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Introduction

0.1. What is Commutative Algebra?

Commutative algebra is the study of commutative rings and attendant structures,
especially ideals and modules.

This is the only possible short answer I can think of, but it is not completely
satisfying. We might as well say that Hamlet, Prince of Denmark is about a fic-
tional royal family in late medieval Denmark and especially about the title (crown)
prince, whose father (i.e., the King) has recently died and whose father’s brother
has married his mother (i.e., the Queen). Informative, but not the whole story!

0.2. Why study Commutative Algebra?

What are the purely mathematical reasons for studying any subject of pure math-
ematics? I can think of two:

I. Commutative algebra is a necessary and/or useful prerequisite for the study
of other fields of mathematics in which we are interested.

II. We find commutative algebra to be intrinsically interesting and we want to
learn more. Perhaps we even wish to discover new results in this area.

Most beginning students of commutative algebra can relate to the first reason:
they need, or are told they need, to learn some commutative algebra for their study
of other subjects. Indeed, commutative algebra has come to occupy a remarkably
central role in modern pure mathematics, perhaps second only to category theory
in its ubiquitousness, but in a different way. Category theory provides a common
language and builds bridges between different areas of mathematics: it is something
like a circulatory system. Commutative algebra provides core results that other re-
sults draw upon in a foundational way: it is something like a skeleton.

The branch of mathematics which most of all draws upon commutative algebra
for its structural integrity is algebraic geometry, the study of geometric properties
of manifolds and singular spaces which arise as the loci of solutions to systems of
polynomial equations. In fact there is a hard lesson here: in the 19th century al-
gebraic geometry split off from complex function theory and differential geometry
as its own discipline and then burgeoned dramatically at the turn of the century
and the years thereafter. But by 1920 or so the practitioners of the subject had
found their way into territory in which “purely geometric” reasoning led to seri-
ous errors. In particular they had been making arguments about how algebraic
varieties behave generically, but they lacked the technology to even give a precise
meaning to the term. Thus the subject ultimately proved invertebrate and began
to collapse under its own weight. Starting around 1930 there began a heroic shoring
up process in which the foundations of the subject were recast with commutative
algebraic methods at the core. This was done several times over, in different ways,
by Zariski, Weil, Serre and Grothendieck, among others. For the last 60 years it
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has been impossible to deeply study algebraic geometry without knowing commuta-
tive algebra – a lot of commutative algebra. (More than is contained in these notes!)

The other branch of mathematics which draws upon commutative algebra in an
absolutely essential way is algebraic number theory. One sees this from the begin-
ning in that the Fundamental Theorem of Arithmetic is the assertion that the ring
Z is a unique factorization domain (UFD), a basic commutative algebraic concept.
Moreover number theory was one of the historical sources of the subject. Notably
the concept of Dedekind domain came from Richard Dedekind’s number-theoretic
investigations. Knowledge of commutative algebra is not as indispensable for num-
ber theory (at least, not at the beginning) as it is for algebraic geometry, but such
knowledge brings a great clarifying effect to the subject.

In fact the interplay among number theory, algebraic geometry and commutative
algebra flows in all directions. What Grothendieck did in the 1960s (with impor-
tant contributions from Chevalley, Serre and others) was to create a single field of
mathematics that encompassed commutative algebra, classical algebraic geometry
and algebraic number theory: the theory of schemes. As a result, most contempo-
rary number theorists are also partly commutative algebraists and partly algebraic
geometers: we call this cosmopolitan take on the subject arithmetic geometry.

There are other areas of mathematics that draw upon commutative algebra in
important ways. To mention some which will show up in later in these notes:

• Differential topology.
• General topology.
• Invariant theory.
• Order theory.

The task of providing a commutative algebraic foundation for algebraic geometry
– or even the single, seminal text of R. Hartshorne – is a daunting one. Happily,
this task has been completed by David Eisenbud (a leading contemporary expert
on the interface of commutative algebra and algebraic geometry) in his text [Eis].
This work is highly recommended. It is also 797 pages long, so contains enough
material for 3− 5 courses in the subject. It would be folly to try to improve upon,
or even successfully imitate, Eisenbud’s work here, and I certainly have not tried.

I myself am an arithmetic geometer (which, as I tried to explain above, is a sort of
uppity kind of number theorist), so it is not surprising that these notes are skewed
more towards number theory than most introductory texts on commutative algebra.
However for the most part a respectful distance is maintained: we rarely discuss
number theory per se but rather classes of rings that a number theorist would like:
Dedekind domains, valuation rings, Bézout domains, and so forth.

Just much as I have included some material of interest to number theorists I have
included material making connections to other branches of mathematics, especially
connections which are less traditionally made in commutative algebra texts. In
fact at several points I have digressed to discuss topics and theorems which make
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connections to other areas of mathematics:

• §2 on Galois connections.
• §5.2 on rings of continuous functions.
• §6 on vector bundles and Swan’s Theorem.
• §9 on Boolean rings, Boolean spaces and Stone Duality.
• §13 on the topology of prime spectra, including Hochster’s Theorem.
• §14.6 on invariant theory, including the Shephard-Todd-Chevalley Theorem.

But I do find commutative algebra to be of interest unto itself, and I have tried to
craft a sustained narrative rather than just a collection of results.

0.3. Acknowledgments.

Thanks to Pablo Barenbaum, Max Bender, Martin Brandenburg, John Doyle,
Georges Elencwajg, Emil Jerabek, Keenan Kidwell, David Krumm, Allan Lacy,
Casey LaRue, Stacy Musgrave, Alon Regev, Jacob Schlather, Jack Schmidt, Mar-
iano Suárez-Álvarez, Peter Tamaroff and Matthé van der Lee for catching errors1

and making other useful suggestions. Thanks to Hans Parshall for introducing me
to the Stone-Tukey Theorem.

1. Commutative rings

1.1. Fixing terminology.

We are interested in studying properties of commutative rings with unity.

By a general algebra R, we mean a triple (R,+, ·) where R is a set endowed
with a binary operation + : R×R→ R – called addition – and a binary operation
· : R×R→ R – called multiplication – satisfying the following:

(CG) (R,+) is a commutative group,

(D) For all a, b, c ∈ R, (a+ b) · c = a · c+ b · c, a · (b+ c) = a · b+ a · c.

For at least fifty years, there has been agreement that in order for an algebra
to be a ring, it must satisfy the additional axiom of associativity of multiplication:

(AM) For all a, b, c ∈ R, a · (b · c) = (a · b) · c.

A general algebra which satisfies (AM) will be called simply an algebra. A similar
convention that is prevalent in the literature is the use of the term nonassociative
algebra to mean what we have called a general algebra: i.e., a not necessarily
associative algebra.

A ring R is said to be with unity if there exists a multiplicative identity, i.e.,
an element e of R such that for all a ∈ R we have e · a = a · e = a. If e and e′

are two such elements, then e = e · e′ = e′. In other words, if a unity exists, it is

1Of which many, many remain: your name could go here!
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unique, and we will denote it by 1.

A ring R is commutative if for all x, y ∈ R, x · y = y · x.

In these notes we will be (almost) always working in the category of commuta-
tive rings with unity. In a sense which will shortly be made precise, this means
that the identity 1 is regarded as part of the structure of a ring and must therefore
be preserved by all homomorphisms.

Probably it would be more natural to study the class of possibly non-commutative
rings with unity, since, as we will see, many of the fundamental constructions of
rings give rise, in general, to non-commutative rings. But if the restriction to
commutative rings (with unity!) is an artifice, it is a very useful one, since two
of the most fundamental notions in the theory, that of ideal and module, become
significantly different and more complicated in the non-commutative case. It is
nevertheless true that many individual results have simple analogues in the non-
commutative case. But it does not seem necessary to carry along the extra general-
ity of non-commutative rings; rather, when one is interested in the non-commutative
case, one can simply remark “Proposition X.Y holds for (left) R-modules over a
noncommutative ring R.”

Notation: Generally we shall abbreviate x · y to xy. Moreover, we usually do
not use different symbols to denote the operations of addition and multiplication
in different rings: it will be seen that this leads to simplicity rather than confusion.

Group of units: Let R be a ring with unity. An element x ∈ R is said to be a
unit if there exists an element y such that xy = yx = 1.

convention on exercises: Throughout the exercises, a “ring” means a com-
mutative ring unless explicit mention is made to the contrary. Some but not all of
the results in the exercises still hold for non-commutative rings, and it is left to the
interested reader to explore this.

Exercise 1.1:
a) Show that if x is a unit, the element y with xy = yx = 1 is unique, denoted x−1.
b) Show that if x is a unit, so is x−1.
c) Show that, for all x, y ∈ R, xy is a unit ⇐⇒ x and y are both units.
d) Deduce that the units form a commutative group, denoted R×, under multipli-
cation.

Remark 1. For elements x, y in a non-commutative ring R, if x and y are units
so is xy, but the converse need not hold. (Thus Exercise 1.1c) is an instance of a
result in which commutativity is essential.) Nevertheless this is enough to deduce
that in any ring the units R× form a group...which is not necessarily commutative.

Example (Zero ring): Our rings come with two distinguished elements, the additive
identity 0 and the multiplicative identity 1. Suppose that 0 = 1. Then for x ∈ R,
x = 1 · x = 0 · x, whereas in any rin g 0 · x = (0 + 0) · x = 0 · x+ 0 · x, so 0 · x = 0.
In other words, if 0 = 1, then this is the only element in the ring. It is clear that
for any one element set R = {0}, 0 + 0 = 0 · 0 = 0 endows R with the structure of
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a ring. We call this ring the zero ring.

The zero ring exhibits some strange behavior, such that it must be explicitly ex-
cluded in many results. For instance, the zero element is a unit in the zero ring,
which is obviously not the case in any nonzero ring. A nonzero ring in which every
nonzero element is a unit is called a division ring. A commutative division ring
is called a field.

Let R and S be rings (with unity). A homomorphism f : R → S is a map
of sets which satisfies

(HOM1) For all x, y ∈ R, f(x+ y) = f(x) + f(y).
(HOM2) For all x, y ∈ R, f(xy) = f(x)f(y).
(HOM3) f(1) = 1.

Note that (HOM1) implies f(0) = f(0 + 0) = f(0) + f(0), so f(0) = 0. Thus
we do not need to explcitly include f(0) = 0 in the definition of a group homomor-
phism. For the multiplicative identity however, this argument only shows that if
f(1) is a unit, then f(1) = 1. Therefore, if we did not require (HOM3), then for
instance the map f : R → R, f(x) = 0 for all x, would be a homomorphism, and
we do not want this.

Exercise 1.2: Suppose R and S are rings, and let f : R → S be a map satisfy-
ing (HOM1) and (HOM2). Show that f is a homomorphism of rings (i.e., satisfies
also f(1) = 1) iff f(1) ∈ S×.

A homomorphism f : R → S is an isomorphism if there exists a homomorphism
g : S → R such that: for all x ∈ R, g(f(x)) = x; and for all y ∈ S, f(g(y)) = y.

Exercise 1.3: Let f : R→ S be a homomorphism of rings. Show TFAE:
(i) f is a bijection.
(ii) f is an isomorphism.

Remark: In many algebra texts, an isomorphism of rings (or groups, etc.) is de-
fined to be a bijective homomorphism, but this gives the wrong idea of what an
isomorphism should be in other mathematical contexts (e.g. for topological spaces).
Rather, having defined the notion of a morphism of any kind, one defines isomor-
phism in the way we have above.

Exercise 1.4: a) Suppose R and S are both rings on a set containing exactly one
element. Show that there is a unique ring isomorphism from R to S. (This is a
triviality, but explains why are we able to speak of the zero ring, rather than
simply the zero ring associated to one element set. We will therefore denote the
zero ring just by 0.)
b) Show that any ring R admits a unique homomorphism to the zero ring. One
says that the zero ring is the final object in the category of rings.

Exercise 1.5: Show that for a not-necessarily-commutative-ring S there exists a



10 PETE L. CLARK

unique homomorphism from the ring Z of integers to S. (Thus Z is the initial ob-
ject in the category of not-necessarily-commutative-rings. It follows immediately
that it is also the initial object in the category of rings.)

A subring R of a ring S is a subset R of S such that

(SR1) 1 ∈ R.
(SR2) For all r, s ∈ R, r + s ∈ R, r − s ∈ R, and rs ∈ R.

Here (SR2) expresses that the subset R is an algebra under the operations of addi-
tion and multiplication defined on S. Working, as we are, with rings with unity, we
have to be a bit more careful: in the presence of (SR2) but not (SR1) it is possible
that R either does not have a multiplicative identity or, more subtly, that it has a
multiplicative identity which is not the element 1 ∈ S.

An example of the first phenomenon is S = Z, R = 2Z. An example of the
second is S = Z, R = 0. A more interesting example is S = Z × Z – i.e., the set
of all ordered pairs (x, y), x, y ∈ Z with (x1, y1) + (x2, y2) = (x1 + x2, y1 + y2),
(x1, y1) · (x2, y2) = (x1x2, y1y2) – and R = {(0, y) | y ∈ Z}. Then with the induced
addition and multiplication from S, R is isomorphic to the ring Z and the element
(0, 1) serves as a multiplicative identity on R which is different from the (always
unique) multiplicative identity 1S = (1, 1), so according to our conventions R is not
a subring of S.

Notice that if R is a subring of S, the inclusion map R ↪→ S is an injective homo-
morphism of rings. Conversely, if ι : R ↪→ S is an injective ring homomorphism,
then R ∼= ι(R) and ι(R) is a subring of S, so essentially we may use ι to view R
as a subring of S. The only proviso here is that this certainly depends on ι: in
general there may be other injective homomorphisms ι : R ↪→ S which realize R as
a different subset of S, hence a different subring.

1.2. Adjoining elements.

Let ι : R ↪→ S be an injective ring homomorphism. As above, let us use ι to
view R as a subring of S; we also say that S is an extension ring of R and write
S/R for this (note: this has nothing to do with cosets or quotients!) We wish now
to consider rings T such that R ⊂ T ⊂ S; such a ring T might be called a subex-
tension of S/R or an intermediate ring.

Let X = {xi} be a subset of S. Then the partially ordered set of all subrings
of T containing R and X contains a bottom element, given (as usual!) by taking
the intersection of all of its elements. (This partially ordered set is nonempty, since
S is in it.) We call this the ring obtained by adjoining the elements of X to R. In
the commutative case, we denote this ring by R[{xi}], for reasons that will become
more clear when we discuss polynomial rings in §5.4.

Example: Take R = Z, S = C. Then Z[i] = Z[
√
−1] is the smallest subring of

C containing (Z and)
√
−1.
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Example: Take R = Z, S = Q, let P be any set of prime numbers, and put
X = { 1

p}p∈P . Then there is a subring ZP := Z[{ 1
p}p∈P ] of Q.

Exercise 1.6: Let P, Q be two sets of prime numbers. Show TFAE:
(i) ZP ∼= ZQ.
(ii) ZP = ZQ.
(iii) P = Q.

Exercise 1.7: Show that every subring of Q is of the form ZP for some P.

The adjunction process R 7→ R[X] is defined only relative to some extension ring S
of R, although the notation hides this. In fact, one of the recurrent themes of the
subject is the expression of the adjunction process in a way which depends only on
R itself. In the first example, this is achieved by identifying

√
−1 with its minimal

polynomial t2 + 1 and replacing Z[
√
−1] with the quotient ring Z[t]/(t2 + 1). The

second example will eventually be turned around: we will be able to give an inde-
pendent definition of ZP as a certain “ring of fractions” formed from Z and then Q
will be the ring of fractions obtained by taking P to be the set of all prime numbers.

Nevertheless, the existence of such turnabouts should not cause us to forget that
adjunction is relative to an extension; indeed forgetting this can lead to serious
trouble. For instance, if 3

√
2 is the unique real cube root of 2 and ζ3 is a primitive

cube root of unity, then the three complex numbers with cube 2 are z1 = 3
√
2,

z2 = 3
√
2ζ3 and z3 = 3

√
2ζ23 . Each of the rings Q[z1], Q[z2], Q[z3] is isomorphic to

the ring Q[t]/(t3 − 2), so all three are isomorphic to each other. But they are not
the same ring: on the one hand Q[z1] is contained in R and the other two are not.

More seriously Q[z1, z2, z3] = Q[ 3
√
2, ζ3], which strictly contains any one of Q[z1],

Q[z2] and Q[z3].

1.3. Ideals and quotient rings.

Let f : R→ S be a homomorphism of rings, and put

I = f−1(0) = {x ∈ R | f(x) = 0}.
Then, since f is in particular a homomorphism of commutative groups (R,+) →
(S,+), I is a subgroup of (R,+). Moreover, it enjoys both of the following proper-
ties:

(LI) For all i ∈ I and y ∈ R, iy ∈ I.
(RI) For all j ∈ I and x ∈ R, xj ∈ I.

Indeed,

f(xj) = f(x)f(j) = f(x) · 0 = 0 = 0 · f(y) = f(i)f(y) = f(iy).

In general, let R be a ring. An ideal is a subset I ⊂ R which is a subgroup of
(R,+) (in particular, 0 ∈ I) and which satisfies (LI) and (RI).

Theorem 1.1. Let R be a ring, and let I be a subgroup of (R,+). TFAE:
(i) I is an ideal of R.
(ii) There exists a ring structure on the quotient group R/I making the additive
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homomorphism R→ R/I into a homomorphism of rings.
When these conditions hold, the ring structure on R/I in (ii) is unique, and R/I
is called the quotient of R by the ideal I.

