpK�q � eZ, so v is normalized if and only if w|v is
unramified. Thus for a ramified extension we need to choose whether to normalize
v or to normalize w: both conventions are in common use.

Theorem 17.11. Let v : K� Ñ R be a discrete valuation on a field K, and
let L{K be a finite degree field extension. Then the set of valuations w on L that
extend v is finite and nonempty.

We will defer the proof of Theorem 17.11 until §21.3 (and will not use the result
until Chapter 22). Let us also remark that this is a very special case of the truth:
in fact, given any valuation v : K� ↠ G on a field and any field extension L{K,

the valuation v extends to L in the sense that there is a valuation w : L� ↠ G̃ and
an embedding ι : G ãÑ G̃ of ordered commutative groups such that w|K� � ι � v.
We however do not need this result.

2.4. Modules over DVRs.

Lemma 17.12. Let R be a DVR with uniformizing element π, and let a P Z�.
Then the ring Ra � R{pπaq is self-injective – i.e., Ra is an injective Ra-module.

Exercise 17.13. Prove Lemma 17.12. (Hint: Baer’s Criterion!)

Theorem 17.13. Let R be a DVR with uniformizing element π, and let M be
a nonzero finitely generated R-module.

a) There is N P N and positive integers n, a1 ¥ a2 ¥ . . . ¥ an such that

(52) M � RN `
nà
i�1

R{pπaiq.

b) The numbers N,n, a1, . . . , an are invariants of the isomorphism class of
the module M : i.e., they are the same for any two decompositions of M
as in (52) above.

Proof.
Step 0: Consider the canonical short exact sequence

0ÑM rtorss ÑM ÑM{M rtorss Ñ 0.

Since M is a finitely generated module over a Noetherian ring, M rtorss is finitely
generated. Moreover, M{M rtorss is a finitely generated torsionfree module over
a PID, hence is free (Proposition 3.64). Moreover, we know that the rank of a
free module over any (commutative!) ring is well-defined (when R is a domain
with fraction field K, the proof is especially easy: the rank of a free module M is
dimKM bRK), so the invariant N in the statement of the theorem is precisely the
rank of M{M rtorss. Moreover, since M{M rtorss is free – hence projective – the
sequence splits, so

M � RN `M rtorss.
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We are reduced to the case of a nonzero finitely generated torsion module M .
Step 1: The annihilator ofM is an ideal of R, of which there aren’t so many: it must
be pπa1q for some a1 P Z�. Thus M may be viewed as a faithful Ra1 � R{pπa1q-
module. Moreover, choosing an element x of M which is not annihilated by πa1�1,
the unique Ra1-module map Ra1 ÑM which sends 1 to m is an injection. Taking
M 1 �M{Ra1 , we get a short exact sequence

0Ñ Ra1 ÑM ÑM 1 Ñ 0.

By Lemma 17.12, Ra1 is an injective Ra1-module, so the sequence splits:

M � Ra1 `M 1.

Step 2: Since M is finitely generated over Ra1 , it is a quotient of some Artinian
Ra1-module RMa1 , hence by Theorem 8.4 M is Artinian. Moreover M is a finitely
generated module over the Noetherian ring, so M is also Noetherian. By Theorem
8.14, this means that M has finite length as an R-module. Hence so does its direct
summand M 1 and indeed clearly the length of M 1 is less than the length of M .
This completes the proof of part a) by induction.
Step 3: So far we have that a finitely generated torsion R-module is of the formÀn

i�1R{pπaiq with positive integers a1 ¥ a2 ¥ . . . ¥ an, and with annpMq � pπa1q.
In order to prove the uniqueness statement of part b), it suffices to prove that for
all 0   b ¤ a, R{pπbq is an indecomposable R{pπaq-module. If so, then

M �
nà
i�1

R{pπaiq

is simply the decomposition of the finite length module M into indecomposables
described in the Krull-Schmidt Theorem: in particular, since clearly R{pπaq �
R{pπbq implies a � b (consider annihilators), it is unique up to permutation of the
factors. So suppose that R{pπaq � M1 `M2 with M1,M2 nonzero. If πa does
not annihilate M1, then as above we can find a split embedding R{pπaq ãÑ M1,
which contradicts the fact that the length of M1 must be smaller than the length
of R{pπaq. So M1 – and similarly M2 – is annihilated by πa�1 and thus R{pπaq
would be annihilated by πa�1, a contradiction. □

3. Ordered commutative groups

Let pG,�q be an commutative group, written additively. In particular the identity
element of G will be denoted by 0. As for rings, we write G for Gzt0u.

By an ordering on G we mean a total (a.k.a. linear) ordering ¤ on G which
is compatible with the addition law in the following sense:

(OAG) For all x1, x2, y1, y2 P G, x1 ¤ x2 and y1 ¤ y2 implies x1 � y1 ¤ x2 � y2.

One has the evident notions of a homomorphism of ordered commutative groups,
namely an isotone group homomorphism.

Exercise 17.14. Let pG,¤q be an ordered commutative group.

a) Let x P G. Show: either x ¡ 0 or �x ¡ 0 but not both.
b) Show: for all x, y P G, x ¤ y ðñ �y ¤ �x.
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Exercise 17.15. Let pG,¤q be an ordered commutative group, and let H be a
subgroup of G. Show: the induced order on H makes H into an ordered commutative
group.

Example 17.14. For an ordered field pF,¤q, the additive group pF,�q is an
ordered commutative group. In particular, the additive group pR,�q of the real
numbers is an ordered commutative group, as is any subgroup. In particular, pZ,�q
and pQ,�q are ordered commutative groups.

Exercise 17.16. Exhibit an commutative group which admits two nonisomor-
phic orderings.

Example 17.15. (Lexicographic ordering): Let tGiuiPI be a nonempty indexed
family of ordered commutative groups. Suppose that we are given a well-ordering
on the index set I. We may then endow the direct product G � ±iPI Gi with the
structure of an ordered commutative group, as follows: for pgiq, phiq P G, we decree
pgiq   phiq if for the least index i such that gi � hi, gi   hi.

Exercise 17.17. Check that the lexicographic ordering on the product
±
iPI Gi

is indeed a total ordering on G.

Theorem 17.16. (Levi [Le43]) For an commutative group G, the following are
equivalent:

(i) The group G admits at least one ordering.
(ii) The group G is torsionfree.

Proof. (i) ùñ (ii) Suppose   is an ordering on G and let x P G. Then
exactly one of x,�x is positive; without loss of generality say it is x. Then for all
n P Z�, nx � x� . . . x (n times) must be positive, so x has infinite order in G.
(ii) ùñ (i): Let G be a torsionfree commutative group. By Corollary 3.98, G is a
flat Z-module. Tensoring the injection Z ãÑ Q gives us an injection G ãÑ G b Q.
Since Q is a field, the Q-module G b Q is free, i.e., it is isomorphic to

À
iPI Q.

Choose a well-ordering on I. Give each copy of Q its standard ordering as a
subfield of R and put the lexicographic ordering on

À
iPI Q � G b Q. Via the

injection G ãÑ GbQ this induces an ordering on G. □

Exercise 17.18.

a) Show: the commutative group Z admits exactly one ordering (here when
we say “ordering”, we always mean “ordering compatible with the group
structure in the sense of (OAG).

b) Give an example of an commutative group which admits two distinct –
even nonisomorphic – orderings.

An ordered commutative group pG,�q is Archimedean if for all x, y P G with
x ¡ 0, there exists n P Z� with nx ¡ y.

Exercise 17.19.

a) Suppose H is a subgroup of the Archimedean ordered group pG,�q. Show:
the induced ordering on G is Archimedean.

b) Let pG,�q be an ordered commutative group such that there exists an
embedding pG,�q ãÑ pR,�q into the additive group of the real numbers.
Deduce: G is Archimedean.
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Conversely:

Theorem 17.17. (Hölder [Hö01]) Let pG,�q be an ordered commutative group.
If G is Archimedean, there is an embedding pG,�q ãÑ pR,�q.

Proof. We may assume G is nontrivial. Fix any positive element x of G. We
will construct an order embedding of G into R mapping x to 1.

Namely, let y P G. Then the set of integers n such that nx ¤ y has a maximal
element n0. Put y1 � y � n0x. Now let n1 be the largest integer n such that
nx ¤ 10y1: observe that 0 ¤ n1   10. Continuing in this way we get a set of
integers n1, n2, . . . P t0, . . . , 9u. We define φpyq to be the real number n0�

°8
k�1

nk

10k
.

It is not hard to show that φ is isotone – y ¤ y1 ùñ φpyq ¤ φpy1q – and also that
φ is injective: we leave these tasks to the reader.

But let us check that φ is a homomorphism of groups. For y P G, and r P Z�,
let n

10r be the rational number obtained by truncating φpyq at r decimal places.
The numerator n is characterized by nx ¤ 10ry   pn � 1qx. For y1 P G, if n1x ¤
10ry1 ¤ pn1 � 1qx, then

pn� n1qx ¤ 10rpy � y1q   pn� n1 � 2qx,
so

φpy � y1q � pn� n1q10�r   2

10r

and thus

|φpy � y1q � φpyq � φpy1q|   4

10r
.

Since r is arbitrary, we conclude φpy � y1q � φpyq � φpy1q. □

A nontrivial ordered commutative group which can be embedded in R is said to
have rank one. For many applications this is by far the most important case.
Later we will give the general definition of the rank of an ordered commutative
group.

Lemma 17.18. Let R be a domain, pG,¤q a totally ordered commutative group,
and let G� � tg P G | g ¥ 0u. Then:

a) G� is an ordered commutative monoid.
b) The monoid ring RrG�s is a domain.
c) The group ring RrGs is naturally isomorphic to the localization of RrG�s

at the multiplicative subset G�. In particular, RrGs is a domain.

Exercise 17.20.

a) Write out the statements of Lemma 17.18 when G � Z.
b) Prove Lemma 17.18.

Theorem 17.19. (Malcev, Neumann) For any ordered commutative group G,
there exists a valuation domain with value group isomorphic to G.

Proof. It suffices to construct a field K and a surjective map v : K� Ñ G
satisfying (VD1K) and (VD2K). Let k be any field and put A :� krG�s. By
Lemma 17.18, A is a domain; let K be its fraction field. Define a map v : A Ñ G
by sending a nonzero element

°
gPG agg to the least g for which ag � 0. Then v

satisfies the properties of Exercise 17.5 and therefore extends uniquely to a valuation
v : K� Ñ G, where K is the fraction field of R. □
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Recall from §5.5 the notion of a “big monoid ring” krrΓss, the collection of all
functions f : ΓÑ k under pointwise addition and convolution product. As we saw
though, in order for the convolution product to be defined “purely algebraically” –
i.e., without recourse to some limiting process – we need to impose the condition of
divisor finiteness on Γ. It follows easily from Proposition ?? that for Γ � G¥0 the
monoid of non-negative elements in a totally ordered commutative group, divisor
finiteness holds if and only if G � Z, i.e., if and only if the valuation is discrete.

However, Malcev [Ma48] and Neumann [Ne49] independently found a way
around this by considering a set in between krG¥0s and krrG¥0ss. Namely, define
kMNrG¥0s to be the set of all functions f : G¥0 Ñ k such that the support of f
– i.e., the set of g P G¥0 such that fpgq � 0 – is well-ordered. It turns out that
on such functions the convolution product can be defined and endows kMNrG¥0s
with a domain. The fraction field kMNpGq is simply the collection of all functions
f : G Ñ k with well-ordered support. Moreover, mapping each such nonzero
function to the least element of G in its support gives a G-valued valuation. The
elements of such rings are called Malcev-Neumann series.

3.1. Convex Subgroups.

A subset S of a totally ordered set pX,¤q is convex if for all x   y   z P X,
if x, z P S, then y P S.

Exercise 17.21. Let H be a subgroup of an ordered commutative group pG,¤q.
Show: H is convex if and only if for all x, y P G with 0 ¤ x ¤ y, if y P H then also
x P H.

Proposition 17.20. Let pG,¤q be an ordered commutative group, and let CpGq
be the set of convex subgroups of G. Then CpGq is totally ordered under inclusion.

Proof. Let H1 and H2 be convex subgroups. Seeking a contradiction, we
suppose there is h1 P H1zH2 and h2 P H2zH1. Subgroups are closed under inversion,
so we may assume that h1, h2 ¥ 0 and then, without loss of generality, that 0 ¤
h1 ¤ h2. Since H2 is a convex subgroup, we get h1 P H2, contradiction. □

For an ordered commutative group G, we define rpGq to be the order isomorphism
type of the linearly ordered set CpGq � CpGqztt0uu of nontrivial convex subgroups
of G. When this set is finite we may view rpGq as a natural number, and when
rpGq is infinite, we write rpGq ¡ n for all n P N. In particular, rpGq � 1 if and only
if G is nontrivial and has no proper, nontrivial convex subgroups.

Exercise 17.22.

a) Let G1 and G2 be ordered commutative groups, and let G � G1 � G2

be lexicographically ordered. Show: rpGq � rpG1q � rpG2q, where on the
right hand side we have the ordered sum: every element of the first linearly
ordered set is less than every element of the second linearly ordered set.

b) Let n P Z�. Show: rpZnq � n.

Proposition 17.21. For a nontrivial ordered commutative group G, the fol-
lowing are equivalent:

(i) G is Archimedean.
(ii) G has rank one.
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Proof. (i) ùñ (ii): We go by contraposition: let t0u � H � G be a convex
subgroup of G, let y P G�zH and let x P H�. If for some n P Z� we had nx ¡ y
then by convexity of H we would have y P H: contradiction.
(ii) ùñ (i): Again we go by contraposition: suppose G is not Archimedean, so
there are x, y P G such that 0   nx   y for all n P Z�. Let H be the set of elements
of G such that there is n P Z� such that �nx ¤ z ¤ nx. Then t0u � H � G is a
convex subgroup of G. □

Exercise 17.23. Let R be a valuation ring with nontrivial value group G.
Show: R is completely integrally closed if and only if G has rank one.

Exercise 17.24. Let R be a valuation ring containing a field of rank greater
than one. (Notice that our proof of Theorem 17.19 shows that for any totally ordered
group G and any field k, there is a valuation ring containing k and with value group
G.) Use Theorem 14.14 to show that Rrrtss is not integrally closed.

In view of Proposition 17.21 it makes sense to call rpGq the rank of the linearly
ordered group G: indeed we have already defined a group to have rank one if
it is nontrivial and can be order embedded in pR,�q. By Theorem 17.17, G is
Archimedean if and only if it can be order embedded in pR,�q, so by Proposition
17.21 our new notion of rank coincides with our old notion of rank one.

Theorem 17.22. Let v : K� Ñ pG,¤q be a valuation on a field K, with
valuation ring R. There is an inclusion reversing bijection Φ : SpecR Ñ CpGq
given by

p ÞÑ Gz � vppq.
Proof. Step 1: We claim that for p P SpecR, Φppq is a convex subgroup.

Clearly Φppq contains 0 and is closed under inversion, so suppose σ1, σ2 P Φppq.
Since Φppq is closed under inversion, we may assume that either σ1, σ2 ¡ 0 or
σ1 ¡ 0, σ2   0 and σ1 � σ2 ¡ 0.
Case 1: Suppose σ1, σ2 ¡ 0. Choose x1, x2 P R with vpxiq � σi for i � 1, 2. If
σ1�σ2 R Φppq, then there is x P p with vpxq � σ1�σ2 � vpx1x2q. Thus ux � x1x2
for some u P R�, so x1x2 P p. Since p is prime this implies that at least one of x1,
x2 lies in p, hence at least one of σ1, σ2 does not lie in Φppq, contradiction.
Case 2: Suppose σ1 ¡ 0, σ2   0, σ1 � σ2 ¡ 0. If σ1 � σ2 R Φppq, then there is x P p
with vpxq � σ1 � σ2. Choose y P R with vpyq � �σ2. Then yx P p and vpyxq � σ1,
so σ1 P vppq, contradiction.

To show convexity: let 0 ¤ σ1 ¤ σ2 P G, and suppose σ2 P Φppq. If σ1 P vppq,
then there exists x P p with vpxq � σ1. There is y P R such that vpyq � σ2 � σ1,
and thus vpyxq � σ2, so σ2 R Φppq, contradiction.
Step 2: To a convex subgroup H of G, we associate

ΨpHq � tx P R | vpxq R Hu Y t0u.
By similar – but easier – reasoning to the above, one checks that ΨpHq P SpecR.
Step 3: One checks that Φ and Ψ are mutually inverse maps, hence Φ is a bijection.

□

Exercise 17.25. Supply the details of Steps 2 and 3 in the proof of Theorem
17.22.

Exercise 17.26. Show: the maps Φ and Ψ are obtained by restricting the
Galois connection associated to a relation on R�G.
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Corollary 17.23. For a valuation ring R t, the following are equivalent:

(i) R has rank one, i.e., the value group is Archimedean and nontrivial.
(ii) R has Krull dimension one.

Let R be a domain with fraction field K. Recall that an overring of R is a ring
T with R � T � K. Every localization of R is an overring; depending upon R, it
may or may not be the case that every overring is a localization (later we will see
many counterexamples). Clearly an overring T of R is a localization if and only if
it is the subring of T generated by R and by the inverses of elements lying in some
subset of R. This simple remark is certainly not the full answer to the question
of when overrings are localizations, but it can be helpful: earlier we used it to see
that every overring of a PID is a localization.

Now let R be a valuation ring. We will determine all the overrings of R. First,
we claim that every overring T of R is a localization: indeed, every element of T zR
is the inverse of an element of R. Also T is again a valuation ring, hence local.
By Exercise 7.12, this means that T � Rp for a unique p P SpecR. This gives
us an inclusion-reversing bijection between SpecR and the set of overings of R.
Combining with Theorem 17.22 we get an inclusion-preserving bijection between
the set of convex subgroups H of the value group G and the set of overrings of T :
the saturated multiplicative subset corresponding to H is

SH :� tx P R | vpxq P Hu.
We have

pS�1
H Rq� � tx P K� | vpxq P Hu,

so
K�{pS�1

H Rq� � G{H.
Since S�1

H R is a valuation ring, the group G{H is ordered and the quotient q : GÑ
G{H is a homomorphism of ordered groups. We have discovered that the quotient
group G{H can be given an ordering such that q : G Ñ G{H is an isotone map,
necessarily in a unique way: if pX,¤q is an ordered set, Y is a set and f : X Ñ Y
is a surjection, then the only possible total ordering on Y making f an isotone map
is y1   y2 if and only if for all x1 P f�1py1q and x2 P f�1py2q we have x1   x2.
However this need not be well-defined. We are seeing here that it is, but let us also
show this directly:

Proposition 17.24. Let pG,�,¤q be an ordered commutative group, and let H
be a convex subgroup. On the quotient G{H, we define x�H   y�H if H   y�x.
This defines a total ordering on G{H and qH : GÑ G{H is an isotone map.

Exercise 17.27. Prove Proposition 17.24.

In fact, now that we know Proposition 17.24, we can just as easily run things in
reverse: given a G-valued valuation v : K� Ñ G on a fieldK and a convex subgroup
H of G with quotient map qH : GÑ G{H, then

vH :� qH � v : K� Ñ G{H
is a G{H-valued valuation on K whose valuation ring RH contains the valuation
ring R of v.

Exercise 17.28. Let G be an ordered commutative group, and let H be a non-
trivial convex subgroup of G.
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a) Show: the set of convex subgroups of G{H is the set of convex subgroups
of G containing H. In other words, the possible ranks of quotients of G
by convex subgroups are the principal upsets rH,8q of rpGq.

b) Suppose that rpGq � n is finite. Show: rpGq � rpHq � rpG{Hq.
4. Connections with integral closure

Let pR,mRq and pT,mT q be local rings with R � T . We say that T dominates
R, and write R ¤ T , if mT XR � mR.

Lemma 17.25. Let R be a subring of a field K, and let p P SpecR. Then there
exists a valuation ring T of K such that R � T and mT XR � p.

Proof. (Matsumura)
Step 0: We may replace R by Rp and thus asume that pR, pq is a local ring. In this
case, what we are trying to show is precisely that there exists a valuation ring of
K dominating R.
Step 1: Let F be the set of all rings R1 with R � R1 � K such that pR1 � R1,
partially ordered by inclusion. We have R P F , so F � ∅. Moreover the union of a
chain in F is again an element of F , so Zorn’s Lemma gives us a maximal element
T of F . Since pT � T , there exists a maximal ideal m of T containing pT . Since
T � Tm and Tm P F , by maximality of T we have T � Tm, so pT,mq is a local ring
dominating pRp, pq.
Step 2: We claim that T is a valuation ring.
proof of claim: Let x P K�. We wish to show that at least one of x, x�1 lies
in T . Seeking a contradiction, assume neither is the case. Then T rxs properly
contains T , so by maximality of T we have 1 P pT rxs, i.e., we get a relation of the
form

1 � a0 � a1x� . . .� anxn, ai P pT.
Since T is local, 1� a0 P T�, and the relation may be rewritten in the form

(53) 1 � b1x� . . .� bnxn, bi P m.
Among all such relations, we may choose one with minimal exponent n. In exactly
the same way, T rx�1s properly contains T and thus there exists a relation

(54) 1 � c1x
�1 � . . .� cnx�m, ci P m,

and among all such relations we may choose one with minimal m. Without loss
of generality m ¤ n: otherwise interchange x and x�1. Then multiplying (54) by
bnx

n and subtracting from (53) gives another relation of the form (53) but with
exponent smaller than n, contradiction. □

A subring R of a field K is a maximal subring if R � K and there is no ring
intermediate between R and K.

Exercise 17.29. Let K be the algebraic closure of a finite field.

a) Show: every subring of K is a field.
b) Show: K has no maximal subring. (Hint: use Galois theory.)

Exercise 17.30. Let R be a valuation ring, with value group G and fraction
field K.

a) Show: the following are equivalent:
(i) R is a maximal subring of K.
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(ii) rpGq � 1.
b) Show: the following are equivalent:

(i) There is a maximal subring of K containing R.
(ii) The set of proper convex subgroups of G has a maximal element.

c) Show: the following are equivalent:
(i) R is the intersection of its proper overrings.
(ii) The set of nontrivial convex subgroups of G does not have a minimal

element.

Theorem 17.26. Let K be a field and R � K a subring. Then the integral
closure R of R in K is the intersection of all valuation rings of K containing R.

Proof. Let R be the intersection of all valuation rings of K containing R.
Since each such ring is integrally closed in K and the intersection of a family of
rings each integrally closed in K is again integrally closed in K, R is integrally
closed in K, whence R � R.
Conversely, let x P KzR. It suffices to find a valuation ring of K containing R but
not x. Let y � x�1. The ideal yRrys of Rrys is proper: for if 1 � a1y � . . .� anyn
with ai P R, then x would be integral over R. Let p be a maximal ideal of R
containing y. By Lemma 17.25, there exists a valuation ring T of K such that
Rrys � K and mT XRrys � p. Then y � x�1 P mT , so x R T . □

In Theorem 17.1 it is natural to ask when a domain R is the intersection of the
discrete valuation rings containing it. Such an R must be integrally closed. This
is however not sufficient: if R is a valuation ring with value group G, then R a
rank one overring if and only if G admits a maximal proper convex subgroup H,
in which case S�1

H R is the unique rank one overring of R. So a valuation ring is
never the intersection of rank 1 overrings that properly contain it and thus is not
an intersection of DVRs unless it is itself a DVR.

This raises the question of whether any Noetherian integrally closed domain is
the intersection of DVRs. The answer to this is a resounding yes, as we will show
later on. On the other hand:

Exercise 17.31. Let R be a UFD, and let Spec1R denote the set of height one
primes of R.

a) Show: for each height one p P SpecR, the localization Rp is a DVR.
b) Show: R � �pPSpec1 RRp � R.

Thus every UFD is the intersection of its DVR overrings, so there are many non-
Noetherian rings with this property.

5. Another proof of Zariski’s Lemma

The following result is a close relative of Lemma 17.25.

Lemma 17.27. Let K be a field and Ω an algebraically closed field. Let S be the
set of all pairs pA, fq with A is a subring of K and f : A ãÑ Ω, partially ordered by

pA, fq ¤ pA1, f 1q ðñ A � A1 and f 1|A � f.

Then S contains maximal elements, and for any maximal element pB, gq, B is a
valuation ring of K.
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Proof. An easy Zorn’s Lemma argument shows that S has maximal elements.
Let pB, gq be a maximal element. Put p � Kerpgq; since gpBq is a subring of the field
Ω, it is a domain and thus p is a prime ideal of B. By functoriality of localization,
G extends to a homomorphism Bp Ñ Ω. By maximality of pB, gq we have Bp � B,
so that B is a local ring with maximal ideal p. If there existed an element x P K
which is transcendental over the fraction field of B, then Brxs is a polynomial ring
and certainly g extends to Brxs. So K is algebraic over the fraction field of B.

Next let x P K�. We claim that either the ideal pBrxs or pBrx�1s is proper.
Indeed this is proved exactly as in Lemma 17.25 above.

Finally, we show that B is a valuation ring of K. Let x P K. Without loss
of generality, we may assume that pBrxs is a proper ideal of B (otherwise replace
x by x�1). Put B1 � Brxs. By assumption, pBrxs is contained in a maximal ideal
m of B1 and m X B � p. Hence the embedding of domains B Ñ B1 induces an
embedding of fields k :� B{p ãÑ B1{m � k1. Moreover k1 is generated over k by
the image of the algebraic element x, so k1{k is a finite degree field extension. So g
induces an embedding k ãÑ Ω, and since Ω is algebraically closed, this extends to
an embedding k1 � B1{m ãÑ Ω. By maximality of B, this implies x P B. □

Proposition 17.28. Let A � B be domains with B finitely generated as an
A-algebra. Let β P B. There exists α P A satisfying the following property: any
homomorphism f of A into an algebraically closed field Ω with fpαq � 0 extends to
a homomorphism f : B Ñ Ω with fpβq � 0.

Proof.
Step 0: Induction on the number of generators reduces us to the case B � Arxs.
Step 1: Suppose that x is transcendental over A, i.e., B is a univariate polynomial
ring over A. Write

β � anx
n � . . .� a1x� a0, ai P A

and put α � a0. If f : AÑ Ω is such that fpαq � 0, then since Ω is infinite, there
exists ζ P Ω such that fpanqζn � . . . � fpa1qζ � fpa0q � 0. Using the universal
polynomial of polynomial rings, we may uniquely extend f to a homomorphism
from B to Ω by putting fpxq � ζ, and then fpβq � 0.
Step 2: Suppose that x is algebraic over the fraction field of A. Then so is β�1.
Hence we have equations of the form

anx
m � . . .� a1x� a0, ai P A

a1mβ
�m � . . .� a11β�1 � a10, a1i P A.

Put α � ana
1
m. Suppose f : A Ñ Ω is any homomorphism with fpαq � 0. We

may extend f to a homomorphism from Arα�1s Ñ Ω by mapping α�1 to fpαq�1

and then, by Lemma 17.27, to a homomorphism f : C Ñ Ω for some valuation
ring C containing Arα�1s. By construction x is integral over Arα�1s. Since C is
integrally closed, x P C. Thus C contains B and in particular β P C. Similarly,
β�1 is integral over Arα�1s so β�1 P C. Thus β P C�, so fpβq � 0. Restricting to
B gives the desired homomorphism. □

Proof of Zariski’s Lemma: Let k be a field and B a field that is finitely generated
as a k-algebra. We want to show that the field extension B{k has finite degree. For
this it is enough to show that B{k is algebraic. In Proposition 17.28 take A � k,
β � 1 and Ω to be an algebraic closure of k. □



CHAPTER 18

Normalization Theorems

We work in the following situation: R is an integrally closed domain with fraction
field K, L{K is a field extension, and S � ILpRq is the integral closure of R in L.
In more geometric language, S is the normalization of R in the extension L{K.

As above, we may as well assume that L{K is algebraic, since in the general
case, if we let L1 � IKpLq be the algebraic closure of K in L, then S is contained
in L1 anyway. So let us assume this. Then we know that S is integrally closed with
fraction field L. We also know that the Krull dimensions of S and R coincide.

The major questions are the following:

(Q1) Is S finitely generated as an R-module?
(Q2) Is S Noetherian?
(Q3) If not, then can anything nice be said about S?

Note that if R is Noetherian, then an affirmative solution to (Q1) implies an affir-
mative answer to (Q2). Also, the example R � Z, K � Q, L � Q shows that both
(Q1) and (Q2) may have a negative answer if rL : Ks is infinite.

1. The First Normalization Theorem

The first, and easiest, result is the following:

Theorem 18.1. (First Normalization Theorem) Let R be an integrally closed
domain with fraction field K, L{K a finite separable field extension, and S �
ILpRq.

a) There is a K-basis x1, . . . , xn of L such that S is contained in the R-
submodule generated by x1, . . . , xn.

b) If R is Noetherian, S is a finitely generated R-module.
c) If R is a PID, then S is a free R-module of rank rL : Ks.

Proof. a) By the proof of Proposition 14.10, for any x P L, there exists
0 � r P R such that rx P S. Therefore there exists a K-basis u1, . . . , un of L such
that ui P S for all i.1 Now take x P S and write x � °i biui with bi P K. Since

L{K is separable there are n � rL : Ks distinct K-embeddings of L into K, say
σ1, . . . , σn, and the discriminant ∆ � ∆pu1, . . . , unq � pdetpσjpuiqqq2 is nonzero.

We may put
?
∆q � detpσjpuiqq. For all 1 ¤ j ¤ n we have

σjpxq �
¸
i

biσjpuiq.

1We have not yet used the separability hypothesis, so this much is true in the case of an
arbitrary finite extension.

379



380 18. NORMALIZATION THEOREMS

Using Cramer’s rule, we may solve for the bi to get
?
∆bi �

¸
j

dijσjpxq, dbi �
¸
j

?
ddijσjpxq,

where the dij ’s are polynomials in the σjpuiq with coefficients in Z. Thus ∆bi and?
∆bi are integral over R. Since ∆ P K and R is integrally closed, we have ∆bi P A.

Therefore S is contained in the R-span xu1

∆ , . . . ,
un

∆ yR, establishing part a).
b) By part a), S is a submodule of a finitely generated R-module, hence if R is
Noetherian S is finitely generated.
c) We know that S is a submodule of a free rank n R-module; if R is a PID, then S
is a free R-module of rank at most n. Since S bR K � L, the rank must be n. □

This has the following important result, which is the first of three fundamental
finiteness theorems in algebraic number theory, the existence of a finite integral
basis for the ring of integers of any algebraic number field:

Corollary 18.2. Let R � Z, K � Q, L a number field of degree n. Then
the ring ZL � Z X K of all algebraic integers lying in L, is an integrally closed,
Noetherian domain of Krull dimension one which is, as a Z-module, free of rank n.

Proof. Indeed ZL � ILpZq, so by Proposition 14.12, it is integrally closed in
its fraction field L. Since Z is a PID and L{Q is finite separable, Theorem 18.1
applies to show that ZL � Zn as a Z-module. Being a finitely generated Z-module,
still more is it a finitely generated algebra over the Noetherian ring Z, so it is itself
Noetherian. Since Z, like any PID, has Krull dimension one and ZL is an integral
extension of Z, by Corollary 14.20 ZL also has Krull dimension one. □

A Dedekind domain is a domain which is Noetherian, integrally closed and of
Krull dimension at most one. We will systematically study Dedekind domains in
§20, but for now observe that Corollary 18.2 implies that the ring of integers of an
algebraic number field is a Dedekind domain. In fact, the argument establishes that
the normalization S of any Dedekind domain R in a finite separable field extension
L{K is again a Dedekind domain that is finitely generated as an R-module.

2. The Second Normalization Theorem

Theorem 18.3. (Second Normalization Theorem) Let R be a domain with
fraction field K. Suppose that at least one of the following holds:
 R is absolutely finitely generated – i.e., finitely generated as a Z-algebra – or
 R contains a field k and is finitely generated as a k-algebra.
Let L{K be a finite degree field extension. Then S � ILpRq is a finitely generated
R-module.

Proof. First suppose that R is a finitely generated algebra over a field k.
Step 0: We may assume that L{K is normal. Indeed, let M be the normal closure
of L{K, so M{K is a finite normal extension. Let T be the integral closure of R in
M . If we can show that T is finitely generated over R, then, since R is Noetherian,
the finitely submodule S is also finitely generated over R.
Step 1: We will make use of the field-theoretic fact that if M{K is normal and L is
the maximal purely inseparable subextension ofM{K, thenM{L is separable [FT,
§6.3]. Let S be the integral closure of R in L and T the integral closure of R in
T . Then T is a finitely generated R-module if and only if T is a finitely generated
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S-module and S is a finitely generated R-module. Suppose we can show that S
is a finitely generated R-module. Then S is a finitely generated R-algebra so S
is a Noetherian integreally closed domain, and the module finiteness of T over S
follows from Theorem 18.1. Thus we are redueced to the case in which L{K is
purely inseparable, say rL : Ks � q � pa.
Step 2: By Noether Normalization, R is finitely generated as a module over a
polynomial ring krt1, . . . , tds. If S is a finitely generated krt1, . . . , tds-module, then
certainly it is a finitely generated R-module. Thus we may assume without loss
of generality that R � krt1, . . . , tds and K � kpt1, . . . , tdq. In particular we may
assume that R is integrally closed (in K). For all a P L, NL{Kpaq � aq P K.
Let k1{k be the extension obtained by adjoining the qth roots of the coefficients of
the minimal polynomials of a finite set of generators of L{K, so k1{k is finite, so

L � k1pt1{q1 , . . . , t
1{q
d q. So it is enough to show that the integral closure of krt1, . . . , tds

in k1pt1{q1 , . . . , t
1{q
d q is finite over krt1, . . . , tds. But in this case the integral closure

can be computed exactly: it is k1rt1{q1 , . . . , t
1{q
d s (indeed it is at least this large, and

this ring is a UFD, hence integrally closed), which is finite over krt1, . . . , tds. □

3. The Krull-Akizuki Theorem

In this section we come to one of the most beautiful and useful results in the
subject, the Krull-Akizuki Theorem. Its content is essentially that normalization
works magnificently well in dimension one. Our treatment follows [M, §11].

Lemma 18.4. For a Noetherian domain R, the following are equivalent:

(i) R has dimension at most one.
(ii) For every nonzero ideal I of R, the ring R{I is Artinian.
(iii) For every nonzero ideal I of R, we have ℓRpR{Iq   8.

Proof. (i) ùñ (ii): R{I is Noetherian, and prime ideals of R{I correspond
to prime ideals of R containing the nonzero ideal I, so are all maximal. By Theorem
8.36, R{I is Artinian.
(ii) ùñ (iii): Every finitely generated module over an Artinian ring is also Noe-
therian hence has finite length.
 (i) ùñ  (iii): If R has dimension greater than one, there is a nonzero, non-
maximal prime ideal p of R. The R-module R{p is a domain which is not a field,
hence not Artinian, hence of infinite length. □

Lemma 18.5. Let R be a one-dimensional Noetherian domain with fraction field
K. Let M be a torsionfree R-module with r � dimKM bR K   8. Then for all
x P R, ℓpM{xMq ¤ rℓpR{xRq.

Proof. Step 1: First suppose that M is finitely generated. Let η1, . . . , ηr PM
be R-linearly independent and put E � xη1, . . . , ηryM . Since r � dimKM bR K,
for η PM , there is t P R with tη P E. Put C �M{E. Then C is finitely generated,
so there is t P R such that tC � 0. By Lemma 18.4, the ring R{tR is Artinian.
Since C is a finitely generated R{tR-module, it has finite length, and thus it also has
finite length, say m, as an R-module. For x P R and n P Z�, the exact sequence

E{xnE ÝÑM{xnM Ñ C{xnC
yields

(55) ℓpM{xnMq ¤ ℓpE{xnEq � ℓpCq.
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Since E and M are torsionfree, we have xiM{xi�1M � M{xM for all i P N and
similarly xiE{xi�1E � E{xE; it follows that

nℓpM{xMq ¤ nℓpE{xEq � ℓpCq @n P Z�,
and thus

ℓpM{xMq ¤ ℓpE{xEq.
Since E � Rr, E{xE � pR{xRqr, so

ℓpM{xMq ¤ ℓppR{xRqrq � rℓpR{xRq.
Step 2: In the general case, put M �M{xM and let N � xω1, . . . , ωsy be a finitely
generated submodule ofM . Lift each ωi to ωi PM and putM1 � xω1, . . . , ωsy. We
get

ℓpNq ¤ ℓpM1{M1 X xMq ¤ ℓpM1{xM1q ¤ rℓpR{xRq,
the last inequality by Step 1. Because the right hand side of this inequality is
independent of N , by Exercise 8.13 ℓpMq ¤ rℓpR{xRq.
Step 3: We have ℓpR{xRq   8 by Lemma 18.4. □

Theorem 18.6. (Krull-Akizuki) Let R be a one-dimensional Noetherian do-
main with fraction field K, let L{K be a finite degree field extension of K, and let
S be a ring with R � S � L. Then:

a) S is Noetherian of dimension at most 1.
b) If J is a nonzero ideal of S, then S{J is a finite length R-module.

Proof. b) It is no loss of generality to replace L by the fraction field of S.
Let r � rL : Ks, so that S is a torsionfree R-module of rank r. By Lemma 18.5,
for any x P R we have ℓRpS{aSq   8. Let J be a nonzero ideal of S and b P J.
Since b is algebraic over R it satisfies a relation

amb
m � . . .� a1b� a0 � 0, ai P R

of minimal degree. Since S is a domain, a0 P pJ XRq, so
ℓRpS{Jq ¤ ℓRpS{a0Sq   8.

a) Since

ℓSpJ{a0Sq ¤ ℓRpJ{a0Sq ¤ ℓRpS{a0Sq   8,
J{a0S is a finitely generated S-module. Being an extension of a finitely generated
S-module by a finitely generated S-module, J is itself a finitely generated: S is
Noetherian. If P is a nonzero prime ideal of S then S{P has finite length so is an
Artinian domain, hence a field: S has dimension at most one. □

We remark that S need not be finitely generated as an R-module. Thus Step 2 in
the proof of Lemma 18.5 is actually used in the proof of the Krull-Akizuki Theorem.

Comparing the following exercise with Exercise 8.34 gives a good illustration of
how much simpler things are in dimension 1.

Exercise 18.1. Let k be a field, and let A be a k-subalgebra of krts. Show:
either A � k or A is a one-dimensional Noetherian domain that is finitely generated
as a k-algebra.
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Corollary 18.7. Let R be a one-dimensional Noetherian domain with fraction
field K, let L{K be a finite degree field extension, and let S be the integral closure
of R in L. Then S is a Dedekind domain, and for every maximal ideal p of R there
are only finitely many prime ideals of S lying over p.

Exercise 18.2. Prove Corollary 18.7.





CHAPTER 19

The Picard Group and the Divisor Class Group

1. Fractional ideals

Let R be a domain with fraction field K. A fractional ideal of R is a nonzero
R-submodule I of K for which there exists 0 � a P R such that aI � R – or
equivalently, if I � 1

aR.

When one is talking about fractional R-ideals, one inevitably wants to compare
them to ideals of R in the usual sense, and for this it is convenient to speak of an
integral R-ideal, i.e., an R-submodule of R.

Exercise 19.1. Show: a finitely generated R-submodule of K is a fractional
ideal.

Some texts define a fractional R-ideal to be a finitely generated R-submodule of K,
but this seems wrong because we certainly want every nonzero integral ideal of R
to be a fractional ideal, but if R is not Noetherian then not every integral ideal will
be finitely generated. (It is not such a big deal because most of these references are
interested only in invertible fractional ideals – to be studied shortly – and one of
the first things we will see is that an invertible fractional ideal is necessarily finitely
generated as an R-module.)

We denote the set of all fractional ideals of R by FracpRq.
Theorem 19.1. Let I, J,M be fractional ideals in a domain R.

a) All of

I X J � tx P K | x P I and x P Ju,
I � J � tx� y | x P I, y P Ju,

IJ � t
ņ

i�1

xiyi, | xi P I, yi P Ju,

pI : Jq � tx P K | xJ � Iu
are fractional ideals.

b) We may partially order FracpRq under inclusion. Then the greatest lower
bound of I and J is I X J and the least upper bound of I and J is I � J .

c) If I � J , then IM � JM .
d) R itself is a fractional ideal, and R � I � R. Thus the fractional ideals

form a commutative monoid under multiplication.

Proof. a) It is immediate that IXJ , I�J , IJ and pI : Jq are all R-submodules
of K. It remains to be seen that they are nonzero and can be scaled to lie inside
R. Suppose I � 1

aR and J � 1
bR. Then:

385
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0 � I � I � J � 1
abR, so I � J is a fractional ideal.

0 � IJ � I X J � 1
abR, so IJ and I X J are fractional ideals.

Since I X R is a fractional ideal, there exists a nonzero c P R lying in I. Then for
y P J , cby P cR � I, so c

b P pI : Jq. Similarly, if 0 � d P J , then 1
ad pI : Jq � R.

Parts b), c) and d) can be easily verified by the reader. □

Proposition 19.2. Let I, J be fractional ideals for a domain R. The map

pI : Jq Ñ HomRpJ, Iq, x ÞÑ py ÞÑ xyq
is an isomorphism of R-modules.

Exercise 19.2. Prove Proposition 19.2.

The following result is the analogue for fractional ideals of Exercise 7.10:

Proposition 19.3. Let I and J be fractional ideals for a domain R, and let
S � R be a multiplicative subset.

a) We have S�1pI X Jq � S�1I X S�1J .
b) We have S�1pI � Jq � S�1I � S�1J .
c) We have S�1pIJq � pS�1IqpS�1pJq.
d) If J is finitely generated, then we have S�1pI : Jq � pS�1I : S�1Jq.

Exercise 19.3. Prove Proposition 19.3.

A fractional ideal is principal if it is of the form xR for some x � a
b P K.

Proposition 19.4. For a fractional ideal I of R, the following are equivalent:

(i) I is principal.
(ii) I is monogenic as an R-module.
(iii) I �R R.
(iv) I is free as an R-module.

Proof. (i) ðñ (ii): By definition, a monogenic R-module M is one of the
form Rx for some x PM .
(i) ùñ (iii): For x P K� multiplication by x�1 is an R-module isomorphism from
xR to R.
(iii) ùñ (ii) and (iii) ùñ (iv) are immediate.
(iv) ùñ (iii): It is no loss of generality to assume that I � R. Since any two
elements x, y P I are R-linearly dependent – indeed pyqx� p�xqy � 0 – if I is free,
it must have rank 1. □

If xR is a principal fractional ideal, so is x�1R, and we have

pxRqpx�1Rq � R.

Thus, in FracpRq, every principal fractional ideal xR is a unit, with inverse x�1R.

Let PrinpRq denote the set of all principal fractional ideals of the domain R.

Exercise 19.4. Show: PrinpRq is a subgroup of FracpRq, and we have a short
exact sequence 1Ñ R� Ñ K� Ñ PrinpRq Ñ 1.

Exercise 19.5. Define the ideal class monoid CpRq � FracpRq{PrinpRq.
a) Show: CpRq is well-defined as a commutative monoid.
b) Show: CpRq is trivial if and only if R is a PID.
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c) Show: CpZr?�3sq is a finite commutative monoid which is not a group.

For a general domain, CpRq need only be a commutative monoid. In the next
section we “repair” this by defining the Picard group PicpRq.

2. The Ideal Closure

For a nonempty subset S of K, put

S� � pR : Sq � tx P K | xS � Ru.
Exercise 19.6. For nonempty subsets S1 and S2 of K, show S1 � S2 ùñ

S�1 � S�2 .

Usually we are interested in I� for a fractional R-ideal I, and in general it is not
so easy to compute. But it is in the following case let a P K�. Then

paRq� � tx P K | xaR � Ru � tx P K | xa � Ru � p1{aRq.
Exercise 19.7. Let R be a domain. Show: for any fractional R-ideal I, we

have that I� is a fractional R-ideal.
(Hint: sandwich I between two principal fractional ideals.)

The fractional ideal I� is called1 the quasi-inverse of I. As we shall see later in
this section, if the ideal I has an inverse in the monoid FracR, then its inverse must
be I�: i.e. II� � R. In general though all we get from the definition of I� is the
relation II� � R. This observation motivates the following one.

Proposition 19.5. Let R be a domain, and let R � K �K given by xRy if
and only if xy P R. Let pΦ,Ψq be the induced Galois connection from 2K to itself.
Then, for any fractional ideal I of R, ΦpIq � ΨpIq � I�. In other words, I ÞÑ I�

is a self-dual antitone Galois connection on FracR.

Exercise 19.8. Prove Proposition 19.5.

As usual, we denote the associated closure operator by I ÞÑ I. Now the machinery
of Galois connections gives us many facts for free that we would otherwise have to
spend a little time deriving:

Corollary 19.6. Let R be a domain and let I, J P FracR.
a) If I � J , then J� � I�.
b) We have I� � J� ðñ I � J .

c) We have I � I and I� � I�.
d) We have pI�Jq� � I�XJ�. In fact, if tIiuiPS is any family of fractional

ideals, then

pxIi | i P Syq� �
£
iPS

I�i .

Exercise 19.9. Prove Corollary 19.6.

Proposition 19.7. Let R be a domain. Let S be a nonempty set and tIiuiPS
a family of fractional R-ideals.

a) If xIi | i P Sy is a fractional R-ideal, then so is xIi | i P Sy and
xIiy � xIiy.

1Unfortunately?
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b) Suppose that each Ii is divisorial and
�
iPI Ii � p0q. Then

�
iPI Ii is

divisorial.

Proof. a) Put I :� xIi | i P Sy and J :� xIi | i P Sy. For all i P S we have

Ii � I hence Ii � I and thus J � I is a fractional ideal and J � I � I. Since I � J
we have I � J .
b) Let x P �iPS Ii. Then for all i P S we have x P Ii � Ii, so x P

�
iPS Ii. □

Exercise 19.10. Give an example of I, J P FracR with J� � I� but I � J .

Proposition 19.8. For a domain R and I P FracR, we have

I �
£

dPK� | I�d�1R

d�1R.

Proof.

I � pI�q� � tx P K |xI� � Ru � tx P K | @d P K�, dI � R ùñ xd P Ru

�
£

dPK� | I�d�1R

d�1R. □

3. Invertible fractional ideals and the Picard group

Like any monoid, FracpRq has a group of units, i.e., the subset of invertible elements.
Explicitly, a fractional ideal I is invertible if there exists another fractional ideal
J such that IJ � R. We denote the group FracpRq� of invertible fractional ideals
by InvpRq.

Exercise 19.11. Let I1, . . . , In be fractional ideals of R. Show: the product
I1 � � � In is invertible if and only if each Ii is invertible.

Lemma 19.9.

a) For a fractional ideal I, the following are equivalent:
(i) I is invertible.
(ii) II� � R.

b) (To contain is to divide) If I � J are fractional ideals with J invertible,
then

I � JpI : Jq.
Proof. a) (i) ùñ (ii): As above, for any fractional ideal I we have II� � R.

Now suppose there exists some fractional ideal J such that IJ � R, then

J � pR : Iq � I�,

so

R � IJ � II�.

(ii) ùñ (i) is obvious.
b) By definition of pI : Kq we have JpI : Jq � I. Conversely, since I � J , J�1I � R.
Since pJ�1IqJ � I, it follows that J�1I � pI : Jq and thus I � JpI : Jq. □

Proposition 19.10. Let I be an invertible fractional ideal. Then I is a finitely
generated projective rank one module.
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Proof. Step 1: We show an invertible fractional ideal I is a finitely generated
projective module. Since II� � R, we may write 1 � °n

i�1 xiyi with xi P I and
yi P I�. For 1 ¤ i ¤ n, define fi P HompI,Rq be fipxq � xyi. Then for all x P I,

x �
¸
i

xxiyi �
¸
i

xifipxq.

By the Dual Basis Lemma, I is a projective R-module generated by x1, . . . , xn.
Step 2: To show that I has rank one, it suffices to show that for all p P SpecR, Ip
is free of rank one over Rp. But since projective implies locally free, we know that
Ip is a free Rp-module of some rank, and for any ring R and any ideal I, I cannot
be free of rank greater than one over R. Indeed, if so I would have two R-linearly
independent elements x and y, which is absurd, since yx� p�xqy � 0. □

Conversely:

Proposition 19.11. Let I be a nonzero fractional ideal of R which is, as an
R-module, projective. Then I is invertible.

Proof. We have the inclusion ι : II� � R which we wish to show is an equality.
This can be checked locally: i.e., it is enough to show that for all p P SpecR,
ιp : IpI

�
p Ñ Rp is an isomorphism. By Proposition 19.3, it is equivalent to show

that IppIpq� Ñ Rp is an isomorphism, but since I is projective, by Kaplansky’s
Theorem Ip is free. As above, being a nonzero ideal, it is then necessarily free
of rank one, i.e., a principal fractional ideal xRp. It follows immediately that
pIpq� � x�1Rp and thus that the map is an isomorphism. □

To sum up:

Theorem 19.12. Let R be a domain, and let I be a fractional R-ideal. Then I
is invertible if and only if it is projective, in which case it is projective of rank one.

For any R-module M , the R-dual is defined to be M_ � HompM,Rq. There is a
canonical R-bilinear map T : M_ �M Ñ R obtained by mapping pf, xq ÞÑ fpxq.
This induces an R-linear map T :M_bRM Ñ R. We say that an R-module M is
invertible if T is an isomorphism.

Proposition 19.13. Consider the following conditions on an R-module M :

(i) M is rank one projective.
(ii) M is invertible.
(iii) There is an R-module N and an isomorphism T :M bR N � R.

Then (i) ùñ (ii) ùñ (iii) always, and (iii) ùñ (i) if M is finitely generated.

Proof. (i) ùñ (ii): We have a map T : M_ bM Ñ R so that it suffices to
check locally that is an isomorphism, but M is locally free so this is easy.
(ii) ùñ (iii) is immediate.
(iii) ùñ (i): Since M is finitely generated, by Theorem 13.37 to show that M is
projective it is enough to show that for all p P SpecR Mp is free of rank one. Thus
we may as well assume that pR,mq is a local ring with residue field R{m � k. The
base change of the isomorphism T to R{m is an isomorphism (recall that tensor
product commutes with base change)

Tk :M{mM bk N{mN Ñ k.
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This shows that dimkM{mM � dimkN{mN � 1, so in particularM{mM is mono-
genic as an R{m-module. By Nakayama’s Lemma the lift to R of any generator x of
M{mM is a generator ofM , soM is a monogenic R-module and is thus isomorphic
to R{I for some ideal I. But indeed I � annpMq � annpM bR Nq � annpRq � 0,
so M � R{p0q � R is free of rank one. □

Theorem 19.14. (Cohen) Let R be a domain.

a) The set of invertible ideals of R is an Oka family in the sense of § 4.5.
b) If every nonzero prime ideal of R is invertible, then every nonzero frac-

tional ideal of R is invertible.

Proof. a) Let I � J be ideals of R with J and pI : Jq invertible (this implies
I � 0). By Lemma 19.9, I � JpI : Jq and thus, as the product of two invertible
ideals, I is invertible. Since for any ideals I, J of R we have pI : Jq � pI : I � Jq,
by taking J � xI, xy for any x P R we recover the Oka condition.
b) Seeking a contradiction, suppose I is a nonzero ideal of R which is not invertible.
Consider the partially ordered set S of ideals containing I which are not invertible.
Then the union of any chain in S is a non-invertible ideal: indeed, if it were invertible
then by Proposition 19.10 it would be finitely generated and thus equal to some
element in the chain: contradiction. Thus by Zorn’s Lemma there is a nonzero
ideal J which is maximal element in the family of ideals which are not invertible.
By part a) and the Prime Ideal Principle, J is prime: contradiction. □

Theorem 19.15. Let I and J be invertible fractional ideals. Then there is a
canonical isomorphism of R-modules

I bR J �Ñ IJ.

Proof. The natural multiplication map I � J Ñ IJ is R-bilinear so factors
through an R-module map m : IbR J Ñ IJ . Once we have a globally defined map,
to see that it is an isomorphism it is enough to check it locally: for all p P SpecR,

mp : Ip bRp
Jp

�Ñ IpJp

and we are thus allowed to assume that I and J are principal fractional ideals. This
makes things very easy, and we leave the endgame to the reader. □

Corollary 19.16. Let I and J be invertible fractional R-ideals. the following
are equivalent:

(i) There is x P K� such that xI � J .
(ii) We have I �R J , i.e., I and J are isomorphic R-modules.

Proof. (i) ùñ (ii): If J � xI, then multiplication by x gives an R-module
isomorphism from I to J .
(ii) ùñ (i): Since I �R J we have

I�1J � I�1 bR J � I�1 bR I � II�1 � R.

By Proposition 19.4, I�1J is a principal fractional ideal, i.e., there exists x P K�

such that I�1J � xR. Multiplying through by I, we get xI � J . □

Proposition 19.17. Let M be a rank one projective module over a domain R
with fraction field K. Then there is a fractional R-ideal I such that M �R I.
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Proof. Since M is projective, it is flat, and so tensoring the injection R ãÑ K
withM we get an injection f :M � RbRM ãÑMbRK � K, the last isomorphism
since M is locally free of rank 1. Thus f : M

�Ñ fpMq, and fpMq is a finitely
generated R- submodule of K and thus a fractional R-ideal. □

Putting together all the pieces we get the following important result.

Theorem 19.18. Let R be a domain. The following two commutative groups
are canonically isomorphic:

(i) InvpRq{PrinpRq with rIsrJs :� rIJs.
(ii) Isomorphism classes of rank one projective R-modules under tensor prod-

uct.

We may therefore define the Picard group PicR to be either the group of invertible
fractional ideals modulo principal fractional ideals under multiplication or the group
of isomorphism classes of rank one projective modules under tensor product.

Lemma 19.19. In any domain R, let P1, . . . ,Pk be a set of invertible prime
ideals and let Q1, . . . ,Ql be any set of prime ideals. Suppose that

k¹
i�1

Pi �
l¹

j�1

Qj .

Then i � j and there exists some permutation σ of the set t1, . . . , ku such that for
all 1 ¤ i ¤ k we have Pi � Qσpiq.

In other words, prime factorization is unique for products of invertible primes.

Proof. Assume without loss of generality that P1 does not strictly contain
any Pi. Since

±
j Qj � P1, some Qj , say Q1, is contained in P1. Similarly, since±

i Pi � Q1, there exists i such that Pi � Q1. Thus Pi � Q1 � P1. By our
assumption on the minimality of P1, we have P1 � Pi � Q1. We can thus cancel
P1 � Q1 by multiplying by P�1

1 and obtain the result by induction. □

Lemma 19.20. Let R be an integrally closed Noetherian domain with fraction
field K, and let I be a fractional R-ideal. Then pI : Iq :� tx P K | xI � Iu � R.

Proof. Clearly R � pI : Iq. Conversely, let x P pI : Iq. Then I is a faithful
Rrxs-module that is finitely generated over R, so x is integral over R. □

Lemma 19.21. Let R be a domain with fraction field K, S � Rzt0u a multi-
plicative subset, and I, J fractional R-ideals.

a) We have pI � JqS � IS � JS.
b) We have pIJqS � ISJS.
c) We have pI X JqS � IS X JS.
d) If I is finitely generated, then pI�qS � pISq�.