Proof. Consider the group homomorphism q : R → R/I. If we wish R/I to be a
ring in such a way so that q is a ring homomorphism, we need

(x+ I)(y + I) = q(x)q(y) = q(xy) = (xy + I).

This shows that there is only one possible ring structure, and the only question is
whether it is well-defined. For this we need that for all i, j ∈ I, (x+ i)(y+j)−xy =
xj+ iy+ ij ∈ I. Evidently this holds for all x, y, i, j iff (LI) and (RI) both hold. �

Remark: If R is commutative, then of course there is no difference between (LI) and
(RI). For a non-commutative ring R, an additive subgroup I satisfying condition
(LI) but not necessarily (RI) (resp. (RI) but not necessarily (LI)) is called a left
ideal (resp. a right ideal). Often one says two-sided ideal to emphasize that
(LI) and (RI) both hold. Much of the additional complexity of the non-commutative
theory comes from the need to distinguish between left, right and two-sided ideals.

We do not wish to discuss such complexities here, so henceforth in this section
we assume (except in exercises, when indicated) that our rings are commutative.

Example: In R = Z, for any integer n, consider the subset (n) = nZ = {nx | x ∈ Z}
of all multiples of n. This is easily seen to be an ideal.2 The quotient Z/nZ is the
ring of integers modulo n.

An ideal I ( R is called proper.

Exercise 1.8: Let R be a ring and I an ideal of R. Show that TFAE:
(i) I ∩R× ̸= ∅.
(ii) I = R.

Exercise 1.9: a) Let R be a commutative ring. Show that R is a field iff R has
exactly two ideals, 0 and R.
b) Let R be a not necessarily commutative ring. Show that TFAE: (i) The only
one-sided ideals of R are 0 and R. (ii) R is a division ring.
c) For a field k and an integer n > 1, show that the matrix ring Mn(k) has no
two-sided ideals but is not a division ring.

Exercise 1.10: Some contemporary undergraduate algebra texts define the finite
ring Z/nZ in a different and apparently simpler way: put Zn = {0, 1, . . . , n − 1}.
For any integer x, there is a unique integer k such that x − kn ∈ Zn. Define a
function mod n : Z → Zn by mod n(x) := x−kn. We then define + and · on Zn
by x+ y := mod n(x+ y), xy = mod n(xy). Thus we have avoided any mention
of ideals, equivalence classes, quotients, etc. Is this actually simpler? (Hint: how
do we know that Zn satisfies the ring axioms?)

For any commutative ring R and any element y ∈ R, the subset (y) = yR =

2If this is not known and/or obvious to the reader, these notes will probably be too brisk.
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{xy | x ∈ R} is an ideal of R. Such ideals are called principal. A principal ideal
ring is a commutative ring in which each ideal is principal.

Exercise 1.11: a) The intersection of any family of (left, right or two-sided) ideals
in a not-necessarily-commutative-ring is a (left, right or two-sided) ideal.
b) Let {Ii} be a set of ideals in the commutative ring R. Show that

∩
i Ii has the

following property: for any ideal J of R such that J ⊂ Ii for all i, J ⊂
∩
i I.

Let R be a ring and S a subset of R. There is then a smallest ideal of R con-
taining S, namely

∩
Ii, where Ii are all the ideals of R containing S. We call this

the ideal generated by S. This is a “top-down” description; as usual, there is a
complementary “bottom-up” description which is not quite as clean but often more
useful. Namely, put

⟨S⟩ := {
∑

risi | ri ∈ R, si ∈ S}
i.e., the set of all finite sums of an element of R times an element of S.

Proposition 1.2. For a subset S of a commutative ring R, ⟨S⟩ is an ideal, the
intersection of all ideals containing S.

Exercise 1.12: Prove Proposition 1.2.

When S is a subset of R such that I = ⟨S⟩, we say S is a set of generators
for I. In general the same ideal will have many (most often infinitely many) sets of
generators.

An ideal I is principal if it can be generated by a single element. In any ring,
the zero ideal 0 = ⟨0⟩ and the entire ring R = ⟨1⟩ are principal. For x ∈ R, we
tend to denote the principal ideal generated by x as either Rx or (x) rather than ⟨x⟩.

An ideal I is finitely generated if...it admits a finite set of generators.3

Stop and think for a moment: do you know an example of an ideal which is not
finitely generated? You may well find that you do not. It turns out that there is a
very large class of rings – including most or all of the rings you are likely to meet
in undergraduate algebra – for which every ideal is finitely generated. A ring R
in which every ideal is finitely generated is called Noetherian. This is probably
the single most important class of rings, as we will come to appreciate slowly but
surely over the course of these notes.

Exercise 1.13: Let R be a ring.
a) For ideals I and J of R, define I + J = {i + j | i ∈ I, j ∈ J}. Show that
I + J = ⟨I ∪ J⟩ is the smallest ideal containing both I and J .
b) Extend part a) to any finite number of ideals I1, . . . , In.
c) Suppose {Ii} is a set of ideals of I. Give an explicit description of the ideal ⟨Ii⟩.

Remark: The preceding considerations show that the collection of all ideals of
a commutative ring R, partially ordered by inclusion, form a complete lattice.

3Well, obviously. Nevertheless this definition is so critically important that it would have been
a disservice to omit it.
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If I is an ideal in the ring R, then there is a correspondence between ideals J
of R containing I and ideals of the quotient ring R/I, exactly as in the case of a
normal subgroup of a group:

Theorem 1.3. (Correspondence theorem) Let I be an ideal of a ring R, and denote
the quotient map R → R/I by q. Let I(R) be the lattice of ideals of R, II(R) be
the sublattice of ideals containing I and I(R/I) the lattice of ideals of the quotient
ring R/I. Define maps

Φ : I(R) → I(R/I), J 7→ (I + J)/I,

Ψ : I(R/I) → I(R), J 7→ q−1(J).

Then Ψ ◦Φ(J) = I+J and Φ ◦Ψ(J) = J . In particular Ψ induces an isomorphism
of lattices from I(R/I) to II(R).

Proof. For all the abstraction, the proof is almost trivial. For J ∈ I(R), we check
that Ψ(Φ(J)) = Ψ(J + I (mod I)) = {x ∈ R | x + I ∈ J + I} = J + I ∈ II(R).
Similarly, for J ∈ I(R/I), we have Φ(Ψ(J)) = J . �

Remark: In fancier language, the pair (Φ,Ψ) give an isotone Galois connection
between the partially ordered sets I(R) and I(R/I). The associated closure oper-
ator Φ ◦ Ψ on I(R/I) is the identity, whereas the closure operator Ψ ◦ Φ on I(R)
carries each ideal J to the smallest ideal containing both J and I.4

The Correspondence Theorem will be our constant companion. As is common,
we will often use the map Ψ to identify the sets I(R/I) and II(R).

Exercise 1.14: Let I be an ideal of R and {Ji} be a set of ideals of R. Show
that Φ preserves suprema and Ψ preserves infima:

Φ(⟨Ji⟩) = ⟨Φ(Ji)⟩
and

Ψ(
∩
Ji) =

∩
Ψ(Ji).

1.4. The monoid of ideals of R.

Let I and J be ideals of the ring R. The product ideal IJ is the least ideal
containing all elements of the form xy for x ∈ I and y ∈ J . (It is easy to see
that IJ = {

∑
xiyi | xi ∈ I, yi ∈ J} is precisely the set of all finite sums of such

products.) Recall that we have written I(R) for the lattice of all ideals of R. Then
(I, J) 7→ IJ gives a binary operation on I(R), the ideal product.

Exercise 1.15: Show that I(R) under the ideal product is a commutative monoid,
with identity element R and absorbing element the (0) ideal of R.5

If you are given a commutative monoid M , then invariably the property you are
hoping it has is cancellation: for all x, y, z ∈ M , xz = yz =⇒ x = y.6 For

4This point of view will be explored in more detail in §2.
5An element z of a monoid M is called absorbing if for all x ∈ M , zx = xz = z.
6Well, obviously this is an exaggeration, but you would be surprised how often it is true.
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example, if R is a ring, then the set R• of nonzero elements of R is cancellative
iff R is a domain. Note that 0 is an absorbing element of (R, ·), which we have
removed in order to have any chance at cancellativity.

Exercise 1.16:
a) Let M be a cancellative monoid of cardinality greater than one. Show that M
does not have any absorbing elements.
b) Let R be a ring which is not the zero ring. Show that the monoid I(R) is not
cancellative.

In light of the previous exercise, for a domain R we define I•(R) to be the monoid
of nonzero ideals of R under multiplication.

Warning: Just because R is a domain, I•(R) need not be cancellative!

Exercise 1.17: Let R = Z[
√
−3], and let p2 = ⟨1 +

√
−3, 1 −

√
−3⟩ (i.e., the ideal

generated by these two elements.
a) Show that #R/(2) = 4 and R/p2 ∼= Z/2Z.
b) Show that p22 = p2 · (2).
c) Conclude that I•(R) is not cancellative.

Exercise 1.18: Let R be a PID. Show that I•(R) is cancellative.

Exercise 1.19: Show that for a commutative monoid M , TFAE:
(i) M is cancellative.
(ii) There exists a commutative group G and an injective monoid homomorphism
ι :M ↪→ G.

Exercise 1.20: Let M be a commutative monoid. A group completion of M con-
sists of a commutative group G(M) and a monoid homomorphism F :M → G(M)
which is universal for monoid homomorphisms into a commutative group. That is,
for any commutative group G and monoid homomorphism f :M → G, there exists
a unique homomorphism of groups q : G→ G(M) such that F = q ◦ f .
a) Show that any two group completions are isomorphic.
b) Show that any commutative monoid has a group completion.
c) Show that a commutative monoid injects into its group completion iff it is can-
cellative.

1.5. Pushing and pulling ideals.

Let f : R → S be a homomorphism of commutative rings. We can use f to
transport ideals from R to S and also to transport ideals from S to R.

More precisely, for I an ideal of R, consider f(I) as a subset of S.

Exercise 1.21: Give an example to show that f(I) need not be an ideal of S.
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Nevertheless we can consider the ideal it generates: we define

f∗(I) = ⟨f(I)⟩,

and we call f∗(I) the pushforward of I to S.

Similarly, let J be an ideal of S, and consider its complete preimage in R, i.e.,
f−1(J) = {x ∈ R | f(x) ∈ J}. As you are probably already aware, preimages have
much nicer algebraic properties than direct images, and indeed f−1(J) is necessar-
ily an ideal of R. We denote it by f∗(J) and call it the pullback of J to R.

Example: Suppose that I is an ideal of R, S = R/I and f : R → R/I is the
quotient map. In this case, pushforwards and pullbacks were studied in detail in
Theorem 1.3. In this case f∗ : I(S) ↪→ I(R) is an injection, which allows us to
view the lattice of ideals of S as a sublattice of the lattice of ideals of R. Moreover
we have a push-pull formula: for all ideals J of R,

f∗f∗J = J + I

and also a pull-push formula: for all ideals J of R/I,

f∗f
∗J = J.

These formulas are extremely useful at all points in the study of ring theory. More
generally, whenever one meets a homomorphism f : R → S of rings (or better, a
certain class of homomorphisms), it is fruitful to ask about properties of f∗ and
f∗: in particular, is f∗ necessarily injective, or surjective? Can we identify the
composite maps f∗f∗ and/or f∗f

∗?
In these notes, the most satisfying and important answers will come for local-

izations and integral extensions.

1.6. Maximal and prime ideals.

An ideal m of R is maximal if it is proper and there is no proper ideal of R
strictly containing m. An ideal p of R is prime if for all x, y ∈ R, xy ∈ p implies
x ∈ p or y ∈ p or both.

Exercise 1.22: For an ideal I in a ring R, show that TFAE:
(i) I is maximal.
(ii) R/I is a field.

Exercise 1.23: For an ideal I in a ring R, show that TFAE:
(i) I is prime.
(ii) R/p is an integral domain.

Exercise 1.24: Show that any maximal ideal is prime.

Exercise 1.25: Let f : R→ S be a homomorphism of rings.
a) Let I be a prime ideal of R. Show that f∗I need not be a prime ideal of S.
b) Let J be a prime ideal of S. Show that f∗J is a prime ideal of R.
c) Let J be a maximal ideal of S. Show that f∗J need not be maximal in R.
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If I and J are ideals of a ring R, we define the colon ideal7

(I : J) = {x ∈ R | xJ ⊂ I}.

Exercise 1.26: Show that (I : J) is indeed an ideal of R.

1.7. Products of rings.

Let R1 and R2 be rings. The Cartesian product R1 × R2 has the structure of
a ring with “componentwise” addition and multiplication:

(r1, r2) + (s1, s2) := (r1 + s1, r2 + s2).

(r1, r2) · (s1, s2) := (r1s1, r2s2).

Exercise 1.27:
a) Show that R1 ×R2 is commutative iff both R1 and R2 are commutative.
b) R1 ×R2 has an identity iff both R1 and R2 do, in which case e := (e1, e2) is the
identity of R1 ×R2.

As for any Cartesian product, R1 ×R2 comes equipped with its projections

π1 : R1 ×R2 → R1, | (r1, r2) 7→ r1

π2 : R1 ×R2 → R2, | (r1, r2) 7→ r2.

The Cartesian product X1 ×X2 of sets X1 and X2 satisfies the following universal
property: for any set Z and any maps f1 : Z → X1, f2 : Z → X2, there exists a
unique map f : Z → X1 ×X2 such that f1 = π1 ◦ f , f2 = π2 ◦ f . The Cartesian
product R1×R2 satisfies the analogous universal property in the category of rings:

Exercise 1.28: For rings R1, R2, S and ring homomorphisms fi : S → Ri, there
exists a unique homomorphism of rings f : S → R1 ×R2 such that fi = πi ◦ f .

So the Cartesian product of R1 and R2 is also the product in the categorical sense.

As with sets, we can equally well take the Cartesian product over an arbitrary
indexed family of rings: if {Ri}i∈I is a family of rings, their Cartesian product∏
i∈I Ri becomes a ring under coordinatewise addition and multiplication, and sat-

isfies the universal property of the product. Details are left to the reader.

It is natural to ask whether the category of rings has a direct sum as well. In other
words, given rings R1 and R2 we are looking for a ring R together with ring homo-
morphisms ιi : Ri → R such that for any ring S and homomorphisms fi : Ri → S,
there exists a unique homomorphism f : R → S such that fi = f ◦ ιi. We recall
that in the category of abelian groups, the Cartesian product group G1 ×G2 also
the categorical direct sum, with ι1 : g 7→ (g, 0) and ι2 : g 7→ (0, g). Since each ring
has in particular the structure of an abelian group, it is natural to wonder whether
the same might hold true for rings. However, the map ι1 : R1 → R1 ×R2 does not

7The terminology is unpleasant and is generally avoided as much as possible. One should

think of (I : J) as being something like the “ideal quotient” I/J (which of course has no formal
meaning). Its uses will gradually become clear.
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preserve the multiplicative identity (unless R2 = 0), so is not a homomorphism of
rings when identities are present. Moreover, even in the category of algebras, in
order to satisfy the universal property on the underlying additive subgroups, the
homomorphism f is uniquely determined to be (r1, r2) 7→ f1(r1) + f2(r2), and it is
easily checked that this generally does not preserve the product.

We will see later that the category of rings does have direct sums in the categori-
cal sense: the categorical direct sum of R1 and R2 is given by the tensor product
R1 ⊗Z R2.

Now returning to the case of commutative rings, let us consider the ideal structure
of the product R = R1 ×R2. If I1 is an ideal of R1, then I1 ×{0} = {(i, 0) | i ∈ I}
is an ideal of the product; moreover the quotient R/I1 is isomorphic to R1/I1×R2.
Similarly, if I2 is an ideal, {0} × I2 is an ideal of R2. Finally, if I1 is an ideal of R1

and I2 is an ideal of R2, then

I1 × I2 := {(i1, i2) |i1 ∈ I1, i2 ∈ I2}
is an ideal of R. In fact we have already found all the ideals of the product ring:

Proposition 1.4. Let R1 and R2 be commutative rings, and let I be an ideal of
R := R1 ×R2. Put

I1 := {r1 ∈ R1 | ∃r2 ∈ R2 | (r1, r2) ∈ I},
I2 := {r2 ∈ R2 | ∃r1 ∈ R1 | (r1, r2) ∈ I}.

Then I = I1 × I2 = {(i1, i2) | i1 ∈ I1, i2 ∈ I2}.

Proof. Observe first that I1 × {0} and {0} × I2 are ideals of R contained in I.
Indeed, if i1 ∈ I1, then (i1, r2) ∈ I for some r2 and then (i1, 0) = (i1, r2) · (1, 0),
and similarly for I2. Therefore

I1 × I2 = (I1 × {0}) + ({0} × I2) ⊂ I.

Conversely, if (x, y) ∈ I, then

(x, y) = (x, 0)(1, 0) + (0, y)(0, 1) ∈ I1 × I2.

�
Remark: Another way to express the result is that, corresponding to a decomposi-
tion R = R1 ×R2, we get a decomposition I(R) = I(R1)× I(R2).