Proof. Parts a) and b) are immediate and are just recorded for future refer-
ence. For part c), we evidently have pIXJqS � ISXJS . Conversely, let x P ISXJS ,
so x � i

s1
� j

s2
with i P I, j P J , s1, s2 P S. Put b � a1s2 � a2s1 P I X J ; then

x � b
s1s2

P pI X JqS , establishing part c). For part d), note first that pI � Jq� �
I�XJ�. Also if 0 � x P K, then pRxqS � RSx. Hence if I � Rx1� . . .�Rxn, then
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IS � RSx1�. . .�RSxn, so pISq� �
�n
i�1

1
xi
RS . On the other hand, I� � �n

i�1
1
xi
R,

and thus part c) we have

pI�qS �
n£
i�1

1

xi
RS � pISq�. □

Lemma 19.22. A nonzero ideal in a Noetherian domain contains a product of
nonzero prime ideals.

Proof. Assume not: let I be a nonzero ideal which is maximal with respect
to the property of not containing a product of nonzero prime ideals. Then I is not
prime: there are x1, x2 P RzI such that x1x2 P I. For i � 1, 2 put Ii :� xI, xiy,
so that I � Ii and I � I1I2. By maximality of I, I1 � p1 � � � pr and I2 � q1 � � � qs
(with pi, qj prime for all i, j), and then I � p1 � � � prq1 � qs, contradiction. □

Lemma 19.23. (Jacobson) Let R be a Noetherian domain of Krull dimension
at most one. Let I be a proper, nonzero ideal of R. Then pR : Iq � R.

Proof. Let 0 � a P I, so aR � I � R. By Lemma 19.22, there are nonzero
prime ideals p1, . . . , pm such that aR � p1 � � � pm; we may assumem is minimal. Let
m be a maximal ideal containing I. Then m � I � aR � p1 � � � pm; since nonzero
prime ideals are maximal, this implies m � pi for some i, say for i � 1. If m � 1
then I � aR so pR : Iq � a�1R � R. Now suppose m ¡ 1; by minimality of m, aR
does not contain p2 � � � pm so we may choose b P p2 � � � pmzaR. Put c � a�1b. Then
c R R and cI � cm � a�1bm � amp2 � � � pm � a�1paRq � R, so c P pR : Iq. □

The following result gives information about when a prime ideal is invertible.

Proposition 19.24. Let R be a Noetherian domain, and p a nonzero prime
ideal of R. If p is invertible, then it has height one and Rp is a DVR.

Proof. Since p is invertible, Rp is a Noetherian local domain with a principal
maximal ideal pRp. By Theorem 17.8, Rp is a DVR, and thus p has height one. □

4. Divisorial ideals and the Divisor Class Group

For I, J P FracpRq, we write I ¤ J if every principal fractional ideal that contains
I also contains J . The ideal I is the intersection of the principal fractional ideals
containing I and it is the largest fractional ideal that is contained in the same
principal fractional ideals as I, so we have I ¤ J ðñ J � I, which by Corollary
19.6b) holds if and only if I� � J�. Thus upon restriction to divisorial fractional
ideals, our ordering ¤ becomes the reverse of the usual ordering of fractional ideals
by inclusion. This is designed for the following purpose: we will soon see that
under a certain condition on R (namely, complete integral closure) we will define
the structure of an ordered commutative group on the set of divisorial fractional
ideals of R. R itself will be the identity element, and then with the order reversal
the positive cone in this group will be the set of divisorial integral ideals. This
is also a generalization of the fact that for a, b P R we have a | b if and only if
paq � pbq, so we are in some sense taking the “divibility ordering” rather than the
“ideal containment ordering.”

We write I � J if I ¤ J and J ¤ I; this holds if and only if I � J if and only
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if I� � J�. The relation � is an equivalence relation on the set of fractional ideals
of R. We put

DpRq :� FracpRq{ �
be the set of equivalence classes. Elements of DpRq are called divisors on R. For
I P FracpRq we denote its image in DpRq by divpIq. The class divpIq has a canonical
representative, namely I: for every J P divpIq we have J � I. We call a fractional
ideal divisorial if I � I.

Let a P K�. We saw above that paRq� � p 1aRq�, hence aR � p 1aRq� � aR.
Thus invertible fractional ideals are divisorial. A divisor divpIq is principal if it
contains a principal fractional ideal, in which case its canonical representative I is
a principal fractional ideal.

Proposition 19.25. Every invertible fractional ideal is divisorial.

Proof. Let I be an invertible fractional ideal. By Lemma 19.9 we have I� �
I�1, which is also invertible, so

I � pI�q� � pI�1q� � pI�1q�1 � I. □

Proposition 19.26. Let I P FracR. Then I is divisorial if and only if it is
the intersection of a nonempty family of principal fractional ideals.

Proof. If I is divisorial, then I � I and by Proposition 19.8, I is the in-
tersection of the principal fractional ideals in which it is contained. Moreover, by
definition, a fractional ideal is contained in a�1R for some a P R.

Conversely, let tIiuiPI be a nonempty family of principal fractional ideals such
that

�
iPS Ii is a fractional ideal (i.e., is nonzero). Then each Ii is divisorial, so

Proposition 19.7b) tells us that
�
iPI is divisorial. □

Example 19.27. Let k be a field, and let R be the subring krx2, x3s of krXs:
otherwise put, it is the ring of polynomials in which the monomial t does not ap-
pear. (This however makes one wonder a little why it is a ring, possibly even after
calulating that it is closed under multiplication. In fact it is the monoid ring krM s,
where M is the submonoid t0u Y Z¥2 of N. ) The ring R is not integrally closed:

indeed x � x3

x2 lies in the fraction field of R and satisfies the monic polynomial

t2 � x2 P Rrts, but x does not lie in R.
We claim that the maximal ideal m :� xm,m2y of R is divisorial but not invert-

ible. Indeed we have

m � RX 1

x
R

is an intersection of principal fractional ideals hence divisorial. The elements t2

and t3 are nonassociate irreducibles, so if m � xay, then a | t2 and a | t3, which
implies a P R�, contradicting the properness of m.

The ring R is isomorphic to krx, ys{px3� y2q, and under that isomorphism the
maximal ideal m corresponds to m � xx, yy. Similarly to the dscussion following
Theorem 15.48, we see that dimR{m m{m2 � dimk m{m2 � 2, which means that even
the pushforward mm of m to the local ring Rm is not prinicpal. Therefore m is a
divisorial ideal that is not invertible.

Exercise 19.12. Let I P FracR and x P K. Show: I is divisorial if and only
if xI is divisorial.
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Proposition 19.28. For I, J,M P FracR, we have:

div I ¤ div J ùñ div IM ¤ div JM.

Proof. By hypothesis J � I; equivalently pR : Iq � I� � J� � pR : Jq. Then
pIMq� � pR : IMq � ppR : Iq :Mq � ppR : Jq :Mq � pR : JMq � pJMq�.

It follows that JM � IM , so div IM ¤ div JM . □

Proposition 19.29. Let R be a domain.

a) For div I, div J P DpRq, the operation

div I � div J :� div IJ

is well-defined and endows DpRq with the structure of a commutative
monoid.

b) The monoid pDpRq,�,¤q is lattice-ordered.

Proof. We have

pR : IJq � ppR : Iq : Jq � pR : Iq : Jq � ppR : Jq : Iq
� ppR : Jq : Iq � pR : I � Jq,

so pIJq� � pI � Jq�, which implies

IJ � I � J,
showing that divpIJq depends only on divpIq and divpJq.
b) For I, J,M P FracR with div I ¤ div J , by Proposition 19.28 and part a),

div I � divM � div IM ¤ div JM � div J � divM,

and thus the partial ordering is compatible with the monoid structure. To show
that we have a lattice, for any I, J P FracR, we need to find the supremum and
infimum of div I and div J . We claim that in fact we have

divpI X Jq � sup div I, div J

divpI � Jq � inf div I, div J.

To see this we may assume I and J are divisorial. By Exercise 19.12, I X J is
divisorial, so it is clear that for any divisorial ideal M ,

pdiv I ¤M, div J ¤Mq ðñ pM � I, M � Jq
ðñ pM � I X Jq ðñ div I X J ¤ divM.

Next, observe that since I, J � I � J , div I � J ¤ div I,div J , i.e., div I � J is
a lower bound for tdiv I, div Ju. Conversely, if M P FracR is such that divM ¤
div I, div J , then I, J � M so I � J � M and I � J � M � M and divM �
divM ¤ div I � J � div I � J . □

Notice that in Proposition 19.29 we did not prove that IJ � I � J . This is not true
in general: that is, unlike principal fraction ideals and invertible fractional ideals,
the product of two divisorial ideals need not be divisor. We will see why shortly.

Theorem 19.30. For a domain R, the following are equivalent:

(i) DpRq is a group.
(ii) R is completely integrally closed.
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Proof. (i) ùñ (ii): Let x P K�. Suppose there is d P R such that dxn P R
for all n P Z�. Then I � xR, ayR P FracR and aI � I. Then

div I ¤ div aI � div a� div I.

Since DpRq is a group, divR � 0 ¤ div a, and since aR and R are divisorial, a P R.
(ii) ùñ (i): We’ll show: for all divisorial fractional ideals I, pII�q� � R� � R,
hence div I�div I� � divR � 0. By Proposition 19.8, it’s enough to show that II�

and R are contained in the same principal fractional ideals. Since II� � R, any
principal fractional ideal which contains R contains II�. Thus, let x P K� be such
that II� � xR; we want to show R � xR, i.e., x�1 P R. Suppose that for y P K�

we have I � yR, so y�1 P I� and thus Iy�1 � xR; equivalently, x�1I � yR. Thus
x�1I is contained in every principal fractional ideal containing I, so x�1I � I � I.
It follows that x�nI � I for all n P Z�. Let w P R be such that wI � R. Then
dx�nI � R, and if z P I then pwzqx�n P R for all n P Z�. Since dc P R and R is
completely integrally closed, by Theorem 14.43 x�1 P R. □

If I P FracR is divisorial, then in the proof of Theorem 19.30 we showed that
pII�q� � R. It follows that II� � R. Thus if I is not invertible then the product of
the two divisorial ideals I and I� is not divisorial...and this is more good than bad,
since it allows DpRq to be a group for e.g. any Noetherian integrally closed domain.

If R is completely integrally closed (e.g. Noetherian and integrally closed), the
divisors form a group DpRq. The principal divisors P pRq always form a group, so
we may form the quotient

ClR :� DpRq{P pRq,
the divisor class group of R. Because invertible fractional ideals are divisorial
and form a group (with no conditions on the domain R), we get an injection

PicR ãÑ ClR.

This gives us two competing class groups. The Picard group PicR is also often
called the Cartier divisor class group or the locally principal divisor class
group. The divisor class group ClR is often called the Weil divisor class group.
Unfortunately the way we have defined it does not make the relationship to Weil
divisors as seen in algebraic geometry very clear. We will come back to this when
we discuss Krull domains.

Theorem 19.31. Let R � Crx, y, zs{pxy � z2q. Then R is a Noetherian inte-
grally closed domain with PicR � 0 and ClR � Z{2Z.





CHAPTER 20

Dedekind Domains and Prüfer Domains

A Dedekind domain is a domain that is Noetherian, integrally closed, and of
dimension at most one. A Dedekind domain has dimension zero if and only if it
is a field. The case of fields will be ignored whenever possible (although we try to
state our results so as to be correct in this trivial case).

Exercise 20.1. Show: a PID is a Dedekind domain.

Let R be a Dedekind domain with fraction field K, let L{K be a finite degree field
extension, and let S be the integral closure of R in L. It follows from the Krull-
Akizuki Theorem that S is also a Dedekind domain. Two special cases of this are
of the highest level of importance:

 The ring Z is a PID, with fraction field Q. Let K be a number field — i.e.,
a finite degree field extension of Q. Let ZK be the integral closure of Z in K. Then
ZK is a Dedekind domain. Algebraic number theory begins by applying the general
theory of Dedekind domains that we will develop here to this class of examples and
goes on to explore properties that are particular to this class of Dedekind domains,
e.g. the finiteness of the class group.

 Let k be a field. The ring krts is a PID, with fraction field k. Let L{kptq be
a finite degree field extension, and let S be the integral closure of krts in L. Then
S is a Dedekind domain. There is a geometric interpretation here: kptq if the field
of rational functions on the projective line P1

{k, the field L is the field of rational

functions of a (unique, up to isomorphism) projective, regular, connected algebraic
curve C{k, and the field extension L{kptq corresponds to a finite morphism of curves

π : C Ñ P1
{k. The preimage of the affine line A1

{k under π is an affine, regular, con-

nected algebraic curve C�{k, and the ring S is krC�s, the ring of rational functions
on C that are regular on C�. There is a close connection between the class group of
the Dedekind domain S and the Picard group of the complete curve C. Exploiting
this connection is one way to see that when k is finite, the class group of S is finite.

We will give several characterizations of Dedekind domains: the first one is that
a domain R is Dedekind if and only if each nonzero fractional R-ideal is invert-
ible (equivalently, if each nonzero R-ideal is invertible). A Prüfer domain is a
domain in which each nonzero finitely generated ideal is invertible. It follows that
a Dedekind domain is precisely a Noetherian Prüfer domain. Thus conversely we
may think of Prüfer domains as a class of domains that are like Dedekind domains
except that they need not be Noetherian, in close analogy to the way that Beźout
domains are like PIDs except that they need not be Noetherian. Indeed:

Exercise 20.2. Show: a Bézout domain is a Prüfer domain.

397
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1. Invertibility of Ideals

Theorem 20.1. For a domain R, the following are equivalent:

(i) R is Dedekind: Noetherian, integrally closed of dimension at most one.
(ii) Every fractional R-ideal is invertible.
(iii) Every nonzero prime ideal of R is invertible.

Proof. (i) ùñ (ii): Let R be a Noetherian, integrally closed domain of
dimension at most one, and let I be a fractional R-ideal. Then II� � R and
hence also II�pII�q� � R, so I�pIIq� � I�. It follows from Lemma 19.20 that
pII�q� � R; moreover, since II� � R, Lemma 19.23 implies II� � R, i.e., I is
invertible.
(ii) ùñ (i): Since invertible ideals are finitely generated, if every nonzero ideal
is invertible, then R is Noetherian. Let p be a nonzero, nonmaximal prime ideal
of R, so that there exists a maximal ideal m which 0 � p � m. By the mantra
“to contain is to divide” for invertible fractional ideals, there exists some invertible
integral ideal I such that p � mI. Suppose that I � p. Then I � RI � mI � p, so
we would have p � I and then m � R, contradiction. Then there are x P mzp and
y P Izp such that xy P p, contradicting the primality of p.

Finally, we check that R is integrally closed: let x � b
c be a nonzero element of

K which is integral over R, so there exist a0, . . . , an�1 P R such that

xn � an�1x
n�1 � . . .� a1x� a0 � 0.

Let M be the R-submodule of K generated by 1, x, . . . , xn�1; since M is finitely
generated, it is a fractional R-ideal. We have M2 � M , and thus – since M is
invertible – M � R. It follows that x P R.
(ii) ùñ (iii) is immediate.
(iii) ùñ (ii) by Theorem 19.14. □

Recall that a ring R is hereditary if every ideal of R is a projective R-module.

Corollary 20.2. A domain R is hereditary if and only if it is a Dedekind
domain.

Proof. By Theorem 20.1 a domain R is a Dedekind domain if and only if
every fractional ideal of R is invertible, and clearly the latter condition holds if
and only if every nonzero integral ideal of R is invertible. Moreover, by Theorem
19.12, a nonzero ideal of a ring is invertible if and only if it is projective as an
R-module. □

2. Ideal Factorization in Dedekind Domains

Here we will show that in a Dedekind domain every nonzero integral ideal factors
uniquely into a product of primes and derive consequences for the group of invertible
ideals and the Picard group. (The fact that factorization – unique or otherwise! –
into products of primes implies invertibility of all fractional ideals – is more delicate
and will be pursued later.)

Lemma 20.3. Let I be an ideal in a ring R. If there exist J1, J2 ideals of R,
each strictly containing I, such that I � J1J2, then I is not prime.

Proof. Choose, for i � 1, 2, xi P JizI; then x1x2 P I, so I is not prime. □
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Theorem 20.4. Every proper integral ideal in a Dedekind domain has a unique
factorization into a product of of prime ideals.

Proof. After Lemma 19.19 it suffices to show that a nonzero proper integral
ideal I in a Dedekind domain R factors into a product of primes. Suppose not,
so the set of ideals which do not so factor is nonempty, and (as usual!) let I be a
maximal element of this set. Then I is not prime, so in particular is not maximal:
let p be a maximal ideal strictly containing I, so I � pJ . Then J � p�1I strictly
contains I so factors into a product of primes, hence I does. □

If I is any nonzero integral ideal of I and p is any nonzero prime ideal of a Dedekind
domain R, then we may define ordppIq via the prime factorization

I �
¹
p

pordppIq.

The product extends formally over all primes, but as I is divisible by only finitely
many primes, all but finitely many exponents are zero, so it is really a finite product.

Corollary 20.5. Let R be a Dedekind domain.

a) The monoid MpRq of nonzero integral ideals is a free commutative monoid
on the maximal ideals.

b) The fractional ideals form a free commutative group on the maximal ideals:

FracpRq � à
0�p P SpecR

Z.

Proof. Part a) is simply the statement of unique factorization into prime
elements in any commutative monoid. In the group IpRq of all fractional ideals,
the subgroup G generated by the nonzero primes is a free commutative group on
the primes: this just asserts that for primes p1, . . . , pr and integers n1, . . . , nr, the
equation pn1

1 � � � pnr
r � R implies n1 � . . . � nr � 0, which is easily seen – e.g. by

localizing. Since any fractional ideal J is of the form 1
xI with I an integral ideal,

decomposing I and pxq into their prime factorizations expresses J as a Z-linear
combination of prime ideals, so FracpRq � G. □

Corollary 20.5 allows us to extend the definition of ordp to any fractional R-ideal.

Since for a Dedekind domain there is no distinction between invertible fractional
ideals and all fractional ideals, the Picard group takes an especially simple form: it
is the quotient of the free commutative group FracpRq of all fractional ideals modulo
the subgroup PrinpRq � K�{R� of principal fractional ideals. We therefore have
a short exact sequence

0Ñ PrinpRq Ñ FracpRq Ñ PicpRq Ñ 0,

and also a slightly longer exact sequence

0Ñ R� Ñ K� Ñ FracpRq Ñ PicpRq Ñ 0.

Theorem 20.6. For a Dedekind domain R, the following are equivalent:

(i) We have PicpRq � 0.
(ii) The ring R is a PID.
(iii) The ring R is a UFD.
(iv) The ring R has only finitely many nonprincipal prime ideals.
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Proof. Evidently each fractional ideal is principal if and only if each integral
ideal is principal: piq � piiq. Since R has dimension at most one, (ii) ðñ (iii)
by Proposition 16.1. Evidently (ii) ùñ (iv), so the interesting implication is that
(iv) implies the other conditions. So assume that the set of (nonzero) nonprincipal
prime ideals is nonempty but finite, and enumerate them: p1, . . . , pn. Let I be an
integral ideal, and suppose that

I � pa11 � � � pann qb11 � � � qbmm .

(As usual, we allow zero exponents.) By the Chinese Remainder Theorem we may
choose an α P R such that ordpi

pαq � ai for all i.1 Now consider the fractional
ideal pα�1qI; it factors as

pα�1qI � qb11 � � � qbmm rc11 � � � rcll ,
where the ri’s are some other prime ideals, i.e., disjoint from the pi’s. But all of
the (fractional) ideals in the factorization of pα�1qI are principal, so pα�1qI � pβq
for some β P K� and then I � pαβq is principal! □

Exercise 20.3.

a) Consider the ring

R1 � Zr?�3s � Zrts{pt2 � 3q.
Show: R1 is a one-dimensional Noetherian domain with exactly one non-
principal prime ideal, namely p2 � x1�

?�3, 1�?�3y.
b) For any n P Z�, exhibit a ring Rn which is one-dimensional Noetherian

and has exactly n nonprincipal prime ideals.

3. Local Characterization of Dedekind domains

Theorem 20.7. Let R be a domain.

a) If R is Dedekind and S is a multiplicative subset, then S�1R is Dedekind.
b) If R is a Dedekind domain and 0 � p is a prime ideal of R, then Rp is a

DVR.

Proof. Being Noetherian, dimension at most one and integrally closed are
all preserved under localization, so part a) is immediate. Similarly, if 0 � p is a
prime ideal, then the localization Rp is a local, one-dimensional integrally closed
Noetherian domain, hence by Theorem 17.8 a DVR, establishing b). □

Exercise 20.4. Let R be Dedekind with fraction field K; let 0 � p P SpecR.
a) Show: the map ordp : K� Ñ Z defined above is nothing else than the

discrete valuation corresponding to the localization Rp.
b) Conversely, let v : K� Ñ Z be a discrete valuation. Show that the val-

uation ring Rv � v�1pNq is the localization of R at some maximal ideal
p.

1Note that we want equality, not just ordPi
pαq ¥ ai, so you should definitely think about

how to get this from CRT if you’ve never seen such an argument before.
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4. Factorization Into Primes Implies Dedekind

Theorem 20.8. (Matusita [Ma44]) Let R be a domain with the property that
every nonzero proper integral ideal is a product of prime ideals. Then R is Dedekind.

Proof. Step 1: Let p be an invertible prime of R. We show that p is maximal.
Let a P Rzp, and suppose that xa, py � R. Let us then write

I1 :� xa, py � p1 � � � pm,
I2 :� xa2, py � q1 � � � qn,

where the pi and qj are prime ideals. By assumption, I1 � p, and, since p is prime,
we have also I2 � p. Therefore each pi and qj strictly contains p. In the quotient

R � R{p we have

paq � aR � p1 � � � pm
and

pa2q � a2R � q1 � � � qn.
The principal ideals paq and pa2q are invertible, and the pi and qj remain prime in
the quotient. Therefore, we have

q1 � � � qn � p21 � � � pm2.

Thus the multisets ttq1, . . . , qnu and tp1, p1, . . . , pm, pmuu coincide, and pulling
back to R the same holds without the bars. Thus

I21 � xa, py2 � p21 � � � p2m � q1 � � � qn � xa2, py,
so

p � xa, py2 � a2R� ap� p2 � aR� p2.

So if p P p, p � ax� y with x P R, y P p2, so ax P p, and since a P Rzp, x P p. Thus
p � ap � p2 � p, so p � ap � p2. Multiplication by p�1 gives R � a � p, contrary
to hypothesis. So p is maximal.

Step 2: Let p be a nonzero prime ideal in R, and 0 � b P p. Then p � bR and

bR � p1 � � � pm,
with each pi invertible and prime. Thus by Step 1 the pi’s are maximal. Since
p is prime we have p � pi for some i and then by maximality p � pi, hence p is
invertible. Since by assumption every proper integral ideal is a product of primes,
we conclude that every integral ideal is invertible, which, by Theorem 20.1 implies
that R is Dedekind. □

Let a and b be ideals of a domain R. We say that b divides a if there is an ideal c
such that bc � a.

Exercise 20.5. Suppose a, b, c are ideals of a domain R such that b c � a.

a) Show: b � a.
b) Show: c � pa : bq.
c) Can we have c � pa : bq?

Proposition 20.9. For a Noetherian domain R, the following are equivalent:

(i) R is a Dedekind domain.
(ii) To contain is to divide: For all ideals a, b of R, b � a ðñ b divides

a.
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Proof. (i) ùñ (ii): The statement is trivial if b � p0q. Otherwise, b is
invertible so a � bpa : bq by Lemma 19.9.
(ii) ùñ (i): We claim that every proper nonzero ideal of R is a product of prime
ideals. Since R is Noetherian, if this is not the case there is an ideal a which is
maximal with respect to not having this property. Let p be a maximal ideal with
a � p. By hypothesis, there is an ideal c with a � p1c. Then c � a. Suppose we
had equality; then repeatedly substituting a � p1a gives a � pk1a for all k P Z�,
and then by the Krull Intersection Theorem, a � �8

k�1 p
k
1 � p0q, contradiction.

So c properly contains a, so we may write c � p2 � � � pr and thus a � p1p2 � � � pr:
contradiction. □

Theorem 20.10. For a domain R which is not a field, the following are equiv-
alent:

(i) R is Noetherian, integrally closed, and of Krull dimension one.
(ii) Every fractional (equivalently, every integral) R-ideal is invertible.
(iii) R is Noetherian, and the localization at every maximal ideal is a DVR.
(iv) Every nonzero proper integral ideal factors into a product of prime ideals.
(iv1) Every nonzero proper integral ideal factors uniquely into a product of

primes.
(v) R is Noetherian, and to contain is to divide for all ideals of R.

5. Generation of Ideals in Dedekind Domains

Theorem 20.11. Let R be a Dedekind domain and I a nonzero ideal of R.
Then the quotient ring R{I is a principal Artinian ring.

Proof. Write I �±r
i�1 p

ai
i . By the Chinese Remainder Theorem,

R{I �
r¹
i�1

R{paii .

Each factor R{paii is also a quotient of the localized ring Rp{paii , which shows that
it is Artinian and principal. Finally, a finite product of Artinian (resp. principal
ideal rings) remains Artinian (resp. a principal ideal ring). □

This has the following striking consequence:

Theorem 20.12. (Asano-Jensen) For a domain R, the following are equiva-
lent:

(i) R is a Dedekind domain.
(ii) For every nonzero ideal I of R and every element a P I, there is b P I

such that I � xa, by.
Proof. The direction (i) ùñ (ii) follows immediately from Theorem 20.11.

Conversely, assume condition (ii) holds. By Theorem 20.10 it suffices to show that
R is Noetherian and that its localization at each nonzero prime ideal p is a DVR.
Certainly condition (ii) implies Noetherianity; moreover it continues to hold for
nonzero ideals in any localization. So let I be a nonzero ideal in the Noetherian
local domain pRp, pq. It follows that there exists b P p such that p � Ip� bRp. By
Nakayama’s Lemma, I � bRp, so Rp is a local PID, hence a DVR. □
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Proposition 20.13. ([J2, Ex. 10.2.11]) Let R be a Dedekind domain, I a
fractional ideal of R and J a nonzero integral ideal of R. Then there is a P I such
that aI�1 � J � R.

Proof. Let p1, . . . , ps be the prime ideals of R dividing J . For each 1 ¤ i ¤ r,
choose ai P Ip1 � � � prp�1

i zIp1 � � � pr. Put a � a1�. . .�ar. We claim that aI�1�J �
R. It is enough to check this locally. For every prime q � pi, we have JRq � Rq.
On the other hand, for all 1 ¤ i ¤ r, aI�1 is not contained in pi, so its pushforward
to Rpi is all of Rpi . □

6. Finitely Generated Modules Over a Dedekind Domain

The main aim of this section is to prove the following important result.

Theorem 20.14. LetM be a finitely generated module over a Dedekind domain.

a) P :�M{M rtorss is finitely generated projective, say of rank r.
b) If r � 0, then M �M rtorss. If r ¥ 1 then

M �M rtorss ` P �M rtorss `Rr�1 ` I,
with I a nonzero ideal of R.

c) The class rIs of I in PicR is an invariant of M .
d) There is N P Z�, maximal ideals pi and positive integers ni such that

M rtorss �
Nà
i�1

R{pni
i .

Much of the content of the main theorem of this section lies in the following converse
of Proposition 3.8b) for finitely generated modules over a Dedekind domain.

Theorem 20.15. For a finitely generated module M over a Dedekind domain,
the following are equivalent:

(i) M is projective.
(ii) M is flat.
(iii) M is torsionfree.

Proof. Of course (i) ùñ (ii) ùñ (iii) for modules over any domain, and
we have seen that (i) � (ii) for finitely generated modules over a Noetherian ring.
So it suffices to show (iii) ùñ (i).

Suppose R is a Dedekind domain and M is a finitely generated nonzero tor-
sionfree R-module. By Proposition 3.8c), we may assume that M � Rn for some
n ¥ 1. We prove the result by induction on n. If n � 1, then M is nothing else
than a nonzero ideal of R, hence invertible by Theorem 20.10 and thus a rank one
projective module by Theorem 19.12. So we may assume that n ¡ 1 and that every
finitely generated torsionfree submodule of Rn�1 is projective. Let Rn�1 � Rn be
the span of the first n� 1 standard basis elements. Let πn : Rn Ñ R be projection
onto the nth factor, and consider the restriction of πn to M :

0ÑM XRn�1 ÑM
πnÑ πnpMq Ñ 0.

Put I � πnpMq. Then I is an ideal of R, hence projective, so the sequence splits:

M Ñ pM XRn�1q ` I.
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NowMXRn�1 is a torsionfree, finitely generated (sinceM is finitely generated and
R is Noetherian) submodule of Rn�1, hence is projective by induction. Certainly
a direct sum of projective modules is projective, so we’re done. □

For any module M over a domain R, we have that M{M rtorss is torsionfree, so
if M is a finitely generated module over a Dedekind domain, then Theorem 20.15
implies that P :� M{M rtorss is projective, which is Theorem 20.14a). Because P
is projective, we get

M �M rtorss ` P,
which is the first part of Theorem 20.14b).

Moreover, the method of proof of Theorem 20.15 yields the following important
corollary:

Corollary 20.16. Let P be a finitely generated rank r projective module over
a Dedekind domain R. Then we have a direct sum decomposition P � Àr

i�1 Ii,
where each Ii is a nonzero rank one projective R-module.

Lemma 20.17. I1, . . . , In be fractional ideals in the Dedekind domain R. Then
the R-modules

Àn
i�1 Ii and R

n�1 ` I1 � � � In are isomorphic.

Proof. We will prove the result when n � 2. The general case follows by an
easy induction argument left to the reader.
Choose 0 � a1 P I1. Applying Proposition 20.13 with I � I2 and J � a1I

�1
1 � R,

that there exists a2 P I2 such that a1I
�1
1 � a2I�1

2 � R. That is there exist bi P I�1
i

such that a1b1 � a2b2 � 1. The matrix�
b1 �a2
b2 a1

�
is invertible with inverse

A�1 �
�

a1 a2
�b2 b1

�
.

For px1, x2q P I1 ` I2, we have

y1 � x1b1 � x2 P R, y2 � �x1a2 � x2a1 P I1I2.
On the other hand, if y1 P R and y2 � c1c2 P I1I2, then

x1 � a1y1 � b2c1c2 P I1, x2 � a2y1 � b1c1c2 P I2.
Thus rx1x2s ÞÑ rx1x2sA gives an R-module isomorphism from I1`I2 to R`I1I2. □

Thus for our finitely generated module M over a Dedekind domain R with P :�
M{M rtorss projective of rank r, Corollary 20.16 and Lemma 20.17 give

M �M rtorss ` P �M rtorss `
rà
i�1

Ii �M rtorss `Rr�1 ` pI1 � � � Irq,

completing the proof of Theorem 20.14b).

To prove Theorem 20.14c), we need to show that if I and J are fractional ideals
of the Dedekind domain R and there is n P N such that Rn ` I �R Rn ` J , then
rIs � rJs in PicR. To see this we apply Lemma 20.17:

Rn�1 `R � Rn�2 � pRn ` Iq ` I�1 � pRn ` Jq ` I�1 � Rn�1 ` JI�1.
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Thus the rank 1 projective module JI�1 is stably free, so by Proposition 7.18 JI�1

is a free R-module, i.e., a principal ideal, so rJsrI�1s � 1 and thus rIs � rJs.

Finally, we prove Theorem 20.14d): let T be a finitely generated torsion R-module.
We notice that the statement of the classification is identical to that of finitely
generated torsion modules over a PID. This is no accident, as we can easily re-
duce to the case of a PID – and indeed to that of a DVR, which we have already
proven (Theorem 17.13). Namely, let I be the annihilator of T , and (assuming
T � 0, as we certainly may) write I � ±r

i�1 p
ai
i . Then T is a module over

R{I � R{±r
i�1 p

ri
i �

Àr
i�1R{paii . T naturally decomposes as T �Àr

i�1 Ti, where
Ti is a module over R{paii . This gives the primary decomposition of T . Moreover,
each Ti is a module over the DVR Rp, so Theorem 17.13 applies.

Corollary 20.18. For any Dedekind domain R, the Picard group PicR is

canonically isomorphic to the reduced K0-group �K0pRq.
Proof. Let P be a finitely generated projective R-module of rank r ¥ 1.

According to Theorem 20.14c) the monoid of isomorphism classes of finitely gen-
erated projective R-modules is cancellative: this means that the canonical map
φ : PicpRq Ñ K0pRq is injective. It follows easily that the composite map Φ :

PicpRq φÑ K0pRq Ñ �K0pRq is an injection: indeed, for φpIq to be killed in �K0pRq
but not K0pRq it would have to be a fractional ideal which has rank zero as an
R-module, and there are no such things. Now an arbitrary nonzero finitely gener-
ated projective R-module is isomorphic to Rr�1 ` I, hence becomes equal to the

class of the rank one module I in �K0pRq, so Φ is surjective. To check that it is a
homomorphism of groups we may look on a set of generators – namely, the classes
of rank one projective modules. Let us use rP s for the class of the projective module

P in K0pRq and rrP ss for its image in �K0pRq. Then by Lemma 20.17 we have

ΦprI1b I2sq � rrI1b I2ss � rrI1I2ss � rrR` I1I2ss � rrI1` I2ss � rrI1ss� rrI2ss. □
Exercise 20.6. State and prove an appropriate analogue of Proposition 6.13

for finitely generated projective modules over a Dedekind domain R.

Corollary 20.19. For a module M over a Dedekind domain, the following
are equivalent:

(i) The module M is torsionfree.
(ii) The module M is flat.

Proof. (i) ùñ (ii): If M is finitely generated and torsionfree, then M is flat
by Theorem 20.15. By Corollary 3.96, every torsionfree R-module is flat.
(ii) ùñ (i): This holds for modules over any domain: Proposition 3.38. □

Corollary 20.20. For a Noetherian domain R, the following are equivalent:

(i) Every torsionfree R-module is flat.
(ii) Every finitely generated torsionfree R-module is flat.
(iii) The ring R is a Dedekind domain.

Proof. (i) ùñ (ii) is immediate. (ii) ùñ (iii): Let I be an ideal of R.
Since R is Noetherian, I is a finitely generated torsionfree R-module, hence flat
by assumption, and then I is projective by Corollary 7.32. By Theorem 19.12, I
is invertible. In particular every nonzero prime ideal of R is invertible, so R is
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Dedekind by Theorem 20.1.
(iii) ùñ (i) by Corollary 20.19. □

The full characterization of domains in which every torsionfree module is flat is
coming up soon: Theorem 20.31.

7. Injective Modules Over a Dedekind Domain

Theorem 20.21. For a domain R with fraction field K, the following are equiv-
alent:

(i) R is Dedekind.
(ii) Every divisible R-module is injective.

Proof. (i) ùñ (ii): Let D be a divisible R-module. We will show D is
injective using Baer’s Criterion: let I be an ideal of R and f : I Ñ D a module
map. We may assume that I is nonzero and thus, since R is a Dedekind domain,
invertible: if I � xa1, . . . , any, there are b1, . . . , bn P K such that biI � R for all i
and 1 � °n

i�1 aibi. Since D is divisible, there are d1, . . . , dn P D with fpaiq � aidi
for all i. Then for x P I,

fpxq � fp
¸
i

biaixq �
¸
pbixqfpaiq �

¸
i

pbixqaidi � x
¸
i

pbiaiqei.

Put d � °n
i�1pbiaiqdi. Thus F : RÑ D by x ÞÑ dx lifts f .

(ii) ùñ (i): Let I be injective. Then I is divisible and a quotient of a divisible
module is divisible, so every quotient of I is divisible, and thus by assumption every
quotient of I is injective. By Corollaries 3.61 and 20.2, R is Dedekind. □

As an application, we will prove a generalization to Dedekind domains of a non-
trivial result in commutative group theory. Given an commutative group A, it is
natural to ask when its torsion subgroup Artorss is a direct summand of A, so that
A is the direct sum of a torsion group and a torsionfree group. It is easy to see
that this happens when A is finitely generated, because then A{Artorss is a finitely
generated torsionfree module over a PID, hence projective. The following exercise
shows that some condition is necessary.

Exercise 20.7. Let A � ±p Z{pZ, where the product extends over all prime

numbers. Show that Artorss is not a direct summand of A.

These considerations should serve to motivate the following result.

Theorem 20.22. Let M be a module over a Dedekind domain R. If M rtorss �
M rrs for some r P R, then M rtorss is a direct summand of M .

Proof. Step 1: We claim that if A is a torsionfree R-module, then for every
R-module B, Ext1RpA,Bq is divisible.
proof of claim Let V � A bR K. Since A is torsionfree, we have an exact
sequence

0Ñ AÑ V Ñ V {AÑ 0.

Applying the cofunctor Homp�, Bq, a portion of the long exact Ext sequence is

Ext1RpV,Bq Ñ Ext1RpA,Bq Ñ Ext2RpV {A,Bq.
Since R is hereditary, Theorem 3.101a) gives Ext2RpV {A,Bq � 0, so Ext1RpA,Bq
is a quotient of Ext1RpV,Bq. Since V is a K-module, so is Ext1RpV,Bq and thus
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Ext1RpV,Bq and its quotient Ext1RpA,Bq is a divisible module, hence injective by
Theorem 20.21.
Step 2: Let T �M rtorss �M rrs. We will show that the sequence

0Ñ T ÑM ÑM{T Ñ 0

splits by computing Ext1RpM{T, T q � 0. Since M{T is torsionfree, by Step 1
Ext1RpM{T, T q is divisible. On the other hand, since T � T rrs, Ext1RpM{T, T q �
Ext1RpM{T, T qrrs. Thus multiplication by r on Ext1RpM{T, T q is on the one hand
surjective and on the other hand identically zero, so Ext1RpM{T, T q � 0. By Theo-
rem 3.92 the sequence splits. □

8. Characterizations of Prüfer Domains

Now we return to discuss Prüfer domains: recall that a Prüfer domain is a domain
in which each nonzero finitely generated ideal is invertible. At first this condition
ma look a bit abstruse. The following result shows that, on the contrary, this
determines a very natural class of domains.

Theorem 20.23. (Characterization of Prüfer Domains)
For a domain R, the following are equivalent:

(i) R is a Prüfer domain: every nonzero finitely generated ideal is invertible.
(i1) Every nonzero ideal of R generated by two elements is invertible.
(ii) Nonzero finitely generated ideals are cancellable: if a, b, c are ideals of R

and a is finitely generated and nonzero, then ab � ac ùñ b � c.
(iii) For every p P SpecR, the ring Rp is a valuation ring.
(iii1) For every m P MaxSpecR, the ring Rm is a valuation ring.
(iv) For all ideals A,B,C of R, we have ApB X Cq � AB XAC.
(v) For all ideals A,B of R, we have pA�BqpAXBq � AB.
(vi) If A and C are ideals of R with C finitely generated and A � C, then

there is an ideal B of R such that A � BC.
(vii) For all ideals A,B,C of R with C finitely generated, we have

pA�B :R Cq � pA :R Cq � pB :R Cq.
(viii) For all ideals A,B,C of R with C finitely generated, we have

pC :R AXBq � pC :R Aq � pC :R Bq.
(ix) For all ideals A,B,C of R, we have AX pB � Cq � pAXBq � pAX Cq.
Proof. We will first show:

(i1) ùñ (i) ùñ (ii) ùñ (iii) ùñ (iii1) ùñ (iv) ùñ (v) ùñ (i1).
Then we will show:
(i) ùñ (vi) ùñ (iii),
(iii1) ùñ (vii) ùñ (i1),
(iii1) ùñ (viii) ùñ (i1), and
(iii1) ðñ (ix).
This suffices!
(i1) ùñ (i): We go by induction on the number of generators. A nonzero ideal
with a single generator is principal, hence invertible. By assumption, every nonzero
ideal generated by two elements is invertible. Hence we may assume that n ¥ 3
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and that every nonzero ideal of R generated by n� 1 elements is invertible, and let
c � xc1, . . . , cny. We may assume ci � 0 for all i. Put

a :� xc1, . . . , cn�1y, b :� xc2, . . . , cny,
d :� xc1, cny, e :� c1a

�1d�1 � cnb�1d�1.

Then
ce � pa� xcnyqc1a�1d�1 � pxc1y � bqcnb�1d�1

� c1d
�1 � c1cna�1d�1 � c1cnb�1d�1 � cnd�1

� c1d
�1pR� cnb�1q � cnd�1pR� c1a�1q.

Since cnb
�1, c1a

�1 � R, we get

ce � c1d
�1 � cnd�1 � xc1, cnyd�1 � R.

(iii) ùñ (iii1) is immediate. (iii1) ùñ (iii): if p P SpecR, let m be a maximal
ideal containing p. Then Rp is an overring of Rm, and every overring of a valuation
ring is a valuation ring.
(i) ùñ (ii) is immediate, since invertible ideals are cancellable.
(ii) ùñ (iii): Step 1: Suppose a is a nonzero finitely generated ideal and b, c are
ideals of R with ab � ac. Then

ac � ab� ac � apb� cq.
By our assumption, we may cancel a to get c � b� c, so b � c.
Step 2: Now let p P SpecR. By Proposition 17.4, to show that Rp is a valuation
ring it is enough to show that given any two principal ideals of Rp, one contains
the other. Since every principal ideal of a localization S�1R is generated by an
element of R, it suffices to show: for any a, b P R, we have either aRp � bRp or
bRp � aRp. Since

pabqxa, by � xa2, b2yxa, by,
by Step 1 we have pabq � xa2, b2y, so

ab � xa2 � yb2 for some x, y P R.
This implies pybqxa, by � paqxa, by and thus pybq � paq, so thre is u P R such that
yb � au. Then ab � xa2 � uab or

xa2 � abp1� uq.
If u R p, then a � bp yu q P bRp. If u P p then 1� u R p and b � ap x

1�u q P aRp.

(iii) ùñ (iii1) is immediate: maximal ideals are prime.
(iii1) ùñ (iv): First suppose that R is a valuation ring, and let A,B,C be ideals
of R. Since R is a chain ring, after interchanging B and C if necessary we may
assume that B � C, and then

ApB X Cq � AB � AB XAC.
Now suppose that Rm is a valuation ring for all m P MaxSpecR. For an ideal I of
R, we put Im :� IRm. Using Exercise 7.10, we get

ApB X CqRm � AmpBm X Cmq
� AmBm XAmCm � pABqm X pACqm � pAB XACqRm.

By Exercise 7.21, we deduce: ApB X Cq � AB XAC.
(iv) ùñ (v): Suppose (iv) holds, and let A and B be ideals of R. Then

pA�BqpAXBq � ppA�BqAq X ppA�BqBq � AB.
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Conversely if x P A, y P B and z P AXB, then px�yqz � xz�yz P AB�AB � AB.
(v) ùñ (i1): Suppose (v) holds, and let I :� xx1, x2y be a nonzero ideal of R.
If either x1x2 � 0, then I is principal, hence invertible, so we may assume that
x1, x2 P R, and then A :� px1q and B :� px2q are invertible, and

CpAXBqB�1A�1 � pA�BqpAXBqB�1A�1 � ABB�1A�1 � R,

so C is invertible.
(i) ùñ (vi): Suppose (i) holds, and let A � C be ideals of R with C finitely
generated. We may assume that C is nonzero, hence invertible, so AC�1 is an ideal
of R and A � pAC�1Cq.
(vi) ùñ (iii): Suppose that (vi) holds, and let p P SpecR. We will show that Rp is
a chain ring: thus for a, b P R we must show that either aRp � bRp or bRp � aRp.
Since paq � xa, by, so there is an ideal B of R such that paq � xa, byB, and thus
there are x, y P B such that

a � ax� by.
Suppose x P p. Then 1 � x R p, so a � by

1�x P bRp. Now suppose x R p. Since

bB � paq, we have bx P paq and thus b P aRp.
(iii1) ùñ (vii): First we observe that for all ideals A,B,C in a chain ring, we have

ppA�Bq :R Cq � pA :R Cq � pB :R Cq.
Indeed, after interchanging A and B we may assume that A � B and then both
sides are pA :R Cq. Now suppose that (iii1) holds,let A,B,C be ideals of R with C
finitely generated, and let m P MaxSpecR. By Exercise ??, we have

pA�Bq :R CqRm � pAm �Bmq :Rm
Cmq

� pAm :Rm
Cmq � pBm :Rm

Cmq
� pA :R Cqm � pB :R Cqm � ppA :R Cq � pB :R CqqRm.

By Exercise 7.21, we deduce: pA�Bq :R C � pA :R Cq � pB :R Cq.
(vii) ùñ (i1): Suppose (vii) holds, and let a, b P R. Then

R � xa, by :R xa, by � paq :R xa, by � pbq :R xa, by
� paq :R pbq � pbq :R paq.

Write 1 � x� y for xb P paq and ya P pbq. Then xb2, ya2 P pabq, so
xa, byxbx, ayy � pabq � pabx� abyq � xa, byxbx, ayy.

Thus xa, byxbx, ayy � pabq, so xa, by is invertible.
(iii1) ùñ (viii): Suppose (iii1) holds, let A,B,C be ideals of R with C finitely
generated, and let m P MaxSpecR. Without loss of generality, suppose that
minpAm, Bmq � Am. Then:

pC :R pAXBqRmq � pCm :Rm
pAXBqmq

pCm :Rm
Am � pC :Rm

Amq � pC :Rm
Bmq

� pC :R Aqm � pC :R Bqm � ppC :R Aq � C :R Bqqm � pC :R pAXBqqm.
Thus pC :R pA X Bqqm � ppC :R Aq � pC :R Bqqm. Since this holds for all m P
MaxSpecR, by Exercise 7.21 we deduce: pC :R pAXBqq � pC :R Aq � pC :R Bq.
(viii) ùñ (i1): Suppose (viii) holds, and let a, b P R. Then
R � ppaqXpbqq :R ppaqXpbqq � ppaqXpbq :R paqq�ppaqXpbqq :R pbqq � pbq :R paq�paq :R pbq.
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We finish using the argument of (vii) ùñ (i1).
(iii1) ùñ (ix): For any ideals A,B,C in a chain ring, we have

AX pB � Cq � AXmaxpB,Cq � pAXBq � pAX Cq,
so if (iii1) holds, then Exercise 7.21 implies that the same identity holds for ideals
A,B,C of R.
(ix) ùñ (iii1): Suppose (ix) holds, let m P MaxSpecR and let a, b P R. Since
paq � pbq � pa� bq, we have

paq � paq X ppbq � pa� bqq � ppaq X pbqq � ppaq X pa� bqq.
Thus we may write

a � t� cpa� bq
with t P paqXpbq, c P R and cpa� bq P paq. Then cb P paq and p1�cqa � t�cb P pbq.
Suppose c P m. Then 1� c R m, so a P bRm. Now suppose c R m. Then b P aRm. It
follows that Rm is a valuation ring. □

Exercise 20.8. Let R be a Prüfer domain.

a) Let S be a multiplicative subset of R. Show: S�1R is a Prüfer domain.
b) Let p P SpecR. Show: R{p is a Prüfer domain.

(Hint: Use Lemma 7.8 and Exercise 17.7b).)

Exercise 20.9. Let R be a Prüfer domain, and let I and J be ideals of R.
Suppose there is n P Z� such that In � Jn. Show: I � J .

Theorem 20.24. Let R be a domain.

a) Suppose R is a GCD-domain. Then R is Prüfer if and only if it is Bézout.
b) A Prüfer UFD is a PID.

Proof. a) Since principal ideals are invertible, any Bézout domain is a Prüfer
domain. Conversely, suppose R is a GCD-domain and a Prüfer domain. Let x, y P
R and let d be a GCD of x, y. Certainly we have pdq � xx, yy. Thus ι : xx, yy ãÑ pdq
is a homomorphism of R-modules which we want to show is an isomorphism. By
the Local-Global Principle for Module Homomorphisms it is enough to show that
for all p P SpecR, ιp is an isomorphism of Rp-modules, i.e., xx, yyRp

� xdyRp
.

By Proposition 15.16, d is again the GCD of x and y in the valuation ring Rp

(equivalently, the valuation of d is the minimum of the valuations of x and y) so
that the principal ideal xx, yyRp

is generated by xdyRp
.

b) Suppose R is a Prüfer UFD. By part a) R is Bézout, and by Theorem 16.20 a
Bézout UFD is a PID. □

Proposition 20.25. For a Prüfer domain R, the following are equivalent:

(i) The ring R is a Bézout domain.
(ii) We have PicpRq � 0.

Proof. A nonzero ideal in a Prüfer domain is invertible if and only if it is
finitely generated. So (i) and (ii) each assert that every nonzero finitely generated
ideal is principal. □

Proposition 20.26. A Prüfer domain is integrally closed.

Proof. In Theorem 20.1 we showed that a domain in which all fractional R-
ideals are invertible is integrally closed. In the proof we only used the invertbility of
finitely generated fractional ideals, so the argument works in any Prüfer domain. □
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Exercise 20.10. Prove Proposition 20.26 using the local nature of integral
closure.

Exercise 20.11. Let R be a Prüfer domain.

a) Show: if dimR ¤ 1, then R is completely integrally closed.
(Hint: use Exercise 17.23.)

b) Show: the ring HolC of entire functions is a completely integrally closed
Prüfer domain of infinite Krull dimension.

c) Suppose dimR ¡ 1. Show: there is m P MaxSpecR such that Rm is not
completely integrally closed.

d) Deduce from parts b) and c) that the localization of a completely integrally
closed domain need not be completely integrally closed.

8.1. A Chinese Remainder Theorem for Prüfer domains.

Recall that we have a Chinese Remainder Theorem which is valid in any ring:
Theorem 4.22. There is however another useful version of the Chinese Remainder
Theorem which holds in a domain R if and only if R is a Prüfer domain.

Let R be a ring, let I1, . . . , In be a finite sequence of ideals in R and let x1, . . . , xn
be a finite sequence of elements in R. We may ask: when is there an element x P R
such that x � xi pmod Iiq for all i?

If we assume the ideals Ii are pairwise comaximal, then this holds in any ring
by CRT (Theorem 4.22). But suppose we drop that condition. Then, if such an x
exists, we have x� xi P Ii for all i, hence for all i and j,

(56) xi � xj � px� xjq � px� xiq P Ii � Ij .
Thus we get a necessary condition (which, notice, is vacuous when the ideals are
pairwise comaximal). Let us say that a ring has property ECRT(n) if for all ideals
I1, . . . , In and elements x1, . . . , xn satisfying (56), there exists x P R such that
x � xi pmod Iiq for all i. We say that R satisfies ECRT (Elementwise Chinese
Remainder Theorem) if it satisfies ECRTpnq for all n P Z�.

Exercise 20.12. Show: a PID satisfies property ECRT.

Lemma 20.27. Any ring satisfies ECRTp1q and ECRTp2q.
Proof. ECRTp1q is trivial. For ECRTp2q: let I, J be ideals of R, let x1, x2 P

R, and suppose x1 � x2 P I � J : there are i P I, j P J such that x1 � x2 � i � j.
Put x � x1 � i � x2 � j. Then x � x1 pmod Iq and x � x2 pmod Jq. □

Theorem 20.28. For a ring R, the following are equivalent:

(i) ECRT holds in R.
(ii) ECRTp3q holds in R.
(iii) For all ideals A,B,C in R, A� pB X Cq � pA�Bq X pA� Cq.
(iv) For all ideals A,B,C in R, AX pB � Cq � pAXBq � pAX Cq.
Proof. (i) ùñ (ii) is immediate.

(ii) ùñ (iii): The inclusion A� pB X Cq � pA�Bq X pA� Cq holds for ideals in
any ring. Conversely, let t P pA�Bq X pA� Cq. Then by ECRTp3q there is x P R
satisfying all of the congruences

x � 0 pmod Aq,
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x � t pmod Bq,
x � t pmod Cq,

and thus x P A, x� t P B X C, so t � x� px� tq P A� pB X Cq.
(iii) ùñ (iv): For A,B,C ideals of R, we we have

pAXBq � pAX Cq � ppAXBq �Aq X ppAXBq � Cq � AX ppAXBq � Cq
and

pAXBq � pAX Cq � pA� pAX Cqq X ppAX Cq �Bq � AX ppAX Cq �Bq,
and thus

pAXBq � C � pAX Cq �B.
It follows that

pAXBq � C � pAXBq � C � pAX Cq �B � B � C
and thus

pAXBq � pAX Cq � AX ppAXBq � Cq � AX pB � Cq.
(iv) ùñ (iii): Assume (iv). Then for all ideals A,B,C of R,

pA�Bq X pA�Cq � pA�Bq XA � pA�Bq XC � AX pA�Bq � C X pA�Bq
� pAXAq�pAXBq�pAXCq�pBXCq � A�pAXBq�pAXCq�pBXCq � A�pBXCq.
(iii) ùñ (i): We go by induction on n. Having established that ECRT(1) and
ECRT(2) hold in any ring, we let n ¥ 2, assume ECRT(n) and show ECRT(n� 1):
let x1, . . . , xn�1 P R and I1, . . . , In�1 be ideals of R such that xi � xj P Ii � Ij for
all 1 ¤ i, j ¤ n. By ECRT(n), there is y P R with y � xi pmod Iqi for 1 ¤ i ¤ n.
We claim that y � xn�1 P In�1 �

�n
i�1 Ii.

proof of claim: Since we have assumed (iii), we have by induction that

a�
n£
i�1

bi �
n£
i�1

pa� biq,

and in particular

In�1 �
n£
i�1

Ii �
n£
i�1

pIi � In�1q.

Also, for all 1 ¤ i ¤ n, we have

y � xn�1 � py � xiq � pxi � xn�1q P Ii � Ii � In�1 P Ii � In�1

and thus indeed

y � xn�1 P
n£
i�1

pIi � In�1q � In�1 �
n£
i�1

Ii.

Because of the claim and ECRT(2), there is t P R satisfying

t � y pmod
n£
i�1

Iiq,

t � xn�1 pmod In�1q.
Then for 1 ¤ i ¤ n,

t� xi � pt� yq � py � xiq P Ii. □
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9. Modules over a Prüfer domain

Recall that a module is semihereditary if every finitely generated submodule is
projective and that a ring R is semihereditary if the module R is semihereditary:
i.e., every finitely generated ideal of R is projective.

Proposition 20.29. A domain R is a semihereditary if and only if it is a
Prüfer domain.

Exercise 20.13. Prove Proposition 20.29.

Lemma 20.30. Let R be a domain, and let M be a finitely generated torsionfree
R-module. Then M is a submodule of a finitely generated free module.

Proof. Since M is torsionfree, M ãÑ M bR K, and ι : M bR K � Kn for
some n P N. Since M is finitely generated, there exists x P R such that the image
of xM in M bR K is contained in Rn, and thus ι � pxq :M ãÑ Rn. □

Theorem 20.31. For a domain R, the following are equivalent:

(i) Every torsionfree R-module is flat.
(ii) Every finitely generated torsionfree R-module is projective.
(iii) R is a Prüfer domain.

Proof. (i) ùñ (ii): Let M be a finitely generated torsionfree R-module. By
assumption M is flat, and since R is a domain, by Corollary 13.38 M is projective.
(ii) ùñ (iii): Finitely generated ideals are assumed projective, hence invertible.
(iii) ùñ (i): Let R be a Prüfer domain and M a torsionfree R-module. Then
M � limÝÑi

Mi is the direct limit of its finitely generated submodules, hence a direct
limit of finitely generated torsionfree modules Mi. By Lemma 20.30, each Mi is
a finitely generated submodule of a free R-module. By Theorems 20.29 and 3.69,
each Mi is projective, hence flat. Thus M is a direct limit of flat modules, hence is
itself a flat module by Corollary 3.95. □

Exercise 20.14. Let R be a domain. Show: the following are equivalent:

(i) R is a Beźout domain.
(ii) Every finitely generated torsionfree R-module is free.

(Suggestion: Consult §3.9.2.)