Let us call a commutative ring R disconnected if there exists nonzero rings R1,
R2 such that R ∼= R1 × R2, and connected otherwise.8 If R is disconnected,
then choosing such an isomorphism φ, we may put I1 = φ−1(R1 × {0}) and
I2 = φ−1({0}×R2). Evidently I1 and I2 are ideals of R such that I1∩I2 = {0} and
I1 × I2 = R. Conversely, if in a ring R we can find a pair of ideals I1, I2 with these
properties then it will follow from the Chinese Remainder Theorem (Theorem 4.18)
that the natural map Φ : R→ R/I2 ×R/I1, r 7→ (r+ I2, r+ I1) is an isomorphism.

Now Φ restricted to I1 induces an isomorphism of groups onto R/I2 (and similarly

8We will see later that there is a topological space SpecR associated to every ring, such that

SpecR is disconnected in the usual topological sense iff R can be written as a nontrivial product
of rings
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with the roles of I1 and I2 reversed). We therefore have a distinguished element
of I1, e1 := Φ−1(1). This element e1 is an identity for the multiplication on R re-
stricted to I1; in particular e21 = e1; such an element is called an idempotent. In
any ring the elements 0 and 1 are idempotents, called trivial; since e1 = Φ−1(1, 0) –
and not the preimage of (0, 0) or of (1, 1) – e1 is a nontrivial idempotent. Thus
a nontrivial decomposition of a ring implies the presence of nontrivial idempotents.

The converse is also true:

Proposition 1.5. Suppose R is a ring and e is a nontrivial idempotent element of
R: e2 = e but e ̸= 0, 1. Put I1 = Re and I2 = R(1− e). Then I1 and I2 are ideals
of R such that I1 ∩ I2 = 0 and R = I1 + I2, and therefore R ∼= R/I1 × R/I2 is a
nontrivial decomposition of R.

Exercise 1.29: Prove Proposition 1.5.

Exercise 1.30: Generalize the preceding discussion to decompositions into a finite
number of factors: R = R1 × · · · ×Rn.

1.8. A cheatsheet.

Let R be a commutative ring. Here are some terms that we will analyze in lov-
ing detail later, but would like to be able to mention in passing whenever necessary.

R is an integral domain if xy = 0 =⇒ x = 0 or y = 0.

An ideal p of R is prime if the quotient ring R/p is an integral domain. Equiva-
lently, p is an ideal such that xy ∈ p =⇒ x ∈ p or y ∈ p.

An ideal m of R is maximal if it is proper – i.e., not R itself – and not strictly
contained in any larger proper ideal. Equivalently, m is an ideal such that the quo-
tient ring R/m is a field.

R is Noetherian if it satisfies any of the following equivalent conditions:9

(i) For any nonempty set S of ideals of R, there exists I ∈ S which is not properly
contained in any J ∈ S.
(ii) There is no infinite sequence of ideals I1 ( I2 ( . . . in R.
(iii) Every ideal of R is finitely generated.

R is Artinian (or sometimes, an Artin ring) if the partially ordered set of ideals
of R satisfies the descending chain condition: there is no infinite sequence of ideals
I1 ) I2 ) . . ..

If I and J are ideals of a ring R, we define the colon ideal10

(I : J) = {x ∈ R | xJ ⊂ I}.

9See Theorem 8.22 for a proof of their equivalence.
10The terminology is unpleasant and is generally avoided as much as possible. One should

think of (I : J) as being something like the “ideal quotient” I/J (which of course has no formal
meaning). Its uses will gradually become clear.



20 PETE L. CLARK

(I : J) is also an ideal.

Let R ⊂ S be an inclusion of rings. We say that s ∈ S is integral over R if
there are a0, . . . , an−1 ∈ R such that

sn + an−1s
n−1 + . . .+ a1s+ a0 = 0.

We say that S is integral over R if every element of S is integral over R. This is
the appropriate generalization to rings of the notion of an algebraic field extension.
We will study integral elements and extensions, um, extensively in § 14, but there
is one easy result that we will need earlier, so we give it now.

Proposition 1.6. Let R ⊂ S be an integral extension of integral domains. If S is
a field then R is a field.

Proof. Let α ∈ R•. Then α−1 ∈ S is integral over R: there exist ai ∈ R such that

α−n = an−1α
−n+1 + . . .+ a1α

−1 + a0.

Multiplying through by αn−1 gives

α−1 = an−1 + an−2α+ . . .+ a1α
n−2 + a0α

n−1 ∈ R.

�

2. Galois Connections

2.1. The basic formalism.

Let (X,≤) and (Y,≤) be partially ordered sets. A map f : X → Y is isotone
(or order-preserving) if for all x1, x2 ∈ X, x1 ≤ x2 =⇒ f(x1) ≤ f(x2). A map
f : X → Y is antitone (or order-reversing) if for all x1, x2 ∈ X, x1 ≤ x2 =⇒
f(x1) ≥ f(x2).

Exercise 2.1: Let X,Y, Z be partially ordered sets, and let f : X → Y , g : Y → Z
be functions. Show:
a) If f and g are isotone, then g ◦ f is isotone.
b) If f and g are antitone, then g ◦ f is isotone.
c) If one of f and g is isotone and the other is antitone, then g ◦ f is antitone.

Let (X,≤) and (Y,≤) be partially ordered sets. An antitone Galois connec-
tion between X and Y is a pair of maps Φ : X → Y and Ψ : Y → X such that:

(GC1) Φ and Ψ are both antitone maps, and
(GC2) For all x ∈ X and all y ∈ Y , x ≤ Ψ(y) ⇐⇒ y ≤ Φ(x).

There is a pleasant symmetry in the definition: if (Φ,Ψ) is a Galois connection
between X and Y , then (Ψ,Φ) is a Galois connection between Y and X.

If (X,≤) is a partially ordered set, then a mapping f : X → X is called a closure
operator if it satisfies all of the following properties:

(C1) For all x ∈ X, x ≤ f(x).
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(C2) For all x1, x2 ∈ X, x1 ≤ x2 =⇒ f(x1) ≤ f(x2).
(C3) For all x ∈ X, f(f(x)) = f(x).

Proposition 2.1. The mapping Ψ ◦ Φ is a closure operator on (X,≤) and the
mapping Φ ◦Ψ is a closure operator on (Y,≤).

Proof. By symmetry, it is enough to consider the mapping x 7→ Ψ(Φ(x)) on X.
If x1 ≤ x2, then since both Φ and Ψ are antitone, we have Φ(x1) ≥ Φ(x2) and

thus Ψ(Φ(x1)) ≤ Ψ(Φ(x1)): (C2).
For x ∈ X, Φ(x) ≥ Φ(x), and by (GC2) this implies x ≤ Ψ(Φ(x)): (C1).
Finally, for x ∈ X, applying (C1) to the element Ψ(Φ(x)) of X gives

Ψ(Φ(x)) ≤ Ψ(Φ(Ψ(Φ(x)))).

Conversely, we have
Ψ(Φ(x)) ≤ Ψ(Φ(x)),

so by (GC2)
Φ(Ψ(Φ(x)) ≥ Φ(x),

and applying the order-reversing map Ψ gives

Ψ(Φ(Ψ(Φ(x)))) ≤ Ψ(Φ(x)).

Thus
Ψ(Φ(x)) = Ψ(Φ(Ψ(Φ(x))).

�

Corollary 2.2. The following tridempotence properties are satisfied by Φ and Ψ:
a) For all x ∈ X, ΦΨΦx = Φx.
b) For all y ∈ X, ΨΦΨy = Ψy.

Proof. By symmetry, it suffices to prove a). Since Φ ◦ Ψ is a closure operator,
ΦΨΦx ≥ Φx. Moreover, since Ψ ◦Φ is a closure operator, ΨΦx ≥ x, and since Φ is
antitone, ΦΨΦx ≤ Φx. So ΦΨΦx = Φx. �

Proposition 2.3. Let (Φ,Ψ) be a Galois connection between partially ordered sets
X and Y . Let X = Ψ(Φ(X)) and Y = Ψ(Φ(Y )).
a) X and Y are precisely the subsets of closed elements of X and Y respectively.
b) We have Φ(X) ⊂ Y and Ψ(Y ) ⊂ X.
c) Φ : X → Y and Ψ : Y → X are mutually inverse bijections.

Proof. a) If x = Ψ(Φ(x)) then x ∈ X. Conversely, if x ∈ X, then x = Ψ(Φ(x′)) for
some x′ ∈ X, so Ψ(Φ(x))) = Ψ(Φ(Ψ(Φ(x′)))) = Ψ(Φ(x′)) = x, so X is closed.
b) This is just a reformulation of Corollary 2.2.
c) If x ∈ X and y ∈ Y , then Ψ(Φ(x)) = x and Ψ(Φ(y)) = y. �

We speak of the mutually inverse antitone bijections Φ : X → Y and Ψ : Y → X
as the Galois correspondence induced by the Galois connection (Φ,Ψ).

Example: Let K/F be a field extension, and G a subgroup of Aut(K/F ). Then
there is a Galois connection between the set of subextensions of K/F and the set
of subgroups of G, given by

Φ : L→ GL = {σ ∈ G | σx = x ∀x ∈ L},

Ψ : H → KH = {x ∈ K | σx = x ∀σ ∈ H}.
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Having established the basic results, we will now generally abbreviate the closure
operators Ψ ◦ Φ and Φ ◦Ψ to x 7→ x and y 7→ y.

2.2. Lattice Properties.

Recall that a partially ordered set X is a lattice if for all x1, x2 ∈ X, there is
a greatest lower bound x1 ∧ x2 and a least upper bound x1 ∨ x2. A partially or-
dered set is a complete lattice if for every subset A of X, the greatest lower bound∧
A and the least upper bound

∨
A both exist.

Lemma 2.4. Let (X,Y,Φ,Ψ) be a Galois connection.
a) If X and Y are both lattices, then for all x1, x2 ∈ X,

Φ(x1 ∧ x2) = Φ(x1) ∨ Φ(x2),

Φ(x2 ∨ x2) = Φ(x1) ∧ Φ(x2).

b) If X and Y are both complete lattices, then for all subsets A ⊂ X,

Φ(
∧
A) =

∨
Φ(A),

Φ(
∨
A) =

∧
Φ(A).

Exercise 2.2: Prove Lemma 2.4.

Complete lattices also intervene in this subject in the following way.

Proposition 2.5. Let A be a set and let X = (2A,⊂) be the power set of A,
partially ordered by inclusion. Let c : X → X be a closure operator. Then the
collection c(X) of closed subsets of A forms a complete lattice, with

∧
S =

∩
B∈S B

and
∨
S = c(

∪
B∈S B).

Exercise 2.3: Prove Proposition 2.5.

2.3. Examples of Antitone Galois Connections.

Example (Indiscretion): Let (X,≤) and (Y,≤) be posets with top elements TX
and TY respectively. Define Φ : X → Y , x 7→ TY and Ψ : Y → X, y 7→ TX .
Then (X,Y,Φ,Ψ) is a Galois connection. The induced closure operators are “in-
discrete”: they send every element ofX (resp. Y ) to the top element TX (resp. TY ).

Example (Perfection): Let (X,≤) and (Y,≤) be anti-isomorphic posets, i.e.,
suppose that there exists a bijection Φ : X → Y with x1 ≤ x2 ⇐⇒ Φ(x2) ≤ Φ(x1).
Then the inverse map Ψ : Y → X satisfies y1 ≤ y2 ⇐⇒ Ψ(y2) ≤ Ψ(y1). Moreover,
for x ∈ X, y ∈ Y , x ≤ Ψ(y) ⇐⇒ y = Ψ(Φ(y)) ≤ Φ(x), so (X,Y,Φ,Ψ) is a Galois
connection. Then X = X and Y = Y . As we saw above, the converse also holds:
if X = X and Y = Y then Φ and Ψ are mutually inverse bijections. Such a Galois
connection is called perfect.11

11There is a small paradox here: in purely order-theoretic terms this example is not any more
interesting than the previous one. But in practice given two posets it is infinitely more useful to
have a pair of mutually inverse antitone maps running between them than the trivial operators of

the previous example: Galois theory is a shining example! The paradox already shows up in the
distinction between indiscrete spaces and discrete spaces: although neither topology looks more
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The remaining examples of this section make use of some important ring-theoretic
concepts which will be treated in detail later.

Example: Let R be a commutative ring. Let X be the set of all ideals of R
and Y = 2SpecR the power set of the set of prime ideals of R. For I ∈ X, put

Φ(I) = V (I) = {p ∈ SpecR | I ⊂ p}.
For V ∈ Y , put

Ψ(V ) =
∩
p∈V

p.

The maps Φ and Ψ are antitone, and for I ∈ X , V ∈ Y,

(1) I ⊂ Ψ(V ) ⇐⇒ I ⊂
∩
p∈V

p ⇐⇒ ∀p ∈ V, I ⊂ p ⇐⇒ V ⊂ Φ(I),

so (Φ,Ψ) is a Galois connection. Then X consists of all ideals which can be written
as the intersection of a family of prime ideals. For all I ∈ X,

I =
∩
p⊃I

p = rad I = {x ∈ R |∃n ∈ Z+ xn ∈ I};

that is, the induced closure operation on X takes any ideal to its radical r(I). In
particular X consists precisely of the radical ideals.

It is not so easy to describe the closure operator on Y or even the subset Y
explicitly, but there is still something nice to say. Since:

(2) V ((0)) = SpecR, V (R) = ∅,

(3) V (I1) ∪ V (I2) = V (I1I2),

(4)
∩
α∈A

V (Iα) = V (
∑
α∈A

Iα),

the elements of Y are the closed subsets for a topology, the Zariski topology.

Example: Take R and X as above, but now let S be any set of ideals of R and put
Y = 2S . For I ∈ X, put

Φ(I) = V (I) = {s ∈ S | I ⊂ s}
and for V ∈ Y, put

Ψ(V ) =
∩
s∈V

s.

Once again Φ and Ψ are antitone maps and (1) holds, so we get a Galois connection.
The associated closure operation on X is

I 7→ I =
∩
s∈S

s.

The relation (4) holds for any S, and the relation (2) holds so long as R /∈ S. The
verification of (2) for R = SpecR uses the fact that a prime ideal p contains I1I2
iff it contains I1 or I2, so as long as S ⊂ SpecS, Y = {V (I) | I ∈ X} are the closed

interesting than the other, the discrete topology is natural and useful (as we shall see...) whereas
the indiscrete topology entirely deserves its alternate name “trivial”.
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subsets for a topology on S. This is indeed the topology S inherits as a subspace
of SpecR, so we call it the (relative) Zariski topology.

Various particular choices of S ⊂ SpecR have been considered. Of these the
most important is certainly S = MaxSpecR, the set of all maximal ideals of R.
In this case, X consists of all ideals which can be written as the intersection of
some family of maximal ideals. Such ideals are necessarily radical, but in a general
ring not all radical ideals are obtained in this way. Observe that in a general ring
every radical ideal is the intersection of the maximal ideals containing it iff every
prime ideal is the intersection of maximal ideals containing it; a ring satisfying
these equivalent conditions is called a Jacobson ring.

Example: Let k be a field and put R = k[t1, . . . , tn]. Then R is a Jacobson ring.
To prove this one needs as prerequisite knowledge Zariski’s Lemma – for every
m ∈ MaxSpecR, the field extension R/m/k is finite – and the proof uses a short
but clever argument: the Rabinowitsch trick.

Suppose that k is algebraically closed. Then Zariski’s Lemma assumes a stronger
form: for allm ∈ MaxSpecR, the k-algebraR/m is equal to k. Let q : R→ R/m = k
be the quotient map, and for 1 ≤ i ≤ n, put xi = q(ti) and x = (x1, . . . , xn). It fol-
lows that m contains the ideal mx = ⟨t1−x1, . . . , tn−xn⟩, and since mx is maximal,
m = mx. This gives the following description of the Galois connection between the
set X of ideals of R and Y = 2MaxSpecR, Hilbert’s Nullstellensatz:
(i) Maximal ideals of R are canonically in bijection with n-tuples of points of k,
i.e., with points of affine n-space An/k.
(ii) The closure operation on ideals takes I to its radical ideal rad I.
(iii) The closure operation on subsets of An coincides with topological closure with
respect to the Zariski topology, i.e., the topology on An for which the closed subsets
are the intersections of the zero sets of polynomial functions.

Example: Let K be a field, let X = 2K , let RSpecK be the set of orderings
on K, and let Y = 2RSpecK . Let H : X → Y by

S 7→ H(S) = {P ∈ RSpecK | ∀x ∈ S x >P 0}.
Let Ψ : Y → X by

T 7→ Ψ(T ) = {x ∈ RSpecK |∀P ∈ T x >P 0}.
Then (X,Y,H,Ψ) is a Galois connection.

The set RSpecK carries a natural topology. Namely, we may view any ordering

P as an element of {±1}K×
: P : x ∈ K× 7→ +1 if P (x) > 0 and −1 is P (x) < 0.

Giving {±1} the discrete topology and {±1}K×
, it is a compact (by Tychonoff’s

Theorem) zero-dimensional space. It is easy to see that RSpecK embeds in {±1}K×

as a closed subspace, and therefore RSpecK is itself compact and zero-dimensional.

Example: Let L be a language, let X be the set of L-theories, and let Y be the
class of all classes C of L-structures, partially ordered by inclusion.12 For a theory
T , let Φ(T ) = CT be the class of all models of T , whereas for a class C, we define
Ψ(C) to be the collection of all sentences φ such that for all X ∈ C, X |= φ.