10. Almost Dedekind Domains

A domain R is almost Dedekind if Rm is a DVR for all m P MaxSpecR. Thus a
field is an almost Dedekind domain, and any almost Dedekind domain that is not
a field is a one-dimensional Prüfer domain. The converse is not true: for instance,
if R is a valuation domain with value group pQ,�q then R is a one-dimensional
Prüfer domain that is not almost Dedekind. Clearly a Dedekind domain is almost
Dedekind, and since a Noetherian Prüfer domain is a Dedekind domain, also a
Noetherian almost Dedekind domain is Dedekind.

Proposition 20.32. For a one-dimensional domain R, the following are equiv-
alent:

(i) R is almost Dedekind.
(ii) An ideal of R is primary if and only if it is a prime power.
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Proof. Let R be a one-dimensional domain. Since nonzero prime ideals are
maximal, a nonzero ideal I of R is primary if and only if its radical is prime if
and only if it is contained in a unique prime ideal. Let p P MaxSpecR, and let
ι : R Ñ Rp be the localization map. By Exercise 7.9, the pushforward ι� gives
a bijection between the p-primary ideals of R and the pp-primary ideals of Rp;
moreover the latter is the set of all nonzero, proper ideals of Rp.

Suppose R is almost Dedekind. Then ι� gives a bijection from the p-primary
ideals of R to the set tpnp | n P Z�u. Of course, for all n P Z� we have ι�ppnq � pnp ,

so it follows that every p-primary ideal of R is of the form pn for a unique n P Z�.
Suppose every p-primary ideal of R is of the form pn for some n P Z�. Then

every nonzero ideal of Rp is of the form pnp for some n P B. Thus ideals of Rp satisfy
ACC: Rp is Noetherian. Moreover the set of ideals of Rp is linearly ordered, so Rp

is a valuation ring. Thus Rp is a DVR, so R is almost Dedekind. □

Lemma 20.33. Let pR,mq be a valuation ring, and let I be a nonzero ideal of
R. The following are equivalent:

(i) We have Im � I.
(ii) The ideal I is not principal.

Proof. (i) ùñ (ii): We go by contraposition. If I is principal, then in
FracR it is invertible, so multiplying both sides of Im � I by I�1 gives m � R, a
contradiction.
(ii) ùñ (i): Suppose I is not principal; we will show that the upset UpIq is
contained in the upset UpImq. Let h P UpIq. Since I is not principal, neither is
UpIq, and thus there is g P UpIq with g   h. Then h � g � ph � gq with g P UpIq
and h� g ¡ 0, so h P UpIq � Upmq � UpImq. □

Theorem 20.34. Let R be a domain that is not a field. The following are
equivalent:

(i) R is almost Dedekind.
(ii) R is Prüfer and for each proper ideal I of R we have

�
n¥1 I

n � p0q.
(iii) R is Prüfer of dimension one, and for each m P MaxSpecR we have

m2 � m.
(iv) The monoid of nonzero ideals of R under multiplication is cancellative.

Proof. We begin with the following simple observation: let I be an ideal of
a domain R, and let S � R be a multiplicative subset. Let IS :� IpS�1Rq be the
pushforward of I to S�1R. Then

�
nPZ� I

n � p0q if and only if
�
nPZ� I

n
S � p0q.

Indeed, since
�
nPZ� I

n � �nPZ� I
n
S , if

�
nPZ� I

n
S � p0q then

�
nPZ� I

n � 0. Con-
versely, if x P p�nPZ� I

n
S q then we may write x � a

s with a P R and s P S, and
then x P p�nPZ� I

nq.
(i) ùñ (ii): Suppose R is almost Dedekind. Then R is Prüfer. For a proper ideal
I of R, choose m P MaxSpecR such that I � m. Then Rm is a DVR with maximal
ideal mm, so

�
nPZ� mnm � p0q, so

�
nPZ� I

n � �nPZ� mn � p0q.
(ii) ùñ (i): Suppose R is Prüfer. Then for all m P MaxSpecR, the local ring Rm is
a valuation ring. By Theorem 17.16 and the above observation, for m P MaxSpecR,
since

�
nPZ� mn � p0q, also �nPZ� mnm � p0q, so the ring Rm is a DVR.

(i) ùñ (iii): This follows from the same argument used to show (ii) ùñ (i).
(iii) ùñ (i): Suppose R is Prüfer of dimension 1, and let m P MaxSpecR. Then
Rm is a rank one valuation ring, so the value group G is Archimedean. The proof of
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Theorem 17.16 shows that in this case if the valuation is not discrete then m2 � m,
so the valuation must be discrete.
(i) ùñ (iv): Suppose R is almost Dedekind, and let a, b, c be nonzero ideals of R
such that ac � bc. Then for all m P MaxSpecR we have amcm � bmcm. Since Rm is
Dedekind, cm is invertible, and thus am � bm. By Exercise 7.21b), we get a � b.
(iv) ùñ (i): Let S be a multiplicative subset of a ring R, and let ι : R Ñ S�1R
be the localization map. Then ι� is an injective homomorphism from the monoid
of nonzero ideals of S�1R to the monoid of nonzero ideals of R, so if the monoid
of nonzero ideals of R is cancellative, so is the monoid of nonzero ideals of S�1R.

Now suppose that the monoid of nonzero ideals of R is cancellative. In par-
ticular, nonzero finitely generated ideals of R are cancellable, so by Theorem 20.23
we know that R is Prüfer. Let m P MaxSpecR, so Rm is a valuation ring in which
every nonzero ideal is cancellable. By Lemma 20.33, every ideal of Rm is principal,
i.e., Rm is a DVR. Thus R is almost Dedekind. □

Theorem 20.35. For an almost Dedekind domain R, the following are equiv-
alent:

(i) R is a Dedekind domain.
(i) For every nonzero ideal I of R, the set of maximal ideals containing I is

finite.

Proof. (i) ùñ (ii): For a nonzero ideal I in a Dedekind domain, the maximal
ideals p containing I are the ones appearing to a positive power in the factorization
of I into prime ideals, so they are certainly finite in number.
(ii) ùñ (i): Let R be almost Dedekind, and let I be a nonzero ideal that is
contained in finitely many maximal ideals p1, . . . , pn. By Theorem 20.34, for each
1 ¤ i ¤ n there is ni P Z� such that I is contained in pni

i and is not contained

in pni�1
i . We claim that I � ±n

i�1 p
ni
i . If so, Theorem 20.8 implies that R is

Dedekind.
By Exercise 7.21b), it suffices to the equality I � ±n

i�1 p
ni
i locally. Let m P

MaxSpecR. If m does not equal pi for some I, then m contains neither I nor±n
i�1 p

ni
i , so

Im � Rm � p
n¹
i�1

pni
i qm.

Now suppose that m � pi for some 1 ¤ i ¤ n. Then p±n
i�1 p

ni
i qm � mni

m . Since
I � mni we have Im � mni

m . On the other hand, since I is not contained in mni�1,
by Exercise 7.22a) this containment must fail after localizing at some maximal ideal
m1. For any m1 � m we have mni�1

m1 � Rm1 � Im1 , so we must have that Im is not
contained in mni�1

m . Thus Im � mni
m , completing the proof. □

Exercise 20.15. Let R be an almost Dedekind domain with fraction field K.
Let L{K be a finite degree field extension, and let T be the integral closure of R in
L.

a) Show: T is almost Dedekind.
b) Let p P MaxSpecR. Show: the set tP P MaxSpecT | P XR � pu is finite

and nonempty.
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11. Infinite Integral Closure

Lemma 20.36. Let pR,mq be an integrally closed local domain with fraction field
K. Let f P Rrts be a polynomial that has at least one coefficient in R�, and let
x P K� be a root of f . Then one of x and x�1 lies in R.

Proof. We go by induction on the degree n of f . For the base case: suppose
f � a1t� a0, so x � a0

a1
. Since one of a0, a1 P R�, at least one of x and x�1 lies in

R.
Now let n ¥ 2, suppose that the result holds for all polynomials of degree n�1,

and conisder

f :�
ņ

i�0

ait
i P Rrts

of degree n. If an P R� then x is integral over R, hence x P R since R is integrally
closed. So we may suppose that an R R�. Multiplying through by an1

n we get that
anx is integral over R, hence anx P R. If anx P R� then x�1 P R, so we may
assume that anx P m. Consider the equation

panx� an�1qxn�1 �
n�2̧

i�0

aix
i � 0.

If an�1 P R� then anx � an�1 P R� and again x is integral over R hence lies in
R. Otherwise we have ai P R� for some 0 ¤ i ¤ n� 2, and applying the induction
hypothesis to the polynomial gptq :� panx� an�1qtn�1 �°n�1

i�0 ait
i shows that one

of x and x�1 lies in R. □

Theorem 20.37. Let R be a Prüfer domain with fraction field K, et L{K be
an algebraic field extension, and let T be the integral closure of R in L. Then T is
a Prüfer domain.

Proof. It suffices to show that for all P P MaxSpecT , the localization TP
is a valuation ring. Put p :� P X R, and let x P L�. Because L{F is algebraic,
there is a polynomial p P Rprtss � T P such that ppxq � 0. By Theorem 20.23, the
ring Rp is a valuation ring, so we may recale p so that one of its coefficients lies in
R�p � T�P . Applying Lemma 20.36, we find that one of x and x�1 lies in TP , so TP
is a valuation ring. □

Proposition 20.38. Let pX,¤q be a directed set, and elt tRi, φiju be an X-
indexed directed system of Prüfer domains with injective transition maps φij : Ri ãÑ
Rj. Then the direct limit R � limÝÑRi is a Prüfer domain.

Proof. We may regard R as the union of its subrings Ri, and the directedness
is precisely buying us that for any finite subset J of I, there is i P I such that
Ri �

�
jPJ Rj . In particular, any finite subset of R lies in Ri for some i. Thus R is

a domain, and if I � xx1, . . . , xny is a finitely generated ideal ofR, then there is some
i P I such that x1, . . . , xn P Ri and then I � pφiq�Ii, where Ii � xx1, . . . , xnyRi

and φi : Ri ãÑ R is the natural map. Since Ri is Prüfer, the ideal Ii is invertible
and thus so is its pushforward I. □

Let R be a Dedekind domain with fraction field K, let L{K be a finite degree field
extension, and let T be the integral closure of R in L. By the Krull-Akizuki Theo-
rem, we know that L is also a Dedekind domain. Similarly, if R is almost Dedekind



11. INFINITE INTEGRAL CLOSURE 417

then its integral closure in a finite degree field extension is also almost Dedekind by
Exercise 20.15. On the other hand, suppose R is Dedekind with fraction field K,
L{K is an algebraic field extension of infinite degree and T is the integral closure
of R in L. Let tLiuiPX be the set of all finite degree subextensions of L{K, and for
each i P X let Ti be the integral closure of R in Li. Thus Ti is Dedekind, hence
Prüfer, and T � limÝÑTi (since every element of an algebraic field extension lies in
some finite degree subextension), so by Proposition 20.38 we have at least that T
is Prüfer. But when is T Dedekind or almost Dedekind?

We have already seen an example in which T need not be Dedekind. Namely,
take R � Z (a PID), so K � Q and take L � Q to be an algebraic closure of Q,
and let Z be the integral closure of R in L, the ring of all algebraic integers. Then
Z is a one-dimensional Prüfer domain that is not Noetherian: in fact, if x is an
algebraic integer, then so is

?
x, so Z is not only not atomic but has no irreducible

elements whatsoever.

Example 20.39. We give two examples in which the “infinite integral closure”
of a Dedekind domain remains Dedekind. The first is quite elementary, while the
second requires some number-theoretic background.

a) Let l{k be any infinite degree algebraic extension of fields. Put R :� krts,
a PID with fraction field kptq. Let L :� lptq. Then the integral closure of
R in L is lrts, which is not only a Dedekind domain but again a PID.

b) Let R � Zp be the ring of p-adic integers, with fraction field Qp. This
is a complete DVR with residue field Fp. Let L :� Qp8 be the maximal
unramified extension of Qp (inside some algebraic closure). Then the
integral closure T of Zp in Qp8 is Zp8 , which is a (not complete) DVR

with residue field Fp, the algebraic closure of Fp. More generally, if R is
any complete or even Henselian DVR with a perfect residue field that is
neither algebraically closed nor real-closed, then the pasage from R to Runr

is an instance of integral closure of a DVR in an infinite degree algebraic
field extension that remains a DVR.

We would now like to give some conditions under which the integral closure of
a Dedekind domain in an infinite degree algebraic extension remains a Dedekind
domain and also conditions under which it becomes an almost Dedekind domain
that is not Dedekind. The latter is perhaps even more interesting to us, because
not withstanding our study of almost Dedekind domains in the previous section, we
have not yet seen any examples of almost Dedekind domains that are not Dedekind!

We begin with some simple facts about direct and inverse limits. Rather than
speaking of a directed system of sets with injective transition maps and its direct
limit, it is a bit simpler to speak of a set S that is a directed union of a family of
subsets tSiuiPX : that is, S � �iPX Si and the family tSiu is, when partially ordered
under inclusion, directed: for any S1, S2, there is S3 such that S1 Y S2 � S3. For a
set S, let 2S denote the set of subsets of S. We claim that when S is the directed
union of its subsets tSiuiPX , then we have a natural bijection

Φ : 2S Ñ limÐÝ 2Si .
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First of all, t2SiuiPX forms an X-indexed inverse system: if Si � Sj then we define

ψj,j : 2
Sj Ñ 2Si , Aj � Sj ÞÑ Aj X Si.

If A is a subset of S, then ΦpAq :� tAXSiuiPX is an element of limÐÝ 2Si . Conversely,

given an element tAiuiPX of limÐÝ 2Si , we may put

ΨptAiuq :�
¤
iPX

Ai P 2S .

It is nearly immedidate that Φ and Ψ are mutually inverse bijections, which we

may use to identify 2
limÝÑSi with limÐÝ 2Si .

Now suppose that we have a ring R that is the directed union of subrings tRiuiPX .

For any ring A, let rIpAq denote the monoid of ideals of A (including the zero ideal)
under multiplication. If we denote the inclusion map Ri ãÑ R by φi, then for an
ideal I of R, we have I X Ri � ι�i pIq is an ideal of Ri. Thus the map Φ above

restricted to rIpRq has image in limÐÝ rIpRiq.
Exercise 20.16. Let R be a ring that is the directed union of a family of

subrings tRiuiPX .

a) Show that the restriction of the map Φ : 2R Ñ limÐÝ 2Ri defined above
restricts to a bijection rIpRq Ñ limÐÝ rIpRiq.

b) Let I be an ideal of R. Show: I is prime if and only if I XRi is a prime
ideal of Ri for all i P X. Deduce that Φ restricts to a bijection

SpecRÑ limÐÝSpecRi.

c) Suppose that for all i P X and m P MaxSpecR we have m X Ri P
MaxSpecRi and that for all i, j with Ri � Rj and mj P MaxSpecRj
we have mjXRi P MaxSpecRi. (This holds if each Ri � Rj is an integral
extension of rings: then also each Ri � R is an integral extension.) Let I
be an ideal of R. Show: Φ restricts to a bijection

MaxSpecRÑ limÐÝMaxSpecRi.

Now back to work: let R be an almost Dedekind domain with fraction field K, let
L{K be an algebraic field extension, and let T be the integral closure of R in L, so T
is a one-dimensional Prüfer domain. Let X be the set of finite degree subextensions
Li of L{K and for each i P I, let Ti be the integral closure of R in Li, so Ti is an
almost Dedekind domain by Exercise 20.15, and we have

T � limÝÑTi

and thus
MaxSpecT � limÐÝMaxSpecTi.

We want to give conditions for T to be almost Dedekind and conditions for T to be
Dedekind. A good starting point is Theorem 20.25, which characterizes Dedekind
domains among almost Dedekind domains. We will restate this using a new piece of
terminology: a ringR has finite character if for any infinite subset S of MaxSpecR
we have

�
mPS m � p0q, or in other words, if for all x P R, the set of maximal ideals

containing x is finite. (In yet other words, a ring R has finite character if and only
if it is residually semilocal: for all nonzero ideals I of R, MaxSpecR{I is finite.)
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Then Theorem 20.25 says that an almost Dedekind domain is Dedekind if and only
if it has finite character.

Exercise 20.17. Let tSiuiPX be an inverse system of nonempty finite sets with
surjective transition maps. Show: for all i P I, the natural map limÐÝSi Ñ Si is
surjective.
(Hint: in the proof of Lemma 15.51 we recalled why the inverse limit of an inverse
system of nonempty finite sets is nonempty. Deduce the result from this.)

Theorem 20.40. Let R be an almost Dedekind domain with fraction field K �
R, let L{K be an algebraic field extension, and let T be the integral closure of R in
L. Let tLiuiPX be the set of finite degree subextensions Li of L{K; for i P I, let let
Ti be the integral closure of R in Li. The following are equivalent:

(i) The domain T has finite character.
(ii) R is Dedekind and for every p P MaxSpecR there is Nppq P Z� such that

for all i P X, we have

#tP P MaxSpecTi | P XR � pu ¤ Nppq.
Proof. Fix m P MaxSpecR. By Exercise 20.15b), for all i P X, the set

Mippq of maximal ideals P of Ti that contract to m is finite and nonempty, and by
Exercise 20.16 we have that the set of maximal ideals of T that contract to p may
be identified with limÐÝMippq. Here the Mippq’s form an X-indexed inverse system
of nonempty finite sets with surjective transition maps (the surjectivity is because
an integral extension induces a surjection on MaxSpec’s), so by Exercise 20.17, for
any P PMippq there is a maximal ideal P of T that contracts to P.
(i) ùñ (ii): We go by contraposition. First suppose that R is not Dedekind:
thus there is an infinite sequence tpnu of distinct maximal ideals of R such that�
n¥1 pn � p0q. By the first paragraph, for each n P Z� we may choose a maximal

ideal Pn of T that contracts to pn. Then tPnu is an infinite sequence of distinct
maximal ideals of T such that£

n¥1

Pn �
£
n¥1

pn � p0q,

so T does not have finite character. Next suppose that there is some p P MaxSpecR
such that for all N P Z� there is i P I such that the fiber Mippq of SpecTi over p
has at least N elements. By the first paragraph, this means there are at least N
elements of MaxSpecT contracting to p, and since this holds for all N P Z�, the
fiber of MaxSpecT Ñ MaxSpecR over p is infinite. Then if we intersect all of the
maximal ideals in the fiber over p we get an ideal containing p, hence nonzero, so
again T does not have finite character.
(ii) ùñ (i): Suppose the conditions of (ii) hold. In particular, since R is Dedekind,
for all i P I, the ring Ti is the integral closure of a Dedekind domain in a finite
degree field extension, so Ti is Dedekind and thus has finite character. Let tPnu
be a countable set of maximal ideals of T with nonzero intersection. Then there
is some i P X and x P T i such that x P �n Pn. Then x P �npPn X Tiq, and
since Ti has finite character there can be only finitely many distinct maximal ideals
Pn X Ti, say P1, . . . ,PN . For each 1 ¤ j ¤ N , the fibers Mi1pPjq with i1 ¥ i form
an inverse system of nonempty finite sets of uniformly bounded size with surjective
transition maps. Such an inverse system must stabilize: along a cofinal subset, all
the transition maps are bijections between finite sets of fixed cardinality, and then
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the inverse limit is a finite set of that same cardinality. Thus the pullback map
MaxSpecT Ñ MaxSpecTi restricted to tPnu has finite image and finite fibers, so
the set tPnu is finite. Thus T has finite character. □

Next we will give a criterion for T to be almost Dedekind. Because T is one-
dimensional Prüfer, for m P MaxSpecR the local ring Rm is a rank one valuation
ring, and we need to know when each Rm is a DVR.

Let P be a maximal ideal of Ti that contracts to the maximal ideal p of R.
Then pTiqP is a DVR. Let vi : L

�
i Ñ Gi be its valuation, so P is the set of x P Ti

such that vpxq ¡ 0. Let H :� vpK�q. Then
pviq|K� : K� Ñ H

is a valuation on K, and the elements of R for which this valuation are positive are
precisely P X R � p. Thus we get an embedding of DVRs Rp ãÑ pTiqP. Both G
and Gi are infinite cyclic groups and G is a subgroup of Gi, so if gi is a generator
for Gi there is a unique ei P Z� such that eigi is a generator for H. This ei is called
the ramification index of P over p, and we say that P|p ramifies if ei ¡ 1.
Equivalently, if pp is the maximal ideal of Rp, then

pppTiqP � Pei
P.

Now let P P MaxSpecT . Then TP is a rank one valuation ring, so up to isomorphism
of ordered groups there is a subgroup G of pR,�q such that the valuation v on TP
is

v : L� Ñ G.

Similarly to the above, for i P X, upon restricting v to Li we get a valuation on Li
whose valuation ring is pTiqPXTi

, and thus the value group Gi is a subgroup of G.
Since every element of T lies in some Ti, we have

G � limÝÑGi.

Thus G is a subgroup of R that is a directed union of infinite cyclic subgroups Gi
such that if Gi � Gj then rGj : Gis is finite. It follows that G � HbQ � Q. If g1 is
the positive generator for H, then the map RÑ R by x ÞÑ x

g1
is an automorphism

of ordered groups under which g1 maps to 1; after making this rescaling, we have
Z � G � Q.

Thus:
 Suppose that the sequence tGiuiPI stabilizes: there is i P I such that Gj � Gi for
all j ¥ i. Then G � Gi � Z and TP is a DVR.
 Otherwise, for all i P I there is j ¡ i such that Gj � Gi. Then Z has infinite
index in G, so G has no smallest positive element. In this situation we say that
P|p is infinitely ramified. We say that p P SpecR is infinitely ramified if some
prime P of T lying over p is infinitely ramified. This holds if and only if there is a
sequence i0   i1   i2   . . .   in   . . . in X with Li0 � K and a sequence tpnu8n�0

with p0 � p and pn a maximal ideal of Tin such that for all n ¥ 0, pn�1X Tin � pn
and pn�1{pn is ramified. (Such a sequence defines a maximal ideal P of the Prüfer
domain

�
n¥0 Tin lying over p and such that P{p is infinitely ramified, and then for

any prime P of T lying over P we have that P{p is infinitely ramified.)

We have shown:
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Proposition 20.41. Let R be an almost Dedekind domain with fraction field
K, let L{K be an algebraic extension, and let T be the algebraic closure of R in L.
Then T is a Prüfer domain if and only if no p P MaxSpecR is infinitely ramified
in T .

Exercise 20.18. Let R be an almost Dedekind domain with fraction field K,
let L{K be an algebraic extension, and let T be the algebraic closure of R in L. Let
P P MaxSpecT . Show: P2 � P if and only if P|pP XRq is infinitely ramified.

Example 20.42. We will show that the ring R :� Z of all algebraic integers
is not an almost Dedekind domain. In fact the ramification is the most extreme
possible: let p be any prime number, and let P be any prime of Z lying over ppq. As

above, the we may normalize the valuation v : Q� Ñ G such that G is a subgroup
of Q and vppq � 1. Then for all n P Z� the ring R contains the element p

1
n ; since

1 � vppq � vppp 1
n qnq � nvpp 1

n q,
we have vpp 1

n q � 1
n . Thus G � Q. In particular every maximal ideal P of R is

idempotent: P2 � P.

To go further we need to make use of some algebraic number theory.

Proposition 20.43. Let R be a Dedekind domain with fraction field K. Sup-
pose that we have a set tLiuiPX of finite degree separable field extensions of K all
lying inside a common algebraic closure K such that for every maximal ideal p of
R, there is at most one i P X such that p ramifies in the integral closure Ti of R
in Li. Let L be the subfield of K generated by all the Li’s, and let T be the integral
closure of R in L. Then T is an almost Dedekind domain.

Proof. Let p P MaxSpecR. If p does not ramify in any Ti, then it does not
ramify in the integral closure of R in any finite degree subextension of L{K, so the
value group at any prime of T lying over p is Z. If p ramifies in Ti, then every
prime p of Ti lying over p is unramified in T , so every prime of T lying over p is
finitely ramified. □

For a finite group G, we write expG for the least common multiple of all orders of
elements of G. When G is commutative, there is always an element of order expG;
in general, this need not be the case: e.g. S4 has exponent 12 but the largest order
of any element of S4 is 4.

For an algebraic field extension L{Q, we will denote the integral closure of Z in
L by ZL.

Proposition 20.44. For each n P Z�, let Kn{Q be a finite Galois extension
with Galois group Gn. Suppose that:

(i) We have #Gn

expGn
¥ n; and

(ii) There is a prime number p such that for all n P Z�, ppq does not ramify
in ZKn

.

Let L be any algebraic extension of Q containing Ln for all n P Z�. Then there are
infinitely many maximal ideals of ZL lying over ppq, so ZL is not Dedekind.
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Proof. We need the following result from algebraic number theory. Let R be
a Dedekind domain with fraction field K, let L{K be a finite Galois extension of
degree n, let S be the integral closure of R in L, and let p P MaxSpecR. There are
unique e, f, g P Z� such that:
I. pS � Pe

1 � � �Pe
g for distinct maximal ideals P1, . . . ,Pg;

II. For all 1 ¤ i ¤ g, we have rS{Pi : R{ps � f ; and
III. We have efg � rL : Ks � #G.
Thus p is unramified in S if and only if e � 1. Suppose R � Z and that p � ppq
is unramified in S � ZK , so fg � #G. Then there is an element σp P G, well-
determined up to conjugacy, such that f is equal to the order of the element σp in
the finite groupG. (This element σp is called a Frobenius element, but we don’t need
to know anything else about it than what we’ve just said.) Therefore f | exppGq,
so g � #G

f is diviisble by #G
expG . Our hypotheses therefore for all n P Z� there

are at least #Gn

expGn
¥ n maximal ideals of ZKn

lying over ppq. Since ZKn
ãÑ ZL is

an integral extension, the map MaxSpecZL Ñ MaxSpecZKn
is surjective, for all

n P Z� there are at least n maximal ideals of ZL lying over ppq, or in other words
there are infintiely many maximal ideals of ZL lying over ppq, so ZL does not have
finite character and therefore is not Dedekind. □

For a student of algebraic number theory it is not a particularly difficult exercise to
find an infinite degree algebraic extension L{Q such that Proposition 20.29 applies
to show that ZT is almost Dedekind and Proposition 20.30 applies to show that ZT
is not Dedekind. In fact the most natural example is the one given already by N.
Nakano in [Na53], which was the first construction of an almost Dedekind domain
that is not Dedekind.

Theorem 20.45 (Nakano). For a prime number p, let ζp P Q be a primitive
pth root of unity. Let L be the field extension of Q generated by ζp for all primes
p. Then ZL is an almost Dedekind domain that is not Dedekind.

Proof. Note that ζ2 � �1, so Qpζ2q � Q. For p ¡ 3, the number field Qpζpq
has degree p � 1, and p is the unique prime of Z that ramifies in ZQpζpq. Thus
no prime ℓ ramifies in ZQpζpq for more than one prime p and the prime 2 does not
ramify in any ZQpζpq. So Proposition 20.29 implies that ZL is almost Dedekind.

Order the primes 2 � p1   p2   p3   . . .   pn   . . .. For n ¥ 2, put

Kn :� Qpζp2 , . . . , ζpn�1
q � Qpζp2���pn�1

q.
Then Kn{Q is Galois with group Gn :� pZ{pp2 � � � pn�1qZq� �

±n�1
i�2 pZ{piZq�. So

#Gn �
n�1¹
i�2

ppi � 1q.

Each group pZ{piZq� is cyclic of order p� 1, so

expGn � lcmpp2 � 1, . . . , pn�1 � 1q.
Because for all 2 ¤ i ¤ n� 1 the number pi � 1 is even, we get

#Gn
expGn

¥ 2n ¥ n.

Moreover p2q does not ramify in any Kn. So Proposition 20.30 implies that ZL is
not Dedekind. □
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Exercise 20.19. Let L be the field of Theorem 20.30. Show: for evey prime
number p, there are infinitely many maximal ideals of ZL lying over ppq.