12Here we are cheating a bit by taking instead of a partially ordered set, a partially ordered
class. We leave it to the interested reader to devise a remedy.
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2.4. Antitone Galois Connections Decorticated: Relations.

Example: Let S and T be sets, and let R ⊂ S × T be a relation between S
and T . As is traditional, we use the notation xRy for (x, y) ∈ R. For A ⊂ S and
y ∈ T , we let us write ARy if xRy for all x ∈ A; and dually, for x ∈ S and B ⊂ T ,
let us write xRB if xRy for all y ∈ B. Finally, for A ⊂ S, B ⊂ T , let us write
ARB if xRy for all x ∈ A and all y ∈ B.

Let X = (2S ,⊂), Y = (2T ,⊂). For A ⊂ S and B ⊂ T , we put

ΦR(A) = {y ∈ T |ARy},

ΨR(B) = {x ∈ S |xRB}.
We claim that GR = (X,Y,ΦR,ΨR) is a Galois connection. Indeed, it is immediate
that ΦR and ΨR are both antitone maps; moreover, for all A ⊂ S, B ⊂ T we have

A ⊂ ΨR(B) ⇐⇒ ARB ⇐⇒ B ⊂ ΦR(A).

Remarkably, this example includes most of the Galois connections above. Indeed:

• In Example 2.2, take X to be 2K and Y = 2Aut(K/F ). The induced Galois
connection is the one associated to the relation gx = x on K ×Aut(K/F ).
• In Example 2.5, take X to be 2R. The induced Galois connection is the one
associated to the relation x ∈ p on R×SpecR. Similarly for Examples 2.7 and 2.8.
• The Galois connection of Example 2.8 is the one associated to the relation x ∈ P
on K × RSpecK.
• The Galois connection of Example 2.9 is the one associated to the relation X |= φ.

Theorem 2.6. Let S and T be sets, let X = (2S ,⊂), Y = (2S ,⊂), and let G =
(X,Y,Φ,Ψ) be any Galois connection. Define a relation R ⊂ S × T by xRy if
y ∈ Φ({x}). Then G = GR.

Proof. Note first that X and Y are complete lattices, so Lemma 2.4b) applies.
Indeed, for A ⊂ S, A =

∪
x∈A{x} =

∨
x∈A{x}, so

Φ(A) =
∩
x∈A

Φ({x}) =
∩
x∈A

{y ∈ T | xRy} = {y ∈ T | ARy} = ΦR(A).

Moreover, since G is a Galois connection we have {x} ⊂ Ψ({y}) ⇐⇒ {y} ⊂
Φ({x}) ⇐⇒ xRy. Thus for B ⊂ T , B =

∪
y∈B{y} =

∨
y∈B{y}, so

Ψ(B) =
∩
y∈B

Ψ({y}) =
∩
y∈A

{x ∈ S | xRy} = {x ∈ S | xRB} = ΨR(B).

�

For any partially ordered set (X,≤), a downset is a subset Y ⊂ X such that for
all x1, x2 ∈ X, if x2 ∈ Y and x1 ≤ x2 then x1 ∈ Y . Let D(X) be the collection of
all downsets of X, viewed as a subset of (2X ,⊂). To each x ∈ X we may associate
the principal downset d(x) = {y ∈ X | y ≤ x}. The map d : X → D(X) is an
order embedding; composing this with the inclusion D(X) ⊂ 2X we see that every
partially ordered set embeds into a power set lattice.

Let G = (X,Y,Φ,Ψ) be a Galois connection with X and Y complete lattices.
Then we may extend G to a Galois conection between 2X and 2Y as follows: for A ⊂
X, put Φ(A) =

∧
{Φ(x)}x∈A, and simialrly for B ⊂ Y , put Ψ(B) =

∧
{Ψ(y)}y∈B .
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Thus every Galois connection between complete lattices may be viewed as the Galois
connection induced by a relation between sets.

2.5. Isotone Galois Connections.

Let (X,≤) and (Y,≤) be partially ordered sets. An isotone Galois connec-
tion between X and Y is a pair of maps Φ : X → Y and Ψ : Y → X such that:

(IGC1) Φ and Ψ are both isotone maps, and
(IGC2) For all x ∈ X and all y ∈ Y , Φ(x) ≤ y ⇐⇒ x ≤ Ψ(y).

Note that in contrast to the antitone case, this time there is an asymmetry be-
tween Φ and Ψ. We call Φ the lower adjoint and Ψ the upper adjoint.

Every isotone Galois connection comes from an antitone Galois connection:

Exercise 2.4:
Let X,Y be partially ordered sets, and let Φ : X → Y , Ψ : Y → X be functions.
a) Show that (Φ,Ψ) is an antitone Galois connection between X and Y iff (Φ,Ψ)
is an isotone Galois connection between X∨ and Y .
b) Show that (Φ,Ψ) is an antitone Galois connection between X and Y iff (Ψ,Φ)
is an isotone Galois connection between Y ∨ and X.

If (X,≤) is a partially ordered set, then a mapping f : X → X is called an
interior operator if it satisfies all of the following properties:

(I1) For all x ∈ X, x ≥ f(x).
(C2) For all x1, x2 ∈ X, x1 ≤ x2 =⇒ f(x1) ≤ f(x2).
(C3) For all x ∈ X, f(f(x)) = f(x).

Exercise 2.5: Let (X,≤) be a partially ordered set, and let f : X → X be a
function. Show that f is a closure operator iff f : X∨ → X∨ is an interior operator.

Proposition 2.7. Let (Φ,Ψ) be an isotone Galois connection. Then Ψ ◦ Φ is an
interior operator on (X,≤), and Φ ◦Ψ is a closure operator on (Y,≤).

Proof. By Exercise 2.4, (Φ,Ψ) is an antitone Galois connection between X∨ and
Y , so by Proposition 2.1, Φ ◦ Ψ is a closure operator on Y and Ψ ◦ Φ is a closure
operator on X∨ and thus, by Exercise 2.5, an interior operator on X. �

2.6. Examples of Isotone Galois Connections.

Example (Galois connection of a function): Let f : S → T be a function. Let
X = (2S ,⊂) and Y = (2T ,⊂). For A ⊂ S and B ⊂ T , put

f∗(S) = f(S) = {f(s) | s ∈ S}, f∗(T ) = f−1(B) = {s ∈ S | f(s) ∈ B}.
Exercise 2.6: a) Show: (f∗, f∗) is an isotone Galois connection between 2T and 2S .
b) Show that the interior operator f∗ ◦ f∗ : B ⊂ T 7→ B ∩ f(S). In particular the
Galois connection is left perfect iff f is surjective.
c) Show that the Galois connection is right perfect – i.e., f∗f∗A = A for all A ⊂ S
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– iff f is injective.
d) Interpret this isotone Galois connection in terms of the “universal” antitone Ga-
lois connection of §2.4.

Example (Galois Connection of a Ring Homomorphism): Let f : R → S be a
homomorphism of rings, and let I(R) and I(S) be the lattices of ideals of R and
S. In §1.5 we defined a pushforward map

f∗ : I(R) → I(S), f∗(I) = ⟨f(I)⟩

and a pullback map

f∗ : I(S) → I(R), f∗(J) = f−1(J).

Proposition 2.8. The maps (f∗, f∗) give an isotone Galois connection between
I(S) and I(T ).

Exercise 2.7: Prove Proposition 2.8.

3. Modules

3.1. Basic definitions.

Suppose (M,+) is an abelian group. For any m ∈ M and any integer n, one
can make sense of n•m. If n is a positive integer, this means m+ · · ·+m (n times);
if n = 0 it means 0, and if n is negative, then n •m = −(−n) •m. Thus we have
defined a function • : Z ×M → M which enjoys the following properties: for all
n, n1, n2 ∈ Z, m, m1, m2 ∈M , we have

(ZMOD1) 1 •m = m.
(ZMOD2) n • (m1 +m2) = n •m1 + n •m2.
(ZMOD3) (n1 + n2) •m = n1 •m+ n2 •m.
(ZMOD4) (n1n2) •m = n1 • (n2 •m)

It should be clear that this is some kind of ring-theoretic analogue of a group
action on a set. In fact, consider the slightly more general construction of a monoid
(M, ·) acting on a set S: that is, for all n1, n2 ∈M and s ∈ S, we require 1 • s = s
and (n1n2) • s = n1 • (n2 • s).

For a group action G on S, each function g• : S → S is a bijection. For monoidal
actions, this need not hold for all elements: e.g. taking the natural multiplication
action of M = (Z, ·) on S = Z, we find that 0• : Z → {0} is neither injective nor
surjective, ±1• : Z → Z is bijective, and for |n| > 1, n• : Z → Z is injective but not
surjective.

Exercise 3.1: Let • :M ×S → S be a monoidal action on a set. Show that for each
unit m ∈ M – i.e., an element for which there exists m′ with mm′ = m′m = 1 –
m• : S → S is a bijection.

Then the above “action” of Z on an abelian group M is in particular a monoidal
action of (Z, ·) on the set M . But it is more: M has an additive structure, and
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(ZMOD2) asserts that for each n ∈ Z, n• respects this structure – i.e., is a ho-
momorphism of groups; also (ZMOD3) is a compatibility between the additive
structure on Z and the additive structure on M .

These axioms can be restated in a much more compact form. For an abelian group
M , an endomorphism of M is just a group homomorphism from M to itself:
f :M →M . We write End(M) for the set of all endomorphisms ofM . But End(M)
has lots of additional structure: for f, g ∈ End(M) we define f + g ∈ End(M) by

(f + g)(m) := f(m) + g(m),

i.e., pointwise addition. We can also define f · g ∈ End(M) by composition:

(f · g)(m) := f(g(m)).

Proposition 3.1. For any abelian group M , the set End(M) of group endomor-
phisms of M , endowed with pointwise addition and multiplication by composition,
has the structure of a ring.

Exercise 3.2: Prove Proposition 3.1.

Exercise 3.3: Show that End(Z) = Z, and for any n ∈ Z, End(Z/nZ) = Z/nZ.
(More precisely, find canonical isomorphisms.)

These simple examples are potentially misleading: we did not say that the multi-
plication was commutative, and of course there is no reason to expect composition
of functions to be commutative.

Exercise 3.4: a) Show that End(Z/2Z ⊕ Z/2Z) = M2(Z/2Z), the (noncommu-
tative!) ring of 2× 2 matrices with Z/2Z-coefficients.
b) If M is an abelian group and n ∈ Z+, show End(Mn) =Mn(End(M)).

Now observe that the statement that the action of Z on M satisfes (ZMOD1)
through (ZMOD4) is equivalent to the following much more succinct statement:

For any abelian group M , the map n ∈ Z 7→ (n•) : M → M is a homomor-
phism of rings Z → End(M).

This generalizes very cleanly: if R is any ring (not necessarily commuative) and
M is an abelian group, a homomorphism • : R → End(M) will satisfy: for all
r ∈ R, m,m1,m2 ∈M :

(LRMOD1) 1 •m = m.
(LRMOD2) r • (m1 +m2) = r •m1 + r •m2.
(LRMOD3) (r1 + r2) •m = r1 •m+ r2 •m.
(LRMOD4) (r1r2) •m = r1 • (r2 •m).

The terminology here is that such a homomorphism r 7→ (r•) is a left R-module
structure on the abelian group M .

What then is a right R-module structure on M? The pithy version is that
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it is a ring homomorphism from Rop, the opposite ring of R to End(M). This defi-
nition makes clear (only?) that if R is commutative, there is no difference between
left and right R-module structures. Since our interest is in the commutative case,
we may therefore not worry too much. But for the record:

Exercise 3.5: Show that a homomorphism Rop → End(M) is equivalent to a map-
ping • :M ×R→M satisfying

m • 1 = m,

(m1 +m2) • r = m1 • r +m2 • r,
m • (r1 + r2) = m • r1 +m • r2,
m • (r1r2) = (m • r1) • r2.

As usual for multiplicative notation, we will generally suppress the bullet, writ-
ing rm for left R-modules and mr for right R-modules.

The calculus of left and right actions is at the same time confusing and some-
what miraculous: it is a somewhat disturbing example of a purely lexicographical
convention that has – or looks like it has – actual mathematical content. Espe-
cially, suppose we have an abelian group M and two rings R and S, such that M
simultaneously has the structure of a left R-module and a right S-module. Thus
we wish to entertain expressions such as rms for m ∈ M , r ∈ R, s ∈ S. But as
stands this expression is ambiguous: it could mean either

(r •m) • s
or

r • (m • s).
We say thatM is anR-S bimodule if both of these expressions agree. Here is what
is strange about this: lexicographically, it is an associativity condition. But “re-
ally” it is a commutativity condition: it expresses the fact that for all r ∈ R, s ∈ S,
(r•) ◦ (•s) = (•s) ◦ (r•): every endomorphism coming from an element of R com-
mutes with every endomorphism coming from an element of S. Thus for instance:

Exercise 3.6: Show that any ring R is naturally a left R-module and a right R-
module.

We will not deal with bimodules further in these notes. In fact, when we say
R-module at all, it will be understood to mean a left R-module, and again, since
we shall only be talking about commutative rings soon enough, the distinction be-
tween left and right need not be made at all.

Definition: For M a left R-module, we define its annihilator

ann(M) = {r ∈ R | ∀m ∈M, rm = 0}.
Equivalently, ann(M) is the set of all r such that r· = 0 ∈ End(M), so that it is
precisely the kernel of the associated ring homomorphism R→ End(M). It follows
that ann(M) is an ideal of R (note: two-sided, in the noncommutative case).
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Definition: A left R-module M is faithful if ann(M) = 0. Explicitly, this means
that for all 0 ̸= r ∈ R, there exists m ∈M such that rm ̸= 0.

Exercise 3.7: Let M be an R-module. Show that M has the natural structure
of a faithful R/ ann(M)-module.

Definition: Let M be a left R-module. A submodule of M is a subgroup N
of (M,+) such that RN ⊂ N . The following result is extremely easy and all-
important:

Theorem 3.2. Let R be a ring. The left R-submodules of R are precisely the left
ideals of R.

Exercise 3.8: Prove Theorem 3.2.

Definition: Let M and N be left R-modules. A homomorphism of R-modules
is a homomorphism of abelian groups f : M → N such that for all r ∈ R, m ∈
M, n ∈ N , f(rm) = rf(m).

Exercise 3.9: a) Define an isomorphism of R-modules in the correct way, i.e., not
as a bijective homomorphism of R-modules.
b) Show that a homomorphism of R-modules is an isomorphism iff it is bijective.

If N is a submodule of a left R-module M , then the quotient group M/N has
a natural R-module structure. More precisely, there is a unique left R-module
structure on M/N such that the quotient map M → M/N is a homomorphism of
R-modules. (Exercise!)

Exercise 3.10: Let I be a two-sided ideal of the ring R, so that the quotient ring
R/I has the structure of a left R-module. Show that

ann(R/I) = I.

In particular, every two-sided ideal of R occurs as the annihilator of a left R-module.

Exercise 3.11: a) Let R be a ring and {Mi}i∈I a family of R-modules. Consider
the abelian group M =

⊕
i∈IMi. Show that putting r(mi) = (rmi) makes R into

an R-module. Show that the usual inclusion map ιi :Mi →M is a homomorphism
of R-modules.
b) Show that for any R-module N and R-module maps fi : Mi → N , there exists
a unique R-module map f : M → N such that fi = f ◦ ιi for all i ∈ I. Thus M
satisfies the universal mapping property of the direct sum.

As a matter of notation, for n ∈ Z+, Rn :=
⊕n

i=1R, R
0 = 0.

Exercise 3.12: Work out the analogue of Exercise 3.12 for direct products.

Exercise 3.13: a) Suppose that M is an R-module and S is a subset of M . Show
that the intersection of all R-submodules of M containing S is an R-submodule,
and is contained in every R-submodule that contains S. We call it the R-submodule
generated by S.
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b) If S = {si}i∈I , show that the R-module generated by S is the set of all sums∑
i∈J risi, where J is a finite subset of S.

Exercise 3.14: Suppose that k is a field. Show that the terms “k-module” and
“vector space over k” are synonymous.

One can therefore view the theory of R-modules as a generalization of vector spaces
to arbitrary rings. But really this is something like a zeroth order approximation
of the truth: for a general ring R, the theory of R-modules is incomparably richer
than the theory of vector spaces over a field. There are two explanations for this.
First, even when working with very simple R-modules such as Rn, the usual linear
algebra notions of linear independence, span and basis remain meaningful, but be-
have in unfamiliar ways:

Call a subset S of an R-module M linearly independent if for every finite
subset m1, . . . ,mn of S and any r1, . . . , rn ∈ R, r1m1 + . . . + rnmn = 0 implies
r1 = . . . = rn = 0. Say that S spans R if the R-submodule generated by S is R,
and finally a basis for an R-module is a subset which is both linearly independent
and spanning. For example, for any set I, the R-module

⊕
iR has a basis ei.

In linear algebra – i.e., when R is a field – every R-module has a basis.13 However
the situation is quite different over a general ring:

Theorem 3.3. a) Let M be an R-module. Suppose that S ⊂ R is a basis. Then
M is isomorphic as an R-module to

⊕
s∈S R.

b) Let S be any set, and consider the R-module RS :=
⊕

s∈S R. For each s ∈ S,
let es ∈

⊕
s∈S R be the element whose s-coordinate is 1 and all of whose other

coordinates are 0. Then set {es}s∈S is a basis for RS.

Exercise 3.15: Prove Theorem 3.3.

A module which has a basis – so, by the theorem, admits an isomorphism to
⊕

s∈S R
for some index set S – is called free.

Exercise 3.16: Show that a nonzero free R-module is faithful.

Let us examine the case of modules over R = Z, i.e., of abelian groups. Here the
term free abelian group is synonymous with “free Z-module”. It is (of course?)
not the case that all abelian groups are free: for any integer n > 1, Z/nZ is not
free, since it has nonzero annihilator nZ. Thus Z/nZ does not have a basis as a
Z-module, and indeed has no nonempty linearly independent subsets!

Proposition 3.4. For a commutative ring R, TFAE:
(i) Every R-module is free.
(ii) R is a field.

Proof. As discussed above, (ii) =⇒ (i) is a fundamental theorem of linear algebra,
so we need only concern ourselves with the converse. But if R is not a field, then

13This uses, and is in fact equivalent to, the Axiom of Choice, but the special case that any
vector space with a finite spanning set has a basis does not.
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there exists a nonzero proper ideal I, and then R/I is a nontrivial R-module with
0 ̸= I = ann(R/I), so by Exercise 3.16 R/I is not free. �

Remark: If R is a not-necessarily-commutative ring such that every left R-module
is free, then the above argument shows R has no nonzero proper twosided ideals,
so is what is called a simple ring. But a noncommutative simple ring may still
admit a nonfree module. For instance, let k be a field and take R = M2(k), the
2 × 2 matrix ring over k. Then k ⊕ k is a left R-module which is not free. How-
ever, suppose R is a ring with no proper nontrivial one-sided ideals. Then R is a
division ring – i.e., every nonzero element of R is a unit – and every R-module is free.

In linear algebra – i.e., when R is a field – every linearly independent subset of
an R-module can be extended to a basis. Over a general ring this does not hold
even for free R-modules. For instance, take R = M = Z. A moment’s thought
reveals that the only two bases are {1} and {−1}, whereas the linearly independent
sets are precisely the singleton sets {n} as n ranges over the nonzero integers.

Note well the form of Proposition 3.4: we assume that R is a commutative ring for
which R-modules satisfy some nice property, and we deduce a result on the struc-
ture of R. Such “inverse problems” have a broad appeal throughout mathematics
and provide one of the major motivations for studying modules above and beyond
their linear algebraic origins. We will see other such characterizations later on.

3.2. Finitely presented modules.

One of the major differences between abelian groups and nonabelian groups is
that a subgroup N of a finitely generated abelian group M remains finitely gen-
erated, and indeed, the minimal number of generators of the subgroup N cannot
exceed the minimal number of generators of M , whereas this is not true for non-
abelian groups: e.g. the free group of rank 2 has as subgroups free groups of every
rank 0 ≤ r ≤ ℵ0. (For instance, the commutator subgroup is not finitely generated.)

Since an abelian group is a Z-module and every R-module has an underlying abelian
group structure, one might well expect the situation for R-modules to be similar to
that of abelian groups. We will see later that this is true in many but not all cases:
an R-module is called Noetherian if all of its submodules are finitely generated.
Certainly a Noetherian module is itself finitely generated. The basic fact here –
which we will prove in §8.7 – is a partial converse: if the ring R is Noetherian,
any finitely generated R-module is Noetherian. Note that we can already see that
the Noetherianity of R is necessary: if R is not Noetherian, then by definition
there exists an ideal I of R which is not finitely generated, and this is nothing else
than a non-finitely generated R-submodule of R (which is itself generated by the
single element 1.) Thus the aforementioned fact about subgroups of finitely gen-
erated abelian groups being finitely generated holds because Z is a Noetherian ring.

When R is not Noetherian, it becomes necessary to impose stronger conditions
than finite generation on modules. One such condition indeed comes from group
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theory: recall that a group G is finitely presented if it is isomorphic to the quo-
tient of a finitely generated free group F by the least normal subgroup N generated
by a finite subset x1, . . . , xm of F .

Proposition 3.5. For a finitely generated R-module M , TFAE:
(i) There exist non-negative integers m,n and an exact sequence

Rm → Rn →M → 0.

(ii) M is the quotient of an f.g. free R-module Rn by some f.g. submodule N .
A module M satisfying these equivalent conditions is said to be finitely presented.

Proof. That (i) implies (ii) is immediate. Conversely, let M = Rn/N where N is
finitely generated. Then there exists a surjection Rm → N and thus the sequence

Rm → Rn →M → 0

is exact. �
Proposition 3.6. Let

0 → K
ψ→ N

ϕ→M → 0

be a short exact sequence of R-modules, with M finitely presented and N finitely
generated. Then K is finitely generated.

Proof. (Matsumura) By definition of finitely presented, we can placeM in an exact
sequence

(5) Rm → RnM
f→ 0

for some m,n ∈ N. For 1 ≤ i ≤ n, let ei be the ith standard basis element of M ,
let mi = f(ei) be the image in M , and choose ni ∈ N any element in ϕ−1(mi).
Then there is a unique R-module homomorphism α : Rn → N given by α(ei) = ni,
which restricts to an R-module homomorphism β : Bm → K. Altogether we get a
commutative diagram

Rm −→ Rn
f−→M −→ 0

0 −→ K
ψ−→ N

ϕ−→M.

The rest of the proof is essentially a diagram chase. Suppose N = ⟨ξ1, . . . , ξk⟩R,
and choose v1, . . . , vk ∈ Rn such that ϕ(ξi) = f(vi). Put

ξ′i = ξi − α(vi).

Then φ(ξ′i) = 0, so there exist unique ηi ∈ K such that

ξ′i = ψ(ηi).

We claim that K is generated as an R-module by β(Rm) and η1, . . . , ηk and thus
is finitely generated. Indeed, for η ∈ K, there are r1, . . . , rk ∈ R such that

ψ(η) =
∑
i

riξi.

Then
ψ(η −

∑
i

riηi) =
∑
i

ri(ξi − ξ′i) = α(
∑
i

rivi).

Since
0 = ϕ(α(

∑
i

rivi)) = f(
∑
i

rivi),
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we may write
∑
i rivi = g(u) with u ∈ Rm. Then

ψ(β(u)) = α(g(u)) = α(
∑
i

rivi) = ψ(η −
∑
i

riηi).

Since ψ is injective, we conclude

η = β(u) +
∑
i

riηi.

�

Exercise 3.17:
Let 0 →M ′ →M →M ′′ → 0 be a short exact sequence of R-modules.
a) Show that if M ′ and M ′′ are both finitely presented, so is M .
b) Show that if M is finitely presented and M ′ is finitely generated, then M ′′ is
finitely presented.

A stronger condition yet is the following: an R-module M is coherent if it is
finitely generated and every finitely generated submodule is finitely presented. Ev-
idently coherent implies finitely presented implies finitely generated, and all three
coincide over a Noetherian ring. The significance of coherence lies in the following:

Theorem 3.7. Let R be a ring (not necessarily commutative, but with unity).
a) The category of all left R-modules is an abelian category.
b) The category of all coherent left R-modules is an abelian category.
c) In particular, if R is left Noetherian, the category of all finitely generated left
R-modules is an abelian category.
d) There exists a commutative ring R for which the category of all finitely generated
(left) R-modules is not abelian.

The proof of this result – and even an explanation of the term “abelian category”
is beyond the scope of these notes, so this is definitely an ancillary remark. Nev-
ertheless we hope that it will be of some use to students of algebraic geometry:
for instance, it explains the fact that Hartshorne only defines coherent sheaves of
modules on a scheme X in the case that the scheme is Noetherian and suggests the
correct (and more subtle) definition in the non-Noetherian case.

3.3. Torsion and torsionfree modules.

Let R be a domain, and let M be an R-module. An element x ∈ M is said to
be torsion if there exists 0 ̸= a ∈ R such that ax = 0. Equivalently, the annihi-
lator ann(x) = {a ∈ R | ax = 0} is a nonzero ideal of R. We define M [tors] to
be the set of all torsion elements of M . It is immediate to see that M [tors] is a
submodule of M . We say that M is a torsion R-module if M =M [tors] and that
M is torsionfree if M [tors] = 0.

Exercise 3.18: Let 0 →M1 →M →M2 → 0 be an exact sequence.
a) Show that if M is torsion, so are M1 and M2.
b) If M1 and M2 are torsion modules, must M be torsion?
c) Show that if M is torsionfree, show that so is M1, but M2 need not be.
d) If M1 and M2 are torsionfree, must M be torsionfree?
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Proposition 3.8. Let R be an integral domain and M an R-module.
a) The quotient M/M [tors] is torsionfree.
b) If M is finitely generated, the following are equivalent:
(i) M embeds in a finitely generated free R-module.
(ii) M is torsionfree.

Proof. a) Put N = M/M [tors], and let x ∈ N be such that there exists 0 ̸= a ∈ R
with ax = 0. Let x be any lift of x to M ; then there exists t ∈ M [tors] such
that ax = t. By definition of torsion, there exists a′ ∈ R such that a′t = 0, so
a′ax = a′t = 0. Since R is a domain, a′a is nonzero, so x ∈M [tors] and x = 0.
b) (i) =⇒ (ii) is very easy: free modules are torsionfree and submodules of
torsionfree modules are torsionfree.
(ii) =⇒ (i): We may assume M ̸= 0. Let M = ⟨x1, . . . , xr⟩ with r ≥ 1 and all the
xi are nonzero. Further, after reordering the xi’s if necessary, there exists a unique
s, 1 ≤ s ≤ r, such that {x1, . . . , xs} is linearly independent over R but for all i with
s < i ≤ r, {x1, . . . xs, xi} is linearly dependent over R. Then F = ⟨x1, . . . , xs⟩ ∼= Rs,
so we are done if s = r. If s < r, then for each i > s there exists 0 ̸= ai ∈ R such
that aixi ∈ F . Put a =

∏
s<i≤r ai: then aM ⊂ F . Let [a] : M → M denote

multiplication by a. SinceM is torsionfree, [a] is injective hence gives an R-module
isomorphism from M to a submodule of the finitely generated free module F . �

Exercise 3.19: Show that the torsionfree Z-module (Q,+) is not isomorphic to a
submodule of any finitely generated free Z-module. Thus – even for very nice rings!
– the hypothesis of finite generation is necessary in Proposition 3.8.

3.4. Tensor and Hom.

3.4.1. Tensor products.

We assume that the reader has some prior familiarity with tensor products, say
of vector spaces and/or of abelian groups. The first is an instance of tensor prod-
ucts of k-modules, for some field k, and the second is an instance of tensor products
of Z-modules. We want to give a general definition of M ⊗R N , where M and N
are two R-modules.

There are two ways to view the tensor product construction: as a solution to a
universal mapping problem, and as a generators and relations construction. They
are quite complementary, so it is a matter of taste as to which one takes as “the”
definition. So we will follow our taste by introducing the mapping problem first:

Suppose M , N , P are R-modules. By an R-bilinear map f : M × N → P we
mean a function which is separately R-linear in each variable: for all m ∈ M , the
mapping n 7→ f(m,n) is R-linear, and for each n ∈ N , the mapping m 7→ f(m,n) is
R-linear. Now consider all pairs (T, ι), where T is an R-module and ι :M ×N → T
is an R-bilinear map. A morphism from (T, ι) to (T ′, ι′) will be an R-module homo-
morphism h : T → T ′ such that ι′ = h ◦ ι. By definition, a tensor product M ⊗RN
is an initial object in this category: i.e., it comes equipped with an R-bilinear map
M ×NraM ⊗R N such that any R-bilinear map f : M ×N → P factors through
it. As usual, the initial object of a category is unique up to unique isomorphism
provided it exists.
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As for the existence, we fall back on the generators and relations construction.
Namely, we begin with the free R-module F whose basis is M ×N , and we write
the basis elements (purely formally) as m ⊗ n. We then take the quotient by the
submodule generated by the following relations R:

(x+ x′)⊗ y − x⊗ y − x′ ⊗ y,

x⊗ (y + y′)− x⊗ y − x⊗ y′,

(ax)⊗ y − a(x⊗ y),

x⊗ (ay)− a(x⊗ y).

It is then easy to see that the quotient map M ×N → F/N satisfies all the prop-
erties of a tensor product (details left to the reader).

Note that the general element of M ⊗RN is not a single element of the form x⊗ y
but rather a finite sum of such elements. (Indeed, from the free R-module, every
element can be represented by a finite R-linear combination of elements of the form
x⊗ y, but the last two defining relations in the tensor product allow us to change
ri(x⊗y) to either (rix)⊗y or x⊗(riy).) Of course, this representation of an element
of the tensor product need not be (and will never be, except in trivial cases) unique.

One can also take the tensor product of R-algebras: if R is a (commutative!) ring
and A and B are commutative R-algebras, then on the tensor product A⊗R B we
have a naturally defined product, induced by (a1 ⊗ b1) · (a2 ⊗ b2) := (a1a2 ⊗ b1b2).
We have to check that this is well-defined, a task which we leave to the reader (or
see [AM, pp. 30-31])). The tensor product of algebras is a powerful tool – e.g.
in the structure theory of finite-dimensional algebras over a field, or in the theory
of linear disjointness of field extensions – and is given misleadingly short shrift in
most elementary treatments.

Base change: Suppose that M is an R-module and f : R → S is a ring homo-
morphism. Then S is in particular an R-module, so that we can form the tensor
product S⊗RM . This is still an R-module, but it is also an S-module in an evident
way: s • (

∑
i si ⊗ mi) :=

∑
i ssi ⊗ mi. This is process is variously called scalar

extension, base extension or base change. Note that this process is functo-
rial, in the following sense: if f : M → M ′ is an R-algebra homomorphism, then
there exists an induced S-algebra homomorphism S ⊗R M → S ⊗R M ′, given by
s⊗m 7→ s⊗ f(m).

Exercise 3.20: If M is a finitely generated R-module and f : R → S is a ring
homomorphism, then S ⊗RM is a finitely generated S-module.

Exercise 3.21: Let A and B be rings, M an A-module, P a B-module, and N
an (A,B)-bimodule. Then M ⊗A N is naturally a B-module, N ⊗B P is naturally
an A-module, and

(M ⊗A N)⊗B P ∼=M ⊗A (N ⊗B P ).

Exercise 3.22: Let R be a commutative ring, I an ideal of R and M an R-module.
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a) Show that there is a well-defined R-bilinear map R/I ×M → M/IM given by
(r + I,m) 7→ rm+ I. Thus there is an induced homomorphism of R-modules

φ : R/I ⊗RM →M/IM.

b) Show that φ is an isomorphism of R-modules.

Proposition 3.9. Let R be a commutative ring, M an R-module and {Ni}i∈I a
directed system of R-modules. Then the R-modules lim−→(M ⊗Ni) and M ⊗ (lim−→Ni)
are canonically isomorphic.

Exercise 3.23: Prove Proposition 3.9.

3.5. Projective modules.

3.5.1. Basic equivalences.

Proposition 3.10. For an R-module P , TFAE:
(i) There exists an R-module Q such that P ⊕Q is a free R-module.
(ii) If π : M → N is a surjective R-module homomorphism and φ : P → N is a
homomorphism, then there exists at least one R-module homomorphism Φ : P →M
such that φ = π ◦ Φ.
(iii) If π :M → N is a surjection, then the natural map Hom(P,M) → Hom(P,N)
given by Φ 7→ π ◦ Φ is surjective.
(iv) The functor Hom(P, ) is exact.
(v) Any short exact sequence of R-modules

0 → N →M
q→ P → 0

splits: there exists an R-module map σ : P →M such that q ◦ σ = 1P and thus an
internal direct sum decomposition M = N ⊕ σ(P ).
A module satisfying these equivalent conditions is called projective.

Proof. (i) =⇒ (ii): Let F ∼= P ⊕Q be a free module. Let {fi} be a free basis for
F and let {pi} be the corresponding generating set for P , where pi is the image of
fi under the natural projection P ⊕Q→ P . Put ni = φ(pi). By surjectivity of π,
let mi ∈ π−1(ni). By the freeness of F , there is a unique R-module homomorphism
h : F → M carrying each fi to mi. Pull h back to P via the natural inclusion
P ↪→ F . Then h : P →M is such that π ◦ f = φ.
(ii) =⇒ (i): As for any R-module, there exists a free R-module F and a surjection
π : F → P . Applying (ii) with N = p and φ : P → N the identity map, we get a
homomorphism Φ : P → F such that π ◦φ = 1P . It follows that F = Φ(P )⊕ker(π)
is an internal direct sum decomposition.
(ii) ⇐⇒ (iii): (iii) is nothing more than a restatement of (ii), as we leave it to the
reader to check.
(iii) ⇐⇒ (iv): To spell out (iv), it says: if

0 →M ′ →M →M ′′ → 0

is a short exact sequence of R-modules, then the corresponding sequence

0 → Hom(P,M ′) → Hom(P,M) → Hom(P,M ′′) → 0

is exact. Now for any R-module P , the sequence

0 → Hom(P,M ′) → Hom(P,M) → Hom(P,M ′′)
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is exact – i.e., Hom(P, ) is left exact – so (iv) amounts to: for any surjection
M → M ′′, the corresponding map Hom(P,M) → Hom(P,M ′′) is surjective, and
this is condition (iii).
(ii) =⇒ (v): Given

0 → N →M → P
q→ 0,

we apply (ii) to the identity map 1P : P → P and the surjection q : M → P ,
getting a map σ : P →M such that q ◦ σ = 1P , so σ is a section as required.
(v) =⇒ (i): Choosing a set of generators for P gives rise to a surjective ho-
momorphism q : F → P from a free R-module F to P and thus a short exact
sequence

0 → Ker q → F
q→ P → 0.