Theorem 20.46. (Kaplansky [K]) Let R be a Dedekind domain with fraction
field K, and let K be an algebraic closure of K. Suppose that for every finite
extension L{K, the Picard group of the integral closure RL of R in L is a torsion
commutative group. Then the integral closure S of R in K is a Bézout domain.

Proof. Let I � xa1, . . . , any be a finitely generated ideal of S. Then L �
Kra1, . . . , ans is a finite extension of K. Let RL be the integral closure of R in L,
and let IL � xa1, . . . , anyRL

. By hypothesis, there exists k P Z� and b P RL such
that IkL � bRL. Let c be a kth root of b in S and let M � Lrcs. Thus in the
Dedekind domain RM we have pILRM qk � pckq, and from unique factorization of
ideals we deduce ILRM � cRM . Thus I � ILRMS � cRMS � cS is principal. □

Recall the basic fact of algebraic number theory that for any number field K, the
Picard group of ZK is finite. This shows that the ring R � Z satisfies the hypotheses
of Theorem 20.46. We deduce that the ring of all algebraic integers Z is a Bézout
domain: Theorem 5.1.

Exercise 20.20. Adapt the proof of Theorem 20.46 to show that the Picard
group of the ring of integers of the maximal solvable extension Qsolv of Q is trivial.

Exercise 20.21. State a function field analogue of Theorem 5.1 and deduce it
as a special case of Theorem 20.46.

We quote without proof two more results on Picard groups of integer rings of infinite
algebraic extensions of Q.

Theorem 20.47. (Brumer [Br81]) Let Qcyc � �nPZ� Qpζnq be the field ob-
tained by adjoining to Q all roots of unity, and let Zcyc be its ring of integers, i.e.,
the integral closure of Z in Qcyc. Then

PicZcyc �
8à
i�1

Q{Z.

Theorem 20.48. (Kurihara [Ku99]) Let Qcyc� � �nPZ� Qpζn � ζ�1
n q be the

maximal real subfield of Qcyc, and let Zcyc� be its ring of integers, i.e., the integral
closure of Z in Qcyc�. Then

PicZcyc� � 0.





CHAPTER 21

Structure of Overrings

Let R be a domain with fraction field K. . By an overring of R we mean a subring
of K containing R, i.e., a ring T with R � T � K. (We allow equality.) This is
standard terminology among commutative algebraists, but we warn that someone
who has not heard it before will probably guess incorrectly at its meaning: one
might well think that “T is an overring of R” would simply mean that “R is a
subring of T”.

We are interested in particular in the following:

Question 5. Let R be a domain.

a) Can we (in some sense) classify the overrings of R?
b) Under what conditions is every overring of R a localization?
c) Let T be an overring of R. What is the relationship between PicT and

PicR?

As a warmup, suppose R is a PID. In this case every overring is indeed a localiza-
tion: to see this it is enough to show that for all coprime x, y P R, 1

y P Rrxy s. But
since x and y are coprime in the PID R, there are a, b P R such that ax� by � 1,

and then 1
y � ax�by

y � a
�
x
y

	
� b P Rrxy s. It follows that every overring of a PID is

obtained by localizing at a multiplicative subset S � R. Further, by uniqueness
of factorization the saturated multiplicatively closed subsets of R are in bijection
with subsets of MaxSpecR: in other words, an overring is entirely determined by
the set of prime elements we invert, and inverting different sets of prime elements
leads to distinct overrings. Further, since a localization of a PID is a again a PID,
in this case we have PicT � 0 for all overrings.

We will give satisfactory answers to Question 5 for any Dedekind domain. Some of
the theory of overrings of Dedekind domains seems most naturally to be deduced
from the structure of overring of Prüfer domains. Indeed, we will give two more
characteristic properties of Prüfer domains in terms of Dedekind domains: a do-
main R is Prüfer if and only if every overring T is a flat R-module if and only if
every overring T is integrally closed.

Our discussion of Picard groups of overrings of Dedekind domains includes the
notion of elasticity, which is an active topic in recent and contemporary factor-
ization theory. We will also use our study of Picard groups of overrings to prove
a celebrated theorem of Claborn: every commutative group whatseover is (up to
isomorphism) the ideal class group of some Dedekind. Claborn’s original proof
involves Krull domains, which we have not yet discussed, so we will give a more
recent proof due to the present author.

425
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1. Flatness of Overrings

Let T be an overring of R. Whether T is flat (as an R-module) turns out be a
key question in the structure and classification of overrings, so we begin with some
characterizations of this. For ideals I and J of R, we put

pI :J Jq :� tx P R | xJ � Iu.
Here the subscripted R is meant to differentiate from the colon ideal construction
for fractional ideals, as considered e.g. in Chapter 19.

Exercise 21.1. Let ι : R Ñ T be a ring homomorphism, and let I1, . . . , In be
ideals of R. Show: if ι�pIiq � T for all 1 ¤ i ¤ n, then ι�p

�n
i�1 Iiq � T .

(Hint: for each 1 ¤ j ¤ n, write 1 � Cj, where Cj is a finite Ij-linear combination
of elements of T ; then 1 �±n

j�1 Cj.)

Theorem 21.1. For an overring T of a domain R, the following are equivalent:

(i) For all p P SpecR, we have either pT � T or T � Rp.
(ii) For all x, y P R such that x

y P T , we have ppyq :R pxqqT � T .

(iii) T is a flat R-module.

Proof. (i) ùñ (ii): We go by contraposition: suppose there are x, y P R
such that xy P T and ppyq :R pxqqT � T . There is a maximal idealM of T containing

ppyq :R pxqq, and then p :� M X R is a prime ideal containing ppyqR : pxqq such
that pT � T . Thus if (i) were to hold we would have T � Rp, so

x
y P Rp. This

gives x
y � a

s for a P R and s P Rzp so xs � ya and thus s P ppyq :R pxqq � p:

contradiction. So condition (i) does not hold.
(ii) ùñ (i): Suppose (ii) holds, and let p P SpecR be such that pT � T . Let
x, y P R be such that x

y P T . Then ppyq :R pxqqT � T , so ppyqq :R pxqq is not

contained in p. Let s P ppyq :R pxqqzp, so there is a P R such that sx � ay and then
x
y � a

s P Rp. It follows that T � Rp.

(ii) ùñ (iii): Suppose (ii) holds. By the Tensorial Criterion for Flatness, it
suffices to show that for an ideal I of R, the homomorphism φ : I bR T Ñ T given
by abb ÞÑ ab is injective. Let c P IbR T ; we may write c � °n

i�1 aibbi with ai P I
and bi P T . There are b, c1, . . . , cs P R such that for 1 ¤ i ¤ s we have bi � ci

b , so

c �
ņ

i�1

ai b ci
b
.

By our assumption, for all 1 ¤ i ¤ n we have ppbq :R pciqqT � T , so if

C :�
n£
i�1

ppbq :R pciqq.

then Exercise 21.1 gives CT � T . Suppose now that φpcq � 0, i.e.,
°n
I�1 ai

ci
b � 0.

For d P C we have d cib P R for all 1 ¤ i ¤ n, so

dc �
ş

i�1

ai b dci
b
�

ņ

I�1

dai
ci
b
b 1 �

�
d

ņ

i�1

ai
ci
b

�
b 1 � 0.

It follows that Cc � 0. Write 1 � °N
i�1 aiti with ai P C and ti P T . Then

c � c � 1 � c � p
¸
i

aitiq �
¸
i

paicqti �
¸
i

0 � ti � 0.
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(iii) ùñ (i): Suppose T is a flat R-module. Let x, y P R be such that x
y P T .

Applying the Equational Criterion for Flatness to the linear equation ypxy q�xp1q �
0, there are elements tbjku1¤j¤r,1¤k¤2 and y1, . . . , yr P T such that

x

y
�

ŗ

j�1

yjzj,1

1 �
ŗ

j�1

yjbj,2

and
@1 ¤ j ¤ r, bj,1y � bj,2x � 0.

Let p P SpecR. If for all 1 ¤ j ¤ r we have bj,2 P p, then pT � T and we’re
done. Otherwise, for all x

y P T , there is some j such that bj,2 R p, and then

bj,2 P ppyq :R pxqq, so ppyq :R pxqq is not contained in p, so there is s P Rzp and
a P R such that sx � ay, so x

y � a
s P Rp and thus T � Rp. □

Proposition 21.2. Let R be a domain with fraction field K and consider rings
R � T � T 1 � K.

a) If T 1 is flat over R, then T 1 is flat over T .
b) If T 1 is flat over T and T is flat over R, then T 1 is flat over R.

Proof. a) Suppose T 1 is flat over R. Let a, b P T be such that a
b P T 1. Write

a � c
s , b � d

s with c, d, s P R. Then c
d P T 1, so by Theorem 21.1, ppdq : pcqqT 1 � T 1.

Hence 1 � t1u1 � . . . � tkuk for some ti P T 1 and ui P R with uic P pdq for all i.
Then there is zi P R such that uic � dzi, so uia � zi

d
s � zib P Tb for all i. So

pTb : TaqT 1 � T 1. Applying Theorem 21.1 again, we get that T 1 is flat over T .
b) This holds for any R1 � R2 � R3, since M bR1 R3 � pM bR1 R2q bR2 R3. □

Theorem 21.3. (Richman [Ri65]) For an overring T of a domain R, the
following are equivalent:

(i) The ring T is flat over R.
(ii) For all P P MaxSpecT , we have TP � RPXR.
(iii) T � �PPMaxSpecT RPXR.

Proof. (i) ùñ (ii): Suppose that T is flat over R, let P P MaxSpecT and
let p :� P X R. Clearly Rp � TP . Let x

y P TP with x, y P T  and y P T zP. Then

there are u, v, s P R such that x � u
s and y � v

s . Put

C :� ppsq :R puqq X ppsq :R pvqq.
By Theorem 21.1 and Exercise 21.1 we have CT � T , so C is not contained in
p. Let z P Czp. Then zx, zy P R and zy R P, so zy R p. Thus x � zx

zy P Rp, so

TP � Rp.
(ii) ùñ (iii): Suppose (ii) holds. By Corollary 7.16 we have

T �
£

PPMaxSpecT

TP �
£

PPMaxSpecT

RPXR.

(iii) ùñ (i): Suppose (iii) holds, and let p P SpecR be such that pT � T . Then
there is P P MaxSpecT such that pT � PT and p � P X R, so RPXR � Rp. But
by our assumption we also have T � RPXR, so T � Rp. By Theorem 21.1, T is flat
over R. □



428 21. STRUCTURE OF OVERRINGS

For a domain R and a multiplicative subset S of R, we know that S�1R is a
flat overring of R. We will see later on that the converse is false: there are even
Dedekind domains in which not every overring is a localization. Richman’s Theorem
however gives a kind of weak converse: every flat overring of a domain is obtained
by intersecting localizations of R of the form Rp for p P SpecR. According to
[Ri65, p. 796], the converse of this is false: namely, for a domain R and a subset
X � SpecR, the overring

�
pPX Rp need not be flat. In truth we will not see this:

for most of the remainder of this chapter we will palce ourselves in a situation in
which all overrings are flat.

Proposition 21.4. Let T be an overring of a domain R that is both integral
and flat over R. Then R � T .

Proof. Let x, y P R be such that x
y P T . Then by Theorem 21.1, we have

ppyq :R pxqqT � T . Let p P MaxSpecR. By Theorem 14.16, there exists a prime
(in fact maximal by Corollary 14.19, but this is not needed here) ideal P of T lying
over p. Since pT � P, we have pT � T . Therefore ppyq : pxqq is not contained in
any maximal ideal of R, so ppyq : pxqq � R. It follows that x P pyq, i.e., x � ay for
some a P R, so that x

y P R. Thus R � T . □

2. Overrings of Prüfer Domains

Theorem 21.5. For a domain R, the following are equivalent:

(i) Every overring of R is a Prüfer domain.
(ii) R is a Prüfer domain.
(iii) Every overring of R is flat.
(iv) Every overring of R is integrally closed.

Proof. (i) ùñ Since R itself is an overring of R, this is immediate.
(ii) ùñ (iii): Suppose R is Prüfer, and let T be an overring of R. Then T is a
torsionfree R-module, so by Theorem 20.31, T is a flat R-module.
(iii) ùñ (i): Suppose every overring of R is flat over R, and let T be an overring
of R. By Proposition 22.3a), every overring of T is flat over T . So it is enough to
show that R is Prüfer, for then T is Prüfer for the same reason. For this it suffices
to show that for m P MaxSpecR, the ring Rm is a valuation ring. By Proposition
21.2, every overring of Rm is flat. Suppose that x, y P Rm are such that x

y R R. We

want to show that y
x P R.

By Proposition 21.4, it is enough to show that y
x is integral over R. Because

x
y R R we have that 1 R ppyq :R pxqq and thus ppyq :R ppxqq � m. Since Rrxy s is
flat over R, by Theorem 21.1 we have ppyq :R ppxqqRrxy s � Rrxy s and thus that

mRrxy s � Rrxy s. This means that there is n P Z� and a0, . . . , an P m such that

an
xn

yn
� . . .� a1x

y
� a0 � 1,

so

pa0 � 1qpy
x
qn � a1py

x
qn�1 � . . .� an�1

y

x
� an � 0.

Because a0 P m and pR,mq is a local ring, we have a0 � 1 P m�, and dividing by
a0 � 1 shows that y

x is integral over R, as desired.
(i) ùñ (iv): This is immediate from Proposition 20.38: Prüfer domains are
integrally closed.
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(iv) ùñ (ii): Suppose that every overring of R is integrally closed. To show that
R is Prüfer, it suffices to show that for all m P MaxSpecR, the local ring Rm is a
valuation ring. Let K be the fraction field of Rm, and let x P K. Then Rmrx2s
must be integrally closed and x is integral over Rmrx2s, so x P Rmrx2s: that is,
there are a0, . . . , an P Rm such that x � °n

i�0 aix
2i. Lemma 20.36 now applies to

show that one of x and x�1 lies in Rm, so Rm is a valuation ring. □

Corollary 21.6. Let R be a domain that is not a field.

a) If R is almost Dedekind, then so is every overring of R.
b) If R is Dedekind, then so is every overring of R.

Proof. a) A Prüfer domain is almost Dedekind if and only if the localization
at every maximal ideal is a DVR, so suppose that R is almost Dedekind and let T
be an overring of R, which we may of course assume is not a field. Since R is Prüfer,
T is flat and thus by Theorem 21.3 for every P P MaxSpecT we have TP � RPXR
is (not a field hence) a DVR.
b) Let T be an overring of the Dedekind domain R. By part b), T is almost
Dedekind. By Krull-Akizuki, T is Noetherian, so T is Dedekind. □

Theorem 21.7. Let R be a Prüfer domain, let T be an overring of R, and put

W � tp P SpecpRq | pT � T u.
Then T � �pPW Rp.

Proof. For P P MaxSpecT , let us put pP :� P X R. By Theorems 22.6 and
22.4, we have

T �
£

PPMaxSpecT

RpP .

Every prime ideal pP lies in W , so£
pPW

Rp �
£

PPMaxSpecT

RpP � T.

Conversely, if p PW , then there is P P MaxSpecT such that p � pP , and then

RpP � Rp,

so
T �

£
PPMaxSpecT

RpP �
£
pPW

Rp. □

For a Prüfer domain R with fraction field K and a subset W of SpecR, let us put

RW :�
£
pPW

Rp and RW :�
£

pPSpecRzW
Rp.

Notice that for p P SpecR, we have Rtpu � Rp; we will also put

Rp :� Rtpu �
£

qPSpecR|q�p

Rq.

Then Theorem 22.8 asserts thatW ÞÑ RW is a surjective map from 2SpecR to the set
OverpRq of overrings of R. It is natural to ask whether this map must be injective
as well. There is a silly reason why it cannot be: the reasonable interpretation of
R∅ is K, but also Rtp0qu � K. So we should avoid the zero ideal. More generally,
if dimR ¥ 2 injectivity will still fail: if to any subset W1 of MaxSpecR we adjoin
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any subset W2 of prime ideals such that each element of W2 is contained in some
element of W1, then we have RW1 � RW1YW2 . So a more meaningful version of
this question concerns maximal ideals only.

Lemma 21.8. For a Prüfer domain R, the following are equivalent:

(i) The map W ÞÑ RW gives an injection 2MaxSpecR Ñ OverpRq.
(ii) For all p P MaxSpec we have Rp � R.

Proof. (i) ùñ (ii): Suppose that (i) holds. Since Rp � RMaxSpecRzp and
R � RMaxSpecR, this is immediate.
(ii) ùñ (i): Suppose that (ii) holds. Let W1 and W2 be distinct subsets of
MaxSpecR. After interchanging W1 and W2 if necessary, we may choose p P
W1zW2, and then

Rp � RW2 ,

but since RW1 � Rp, if we had Rp � RW1 then we would have Rp � Rp and thus
Rp � Rp X Rp � R, contradicting (ii). So Rp is not contained in RW1 and thus
RW1

� RW2
. □

3. Overrings of Dedekind Domains

3.1. Classification of Overrings. The equivalent conditions of Lemma 21.8
do not hold in all Prüfer domains. In [Gi66], Gilmer analyzes these conditions. He
shows in particular: (i) they do not hold in any almost Dedekind domain that is not
a Dedekind domain, and (ii) they hold in a one-dimensional Prüfer domain if and
only if every maximal ideal is the radical of a finitely generated ideal. The latter
certainly implies that these conditions hold in any Dedekind domain, which we will
now show. Indeed we may just as easily prove a slightly stronger result. Recall that
for a maximal ideal p of a Dedekind domain R with fraction field K � R, we have
a discrete valuation vp : K� Ñ Z: for x P K�, we define vppxq to be the power to
which p appears in the prime factorization of the fractional ideal pxq.

Proposition 21.9. Let R be a Dedekind domain that is not a field. Let
p1, . . . , pn be distinct maximal ideals of R, and let a1, . . . , an P Z. Then there
is x P K such that for all 1 ¤ i ¤ n we have vpi

pxq � ai and vqpxq ¥ 0 for all
q R tp1, . . . , pnu.

Proof. Step 1: By CRT, for any b1, . . . , bn P N there is x P R such that
vpi
pxq � bi for all 1 ¤ i ¤ n: indeed CRT implies that the natural map R Ñ±n
i�1R{pbi�1

i is surjective, so there is x P R that maps into pbii zpbi�1
i .

Step 2: Put a :� max1¤i¤n |ai|. By Step 1, there is y P R such that for all 1 ¤ i ¤ n
we have vpi

pyq � a, hence vpi
p 1y q � �a. Let q1, . . . , qm be the set of maximal

ideals q R tp1, . . . , pnu such that vqp 1y q   0. (The set of such maximal ideals is

certainly finite, but may be empty: i.e., we can have m � 0.) For 1 ¤ i ¤ n, put
bi :� a�ai P N. By Step 1 applied to the set tp1, . . . , pn, q1, . . . , qmu, there is z P R
such that for all 1 ¤ i ¤ n we have vpi

pzq � bi and for all 1 ¤ j ¤ m we have
vqj
pzq � �vqj

p 1y q. Then x :� z
y is the desired element. □

So if R is a Dedekind domain that is not a field and p P MaxSpecR, by Proposition
22.9 there is x P K� such that vppxq � �1 and vqpxq ¥ 0 for all other maximal
ideals q. Then x P RpzR. We deduce the following classification of overrings of a
Dedekind domain:
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Theorem 21.10. Let R be a Dedekind domain.

a) The map 2MaxSpecR Ñ OverpRq given by W ÞÑ RW � �pPW Rp is a
bijection.

b) Let ι : R ãÑ T be an overring of R, and let

W :� tp P MaxSpecR | pT � T u.
Then:
(i) We have T � RW .
(ii) For all P P MaxSpecT we have ι�ι�pPq � P.
(iii) The map ι� : MaxSpecT Ñ MaxSpecR is injective with image W .

Proof. We may assume that R is not a field. Let ι : R ãÑ T be an overring of
R, and let W be the set of maximal ideals p of R such that pT � T . By Theorem
22.8, we have that T � RW X Rp0q, but since Rp0q � K, we also have T � RW .
This shows that the map W ÞÑ RW is surjective onto the set of overrings of R.
By Proposition 22.9, for any p P MaxSpecR there is x P K with vppxq � �1 and
vqpxq ¥ 0 for all maximal ideals q � p, so by Lemma 21.8 the map W ÞÑ RW
is injective. If P P MaxSpecR, then by Theorem 22.4 we have TP � RPXR.
Since T is not a field, neither is TP , so P X R is a maximal ideal of R. Thus if
P1,P2 P MaxSpecR are such that P1 XR � P2 XR, then we have

TP1
� RP1XR � RP2XR � TP2

,

which implies P1 � P2, showing that ι� : MaxSpecT Ñ MaxSpecR is an injection
with image W . Since for P P MaxSpecT we just showed that the only maximal
ideal of T lying over P XR is P, it follows that ι�ι�pPq is a power of P. Since the
DVRs RPXR and TP are equal, we must have ι�ι�pPq � P. □

3.2. Proof of Theorem 17.11. We are now in a position to prove Theorem
17.11 from Chapter 17, which we restate for the reader’s convenience.

Theorem 21.11. Let v : K� Ñ R be a discrete valuation on a field K, and
let L{K be a finite degree field extension. Then the set of valuations w on L that
extend v is finite and nonempty.

Proof. Let R be the valuation ring of v, and let m be the maximal ideal of
R. The desired result holds for v if and only if it holds for any equivalent discrete
valuation, so we may asume that v � vm is the normalized m-adic valuation. Let
T be the integral closure of R in L. Since T is an integral extension of R, for every
M P MaxSpecT we have that M X R is a maximal ideal and thus M X R � m.
From this and Corollary ?? we get find that MaxSpecR is finite and nonempty.
We claim that for a valuation w on L, w|K is equivalent to vm if and only if w is
equivalent to wM, the normalized discrete valuation attached to the maximal ideal
M of a Dedekind domain. This suffices.

Let M P MaxSpecT , and let wM be the normalized M-adic valuation. If we
write

mT �
¹

MPMm

MeM ,

then wM|K � eMvm, which is indeed equivalent to vm.
Now let w be a valuation on L whose restriction to K is equivalent to vm. Let

Tw be the valuation ring of w. For x P T , there are a0, . . . , an�1 P R such that

(57) xn � an�1x
n�1 � . . .� a1x� a0 � 0.
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If wpxq were negative, then wpxnq � nwpxq is the unique term on the left hand side
of (57) of minimal valuation, so the valuation of the left hand side is wpxnq, so the
left hand side cannot be 0. Thus wpxq ¥ 0, so T � Tw. From our classification
of overrings of a Dedekind domain, we know that Tw is of the form TM for some
maximal ideal M of T , so w is discrete and equivalent to wM. □

Exercise 21.2. Let v : K� Ñ R be a discrete valuation on a field K, and let
L{K be an algebraic field extension.

a) Show: there is a rank one valuation on L that extends v.
b) Show: there need not be a discrete valuation on L that extends v, but

every valuation on L that extends v is equivalent to one with value group
contained in Q.

3.3. When overrings are localizations.

Lemma 21.12. Let R be an integrally closed domain with fraction field K, and
let T be an overring of R.

a) The relative unit group T�{R� is torsionfree.
b) Suppose that R is a Dedekind domain, p P ΣR and T � Rp. The following

are equivalent:
(i) T�{R� � Z.
(ii) T� � R�.
(iii) rps P PicpRqrtorss.
(iv) There is x P R that is contained in p and in no maximal ideal q � p.

Proof. a) Since R is integrally closed, all finite order elements of K� (i.e.,
roots of unity in K) lie in R and a fortiori in T : R�rtorss � T�rtorss. On the
other hand, let x P T� be of infinite order such that xn P R� for some n P Z�.
Again integral closure of R implies x P R, and then xn P R� ùñ x P R�.
b) (i) ùñ (ii) is clear.
(ii) ùñ (iii): Let x P K�. Then x P T� if and only if Rx � pa for some a P Z,
and x P R� if and only if a � 0. Therefore (ii) holds if and only if some power of p
is principal, which is to say that the class of p P PicR is torsion.
(iii) ùñ (i): Let a be the least positive integer such that pa is principal. Thus
pa � xR with x uniquely determined modulo R�. It follows that T� is generated
by R� and x, so T�{R� is a nontrivial cyclic group. By part a) it is also torsionfree
so T�{R� � Z.
(iii) ùñ (iv): If pa � xR, then x lies in p but in no other maximal ideal q.
(iv) ùñ (iii): If a � vppxq, then a ¡ 0 and xR � pa. □

Remark: Part (iv) of Lemma 21.12 was added following an observation of H. Knaf.

Theorem 21.13. (Goldman [Gol64])
For a Dedekind domain R, the following are equivalent:

(i) Every overring of R is a localization.
(ii) PicR is a torsion group.

Proof. (i) ùñ (ii): Let p P MaxSpecR. We’ve seen that Rp is a proper
overring of R, so by assumption Rp is a localization of R and thus has a strictly
larger unit group. By Lemma 21.12 this implies that rps P PicpRqrtorss. Since
PicpRq is generated by the classes of the nonzero prime ideals, it follows that PicR
is torsion.
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(ii) ùñ (i): Let T be an overring of R, and put S � RXT�. We want to show that
T � S�1R. That S�1R � T is clear. Conversely, let x P T , and write xR � ab�1

with a, b coprime integral ideals of R: a � b � R. Thus aT � bT � T whereas
aT � xbT � bT , so bT � T and hence also bnT � T for all n P Z�. Since PicR is
torsion, there exists n P Z� with bn � bR. It follows that bT � T and thus b P S.
Now xb � a � R, so xb P R. Thus x P S�1R, and we conclude T � S�1R. □

Corollary 21.14. Let R be a Dedekind domain. Suppose that W is a finite
subset of MaxSpecR and that every p PW has finite order in PicR. Then there is
a P R such that RW � Rr 1a s.

Exercise 21.3. Prove Corollary 21.14.

Exercise 21.4. Let T � RW be an overring of R such that T � Rr 1a s for some
a P R.

a) Show: W is finite.
b) Must it be the case that every p PW has finite order in PicR?

3.4. The Picard group of an overring.

Theorem 21.15. Let R be a Dedekind domain, let W � MaxSpecR, and let
FracW R � ÀpPW Z denote the subgroup of fractional R-ideals supported on W .
There is a short exact sequence

1Ñ R� Ñ pRW q� vÝÑ FracW RÑ PicR
ι�ÝÑ PicRW Ñ 1.

Proof. The map v : pRW q� Ñ FracW R is obtained by restricting the canon-
ical map K� Ñ FracR to pRW q�: the fractional ideals so obtained have p-adic
valuation 0 for all p P MaxSpecRW � MaxSpecRzW : thus the image lands in
FracW R.
It is easy to see most of the exactness claims: certainly R� Ñ pRW q� is injective;
further, for x P pRW q�, vpxq � 0 iff vppxq � 0 for all p P W Y MaxSpecRW �
MaxSpecR if and only if x P R�. If I P FracW R, then I is principal if and only if
it has a generator x P K� with vppxq � 0 for all p P MaxSpecRzW � MaxSpecRW

if and only if I � pxq for x P pRW q�. Exactness at PicR: Let rIs P PicR be such
that ι�prIsq � 1: thus there is x P K� with IRW � xRW . Then rIs � rx�1Is and
x�1I P FracW R. Conversely, if I P FracW R, then IRW � RW . Finally, by Theo-
rem 22.10 we have ι� � ι� � 1MaxSpecpRW q, so every prime ideal of RW is of the form

ι�ppq for a prime ideal of R. This certainly implies that ι� : ι� : PicRÑ PicRW is
surjective. □

Let us examine the special case of Theorem 21.15 of localization: namely, let S
be a multiplicative subset of R, and consider the overring S�1R. Then if V is the
set of maximal ideals p of R that are disjoint from S, we have S�1R � RV , so
if W :� MaxSpecRzV is the complementary set, of maximal ideals p such that
pS�1R � S�1R, then S�1R � RW . Theorem 21.15 asserts that the natural map
PicR Ñ PicS�1R is surjective, with kernel the set of classes rIs where I P FracR
satisfies the condition vppIq � 0 ùñ p PW .