By hypothesis, there exists a section σ : P → F and thus an internal direct sum
decomposition F ∼= Ker(q)⊕ σ(P ) ∼= Ker(q)⊕ P . �
Exercise 3.24: Give a direct proof that (v) =⇒ (ii) in Proposition 3.10. (Sugges-
tion: Given the surjection q : M → N and the map π : P → N , form the short
exact sequence 0 → K → M → N → 0 and show that it is mapped to by a short
exact sequence 0 → K →M ×N P → P → 0, where

M ×N P = {(x, y) ∈M × P | q(x) = π(y)}
is the fiber product of M and P over N .)

Exercise 3.25: Use Proposition 3.10 to show, several times over, that a free R-
module is projective.

Exercise 3.26: Let {Mi}i∈I be an index family of R-modules. Show that the direct
sum M =

⊕
i∈IMi is projective iff each Mi is projective.

Exercise 3.27:
a) Show that the tensor product of two free R-modules is free.
b) Show that the tensor product of two projective R-modules is projective.

Exercise 3.28: Show that a finitely generated projective module is finitely pre-
sented. (Hint: the problem is that over a not-necessarily-Noetherian ring, a sub-
module of a finitely generated module need not be finitely generated. However, a
direct summand of a finitely generated module is always finitely generated: why?)

3.5.2. Linear algebraic characterization of projective modules.

Let R be a commutative ring, n ∈ Z+, and let P be an element of the (non-
commutative!) ring Mn(R) of n× n matrices with entries in R such that P 2 = P .
There are several names for such a matrix. The pure algebraist would call such a
matrix idempotent, for that is the name of an element in any ring which is equal
to its square. A geometrically minded algebraist however may call such a matrix
a projection, the idea being that the corresponding R-module endomorphism of
Rn “projects” Rn onto the submodule P (Rn).

Proposition 3.11. An R-module M is finitely generated and projective iff it is,
up to isomorphism, the image of a projection: i.e., iff there exists n ∈ Z+ and a
matrix P ∈Mn(R) with P = P 2 such that M ∼= P (Rn).
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Proof. Suppose first that M is a finitely generated projective R-module. Since M
is finitely generated,, there exists n ∈ Z+ and a surjective R-module homorphism
π : Rn →M . SinceM is projective, this homomorphism has a section σ :M → Rn,
and we may thus write Rn = σ(M) ⊕M ′. Put P = σ ◦ π ∈ EndR(R

n). Then
P (Rn) = σ(π(Rn)) = σ(M) ∼=M and

P 2 = σ ◦ (π ◦ σ) ◦ π = σ ◦ 1M ◦ π = σ ◦ π = P.

Conversely, suppose that there exists P ∈ EndR(R
n) with P 2 = P and let M ∼=

P (Rn). Then – since P (1−P ) = 0 – Rn = P (Rn)⊕ (1−P )(Rn), exhibiting P (Rn)
as a direct summand of a free module.14 �
3.5.3. The Dual Basis Lemma.

Proposition 3.12. (Dual Basis Lemma) For an R-module M , TFAE:
(i) There exists an index set I, elements {ai}i∈I of M and homomorphisms {fi :
M → R}i∈I such that for each a ∈M , {i ∈ I | fi(a) ̸= 0} is finite, and

a =
∑
i∈I

fi(a)ai.

(ii) M is projective.

Proof. (i) =⇒ (ii): Let F be the free R-module with basis elements {ei}i∈I ,
and define f : F → M by f(ei) = ai. Then the map ι : M → F given by
ι(a) =

∑
i∈I fi(a)ei is a section of f , so M is a direct summand of F .

(ii) =⇒ (i): Let f : F =
⊕

i∈I R → M be an epimorphism from a free R-module
onto M . Since M is projective, there exists a section ι : M ↪→ F . If {ei}i∈I is the
standard basis of F , then for all a ∈M , the expression

ι(a) =
∑
i∈I

fi(a)ei

defines the necessary family of functions fi :M → R. �
Exercise 3.29: Let P be a projective R-module. Show that one can can find a
finite index set I satisfying condition (i) of the Dual Basis Lemma iff P is finitely
generated.

3.5.4. Projective versus free.

Having established some basic facts about projective modules, we should now seek
examples in nature: which modules are projective? Note that by Exercise 3.25 any
free module is projective. But this surely counts as a not very interesting example!
Indeed the following turns out to be one of the deepest questions of the subject.

Question 1. When is a projective module free?

We want to give examples to show that the answer to Question 1 is not “always”.
But even by giving examples one wades into somewhat deep waters. The following
is the one truly “easy” example of a non-free projective module I know.

Example: Suppose R1 and R2 are nontrivial rings. Then the product R = R1 ×R2

admits nonfree projective modules. Indeed, let P be the ideal R1 × {0} and Q the

14Note that this part of the proof redeems the pure algebraist: this the decomposition afforded
by the pair of orthogonal idempotents P, 1− P .
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ideal {0} × R2. Since R = P ⊕ Q, P and Q are projective. On the other hand P
cannot be free because taking e := (0, 1) ∈ R, we have eP = 0, whereas eF ̸= 0 for
any nonzero free R-module F (and of course, Q is not free either for similar reasons).

One way to construe Question 1 is to ask for the class of rings over which every
projective module is free, or over which every finitely generated projective module
is free. I actually do not myself know a complete answer to this question, but there
are many interesting and important special cases.

Recall the following result from undergraduate algebra.

Theorem 3.13. A finitely generated module over a PID is free iff it is torsionfree.

Of course submodules of torsionfree modules are torsionfree, so projective implies
torsionfree. We deduce:

Corollary 3.14. A finitely generated projective module over a PID is free.

Theorem 3.13 does not extend to all torsionfree modules: for instance, the Z-module
Q is torsionfree but not free. However Corollary 3.14 does extend to all modules
over a PID. The proof requires transfinite methods and is given in §3.10.

Recall that a ring R is local if it has a unique maximal ideal. It is convenient
to reserve the notation m for the unique maximal ideal of a local ring and speak of
“the local ring (R,m)”. We want to show that every finitely generated projective
module over a local ring is free. First a few preliminaries.

Let f : R → S be a homomorphism of rings. Then necessarily f induces a ho-
momorphism f× : R× → S× on unit groups: if xy = 1, then f(x)f(y) = f(1) = 1,
so units get mapped to units. But what about the converse: if x ∈ R is such that
f(x) is a unit in S, must x be a unit in R?

It’s a nice idea, but it’s easy to see that this need not be the case. For instance,
let a > 1 be any positive integer. Then a is not a unit of Z, but for each prime
p > a, the image of a in the quotient ring Z/pZ is a unit. Too bad! Let us not give
up so soon: a conjecture may fail, but a definition cannot: say a homomorphism
f : R→ S of rings is unit-faithful if for all x ∈ R, f(x) ∈ S× =⇒ x ∈ R×.

Lemma 3.15. If (R,m) is a local ring, the quotient map q : R → R/m is unit-
faithful.

Proof. An element of any ring is a unit iff it is contained in no maximal ideal, so
in a local ring we have R× = R \m. Moreover, since m is maximal, R/m is a field.
Thus, for x ∈ R,

q(x) ∈ (R/m)× ⇐⇒ x /∈ m ⇐⇒ x ∈ R×.

�

Later we will see a generalization: if J is any ideal contained the Jacobson radical
of R, then q : R→ R/J is unit-faithful.

Theorem 3.16. A finitely generated projective module over a local ring is free.
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Proof. Let P be a finitely generated projective module over the local ring (R,m).
We may find Q and n ∈ Z+ such that P ⊕Q = Rn. Now tensor with R/m: we get
a direct sum decomposition P/mP ⊕ Q/mQ = (R/m)n. Since R/m is a field, all
R/m-modules are free. Choose bases {pi} for P/mP and {qj} for Q/mQ, and for all
i, j, lift each pi to an element pi of P and each qj to an element qj of Q. Consider
the n × n matrix A with coefficients in R whose columns are p1, . . . , pa, q1, . . . , qb.
The reduction modulo m of A is a matrix over the field R/m whose columns form a
basis for (R/m)n, so its determinant is a unit in (R/m)×. Since det(M (mod m)) =
det(M) (mod m), Lemma 3.15 implies that det(M) ∈ R×, i.e.,M is invertible. But
this means that its columns are linearly independent, so p1, . . . , pa, a priori only a
generating set for the R-module P , is in fact a basis. �

Once again, in Section 3.9 this result wll be improved upon: it is a celebrated
theorem of Kaplansky that any projective module over a local ring is free.

Much more interesting is an example of a finitely generated projective, nonfree
module over an integral domain. Probably the first such examples come from non-
principal ideals in rings of integers of number fields with class number greater than
1. To give such an example with proof of its projectivity this early in the day, we
require a little preparation.15

Two ideals I and J in a ring R are comaximal if I + J = R. More generally,
a family {Ii} of ideals in a ring is pairwise comaximal if for all i ̸= j, I +J = R.

Lemma 3.17. Let I, J , K1, . . . ,Kn be ideals in the ring R.
a) We have (I + J)(I ∩ J) ⊂ IJ .
b) If I and J are comaximal, IJ = I ∩ J .
c) If I +Ki = R for all 1 ≤ i ≤ n, then I +K1 · · ·Kn = R.

Proof. a) (I + J)(I ∩ J) = I(I ∩ J) + J(I ∩ J) ⊂ IJ + IJ = IJ .
b) If I + J = R, the identity of part a) becomes I ∩ J ⊂ IJ . Since the converse
inclusion is valid for all I and J , the conclusion follows. c) We go by induction on
n, the case n = 1 being trivial. If n = 2, then for i = 1, 2, let ai ∈ I and bi ∈ Ki be
such that 1 = ai + bi. Then

1 = a1 + a2 − a1a2 + b1b2 ∈ I +K1K2.

Now assume that n ≥ 3 and that the result holds for n − 1. By induction, I +
K1 · · ·Kn−1 = R and by hypothesis I+Kn = R, so by the n = 2 case I+K1 · · ·Kn =
R. �

Proposition 3.18. Let I and J be comaximal ideals in a domain R, and consider
the R-module map q : I ⊕ J → R given by (x, y) 7→ x+ y. Then:
a) The map q is surjective.
b) Ker(q) = {(x,−x) | x ∈ I ∩ J}, hence is isomorphic as an R-module to I ∩ J .
c) We have an isomorphism of R-modules

I ⊕ J ∼= IJ ⊕R.

d) Thus if IJ is a principal ideal, I and J are projective modules.

15Here we wish to acknowledge our indebtedness to K. Conrad: we took our

inspiration for Proposition 3.18 and the following Exercise from Example 3.1 of
http://www.math.uconn.edu/∼kconrad/blurbs/linmultialg/splittingmodules.pdf.



42 PETE L. CLARK

Proof. It is clear that for any ideals I and J , the image of the map q is the ideal
I + J , and we are assuming I + J = R, whence part a).
Part b) is essentially immediate: details are left to the reader.
Combining parts a) and b) we get a short exact sequence

0 → I ∩ J → I ⊕ J → R→ 0.

But R is free, hence projective, and thus the sequence splits, giving part c). Finally,
a nonzero principal ideal (x) in a domain R is isomorphic as an R-module to R
itself: indeed, multiplication by x gives the isomorphism R → (x). So if IJ is
principal, I ⊕ J ∼= R2 and I and J are both direct summands of a free module. �

In particular, if we can find in a domain R two comaximal nonprincipal ideals I
and J with IJ principal, then I and J are finitely generated projective nonfree
R-modules. The following exercise asks you to work through an explicit example.

Exercise 3.30: Let R = Z[
√
−5], and put

p1 = ⟨3, 1 +
√
−5⟩, p2 = ⟨3, 1−

√
−5⟩.

a) Show that R/p1 ∼= R/p2 ∼= Z/3Z, so p1 and p2 are maximal ideals of R.
b) Show that p1 + p2 = R (or equivalently, that p1 ̸= p2).
c) Show that p1p2 = (3).
d) Show that neither p1 nor p2 is principal.
(Suggestion: show that if p1 = (x +

√
−5y) then p2 = (x −

√
−5y) and thus there

are integers x, y such that x2 + 5y2 = ±3.)
e) Conclude that p1 and p2 are (in fact isomorphic) nonfree finitely generated pro-
jective modules over the domain R.

f) Show that p2 is principal, and thus that the class of p in K̃0(R) is 2-torsion.

This construction looks very specific, and the number-theoretically inclined reader
is warmly invited to play around with other quadratic rings and more general rings
of integers of number fields to try to figure out what is really going on. From our
perspective, we will (much later on) gain a deeper understanding of this in terms
of the concepts of invertible ideals, the Picard group and Dedekind domains.

Example: Let X be a compact space, and let C(X) be the ring of continuous
real-valued functions on X. The basic structure of these rings is studied in §5.2.
Let E → X be a real topological vector bundle over X. Then the group Γ(E)
of global sections is naturally a module over C(X). In fact it is a finitely gener-
ated projective module, and all finitely generated projective C(X)-modules arise
faithfully in this way: the global section functor gives a categorical equivalence
between vector bundles on X and finitely generated projective modules over C(X).
This is a celebrated theorem of R.G. Swan, and Section X is devoted to giving
a self-contained discussion of it, starting from the definition of a vector bundle.
In particular, via Swan’s Theorem basic results on the tangent bundles of com-
pact manifolds translate into examples of finitely generated projective modules: for
instance, an Euler characteristic argument shows that the tangent bundle of any
even-dimensional sphere S2k is nontrivial, and thus Γ(TS2k) is a finitely generated
nonfree C(S2k)-module! Following Swan, we will show that examples of nonfree
projective modules over more traditional rings like finitely generated R-algebras
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follow from examples like these.

Example: Let k be a field and R = k[t1, . . . , tn] be the polynomial ring over k
in n indeterminates. When n = 1, R is a PID, so indeed every finitely generated
R-module is projective. For n > 1, the situation is much less clear, but the problem
of freeness of finitely generated projective R-modules can be stated geometrically as
follows: is any algebraic vector bundle on affine n-space An/k algebraically trivial?

When k = C, the space An/C = Cn in its usual, Euclidean topology is contractible,

which by basic topology implies that any continuous C-vector bundle on An is (con-
tinuously) trivial. Moreover, relatively classical complex variable theory shows that
any holomorphic vector bundle on An is (holomorphically) trivial. But asking the
transition functions and the trivialization to be algebraic – i.e., polynomial func-
tions – is a much more stringent problem. In his landmark 1955 paper FAC, J.-P.
Serre noted that this natural problem remained open for algebraic vector bundles:
he was able to prove only the weaker result that a finitely generated projective
R-module M is stably free – i.e., there exists a finitely generated free module
M such that M ⊕ F is free. This became known as Serre’s Conjecture (to
his dismay) and was finally resolved independently in 1976 by D. Quillen [Qui76]
and A. Suslin [Su76]: indeed, every finitely generated projective R-module is free.
Quillen received the Fields Medal in 1978. Fields Medals are not awarded for the
solution of any single problem, but the prize committee writes an official docu-
ment describing the work of each winner that they found particularly meritorious.
In this case, it was made clear that Quillen’s resolution of Serre’s Conjecture was
one of the reasons he received the prize. All this for modules over a polynomial ring!

For more information on Serre’s Conjecture, the reader could do no better than
to consult a recent book of T.Y. Lam [Lam06].

Exercise 3.31 (K0(R)): From a commutative ring R, we will construct another
commutative ring K0(R) whose elements correspond to formal differences of finite
rank projective modules. More precisely:
a) Let M0(R) denote the set of all isomorphism classes of finitely generated projec-
tive modules. For finitely generated projective modules P and Q we define

[P ] + [Q] = [P ⊕Q],

[P ] · [Q] = [P ⊗Q].

Check that this construction is well-defined on isomorphism classes and endows
M0(R) with the structure of a commutative semiring with unity. What are the
additive and mulitplicative identity elements?
b) Define K0(R) as the Grothendieck group ofM0(R), i.e., as the group completion
of the commutative monoidM0(R). Convince yourself thatK0(R) has the structure
of a semiring. The elements are of the form [P ] − [Q], and we have [P1] − [Q1] =
[P2]− [Q2] ⇐⇒ there exists a finitely generated projective R-module M with

P1 ⊕Q2 ⊕M ∼= P2 ⊕Q1 ⊕M.

In particular, if P and Q are projective modules, then [P ] = [Q] in K0(R) iff [P ]
and [Q] are stably isomorphic, i.e., iff they become isomorphic after taking the
direct sum with some other finitely generated projective module M . c) Show that
we also have [P ] = [Q] iff there exists a finitely generated free module Rn such that
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P ⊕Rn ∼= Q⊕Rn. In particular, [P ] = [0] = 0 iff P is stably free: there exists a
finitely generated free module F such that P ⊕ F is free.
d) Show thatM0(R) is cancellative iff every stably free finitely generated projective
module is free.
e)* Find a ring R admitting a finitely generated projectve module which is stably
free but not free.
f) Show that the mapping Rn 7→ [Rn] induces an injective homomorphism of rings

Z → K0(R). Define K̃0(R) to be the quotient K0(R)/Z. Show that if R is a PID

then K̃0(R) = 0.

3.6. Injective modules.

3.6.1. Basic equivalences.

Although we will have no use for them in the sequel of these notes, in both commu-
tative and (especially) homological algebra there is an important class of modules
“dual” to the projective modules. They are characterized as follows.

Proposition 3.19. For a module E over a ring R, the following are equivalent:
(ii) If ι : M → N is an injective R-module homomorphism and φ : M → E is
any homomorphism, there exists at least one extension of φ to a homomorphism
Φ : N → E.
(iii) If M ↪→ N , the natural map Hom(N,E) → Hom(M,E) is surjective.
(iv) The (contravariant) functor Hom( , E) is exact.
(v) Any short exact sequence of R-modules

0 → E
ι→M → N → 0

splits: there exists an R-module map π : M → E such that π ◦ ι = 1E and thus an
internal direct sum decomposition M = ι(E)⊕ ker(π) ∼= E ⊕N .
A module satisfying these equivalent conditions is called injective.

Exercise 3.33: Prove Proposition 3.19.

Exercise 3.34: Show that an R-module E is injective iff whenever E is a sub-
module of a module M , E is a direct summand of M .

Remark: Note that the set of equivalent conditions starts with (ii)! This is to
facilitate direct comparison to Proposition 3.10 on projective modules. Indeed, one
should check that each of the properties (ii) through (v) are duals of the corre-
sponding properties for projective modules: i.e., they are obtained by reversing all
arrows. The difficulty here with property (i) is that if one literally reverses the
arrows in the definition of free R-module to arrive at a “cofree” R-module, one gets
a definition which is unhelpfully strong: the “cofree R-module on a set X” does
not exist when #X > 1! This can be remedied by giving a more refined definition
of cofree module. For the sake of curiosity, we will give it later on in the exercises,
but to the best of my knowledge, cofree R-modules by any definition do not play
the fundamental role that free R-modules do.

Exercise 3.35: Show that every module over a field is injective.

Exercise 3.36: Show that Z is not an injective Z-module. (Thus injectivity is
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the first important property of modules that is not satisfied by free modules.)

Exercise 3.37: Let {Mi}i∈I be any family of R-modules and put M =
∏
i∈IMi.

Show that M is injective iff Mi is injective for all i ∈ I.

Exercise 3.38: For a ring R, show TFAE:
(i) R is absolutely projective: every R-module is projective.
(ii) R is absolutely injective: every R-module is injective.

3.6.2. Baer’s Criterion.

Theorem 3.20. (Baer’s Criterion [Bae40]) For a module E over a ring R, TFAE:
(i) E is injective.
(ii) For every ideal nonzero I of R, every R-module map φ : I → E extends to an
R-module map Φ : R→ E.

Proof. (i) =⇒ (ii): this is a special case of condition (ii) of Proposition 3.19: take
M = I, N = R.
(ii) =⇒ (i): Let M be an R-submodule of N and φ : M → E an R-module map.
We need to show that φ may be extended to N . Now the set P of pairs (N ′, φ′)
with M ⊂ N ′ ⊂ N and φ : N ′ → E a map extending φ is nonempty and has an
evident partial ordering, with respect to which the union of any chain of elements
in P is again an element of P. So by Zorn’s Lemma, there is a maximal element
φ′ : N ′ → E. Our task is to show that N ′ = N .

Assume not, and choose x ∈ N \N ′. Put

I = (N ′ : x) = {r ∈ R | rx ⊂ N ′};
one checks immediately that I is an ideal of R (a generalization to modules of the
colon ideal we have encountered before). Consider the composite map

I
·x→ N ′ φ→ E;

by our hypothesis, this extends to a map ψ : R → E. Now put N ′′ = ⟨N ′, x⟩ and
define16 φ′′ : N ′′ → E by

φ′′(x′ + rx) = φ′(x′) + ψ(r).

Thus φ′′ is an extension of φ′ to a strictly larger submodule of N than N ′, contra-
dicting maximality. �

Exercise 3.39: Verify that the map φ′′ is well-defined.

3.6.3. Divisible modules.

Recall that a module M over a domain R is divisible if for all r ∈ R• the en-
domorphism r• : M → M,x 7→ rx, is surjective. Further, we define M to be
uniquely divisible if for all r ∈ R•, the endomorphism r• :M →M is a bijection.

Example: The Z-modules Q and Q/Z are divisible. Q is moreover uniquely di-
visible but Q/Z is not.

16Since N ′′ need not be the direct sum of N ′ and ⟨x⟩, one does need to check that φ′′ is
well-defined; we ask the reader to do so in an exercise following the proof.



46 PETE L. CLARK

Exercise 3.40: Show that a divisible module is uniquely divisible iff it is torsionfree.

Exercise 3.41: a) Show that a quotient of a divisible module is divisible.
b) Show that arbitrary direct sums and direct products of divisible modules are
divisible.

Exercise 3.42: Let R be a domain with fraction field K.
a) Show that K is a uniquely divisible R-module.
b) Let M be any R-module. Show that the natural map M →M ⊗RK is injective
iff M is torsionfree.
c) Show that for any R-module M , M ⊗R K is uniquely divisible.
d) Show that K/R is divisible but not uniquely divisible.

Exercise 3.43:
a) Show that a Z-module is uniquely divisible iff it can be endowed with the (com-
patible) structure of a Q-module, and if so this Q-module structure is unique.
b) Show that a Z-moduleM is a subgroup of a uniquely divisible divisible Z-module
iff it is torsionfree.

Proposition 3.21. Let R be a domain and E an R-module.
a) If E is injective, it is divisible.
b) If E is torsionfree and divisible, it is injective.
c) If R is a PID and E is divisible, it is injective.

Proof. a) Let r ∈ R•. For x ∈ E, consider the R-module homomorphism φ :
rR → E given by r 7→ x. Since E is injective, this extends to an R-module map
φ : R→ E. Then rφ(1) = φ(r · 1) = φ(r) = x, so r• is surjective on E.
b) Let I be a nonzero ideal of R and φ : I → E be an R-module map. For each
a ∈ I•, there is a unique ea ∈ E such that φ(a) = aea. For b ∈ I•, we have

baea = bφ(a) = φ(ba) = aφ(b) = abeb;

since E is torsionfree we conclude ea = eb = e, say. Thus we may extend φ to a
map Φ : R→ E by Φ(r) = re. Thus E is injective by Baer’s Criterion.
c) As above it is enough to show that given a nonzero ideal I of R, every homo-
morphism φ : I → E extends to a homomorphism R → E. Since R is a PID, we
may write I = xR for x ∈ R•. Then, as in part a), one checks that φ extends to Φ
iff multiplication by x is surjective on M , which it is since M is divisible. �

By combining Proposition 3.21 with Exercise 3.42, we are able to show an important
special case of the desired fact that every R-module can be realized as a submod-
ule of an injective module. Namely, if M is a torsionfree module over a domain R,
thenM is a submodule of the uniquely divisible – hence injective – moduleM⊗RK.

Exercise 3.44: Let n ∈ Z+.
a) Show that as a Z-module Z/nZ is not divisible hence not injective.
b) Show that as a Z/nZ module Z/nZ is divisible iff n is a prime number.
c) Show that Z/nZ is always injective as a Z/nZ-module.

Exercise 3.45: Let R = Z[t] and let K be its fraction field. Show that the R-
module K/R is divisible but not injective.
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Exercise 3.46: Let R be a domain with fraction field K.
a) If R = K, (of course) all R-modules are both injective and projective.
b) If R ̸= K, the only R-module which is both projective and injective is 0.

3.6.4. Enough injectives.

The idea of this section is to pursue the dual version of the statement “Every
R-module is a quotient of a projective module”: namely we wish to show that
every R-module is a submodule of an injective module. This is a good example
of a statement which remains true upon dualization but becomes more elaborate
to show. The projective version is almost obvious: indeed, we have the stronger
result that every module is a quotient of a free module, and – as we have seen – to
realize M as a quotent of a free R-module is equivalent to simply choosing a set of
generators for M . (But again, if we choose the most obvious definition of “cofree”,
then this statement will be false.)

Let k be a ring, R a k-algebra, M an R-module and N a k-module. Consider
the commutative group Homk(M,N). We may endow it with the structure of an
R-module as follows: for r ∈ R and f ∈ HomZ(M,N), (rf)(x) := f(rx).

Consider the special case k = Z and N = Q/Z of the above construction. It
gives HomZ(M,Q/Z) the structure of an R-module, which we denote by M∗ and
call the Pontrjagin dual ofM .17 Because Q/Z is an injective Z-module, the (con-
travariant) functor M 7→ M∗ – or in other words HomZ( ,Q/Z) – is exact.18 In
particular, if f :M → N is an R-module map, then f injective implies f∗ surjective
and f surjective implies f∗ injective.

As is often the case for “duals”, we have a natural map M → M∗∗: namely
x 7→ (f 7→ f(x)).

Lemma 3.22. For any R-module M , the natural map ΨM :M →M∗∗ is injective.

Proof. Seeking a contradiction, let x ∈M• be such that Ψ(x) = 0. Unpacking the
definition, this means that for all f ∈ HomZ(M,Q/Z), f(x) = 0. But since Q/Z is
an injective Z-module, it suffices to find a nontrivial homomorphism Zx → Q/Z,
and this is easy: if x has finite order n > 1, we may map x to 1

n , whereas if x has
infinite order we may map it to any nonzero element of Q/Z. �

Lemma 3.23. Every Z-module M can be embedded into an injective Z-module.

Proof. Let I ⊂ M be a generating set and let
⊕

i∈I Z → M be the correspond-
ing surjection, with kernel K, so M ∼= (

⊕
i∈I Z)/K. The natural map

⊕
i∈I Z ↪→⊕

i∈I Q induces an injection M ↪→ (
⊕

i∈I Q)/K, and the latter Z-module is divisi-
ble, hence injective since Z is a PID. �

Lemma 3.24. (Injective Production Lemma) Let R be a k-algebra, E an injective
k-module and F a free R-module. Then Homk(F,E) is an injective R-module.

17Recall that the notation M∨ has already been taken: this is the linear dual HomR(M,R).
18Here we are using the (obvious) fact that a sequence of R-modules is exact iff it is exact

when viewed merely as a sequence of Z-modules.
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Proof. We will show that the functor HomR( ,Homk(F,E)) is exact. For any R-
module M , the adjointness of ⊗ and Hom gives

HomR(M,Homk(F,E)) = Homk(F ⊗RM,E)

so we may look at the functor M 7→ Homk(F ⊗R M,E) instead. This is the
composition of the functor M 7→ F ⊗RM with the functor N 7→ Homk(N,E). But
both functors are exact – in the former case a moment’s thought shows this to be
true, and the latter case is one of our defining properties of injective modules. �
Remark: Soon enough we will define a flat R-module to be an R-module N such
that the functor M 7→M ⊗R N is exact. Then Lemma 3.24 can be rephrased with
the hypothesis that F is a flat R-module, and (since as we have just seen, free
R-modules are flat) this gives a somewhat more general result.

Theorem 3.25. Every R-module can be embedded into an injective R-module.

Proof. Let M be an R-module. Viewing M as a Z-module, by Lemma 3.23 there is
an injective Z-module E1 and a Z-module map φ1 :M ↪→ E1. Further, by Lemma
3.24, HomZ(R,E1) is an injective R-module. Now consider the R-module map

φ :M → HomZ(R,E1), x 7→ (r 7→ φ1(rx)).

We claim that φ is a monomorphism into the injective R-module HomZ(R,E1).
Indeed, if φ(x) = 0 then for all r ∈ R, φ1(rx) = 0. In particular φ1(x) = 0, so since
φ1 is a monomorphism, we conclude x = 0. �
Exercise 3.47: Let us say that a Z-module is cofree if it is of the form F ∗ for a
free Z-module F . Then the proof of Lemma 3.23 gives the stronger statement that
every Z-module can be embedded into a cofree Z-module. Formulate a definition of
cofree R-module so that the proof of Theorem 3.25 gives the stronger statement
that every R-module can be embedded into a cofree R-module. (Hint: remember
to pay attention to the difference between direct sums and direct products.)

3.6.5. Essential extensions and injective envelopes.

The results of this section are all due to B. Eckmann and A. Schopf [ES53].

Proposition 3.26. Let M be an R-module and M ⊂R N an R-submodule. TFAE:
(i) If X is any nonzero R-submodule of N , then X ∩M is nonzero.
(ii) If x ∈ N•, there exists r ∈ R such that rx ∈M•.
(iii) If φ : N → Y is an R-module map, then φ is injective iff φ|M is injective.
An extension M ⊂ N satisfying these equivalent conditions is called essential.

Proof. (i) =⇒ (ii): Apply (i) with X = ⟨x⟩.
(ii) =⇒ (iii): Assuming (ii), let φ : N → Y be a homomorphism with φ|M is
injective. It is enough to show that φ is injective. Seeking a contradiction, let
x ∈ N• be such that φ(x) = 0. By (ii), there exists r ∈ R such that rx ∈M•. But
then by assumption rφ(x) = φ(rx) ̸= 0, so φ(x) ̸= 0, contradiction.
(iii) =⇒ (i): We go by contraposition. Suppose there exists a nonzero submodule
X of N such that X ∩M = 0. Then the map φ : N → N/X is not an injection but
its restriction to M is an injection. �
Proposition 3.27. (Tower Property of Essential Extensions) Let L ⊂M ⊂ N be
R-modules. Then L ⊂ N is an essential extension iff L ⊂M and M ⊂ N are both
essential extensions.
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Proof. Suppose first that L ⊂ N is an essential extension. Then for any nonzero
submodule X of N , X ∩ L ̸= 0. In particular this holds for X ⊂ M , so L ⊂ M is
essential. Moreover, since L ⊂ M , X ∩ L ̸= 0 implies X ∩M ̸= 0, so M ⊂ N is
essential. Conversely, suppose L ⊂M and M ⊂ N are both essential, and let X be
a nonzero submodule of N . Then X ∩M is a nonzero submodule of M and thus
(X ∩M) ∩ L = X ∩ L is a nonzero submodule of L. So L ⊂ N is essential. �
So why are we talking about essential extensions when we are supposed to be talking
about injective modules? The following result explains the connection.

Theorem 3.28. For an R-module M , TFAE:
(i) M is injective.
(ii) M has no proper essential extensions: i.e., if M ⊂ N is an essential extension,
then M = N .

Proof. (i) =⇒ (ii): Let M be injective and M ( N . Then M is a direct summand
of N : there exists M ′ such that M ⊕ M ′ = N . Thus M has zero intersection
with M ′, and by criterion (ii) of Proposition 3.26, we must have M ′ = 0 and thus
M = N .
(ii) =⇒ (i): It suffices to show: if N is an R-module and M ⊂ N , then M is a
direct summand of N . Now consider the family of submodules M ′ of N with the
property thatM ∩M ′ = 0. This family is partially ordered by inclusion, nonempty,
and closed under unions of chains, so by Zorn’s Lemma there exists a maximal such
element M ′. Now consider the extension M ↪→ N/M ′: we claim it is essential.
Indeed, if not, there exists x ∈ N \M ′ such that ⟨M ′, x⟩ ∩M = 0, contradicting
maximality of M ′. But by hypothesis, M has no proper essential extensions: thus
M = N/M ′, i.e., M ⊕M ′ = N and M is a direct summand of N . �
We say that an extension M ⊂ N is maximal essential if it is essential and
there is no proper extension N ′ of N such that M ⊂ N ′ is essential. Combining
Proposition 3.27 and Theorem 3.28 yields the following important result.

Theorem 3.29. For an essential extension M ⊂ N of R-modules, TFAE:
(i) M ⊂ N is maximal essential.
(ii) N is injective.

Exercise 3.48: To be sure you’re following along, prove Theorem 3.29.

Once again we have a purpose in life – or at least, this subsubsection of it – we
would like to show that every R-module admits a maximal essential extension and
that such extensions are unique up to isomorphism over M . Moreover, a plausible
strategy of proof is the following: let M be an R-module. By Theorem 3.25 there
exists an extension M ⊂ E with E injective. Certainly this extension need not be
essential, but we may seek to construct within it a maximal essential subextension
N and then hope to show that M ⊂ E′ is injective.

Theorem 3.30. Let M be an R-module and M ⊂ E an extension with E injective.
Let P be the set of all essential subextensions N of M ⊂ E. Then:
a) P contains at least one maximal element.
b) Every maximal element E′ of P is injective.