Exercise 21.5. We maintain the setup of Theorem 21.15.

a) Use Theorem 21.15 to give a new proof of Lemma 21.12.
b) Show that the relative unit group pRW q�{R� is free abelian.

(This strengthens Lemma 21.12 when R is a Dedekind domain.)
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c) Suppose PicR is torsion. Show:

pRW q� � R� ` à
pPW

Z.

d) Suppose that K is a number field. Show that K� is isomorphic to the
product of a finite cyclic group with a free commutative group of countable
rank.

4. Repleteness in Dedekind domains

4.1. Repleteness and Repletions. Let R be a Dedekind domain, and con-
sider the map Φ : MaxSpecRÑ PicR given by p ÞÑ rps. We say that R is replete
if Φ is surjective, i.e., if every element of PicR is of the form rps for some prime
ideal p.

Example 21.16. Let R be an S-integer ring in a global field. It follows from
the Chebotarev Density Theorem that R is replete.

For our coming applications it is useful to consider a variant: we say that a Dedekind
domain R is weakly replete if for every subgroup H � PicR, there is a subset
WH � MaxSpecR such that xΦpWHqy � H. The point of this condition is that it
allows a complete classification of the Picard groups of overrings of R. Indeed:

Proposition 21.17. Let R be a weakly replete Dedekind domain. Then for any
subgroup H of PicR, there is an overring T of R such that PicT � pPicRq{H.

Proof. By definition of weakly replete, there is a subsetW � MaxSpecR such
that xΦpW qy � H. By Theorem 21.15, PicRW � PicR{xΦpW qy � pPicRq{H. □

Proposition 21.18. Let R be a Dedekind domain and RW an overring of R.

a) If R is replete, then every nontrivial element of PicRW is of the form rps
for some p PMaxSpecRW .

b) If R is weakly replete, so is RW .

Exercise 21.6. Prove Proposition 21.18.

Notice that Proposition 21.18 does not quite assert that if R is replete, then so is
every overring. In fact this is false, as we now show:

Proposition 21.19. Let R be a Dedekind domain that is not a field, and let
S be the multiplicative subset of R generated by the set of all prime elements of R.
Then:

a) The natural map ι� : PicRÑ PicS�1R is an isomorphism.
b) No maximal ideal of S�1R is principal.

Proof. a) We know from Theorem 21.15 that ι� is surjective and that its
kernel consists of classes rIs such that I � pa11 � � � pann with each pi a maximal ideal
of R that meets S. Thus each pi contains a product of prime elements and thus,
being prime, contains a prime element, hence (since pi has height one) is principal.
It follows that I is a principal fraction ideal, so rIs is trivial and thus ι� is an
isomorphism.
b) Every maximal ideal of S�1R is of the form ι�ppq for a maximal ideal p of R
that does not meet S. If ι�ppq is principal, then it is generated by an element x
of R. We have vppxq � 1; we may have vqpxq ¡ 0 for finitely many other maximal
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ideals q1, . . . , qn, but every such qi must lie in the kernel of ι : R ãÑ S�1R, so for
all 1 ¤ i ¤ n there is an element πi of R that generates qi. Then x

±n
i�1 π

vpi
pxq

i

is a

generator for p, so p does meet S: contradiction. □

Thus if we apply Proposition 21.19 to a replete Dedekind domain (e.g. the ring
of integers of a number field), we get a localization in which the principal class of
PicR is not represented by any maximal ideal.

A repletion of a Dedekind domain R is a replete Dedekind domain S together
with an injective ring homomorphism ι : R ãÑ S, such that ι� : PicpRq �Ñ PicpSq.

Let R be a Dedekind domain. Recall that a polynomial f P Rrts is naively
primitive if the coeffiicents of f generate the unit ideal of R. (In the context of
Dedekind domains this definition is not actually “naive,” but we will maintain the
terminology.) By Proposition 15.23, if f, g P Rrts are naively primitive, then so is
fg. The following exercise gives a mild generalization.

Exercise 21.7. Let R be a Dedekind domain with fraction field K. For f P
Krts, we define the content cpfq of f to be the fractional R-ideal of K generated
by the coefficients of f . Let f, g P Krts.

a) Show: cpfgq � cpfqcpgq.
b) Show: fg P Rrts ðñ g P cpfq�1Rrts.

Theorem 21.20. (Claborn) For a Dedekind domain R with fraction field K �
R, and let R1 denote the localization of Rrts at the multiplicative set of all monic
polynomials. Then R1 is Dedekind and the composite map ι : RÑ Rrts Ñ R1 is a
repletion.

Proof. Step 1: Let S be the multiplicative subset of Rrts consisting of monic
polynomials. We will show that S�1Rrts is Dedekind.

The ring S�1Rrts is a localization of a Noetherian, integrally closed domain,
hence is Noetherian and integrally closed, so the matter of it is to show that nonzero
prime ideals of S�1Rrts are maximal. Every nonzero prime ideal of S�1Rrts is
pushed forward from a nonzero prime ideal P of Rrts that is disjoint from S.
Moreover, in any localization map ι : A Ñ B, if p is a prime ideal of A such
that ι�ppq � B, then the height of p is the same as the height of ι�ppq. Since
dimRrts � 2, what we need to check then is that for every height 2 prime P of
Rrts we have PS�1Rrts � S�1Rrts. Every such P is a maximal ideal of Rrts. If
PXR � p0q, then by Theorem 8.57, the prime P pushes forward to a maximal ideal
of Krts; since Krts is itself a localization of Rrts, this shows that P has height 1.
On the other hand, if p :� P X R is nonzero, then p P MaxSpecR, so by Theorem
8.56a) we have P � xp, fy for a monic polynomial f and thus PS�1Rrts � S�1Rrts.
Step 2: Let ι : R ãÑ R1 be the inclusion map. We will show that rι�s : PicR Ñ
PicR1 is injective.

Let I and J be nonzero integral ideals of R such that rIR1s � rJR1s. Then

there are f1, g1, f2, g2 P Rrts with g1 and g2 monic such that the ideals p f1g1 qI and

p f2g2 qJ of R1 are equal. For i � 1, 2, let ai be the leading coefficient of fi, and let

d P I. Then there is j P Jrts and a monic g P Rrts such that

d
f1
g1
� e

g

f2
g2
,
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so
dg2f1g � ef2g1.

The leading coefficient on the right hand side lies in a2J , so a1I � a2J . Symmet-
rically, we get a2J � a1I, so a1I � a2J and thus rIs � rJs.
Step 3: We will show that rι�s is surjective. For this it is enough to show that
for every P P MaxSpecR1 there is a fraction ideal I of R such that rι�pIqs � rPs:
indeed if so, then the image of rι�s is a subgroup of PicR1 containing a set of gen-
erators for PicR1. We may view P as a height one prime ideal of Rrts containing
no monic polynomial.
Case 1: Suppose P X R � p0q. Then it follows from Theorem 8.56a) that there is
p P MaxSpecR such that ι�ppq � P, so rι�ppqs � rPs.
Case 2: Suppose P XR � p0q, so by Theorem 8.57 we have that PKrts is a prime
ideal which is generated by some f P Rrts, and we have pPKrtsq X Rrts � P.
Exercise 21.7 gives

P � pfKrtsq XRrts � cpfq�1fRrts,
so

rPs � rι�pcpfq�1qs.
Step 4: We show that R1 is replete. Let I be a nonzero integral ideal of R, so
I � xa0, a1yR. Let

f :� a0 � a1t P Rrts,
so f is irreducible in Krts and cpfq � I As we saw in Step 3,

P :� pfKrtsq XRrts � cpfq�1fRrts � I�1fRrts
is a height one prime ideal of Rrts, so in PicRrts we have rPs � rI�1s. Thus

rι�pI�1qs � rPR1s.
By Step 2, if I is nonprincipal then rPR1s is nontrivial, so PR1 P MaxSpecR1. By
Step 3, every nontrivial class in x P PicR1 is of the form ι�pI�1q for some nontrivial
I, so x � rPR1s and thus x is represented by a maximal ideal. Finally, since R is
nont a field, there is a nonzero nonunit element a1 P R. Then pa1t� 1q is a prime
ideal of Rrts that contains no primitive polynomial, so a1t � 1 is a prime element
of R1. Thus R1 is replete. □

Exercise 21.8. Let R be a Dedekind domain that is not a PID. Show: every
maximal ideal of Rrts has height 2.

4.2. Elasticity in Replete Dedekind Domains. Let R be a domain and
x P RzR�. If for n P Z� there are (not necessarily distinct) irreducible elements
α1, . . . , αn of R such that x � α1 � � �αn, we say that x admits an irreducible fac-
torization of length n.

A half factorial domain (or HFD) is an atomic domain in which for all x P
RzR�, any two irreducible factorizations of x have the same length.

Exercise 21.9. (Zaks) Show: Zr?�3s is a HFD that is not integrally closed.

For R an atomic domain and x P RzR�, let Lpxq be the supremum of all lengths
of irreducible factorizations of x and let ℓpxq be the minimum of all lengths of irre-

ducible factorizations of x. We define the elasticity of x, ρpxq, as the ratio Lpxq
ℓpxq .

We also make the convention that for x P R�, ρpxq � 1. Finally we define the
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elasticity of R as ρpRq � supxPR ρpxq.

An atomic domain is a HFD if and only if ρpRq � 1. Thus ρpRq is a quantita-
tive measure of how far an atomic domain is from being a HFD.

Let pG, �q be a commutative group. A finite sequence g1, . . . , gn of elements in
G is irreducible if for all nonempty proper subsets S � t1, . . . , nu, ±iPS gi � 1.

Lemma 21.21. Let pG, �q be a commutative group, let x1, . . . , xn be an irre-

ducible sequence in G, and let xn�1 � p
±n
i�1 xiq�1

. If xn�1 � 1, then x1, . . . , xn, xn�1

is an irreducible sequence.

Proof. A nontrivial proper subsequence of x1, . . . , xn�1 with trivial prod-
uct must be of the form xi1 , . . . , xik , xn�1 for some nonempty proper subset S �
ti1, . . . , iku of t1, . . . , nu. Put S1 � t1, . . . , nuzS. Then

±
iPS1 x

�1
i � 1, hence also±

iPS1 xi � 1, contradicting the irreducibility of x1, . . . , xn. □

Proposition 21.22. Let R be a Dedekind domain, let x P RzR�, and let

pxq �
r¹
i�1

pi

be the factorization of x into prime ideals.

a) (Carlitz-Valenza [Ca60] [Va90]) The following are equivalent:
(i) For no nonempty proper subset S � t1, . . . , ru is ±iPS pi is principal.
(ii) The element x is irreducible.

b) If p is a prime ideal such that pr � pxq and ps is nonprincipal for all
1 ¤ s   r, then x is irreducible.

c) If no pi is principal, the length of any irreducible factorization of x is at
most r

2 .

Exercise 21.10. Prove Proposition 21.22.

For a commutative group pG, �q the Davenport constant DpGq of G is the max-
imum length of an irreducible sequence in G, or 8 if the lengths of irreducible
sequences in G are unbounded.

Proposition 21.23. Let R be a Dedekind domain, and let x P R be irreducible.
Write pxq � p1 � � � pr. Then r ¤ DpPicRq.

Proof. By Proposition 21.22a), p1, . . . , pr is an irreducible sequence in PicR.
□

Proposition 21.24. a) If H is a subgroup of a commutative group G,
then DpHq ¤ DpGq.

b) If H is a quotient of a commutative group G, then DpHq ¤ DpGq.
c) DpGq ¥ expG � supxPG#xxy.
d) If G is infinite, then DpGq � 8.
e) If G is finite, then DpGq ¤ #G.
f) If G is finite cyclic, then DpGq � #G.
g) We have

(58) Dp
rà
i�1

Z{niZq ¥ 1�
ŗ

i�1

pni � 1q.
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Proof. a) If H is a subgroup of G, then any irreducible sequence in H is an
irreducible sequence in G.
b) If q : G Ñ H is a surjective homomorphism and x1, . . . , xn is irreducible in H,
then choosing any lift x̃i of xi to G yields an irreducible sequence x̃1, . . . , x̃n.
c) If x P G and n P Z� is less than or equal to the order of x, then x, x, . . . , x (n
times) is an irreducible sequence in G of length n.
d) By part c), we may assume G is infinite and of finite exponent. Then for some
prime p, Grps is infinite, and by part a) it suffices to show that DpGrpsq � 8.
But Grps is an infinite-dimensional vector space over the field Fp: let teiu8i�1 be an
infinite Fp-linearly independent subset of Grps. Then for all n P Z� the sequence
e1, . . . , en is irreducible.
e) Suppose #G � n, and let g1, . . . , gn�1 be a sequence in G. For 1 ¤ i ¤ n, let
Pi � g1 � � � gi. By the Pigeonhole Principle there is 1 ¤ i   j ¤ n � 1 such that
Pi � Pj , and thus gi�1 � � � gj � 1.
f) Since expZ{nZ � #Z{nZ � n, this follows from parts c) and e).

g) Let G �Àr
i�1 Z{niZ,1 and let dpGq � 1�°k

i�1pni � 1q. There is an “obvious”
irreducible sequence x1, . . . , xdpGq�1: for 1 ¤ i ¤ k, let ei be the element of G
with ith coordinate 1 and other coordinates 0. Take e1, . . . , e1 (n1 � 1 times),
e2, . . . , e2 (n2� 1 times),....,ek, . . . , ek (nk � 1 times). The sum of these elements is

pn1 � 1, . . . , nk � 1q � 0, so by Lemma 21.21 taking xdpGq � �
°dpGq�1
i�1 xi, we get

an irreducible sequence of length dpGq. □

Exercise 21.11. Let G be a commutative group.

a) Show: DpGq � 1 ðñ #G � 1.
b) Show: DpGq � 2 ðñ #G � 2.

Theorem 21.25. Let R be a Dedekind domain.

a) We have ρpRq ¤ maxpDpPicRq
2 , 1q.

b) If R is replete, then ρpRq � maxpDpPicRq
2 , 1q.

Proof. For x P RzR�, let P pxq be the number of prime ideals (with multi-
plicity) in the factorization of pxq.
Step 0: Of course if PicR is trivial then DpPicRq � 1, ρpRq � 1 and the result
holds in this case. Henceforth we assume PicR is nontrivial and thus DpPicRq ¥ 2,

and our task is to show that ρpRq ¤ DpPicRq
2 , with equality if R is replete.

Step 1: Let x P RzR�. Consider two irreducible factorizations

x � α1 � � �αm � β1 � � �βn
of x with m ¥ n. Let k be the number of principal prime ideals in the prime
ideal factorization of pxq. Then k � n ðñ k � m ùñ ρpxq � 1. Henceforth
we assume k   minpm,nq (since PicR is nontrivial, there is at least one such
x). We may further assume that α1, . . . , αk (resp. β1, . . . , βk) are prime elements
and αk�1, . . . , αm (resp. βk�1, . . . , βn) are not; dividing through by these prime
elements and correcting by a unit if necessary, we may write

x1 � αk�1 � � �αm � βk�1 � � �βn.
Since for k � 1 ¤ i ¤ m, αi is irreducible but not prime, P pαiq ¥ 2 and thus

2pm� kq ¤ P pαk�1 � � �αmq � P px1q.
1Here we are considering G as an additive group.
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On the other hand, by Proposition 21.23 we have

P px1q � P pβk�1 � � �βnq ¤ pn� kqDpPicRq.
Combining these inequalities gives

m

n
¤ m� k

n� k ¤
DpPicRq

2
.

It follows that ρpxq ¤ DpPicRq
2 and thus ρpRq ¤ DpPicRq

2 , establishing part a).
Step 2: Suppose R is replete.
Step 2a: Suppose first that PicR is finite and put D � DpPicRq. By repleteness,
choose prime ideals p1, . . . , pD whose classes form an irreducible sequence in PicR.
For 1 ¤ i ¤ D, let qi be a prime ideal with rqis � rpis�1. For 1 ¤ i ¤ D, let
ci be such that pciq � piqi; using Lemma 21.21 there are d1, d2 P R such that
pd1q � p1 � � � pD and pd2q � q1 � � � qD and

c1 � � � cD � d1d2.

By Proposition 21.22, c1, . . . , cD, d1, d2 are all irreducible, and thus ρpRq ¥ D
2 .

Step 2b: If PicR is infinite, then DpPicRq � 8 and from this, repleteness and
Lemma 21.21, for all D P Z� there are prime ideals p1, . . . , pD whose classes form
an irreducible sequence in PicR and such that p1 � � � pD is principal. The argument
of Step 2a now shows ρpRq ¥ D

2 . Since this holds for all D P Z�, ρpRq � 8. □

When PicR is finite, Theorem 21.25 is due to Steffan [St86] and Narkiewicz [Na95].

Remark: The condition that R be replete is essential in Theorem 21.25. For in-
stance, A. Zaks has shown that for every finitely generated commutative group G,
there is a half factorial Dedekind domain R with PicR � G [Za76]. Whether any
commutative group can occur, up to isomorphism, as the Picard group of a half
factorial Dedekind domain is an open problem.

Corollary 21.26.

a) A replete Dedekind domain R is a HFD if and only if #PicR ¤ 2.
b) (Carlitz [Ca60]) Let K be a number field. Then its ring of integers ZK

is a HFD if and only if the class number of K – i.e., #PicZK – is either
1 or 2.

c) (Valenza [Va90]) Let K be a number field. Then

ρpZKq � max

�
DpPicZKq

2
, 1



.

d) A replete Dedekind domain has infinite elasticity if and only if it has
infinite Picard group.

Exercise 21.12. Prove Corollary 21.26.

Later we will show that every commutative group arises, up to isomorphism, as
the Picard group of a Dedekind domain. Combining this with Theorems 21.20 and
21.25 we see that the possible elasticities for replete Dedekind domains are precisely
n
2 for any integer n ¥ 2 and 8.

We end this section by giving a little more information on the Davenport con-
stant: let G be a finite commutative group, so that there is a unique sequence of
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positive integers n1, . . . , nr with nr | nr�1 | . . . | n1 ¡ 1 such that G �Àr
i�1 Z{niZ.

We put dpGq � 1�°k
i�1pni � 1q, so that (58) reads more succinctly as

(59) DpGq ¥ dpGq.
J.E. Olson conjectured that equality holds in (58) for all finite commutative groups
G [Ol69a]. He proved that the conjecture holds for p-groups [Ol69a] and also when
r ¤ 2 [Ol69b]. However, it was shown by P. van Emde Boas and D. Kruyswijk
that (for instance) DpGq ¡ dpGq for G � Z{6Z � Z{3Z � Z{3Z � Z{3Z [EBK69].
Whether DpGq � dpGq for all groups with r � 3 is still an open problem. The
exact value of DpGq is unknown for most finite commutative groups.

5. Every commutative group is a class group

To any ring R we attached a commutative group, the Picard group PicR. In fact
the construction is functorial: a homomorphism φ : R Ñ R1 of domains induces a
homomorphism φ� : PicRÑ PicS of Picard groups. Explicitly, if M is a rank one
projective R-module, then M bRR1 is a rank one projective R1-module. In general
when one is given a functor it is natural to ask about its image. Here we are asking
the following

Question 6. Which commutative groups occur (up to isomorphism) as the
Picard group of a commutative ring?

It would be interesting to know at what point algebraists began serious considera-
tion of the above questions. I am not aware of any early work on this problem: so
far as I know, the first paper that addresses this in the literature came relatively
late and gives a full solution:

Theorem 21.27. (Claborn [Cl66]) For every commutative group G, there is a
Dedekind domain R with PicR � ClR � G.

Claborn proceeds by first constructs a Krull domain T with divisor class group
isomorphic to G and then using an approximation process, constructs a Dedekind
domain R with ClR � ClT .

A more elementary – but still quite ingenious and intricate – proof was given
later by C.R. Leedham-Green [Le72]. Leedham-Green constructs the requisite R
as the integral closure of a PID in a separable quadratic field extension.

Several years after that M. Rosen took a more naturally geometric approach,
inspired by the Picard groups of varieties that appear in algebraic geometry. His
approach uses some elliptic curve theory.

Let k be a field of characteristic zero.2 Fix elements A,B P K such that 4A3 �
27B2 � 0, and let

krE�s :� krx, ys{py2 � x3 �Ax�Bq.
Then krE�s is the affine coordinate ring of the elliptic curve

E : y2 � x3 �Ax�B.
Proposition 21.28. The ring krE�s is a Dedekind domain.

2This hypothesis is by no means essential, but it is certainly sufficient for our purposes.

Really we are avoiding characteristics 2 and 3 so that every elliptic curve can be expressed in
short Weierstrass form (for no reason other than notational simplicity) and so that quadratic field

extensions are separable.
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Exercise 21.13. Prove Proposition 21.28. (Suggestions: the matter of it is to
show that krE�s is integrally closed. For this, show (or look up in an introductory
text on elliptic curves!) that the condition that 4A3 � 27B2 � 0 means that x3 �
Ax � B P krxs is separable – i.e., has distinct roots in an algebraic closure – and
thus is squarefree. Apply Theorem 15.17.)

We denote the fraction field of krE�s by kpEq, also called the function field of
E{k. An elliptic Dedekind domain is a Dedekind domain R that arises as an
overring of the standard affine ring krE�s of some elliptic curve E defined over a
field k of characteristic 0. We refer to k as the ground field of R.

Exercise 21.14. Let k be a countable field, and let R be an elliptic Dedekind
domain with ground field k.

a) Show: PicR is countable.
b) More generally, show: if R is an elliptic Dedekind domain with ground

field k, then #PicR ¤ maxpℵ0,#kq.
Conversely:

Theorem 21.29. (Rosen [Ro76]) For every countable commutative group G,
there exists an elliptic Dedekind domain R with ground field an algebraic extension
of Q and such that PicR � G.

In 2008 I built on this work of Rosen to prove the following result [Cl09].

Theorem 21.30. For any commutative group G, there is an elliptic Dedekind
domain R such that:

(i) R is the integral closure of a PID in a separable quadratic field extension,
and

(ii) PicR � G.

Thus Theorem 21.30 implies the results of Claborn and Leedham-Green. On the
other hand, Exercise 23.12 shows that the absolute algebraicity (or even the count-
ability!) of the ground field k achieved in Rosen’s construction cannot be maintained
for uncountable Picard groups. Indeed our argument goes to the other extreme:
we construct the ground field k as a transfinitely iterated function field.

Our argument will require some tenets of elliptic curve theory, especially the notion
of the rational endomorphism ring Endk E of an elliptic curve E{k. A k-rational
endomorphism of an elliptic curve is a morphism φ : E Ñ E defined over k which
carries the neutral point O of E to itself.

Proposition 21.31. Let k be a field of characteristic 0, and let E{k be an
elliptic curve.

a) The additive group of EndkpEq is isomorphic to ZapEq for apEq P t1, 2u.
b) There is a short exact sequence

0Ñ Epkq Ñ EpkpEqq Ñ EndkpEq Ñ 0.

Since EndkpEq is free abelian, we have EpkpEqq � EpkqÀZapEq.
c) There is a canonical isomorphism Epkq � Pic krE�s.

Proof. a) See [Si86, Cor. III.9.4].
b) EpkpEqq is the group of rational maps from the nonsingular curve E to the
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complete variety E under pointwise addition. Every rational map from a nonsin-
gular curve to a complete variety is everywhere defined, so EpkpEqq is the group
of morphisms E Ñ E under pointwise addition. The constant morphisms form a
subgroup isomorphic to Epkq, and every map E Ñ E differs by a unique constant
from a map of elliptic curves pE,Oq Ñ pE,Oq, i.e., an endomorphism of E.
c) By Riemann-Roch, Ψ1 : Epkq Ñ Pic0E by P P Epkq ÞÑ rrP s � rOss is an iso-
morphism [Si86, Prop. III.3.4]. Moreover, Ψ2 : Pic0pEq Ñ Pic krE�s given by°
P nP rP s ÞÑ

°
P�O nP rP s is an isomorphism. Thus Ψ2 � Ψ1 : Epkq �Ñ Pic krE�s.

□

Now fix a field k, and let pE0q{k be any elliptic curve. Put K0 :� k, and for all
n P N, put Kn�1 :� KnpE{Kn

q. Then Proposition 21.31 gives

EpKnq � Epkq `
nà
i�1

ZapEq.

Lemma 21.32 (Continuity Lemma). Let K be a field, pKiqiPI a directed sys-
tem of field extensions of K, and let E{K an elliptic curve. There is a canonical
isomorphism

limÝÑEpKiq � EplimÝÑKiq.
Exercise 21.15. Prove Lemma 21.32.

Now let o be an ordinal number. We define the field Ko by transfinite induction:
K0 � k, for an ordinal o1   o, Ko1�1 � Ko1pE{Ko1

q, and for a limit ordinal o,
Ko � limo1 oKo1 . By the Continuity Lemma, we have EpKoq � limo1PoEpKo1q.

Lemma 21.33. Let a P Z�. For a commutative group A, the following are
equivalent:

(i) The group A is free commutative of rank a � κ for some cardinal κ.
(ii) The group A has a well-ordered ascending series with all factors As�1{As �

Za.

Exercise 21.16. Prove Lemma 21.33.
(Suggestion: use the Transfinite Dévissage Lemma.)

Corollary 21.34. We have EpKoq{Epkq �
À

o1Po ZapEq.

Exercise 21.17. Prove Corollary 21.34.

One can put together the results derived so far together with Exercise 22.2 to get a
proof of Theorem 21.27. However, to prove Theorem 21.30 we need to circumvent
the appeal to Theorem 21.20. This is handled as follows.

Theorem 21.35. Let E{k be an elliptic curve with equation y2 � P pxq �
x3 �Ax�B.

a) The ring krE�s is weakly replete.
b) If k is algebraically closed, then krE�s is not replete.
c) Suppose k does not have characteristic 2 and that krE�s is not replete.

Then for all x P k, there is y P k with y2 � P pxq.
Proof. a) Each point P � O on Epkq is a prime ideal in the standard affine

ring krE�s; according to the isomorphism of Proposition 21.31c), every nontrivial
element of PicpkrE�sq arises in this way.



5. EVERY COMMUTATIVE GROUP IS A CLASS GROUP 443

Part b) is similar: if k is algebraically closed, then by Hilbert’s Nullstellensatz
every prime ideal of krE�s corresponds to a k-valued point P � O on Epkq, which
under Proposition 21.31c) corresponds to a nontrivial element of the class group.
Therefore the trivial class is not represented by any prime ideal.
c) We go by contraposition: suppose there is a P k such that P paq is not a square
in k. Then the divisor of the function x� a P kpEq is of the form

D � D� � 2rOs,
where

D� :� rpa,
a
P paqqs � rpa,�

a
P paqqs.

Under the isomorphism Pic0pEq �Ñ Pic krE�s, the divisor D maps to D�, which
therefore represents the trivial class. Because

a
P paqq R k, the divisor D� corre-

sponds to a maximal ideal of krE�s. Together with the proof of part a), this shows
that krE�s is replete. □

Finally we prove Theorem 21.30(i). Let G be a commutative group, and write it
as F {H where F is a free commutative group of infinite rank. As above let k be
any field of characteristic zero and E{k any elliptic curve. By Corollary 21.34, for
all sufficiently large ordinals o, there is a surjection EpK0q Ñ F and thus also a
surjection EpKoq Ñ G. By Proposition 21.31c), there is a subgroup H of KorEs
such that pPicKorEsq{H � G. By Proposition ??a) and Proposition 21.17, there
is an overring T of KorEs such that PicT � G, establishing Theorem 21.30(i).

As for the second part: let σ be the automorphism of the function field kpEq
induced by px, yq ÞÑ px,�yq, and notice that σ corresponds to inversion P ÞÑ �P
on Epkq � PicpkrE�sq. Let S � Rσ be the subring of R consisting of all functions
which are fixed by σ. Then krE�sσ � krxs is a PID, and S is an overring of krxs,
hence also a PID. More precisely, S is the overring of all functions on the projective
line which are regular away from the point at infinity and the x-coordinates of all
the elements in H (since H is a subgroup, it is stable under inversion). Finally,
to see that R is the integral closure of S in the separable quadratic field extension
kpEq{kpxq, it suffices to establish the following simple result.

Lemma 21.36. Let L{K be a finite Galois extension of fields, and S a Dedekind
domain with fraction field L. Suppose that for all σ P GalpL{Kq, σpSq � S. Then
S is the integral closure of R :� S XK in L.

Proof. Since S is integrally closed, it certainly contains the integral closure
of R in L. Conversely, for any x P S, P ptq � ±σPGalpL{Kqpt � σpxqq is a monic

polynomial with coefficients in pS XKqrts satisfied by x. □

This completes the proof of Theorem 21.30.





CHAPTER 22

Krull Domains

1. Families of Valuations

A domain R with fraction field K is a Krull domain if there is a family tviuiPX
of discrete valuations on K such that:
(KDV1) We have R � �iPX Ri, where for i P I, Ri is the valuation ring of vi; and
(KDV2) For all x P K�, we have vipxq � 0 for only finitely many i P X.

In this definition, the family X of discrete valuations is not part of the formal
structure of a Krull domain: rather, such a family is simply required to exist, and
in general there is more than one such family (but later it will turn out that there
is a canonical minimal such family). For now, we call such a family of valuations a
defining family. We say the defining family is normed if each element has value
group Z (rather than an ordered group isomorphic to Z).

Example 22.1. Let R be a domain with fraction field K.

a) If R � K – i.e., if R is a field – then trivially R is a Krull domain: take
X :� ∅. As usual, although we allow the case of fields, it is not where our
interest lies.

b) If R is Dedekind, then it is a Krull domain. Indeed we may take X :�
MaxSpecR and for p P MaxSpecR, we take vp to be the standard p-adic
valuation. Then (KDV1) holds because R � �mPMaxSpecRRm for any do-

main, and that (KDV2) holds has been observe previously in our discussion
of almost Dedekind domains: for x P K�, the set of p P MaxSpecR such
that vppxq � 0 are the fractional ideals that appear in the prime power
decomposition of pxq, so they are finite in number.

c) If R is a UFD, then it is a Krull domain. Indeed we may take X :�
Spec1R, the set of height one primes of R. Since R is a UFD, each
p P Spec1R is generated by a prime element π, so for x P K� we may
write x � a

b for a, b P R and take vppxq to be the number of times π
appears in the (unique!) prime factorization of a minus the number of
times π appears in the (unique!) prime factorization of b. Then (VDK1)
and (VDK2) hold very similarly as in in part b).

Notice that in both parts b) and c) of Example 22.1, the defining family of discrete
valuations on the Krull domain R turned out to be the ones associated to height
one primes of R. This suggests that we consider the class of domains R such that
(i) for every height one prime p, the one-dimensional local ring Rp is a DVR, (ii)
we have R � �pPSpec1 RRp and (iii) for x P R, the set of height one primes p such

that x R R�p is finite. In fact this will turn out to be precisely the same class of

445
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rings, but the definition we gave using families of valuations is easier to work with
initially, as we will now see.

Proposition 22.2. Let R be a Krull domain with fraction field K, and let
tviuiPX be a defining set of valuations of R. For i P X, let Ri be the valuation ring
of vi. Let S � R be a multiplicative subset, and put

Y :� ti P X | vipsq � 0@s P Su.
Then:

a) We have S�1R � �iPY Ri.
b) The ring S�1R is a Krull domain.

Proof. a) For i P Y , x P R and s P S we have vipxs q � vipxq ¥ 0, so

S�1R � Ri, and thus S�1R � �iPY Ri. Now let x P p�iPY Riq. If vipxq ¥ 0
for all i P X, then x P R � S�1R. Otherwise, let vi1 , . . . , vin be the finite set of
valuations (for ij P X) with vij pxq   0. For all 1 ¤ j ¤ n we must have vij P XzY ,
so there is si P S with vij psiq ¡ 0. Put s :� s1 � � � sn. Then for all sufficiently large

N P Z� and all 1 ¤ j ¤ n we have vij psNxq ¥ 0, so sNx P R, so x P S�1R.
b) The family tviuiPY of discrete valuations on K satisfies (KDV1) and (KDV2)
with respect to S�1R, so S�1R is a Krull domain. □

There is a partial converse:

Exercise 22.1. Let tviuiinX be a defining family of valuations on a Krull
domain R. For i P X, let Ri be the valuation ring of vi. Let Y � X, and put
RY :� �iPY Ri. Show: RY is a Krull domain.
(Note though that RY need not be a localization of R: we have seen counterexamples
already when R is Dedekind.)

Exercise 22.2. Let R be a Krull domain with fraction field K, and let k be a
subfield of K. Show: RX k is a Krull domain.

Thus the class of Krull domains is “localizable.” However, being a Krull domain is
not a local property: that is, for a domain R we may have that Rp is a Krull domain
for all p P SpecR without R being a Krull domain: later we will see that a one-
dimensional Krull domain is a Dedekind domain, so any almost Dedekind domain
that is not Dedekind is a domain that is locally Krull but not Krull. On the other
hand, it will turn out that among Noetherian domains, being a Krull domain is a
local property: indeed, it will turn out to be equivalent to a local property that we
already know.

Proposition 22.3. Let R be a Krull domain with fraction field K.

a) R is completely integrally closed.
b) The monoid DpRq of divisors is a lattice-ordered group.

Proof. a) Let tviuiPX be a family of valuations on K satisfying (KDV1) and
(KDV2), and for each i P X we let Ri be the valuation ring of vi, a DVR, so
R � �iPX Ri. Each Ri is completely integrally closed by Exercise 17.23 and it is
immediate that a domain that is an intersection of a family of completely integrally
closed overrings is itself compeltely integrally closed.
b) By Theorem 19.30, for a domain R, the lattice-ordered monoid DpRq is a group
if and only if R is completely integrally closed. □
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Thus any Krull domain R has a divisor class group ClR. Recall that for any com-
pletely integrally closed domain R, the Picard group PicR is a subgroup of the
divisor class group ClR, with equality if and only if each divisorial ideal is invert-
ible. So clearly in a Dedekind domain these groups coincide and we may just speak
of the “class group.” We know that a Dedekind domain is a PID if and only if it
is a UFD if and only if its class group is trivial. We will see in this chapter that a
Krull domain is a UFD if and only if its divisor class group ClR is trivial, but that
there are Krull domains R with trivial Picard group that are not UFDs.

Let R be a Krull domain, and let tviuiPX be a normed defining family of dis-
crete valuations on the fraction field K of R. For i P X and a fractional R-ideal I,
let x P I and let a P K� be such that I � paq. Then pxq � paq, so there is y P R
with x � ya and thus vipxq � vipyq � vipaq ¥ vipaq. It follows that

vipIq :� maxtvipaq | I � paqu
is well-defined. Moreover, we claim that for fixed I, we have vipIq � 0 for only
finitely many i P X. Indeed, let x, a P K� be such that

pxq � I � paq.
Then for all i P X we have vipaq ¤ vipIq ¤ vipxq, and by (KDV2) we have vipaq �
vipxq � 0 for all but finitely many i P X. Recall that for fractional ideals I, J we
put I � J if I � J and that div I is the �-equivalence class of I. We have I � J if
and only if I and J are contained in the same principal fractional ideals, it follows
that if I � J we have vipIq � vipJq.

Proposition 22.4. Let R be a Krull domain with defining family of valuations
tviuiPX . For I, J P FracR, the following are equivalent:

(i) We have I ¥ J .
(ii) We have vipIq ¥ vipJq for all i P X.

Proof. We have I ¥ J ðñ I � J , so by the above remarks we may assume
that I and J are divisorial and show that I � J ðñ vipIq ¥ vipJq for all i P X.
If I � J then for all a P K�, if J � paq then also I � paq, so vipIq ¤ vipJq for
all i P X. Conversely, suppose that vipIq ¥ vipJq for all i P X. Let x P I, so
vipxq ¥ vipIq for all i P I. If J � pbq, then vipxq ¥ vipIq ¥ vipJq ¥ vipbq, so
vipxb q ¥ 0 for all i P X, so x P pbq. Thus every element of I lies in every principal
fractional ideal containing J , so I � J because J is divisorial. □

Let ZpXq :�ÀiPX Zris be the free commutative group on the set X. We may define

φ : DpRq Ñ ZpXq, I ÞÑ pvipIqq.
The group ZpXq has a natural partial ordering, the product ordering from the total
ordering on each of its factors. This makes ZpXq into an Artinian lattice-ordered
group. A map f : pX,¤q Ñ pY,¤q of partially ordered sets is strongly isotone if
for all x1, x2 P X we have x1 ¤ x2 if and only if fpx1q ¤ fpx2q. The point is that
for partially ordered sets, an isotone bijection need not be an order-isomorphism,
but a strongly isotone bijection must be. It is immediate from Proposition 22.4
that the map φ is a strongly isotone injection, so DpRq is also Artinian. Recalling
that our ordering on divisors orders divisorial ideals by reverse inclusion, we have
shown that in a Krull domain, the ascending chain condition holds on divisorial
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ideals: let us call this condition (ACCD).
Thus at this point we know two purely ring-theoretic facts about Krull domains:

they are completely integrally closed and they satisfy (ACCD). It turns out that
these are characteristic properties:

Theorem 22.5. For a domain R, the following are equivalent:

(i) R is a Krull domain.
(ii) R is completely integrally closed and satisfies (ACCD).

Proof. Let K be the fraction field of R. We just saw that (i) ùñ (ii), so let
R be a completely integrally closed domain that satisfies (ACCD). Again we stop to
mention the order reversal: (ACCD) on divisorial ideals means that the set DpRq
of divisors is Artinian: every nonempty subset has a minimum. Of course we may,
and shall, assume that R is not a field, so the set of proper divisorial ideals of R is
nonempty, hence the set tpiuiPX of minimal positive elements of DpRq (these the
maximal elements in the set of proper, integral divisorial elements) is nonempty.

Step 1: Because R is completely integrally closed, the divisorial fractional ideals
DpRq form a lattice-ordered group DpRq with positive cone D�pRq of divisorial in-
tegral ideals. We claim that every element of D�pRq is a finite N-linear combination
of the minimal positive elements. This is a familiar argument: if not, then because
D�pRq is Artinian there must be a minimal element I P D�pRq that cannot be
expressed as such a combination. So we must have 0   pi   I for some i P I and
then 0   I � pi   I, so I � pi is an N-linear combination of the minimal elements,
which means that I is: contradiction. Since every element of DpRq is a difference
of two elements of D�pRq, it follows that tpiuiPX is a set of generators for DpRq.
Step 2: We claim that D�pRq � ÀiPX Nrpis as a partially ordered commutative
monoid: that is, every element of D�pRq has a unique expression as

°
iPX mipi and

that
°
iPX mipi ¤

°
iPX nipi if and only if mi ¤ ni for all i P X. It is clear that if

mi ¤ ni for all i P X then
°
iPX mipi ¤

°
iPX nip.

Step 2a): Suppose that we have I, J P D�pRq such that pi ¤ I � J . We claim that
either pi ¤ I or pi ¤ J . Indeed, by the minimality of pi, we have either pi X I � I
or pi X I � 0. In the former case we have pi ¤ I, so suppose that pi X I � 0. Then
certainly

J ¤ ppi � Jq X pI � Jq.
If for M P D�pRq we have M ¤ pi � J and M ¤ I � J , then M � J ¤ pi X I � 0,
so M ¤ J ; this shows that

J ¥ ppi � Jq X pI � Jq,
and thus

J � ppi � Jq X pI � Jq,
which implies pi ¤ J .
Step 2b): It follows by induction that if I1, . . . , In ¡ 0 and pi ¤ I1 � . . .� In, then
pi ¤ Ij for some 1 ¤ j ¤ n.
Step 2c): Now suppose that we have¸

iPX
mipi ¤

¸
iPX

nipi,

and, seeking a contradiction, that mi ¡ ni for some i P X. Thus the set

Y :� ti P X | mi ¡ niu
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is nonempty. Put

bi :�
#
mi � ni i P Y
ni �mi i R Y .

Then ¸
iPY

bipi ¤
¸

jPXzY
bjpj .

Since Y is nonempty, the left hand side is strictly positive, hence so is the right hand
side. By Step 2b), for each i P Y there is j P XzY such that pi ¤ pj : contradiction.
Step 3: For x P K�, after Step 2 we may uniquely write

divpxq �
¸
iPX

nipxqpi.

For i P X we may define vi : K
� Ñ Z by vipxq :� nipxq. For x, y P K�,

divpxyq � divpxq � divpyq �
¸
iPX
pnipxq � nipyqqpi,

so vipxyq � vipxq�vipyq. Moreover divpxq^divpyq � divpxx, yyq ¤ divpx�yq. Also

p
¸
iPX

mipiq ^ p
¸
iPX

nipiq �
¸
iPI

minpmi, niqpi.

So if x� y � 0, then

divpx� yq �
¸
iPX

cipi ¥
¸
iPX

minpmi, niqpi,

so for all i P X we have vipx � yq ¥ minpvipxq, vipyqq. Thus each vi is a discrete
valuation on K. It is immediate that the family of valuations tviuiPX satisfies
(KDV2). Moreover, for x P K�, if vipxq ¥ 0 then divpxq ¥ 0, so x P R, and
conversely x P R implies vipxq ¥ 0 for all i P X. Thus tviuiPX shows that R is a
Krull domain. □

Corollary 22.6. A Noetherian integrally closed domain is a Krull domain.

Proof. A Noetherian integrally closed domain is completely integrally closed
and satisfies (ACCD), so this is immedaite from Theorem 22.5. □

2. Essential Valuations

Let R be a Krull domain. The proof of Theorem 22.5 gives us a canonical defin-
ing family tviuiPX of discrete valuations on R, namely the ones corresponding to
ideals of R that are maximal among proper divisorial ideals. We call such valua-
tions essential. For i P X, let Pi be the divisorial ideal of R such that divpPiq � pi.

For any divisorial fractional R-ideal I and x P K�, we may uniquely write div I �°
iPX nipi, and we have x P I if and only if pxq � I if and only if divpxq ¥ divpIq if

and only if vipxq ¥ ni for all i P X. Conversely, given any pniq P
À

iPX Zrpis, then
I :� tx P K� | vipxq ¥ niu Y t0u

is the divisorial fractional ideal with divisor
°
iPX nipi.

Now let I be a fractional R-ideal. By Proposition 22.4, for x P K� we have
x P I if and only if vipxq ¥ vipIq for all i P I. It follows that
(60) divpIq �

¸
iPI
vipIqpi.
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Let Y be a set, and suppose that for each j P Y we have a divisorial fractional ideal
Ij of R such that I :� xIj | j P Y yR is a fractional R-ideal. Since I � Ij for all
j P Y we have divpIq ¤ divpIjq for all j P Y . If J is a divisorial fractional ideal such
that J ¤ divpIjq for all j then J � Ij for all j, so J � I and thus div J ¤ divpIq.
It follows that divpIq is the infimum of tdivpIjq | j P Y u in DpRq. Let I P FracR.
Applying this observation to the family of principal fractional ideals contained in
I, we get that divpIq is the infimum of the set divpxq for x P I. It follows that
(61) divpIq �

¸
iPX

mintvipxq | x P Iupi.

Comparing (60) and (61), we deduce:

@I P FracpRq, @i P X, vipIq � mintvipxq | x P Iu.
From this we deduce that for every i P X, we have vipK�q � Z. Indeed, certainly
vipK�q is a subgroup of Z. Conversely, let I be the divisorial ideal with divpIq � 2pi.
Since vipIq � 2, we have I � Pi. If x P PizI, then

pi ¤ divpxq   2pi,

so vipxq � 1.

Above, for any defining family tviuiPX of valuations on a Krull domain R, we
defined a map φ : DpRq Ñ ZpXq :� ÀiPX Z, divpIq ÞÑ pvipIqq and showed that
this is a strongly isotone injection. When we restrict to the family of essential
valuations, we can prove a more precise result:

Theorem 22.7. Let R be a Krull domain, and let tviuiPX be the set of essential
valuations of R. The map

φ : DpRq Ñ ZpXq, divpIq ÞÑ pvipIqq,
is an isomorphism of lattice-ordered groups.

Proof. In fact, all that remains is to show that φ is a group homomorphism.
Indeed, we already know that φ is a strongly isotone injection whose image contains
the elements pi for i P X. But ZpXq is generated by tpiuiPX , so φ is then a strongly
isotone group isomorphism, hence an isomorphism of lattice-ordered groups.

Let I and J be divisorial fractional ideals. We must show that for all i P X,
vipIJq � vipIq�vipJq. We may choose x P I and y P J such that vipIq � vipxq and
vipJq � vipyq. Then xy P IJ � IJ , so vipIJq ¥ vipIq�vipJq. On the other hand, we
may choose a, b P K� such that I � paq, J � pbq and vipIq � vipaq, vipJq � vipbq,
and then IJ � pabq, so vipIJq ¥ vipabq � vipaq � vipbq � vipIq � vipJq. □

Proposition 22.8. Let R be a Krull domain, with fraction field K, and let
tviuiPX be the set of essential valuations of R. For i P X, the ideal Pi is a prime
ideal of R. If Ri is the valuation ring of vi, then Ri � RPi

.

Proof. Let mi be the maximal ideal of the DVR Ri. For x P R we have
vipxq ¡ 0 if and only if x P P⟩, so

Pi � mi XR
and thus Pi is a prime ideal of R. By Proposition 22.2, if

Y :� tj P X | vjpsq � 0 @s P RzPiu,
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then RP⟩ �
�
jPY Rj , so it suffices to show that S � tiu. Clearly i P Y ; conversely,

if j P Xztiu, then Pj and Pi are distinct ideals that are both maximal among proper
divisorial ideals of R, so Pj � Pi: that is, there is s P RzPi such that vjpsq ¡ 0, so
j R Y . □

Theorem 22.9. Let R be a Krull domain, and let tviuiPX be the set of essential
valuations. For p P SpecR, the following are equivalent:

(i) p is divisorial.
(ii) p � Pi for some i P X.
(iii) htppq � 1.

Proof. (i) ùñ (ii): Suppose p is divisorial, so

div p �
¸
iPX

nipi �
¸
iPX

ni divPi � div
¹
iPX

Pni
i .

It follows that p �±iPX pni
i , and since p is prime we have p � pi for some i. Since

pi is maximal among proper divisorial ideals of R, we have p � pi.
(ii) ùñ (i) is immediate: the primes Pi are divisorial by definition.
(ii) ùñ (iii): By Proposition 22.8, for i P X we have RPi

� Ri is a DVR, so Pi
has height one.
(iii) ùñ (ii): Let p P Spec1R. By Propositions 22.2 and 22.8, there is a nonempty
subset Y � X such that Rp �

�
iPY RPi

. Choose i P Y . (It will shortly become
clear that we did not really have a choice.) Then we have Rp � RPi

, which implies
that Pi � p. Since p has height 1, we have p � Pi. □

Corollary 22.10. For a domain R, the following are equivalent:

(i) R is a Krull domain.
(ii) All of the following hold:

(a) For all p P Spec1R, the local ring Rp is a DVR.
(b) We have R � �pPSpec1 RRp.

(c) Every x P R lies in only finitely many height one primes.

Proof. (i) ùñ (ii): Immediate from Proposition 22.8 and Theorem 21.8.
(ii) ùñ (i): If conditions (a), (b) and (c) hold, then each height one prime defines
a discrete valuation, and this family of valuations satisfies (KDV1) and (KDV2),
so R is a Krull domain and this is the family of essential valuations on R. □

Theorem 22.11. For a Krull domain R, the following are equvialent:

(i) R is a UFD.
(ii) ClR � 0.

Proof. (i) ùñ (ii): If R is a UFD, then by Corollary 15.2 every p P Spec1R
is principal. But ClR is generated the divisors of height one primes, so every divisor
is principal: ClR � 0.
(ii) ùñ (i): Conversely, ClR � 0 implies that every height one prime of R is
principal. Thus every essential valuation of R is of the form vπ for a prime element
π, which means that for x P R, we have vπpxq � n if and only if x P pπnqzpπn�1q.
Let P be a maximal set of mutually nonassociate prime elements – i.e., we choose
exactly one generator of each nonzero principal prime ideal. Then for x P R,

y :�
¹
πPP

πvπpxq P R
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is well-defined, and divpxq � divpyq, so divpx{yq � 0, so pxq � pyq, and thus there
is u P R� such that

x � u
¹
πPP

πvπpxq.

So every element of R is a product of prime elements, and thus R is a UFD. □

Exercise 22.3. Show: Krull domains satisfy the Krull Intersection Theorem:
if I is a proper ideal in a Krull domain, then

�
n¥1 I

n � p0q.
Theorem 22.12. For a Krull domain R that is not a field, the following are

equivalent:

(i) dimR � 1.
(ii) R is a Dedekind domain.
(iii) R is a Prüfer domain.

Proof. (i) ùñ (ii): the localization of a Krull domain at a height one prime
is a DVR, so if dimR � 1 then the localization of R at each maximal ideal is a
DVR: thus, R is almost Dedekind. Moreover, (VDK2) implies that R has finite
character, so R is Dedekind by Theorem 20.35.
(ii) ùñ (iii): Every Dedekind domain is a Prüfer domain.
(iii) ùñ (i): Suppose that R is both Krull and Prüfer. For every m P MaxSpecR,
the local ring Rm is a Krull domain by Proposition 22.2 and a valuation ring by
Theorem 20.23 it is a valuation ring. By Exercise 22.3 we have

�
n¥1 m

n
m � p0q, so

by Theorem 17.16 the ring Rm is a DVR. Thus R has dimension 1. □

3. Integral Closure

Lemma 22.13. Let K be a field, and let v : K� Ñ R be a discrete valuation,
with valuation ring R. Let L{K be an algebraic field extension. Let x P L, and
let f � tn � an�1t

n�1 � . . . � a1t � a0 P Krts be the minimal polynomial of x. If
wpxq ¥ 0 for every valuation w on L that extends v, then f P Rrts.

Proof. Put L1 :� Krxs. Every extension of v to a valuation v1 on L1 is still
discrete, and by Exercise 21.2 v1 extends to a valuation on L. Thus the hypothesis
is equivalent to assuming that v1pxq ¥ 0 for every valuation v1 on L extending v,
so we may assume that L � L1, i.e., that L{K has finite degree. And we shall.

Let M be the normal closure of L{K, and let w̃ be an extension of v to M . For
σ P AutpM{Kq, the map

σ�w̃ :M� Ñ R, x ÞÑ w̃pσpxqq
is a valuation on M that extends v, hence so does its restriction to L, and thus

σ�w̃pxq � w̃pσpxqq ¥ 0.

Since M{K is normal and contains the root x of f , in M the polynomial splits, say

f � pt� x1q � � � pt� xnq, with x1 � x.

For each 1 ¤ i ¤ n there is σ P AutpM{Kq with σpxq � xi, and thus w̃pxiq ¥ 0
for all 1 ¤ i ¤ n. Since for 0 ¤ i ¤ n � 1, the coefficient ai of ti in f is a
symmetric polynomial in the roots x1, . . . , xn with coefficients in Z, it follows that
vpaiq � w̃paiq ¥ 0, so f P Rrts. □

Remark 8. Using the fact that every valuation extends to every algebraic field
extension, Lemma 22.13 can be extended to all valuations, not just discrete ones.
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Theorem 22.14. Let R be a Krull domain with fraction field K, let L{K be a
finite degree field extension, and let T be the integral closure of R in L. Then T is
a Krull domain.

Proof. Let tviuiPI be the set of essential valuations of R, and let twjujPJ be
the set of valuations on L that extend some vi. For j P J , let Tj be the valuation
ring of wj ; by Corollary 17.10, each Tj is a DVR. We claim that twjujPJ is a defining
family of discrete valuations for T : if so, T is a Krull domain.

Step 1: Put T̃ :� �jPJ Tj . We will show that T � T̃ , establishing (KDV1).

Step 1a): As we saw in the proof of Theorem 17.11, If we have a valuation v on a
field K, subring R of K such that vpxq ¥ 0 for all x P R and an element y that is

integral over R, then vpyq ¥ 0. It follows that T � T̃ .

Step 1b): Let x P T̃ , and let f P Krts be the minimal polynomial of x. Lemma
22.13 implies that for all i P I we have f P Rirts, so f P p

�
iPI Riqrts � Rrts. Thus

x is integral over R, so x P T .
Step 2: Let x P T , so there are a0, . . . , an�1 P R with a0 � 0 such that

(62) xn � an�1x
n�1 � . . .� a1x� a0 � 0.

For all but finitely many i P I, we have aj � 0 ùñ vipajq � 0. Choose such an
i. For any j P J such that wj extends vi, we claim that wjpxq � 0. If so, then
Theorem 17.11 implies that there are only finitely many j P J such that wj extends
vi, so the set of j such that wjpxq � 0 is finite, establishing (KDV2).

To establish the claim: if wjpxq ¡ 0, the unique term of minimal valuation
in the left hand side of (62) is a0, so the valuation of the left hand side is 0,
contradiction. If wjpxq   0, the unique term of minimal valuation in the left hand
side of (62) is xn, so the valuation of the left hand side is vpxnq, contradiction. □
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[CDVM13] L.F. Cáceres Duque and J.A. Vélez-Marulanda, On the Infinitude of Prime Elements.
Rev. Colombiana Mat. 47 (2013), 167–179.

[CE] H. Cartan and S. Eilenberg, Homological algebra. Princeton University Press, Prince-

ton, N. J., 1956.
[CE59] E.D. Cashwell and C.J. Everett, The ring of number-theoretic functions. Pacific J.

Math. 9 (1959) 975–985.
[CK51] I.S. Cohen and I. Kaplansky, Rings for which every module is a direct sum of cyclic

modules. Math. Z. 54 (1951), 97–101.

[Cl66] L.E. Claborn, Every commutative group is a class group. Pacific J. Math. 18 (1966),
219–222.

[Cl-GT] P.L. Clark, General Topology. http://math.uga.edu/~pete/pointset2018.pdf.

[Cl09] P.L. Clark, Elliptic Dedekind domains revisited. Enseignement Math. 55 (2009), 213–
225.

[Cl15] P.L. Clark, A note on Euclidean order types. Order 32 (2015), 157–178.

[Cl17a] P.L. Clark, The Euclidean criterion for irreducibles. Amer. Math. Monthly 124 (2017),
198–216.

[Cl17b] P.L. Clark, The cardinal Krull dimension of a ring of holomorphic functions. Expo.

Math. 35 (2017), 350–356.
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[Rü33] W. Rückert, Zum Eliminationsproblem der Potenzreihenideale, Math. Ann. 107
(1933), 259–281.

[Ru87] W. Rudin, Real and complex analysis. Third edition. McGraw-Hill Book Co., New
York, 1987.

[Sa61] P. Samuel, On unique factorization domains. Illinois J. Math. 5 (1961), 1–17.

[Sa64] P. Samuel, Lectures on unique factorization domains. Notes by M. Pavaman Murthy.

Tata Institute of Fundamental Research Lectures on Mathematics, No. 30 Tata Insti-
tute of Fundamental Research, Bombay 1964.



BIBLIOGRAPHY 461

[Sa68] P. Samuel, Unique factorization. Amer. Math. Monthly 75 (1968), 945–952.

[Sa71] P. Samuel, About Euclidean rings. J. Algebra 19 (1971), 282–301.

[Sa08] A. Sasane, On the Krull dimension of rings of transfer functions. Acta Appl. Math.
103 (2008), 161- -168.

[S] W. Scharlau, Quadratic and Hermitian forms. Grundlehren der Mathematischen Wis-

senschaften 270. Springer-Verlag, Berlin, 1985.
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