Proof. The proof of part a) is the usual Zorn’s Lemma argument: what we need
to check is that the union N of any chain {Ni} of essential subextensions is again
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an essential subextension. Suppose for a contradiction that there exists a nonzero
submodule X of N such that X ∩M = 0. Choose x ∈ X• and put X ′ = ⟨x⟩. Then
X ′ ⊂ Ni for some i and X ′ ∩M ⊂ X ∩M = 0, contradicting the essentialness (?!)
of the extension M ⊂ Ni.
Now let E′ be a maximal essential subextension of M ⊂ E. We need to show
that M ⊂ E′ is actually a maximal essential extension: so suppose there is an
essential extension E′ ⊂ N . Let ι : M ⊂ E′ ⊂ N be the composite map. It is
a monomorphism, so by the injectivity of E the injection M ⊂ E extends to a
homomorphism φ : N → E. But φ|M is an injection and M ⊂ N is an essential
extension, so by condition (iii) of Proposition 3.26 this implies that φ itself is an
injection. By maximality of E′ among essential subextensions of M ⊂ E we must
have E′ = N . �

For an R-module M , we say that an extension M ⊂ E is an injective envelope
(other common name: injective hull) of M if M ⊂ E is a maximal essential
extension; equivalently, an essential extension with E injective. Thus Theorem
3.30 shows that any R-module admits an injective envelope.

Proposition 3.31. Let R be an integral domain with fraction field K. Then R ⊂ K
is an injective envelope of R.

Exercise 3.49: Prove Proposition 3.31. (Suggestion: use the relationship between
injective modules and divisible modules.)

Exercise 3.50: More generally, let M be a torsionfree module over a domain R.
Show that M ⊂M ⊗R K is an injective envelope of M .

Let us touch up our characterization of injective envelopes a bit.

Proposition 3.32. (Equivalent Properties of an Injective Envelope) For an ex-
tension M ⊂ E of R-modules, TFAE:
(i) M ⊂ E is a maximal essential extension.
(ii) M ⊂ E is essential and E is injective.
(iii) E is minimal injective over M : there does not exist any proper subextension
M ⊂ E′ ⊂ E with E′ injective.

Proof. We have already seen that (i) ⇐⇒ (ii).
(ii) =⇒ (iii): Assume that E is injective and E′ is an injective subextension of
M ⊂ E. Since E′ is injective, there exists N ⊂ E such that E′⊕N = E. Moreover,
M ∩ N ⊂ E′ ∩ N = 0, so M ∩ N = 0. Since M ⊂ E is essential, we must have
N = 0, i.e., E′ = E.
(iii) =⇒ (ii): Suppose that M ⊂ E is minimal injective. The proof of Theorem
3.30 gives us a subextension E′ of M ⊂ E such that E′ is injective and M ⊂ E′ is
essential. Thus by minimality E = E′, i.e., M ⊂ E is essential. �

Theorem 3.33. (Uniqueness of Injective Envelopes) Let M be an R-module and
let ι1 : M ⊂ E1, ι2 : M ⊂ E2 be two injective envelopes of M . Then E1 and
E2 are isomorphic as R-module extensions of M : i.e., there exists an R-module
isomorphism Φ : E1 → E2 such that Φ ◦ ι1 = ι2.

Proof. Since ι1 : M → E1 is a monomorphism and E2 is injective, the map ι2 :
M → E2 extends to a map Φ : E1 → E2 such that Φ ◦ ι1 = ι2. Since the restriction
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of Φ to the essential submodule M is a monomorphism, so is Φ. The image Φ(E1)
is an essential subextension of M ⊂ E2, so by condition (iii) of Proposition 3.32 we
must have E2 = Φ(E1). Thus Φ : E1 → E2 is an isomorphism. �

In view of Theorem 3.33, it is reasonable to speak of “the” injective envelope of
M and denote it by M → E(M). Reasonable, that is, but not ideal: it is not
true that any two injective envelopes are canonically isomorphic.19 Otherwise put,
formation of the injective envelope is not functorial. For more on this in a more
general category-theoretic context, see [AHRT].

Exercise 3.51: Let M be a submodule of an injective module E. Show that E
contains an isomorphic copy of the injective envelope E(M).

Exercise 3.52: If M ⊂ N is an essential extension of modules, then E(M) = E(N).

3.7. Flat modules.

Suppose we have a short exact sequence

0 →M ′ →M →M ′′ → 0

of R-modules. If N is any R-module, we can tensor each element of the sequence
with N , getting by functoriality maps

0 →M ′ ⊗N →M ⊗N →M ′′⊗ → 0.

Unfortunately this new sequence need not be exact. It is easy to see that it is right
exact: that is, the piece of the sequence

M ′ ⊗N →M ⊗N →M ′′ ⊗N → 0

remains exact. This follows because of the canonical “adjunction” isomorphism

Hom(M ⊗N,P ) = Hom(M,Hom(N,P ))

and the left-exactness of the sequence Hom( , Y ) for all R-modules Y . However,
tensoring an injection need not give an injection. Indeed, consider the exact se-
quence

0 → Z [2]→ Z.
If we tensor this with Z/2Z, we get a sequence

0 → Z/2Z [2]→ Z/2Z,

but now the map Z⊗Z/2Z → Z⊗ Z/2Z takes n⊗ i→ (2n⊗ i) = n⊗ 2i = 0, so is
not injective.

Definition: A module M over a ring R is flat if the functor N 7→ N ⊗R M is
exact. This means, equivalently, that if M ↪→M ′ then M ⊗N ↪→M ′ ⊗N , or also
that tensoring a short exact sequence with M gives a short exact sequence.

It will probably seem unlikely at first, but in fact this is one of the most important
and useful properties of an R-module.

19The situation here is the same as for “the” splitting field of an algebraic field extension or
“the” algebraic closure of a field.
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So, which R-modules are flat?

Proposition 3.34. Let {Mi}i∈I be a family of R-modules. TFAE:
(i) For all i, Mi is flat.
(ii) The direct sum M =

⊕
iMi is flat.

Exercise 3.53: Prove Proposition 3.34.

Proposition 3.35. Let R be a domain. Then flat R-modules are torsionfree.

Proof. We will prove the contrapositive. Suppose that 0 ̸= m ∈ R[tors], and let
0 ̸= r ∈ R be such that rm = 0 Since R is a domain, we have a short exact sequence

0 → R
[r]→ R→ R/rR→ 0

and tensoring it with M gives

0 →M
[r]→M →M/rM → 0,

but since rm = 0 the first map is not injective. �
Proposition 3.36. Projective R-modules are flat.

Proof. A projective R-module is a module P such that there exists P ′ with P⊕P ′ ∼=
F a free module. Therefore, by Proposition 3.34, it is enough to show that free
modules are flat. By abuse of notation, we will abbreviate the infinite direct sum
of d copies of R as Rd. Since for any R-module M we have M ⊗R Rd = Md, it
follows that tensoring a short exact sequence

0 →M ′ →M →M ′′ → 0

with F = Rd just yields

0 → (M ′)d → (M)d → (M ′′)d → 0.

This is still exact. �
3.8. Nakayama’s Lemma.

3.8.1. Nakayama’s Lemma.

Proposition 3.37. Let M be a finitely generated R-module, I an ideal of R, and φ
be an R-endomorphism of M such that φ(M) ⊂ IM . Then φ satisfies an equation
of the form

φn + an−1φ
n−1 + . . .+ a1φ+ a0 = 0,

with ai ∈ I.

Proof. Let x1, . . . , xn be a set of generators for M as an R-module. Since each
φ(xi) ∈ IM , we may write φ(xi) =

∑
j aijxj , with aij ∈ I. Equivalently, for all i,

n∑
j=1

(δijφ− aij)xj = 0.

By multiplying on the left by the adjoint of the matrix M = (δijφ − aij), we get
that det(δijφ−aij) kills each xi, hence is the zero endomorphism ofM . Expanding
out the determinant gives the desired polynomial relation satisfied by φ. �
Exercise 3.54: Some refer to Prop. 3.37 as the Cayley-Hamilton Theorem. Discuss.
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Theorem 3.38. (Nakayama’s Lemma) Let R be a ring, J an ideal of R, and M
a finitely generated R-module such that JM =M .
a) There exists x ∈ R with x ≡ 1 (mod J) such that xM = 0.
b) Suppose moreover that J is contained in every maximal ideal of R. Then M = 0.

Proof. Applying Proposition 3.37 to the identity endomorphism φ: gives a1, . . . , an ∈
J such that for x := 1 + a1 + . . . + an, xM = 0 and x ≡ 1 (mod J), proving part
a). If moreover J lies in every maximal ideal m of R, then x ≡ 1 (mod )m for all
maximal ideals m, hence x lies in no maximal ideal of R. Therefore x is a unit and
xM = 0 implies M = 0. �

Corollary 3.39. Let R be a ring, J an ideal of R which is contained in every
maximal ideal of R, M a finitely generated R-module and N a submodule of M
such that JM +N =M . Then M = N .

Proof. We have J(M/N) = (JM +N)/N = M/N . Applying Nakayama’s Lemma
to the finitely generated module M/N , we conclude M/N = 0, i.e., N =M . �

Corollary 3.40. Let R be a ring, J an ideal of R which is contained in every
maximal ideal of R, and M a finitely generated R-module. Let x1, . . . , xn ∈ M be
such that their images in M/JM span M/JM as an R/J-module. Then the xi’s
span M .

Proof. Let N = ⟨x1, . . . , xn⟩R, and apply Corollary 3.39. �

Corollary 3.41. Let R be a ring and J an ideal which is contained in every max-
imal ideal of R. Let M and N be R-modules, with N finitely generated, and let
u : M → N be an R-module map. Suppose that the map uJ : M/JM → N/JN is
surjective. Then u is surjective.

Proof. Apply Nakayama’s Lemma to J and N/M . �

Recall that an element x in a ring R such that x2 = x is called idempotent.
Similarly, an ideal I of R such that I2 = I is called idempotent.

Exercise 3.55: Let R be a ring and I an ideal of R.
a) Suppose I = (e) for an idempotent element e. Show that I is idempotent.
b) Give an example of a nonidempotent x such that (x) is idempotent.
c) Is every idempotent ideal generated by some idempotent element?

The last part of the preceding exercise is rather difficult. It turns out that the
answer is negative in general: we will see later that counterexamples exist in any
infinite Boolean ring. However under a relatively mild additional hypothesis the
answer is affirmative.

Corollary 3.42. Let R be any ring and I a finitely generated idempotent ideal of
R. Then there exists an idempotent e ∈ R such that I = (e). In particular, in a
Noetherian ring every idempotent ideal is generated by a single idempotent element.

Exercise 3.56: Prove Corollary 3.42. (Hint: apply Theorem 3.38!)
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3.8.2. Hopfian modules.

A group G is Hopfian if every surjective group homomorphism f : G → G is
an isomorphism – equivalently, G is not isomorphic to any of its proper quotients.

This concept has some currency in combinatorial and geometric group theory.
Some basic examples: any finite group is certainly Hopfian. A free group is Hopfian
iff it is finitely generated, and more generally a finitely generated residually finite
group is Hopfian. An obvious example of a non-Hopfian group is

∏∞
i=1G for any

nontrivial group G. A more interesting example is the Baumslag-Solitar group

B(2, 3) = ⟨x, y | yx2y−1 = x3⟩.
More generally, let C be a concrete category: that is, Ob C is a class of sets and
for all X,Y ∈ Ob C, HomC(X,Y ) ⊂ HomSet(X,Y ), i.e., the morphisms between X
and Y are certain functions from X to Y . We may define an object X in C to be
Hopfian if every surjective endomorphism of X is an isomorphism.

Exercise 3.57:
a) (C. LaRue) Show that any finite object in a concrete category is Hopfian.
b) In the category of Sets, the Hopfian objects are precisely the finite sets.

Remark: Our discussion of “Hopfian objects” in categories more general than R-
Mod is not particularly serious or well thought out. So far as I know there is
not a completely agreed upon definition of a Hopfian object, but Martin Branden-
burg has suggested (instead) the following: X ∈ C is Hopfian if every extremal
epimorphism X → X is an isomorphism.

Theorem 3.43. Let R be a ring and M a finitely generated R-module. Then M
is a Hopfian object in the category of R-modules.

Proof. ([M, p. 9]) Let f :M →M be a surjective R-map. We show f is injective.
There is a unique R[t]-module structure on M extending the given R-module

structure and such that for all m ∈M, tm = f(m). Let I = tR[t]. By hypothesis
IM = M , so by Nakayama’s Lemma there exists P (t) ∈ R[t] such that (1 +
P (t)t)M = 0. Let y ∈ ker f . Then

0 = (1 + P (t)t)y = y + P (t)f(y) = y + P (t)0 = y.

So f is injective. �
Exercise 3.58: Show that (Q,+) is a Hopfian Z-module which is not finitely gener-
ated.

Exercise 3.59*: Do there exist Hopfian Z-modules of all cardinalities? (An af-
firmative answer was claim in [Bau62], but it was announced in [Bau63] that the
construction is not valid. So far as I know the problem remains open lo these many
years later.)

3.8.3. A variant.

The results of this section are taken from [DM71, §I.1].

Proposition 3.44. (Generalized Nakayama’s Lemma) Let R be a ring, J an ideal
of R and M a finitely generated R-module. TFAE:



COMMUTATIVE ALGEBRA 55

(i) J + annM = R.
(ii) JM =M .

Proof. (i) =⇒ (ii): If J + annM = R, we may write 1 = x + y with x ∈ J, y ∈
annM , so that for all m ∈M , m = 1m = xm+ ym = xm. Thus JM =M .
(ii) =⇒ (i): Conversely, suppose M = ⟨m1, . . . ,mn⟩. For 1 ≤ i ≤ n, put
Mi = ⟨mi, . . . ,mn⟩ and Mn+1 = 0. We claim that for all 1 ≤ i ≤ n+1 there exists
ai ∈ J with (1 − ai)M ⊂ Mi, and we will prove this by induction on n. We may
take a1 = 0. Having chosen a1, . . . , ai, we have

(1− ai)M = (1− ai)JM = J(1− ai)M ⊂Mi,

so there exist aij ∈ J such that

(1− ai)mj =
n∑
j=i

aijmj ,

or

(1− ai − aii)mi ∈Mi+1.

Thus(
1− (2ai + aii − a2i − aiaii)

)
M = (1−ai)(1−ai−aii)M ⊂ (1−ai−aii)Mi ⊂Mi+1,

and we may take

ai+1 = 2ai + aii − a2i − aiaii.

So there is an ∈ J such that 1− an ∈ annM , and thus 1 ∈ J + annM . �

Exercise 3.60: Deduce part b) of Nakayama’s Lemma from Proposition 3.44.

Corollary 3.45. Let M be a finitely generated R-module such that mM = M for
all maximal ideals of R. Then M = 0.

Exercise 3.61: Prove Corollary 3.45.

For an R-module M , we define its trace ideal to be the ideal T (M) of R gen-
erated by all the images f(M) of R-module maps f ∈ R∨ = HomR(M,R).

Theorem 3.46. Let P be a finitely generated projective R-module. Then R splits
as a direct product of rings:

R = T (P )⊕ annP.

Proof. Step 1: We show that T (P ) and annP are comaximal ideals of R, i.e.,
T (P )+annP = R. By the Dual Basis Lemma (Proposition 3.12) and the following
exercise, there exist x1, . . . , xn ∈ P and f1, . . . , fn ∈ P∨ = HomR(P,R) forming
a dual basis: for all x ∈ P , x =

∑n
i=1 fi(x)xi. By its very definition we have

fi(x) ∈ T (P ) for all i and x, hence T (P )P = P . By the Generalized Nakayama’s
Lemma (Lemma 3.44) we have T (P ) + annP = R.

For any a ∈ annP , f ∈ P∨ and x ∈ P we have af(x) = f(ax) = f(0) = 0: thus
T (P ) ∩ annP = 0. By comaximality, T (P ) ∩ annP = 0 and the sum is direct. �

Corollary 3.47. A nonzero finitely generated projective module over a connected
ring R (i.e., without idempotents other than 0 and 1) is faithful.

Exercise 3.62: Prove Corollary 3.47.
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3.8.4. Applications to modules over local rings.

Lemma 3.48. Let R be a ring and J an ideal which is contained in every maximal
ideal of R, and let M be a finitely presented R-module. Suppose that:
(i) M/JM is a free R/J-module, and
(ii) The canonical map J ⊗RM → JM is injective.
Then M is a free R-module.

Proof. We may choose a family {xi}i∈I of elements of M such that the images in
M/JM give a R/J-basis. (Since M is finitely generated over R, M/JM is finitely
generated over R/J , so the index set I is necessarily finite.) Consider the finitely
generated free R-module L =

⊕
i∈I R, with canonical basis {ei}. Let u : L→M be

the unique R-linear mapping each ei to xi, and let K = ker(u). Since M is finitely
presented, by Proposition 3.6 K is finitely generated. We have a commutative
diagram with exact rows:

J ⊗K → J ⊗ L→ J ⊗M → 0

0 → K → L→M → 0,

where each vertical map – a : J ⊗K → K, b : J ⊗ L→ L, c : J ⊗M →M – is the
natural multiplication map. Our hypothesis is that the the map J ⊗RM → JM is
injective, so by the Snake Lemma we get an exact sequence

0 → coker(a) → coker(b)
u→ coker(c).

Now observe that coker(b) = (R/J) ⊗R L and coker(c) = (R/J) ⊗R M , and by
definition the mapping u : L→M gives, upon passage to the quotient modulo J , a
mapping from one R/J-module basis to another. So u is an isomorphism and thus
coker(a) = 0, i.e., K/JK = 0. By Nakayama’s Lemma we conclude K = 0, i.e., u
gives an isomorphism from the free module L to M , so M is free. �
We can now prove the following result, which is one that we will build upon in our
future studies of modules over commutative rings.

Theorem 3.49. Let R be a ring with a unique maximal ideal m – i.e., a local ring.
For a finitely presented R-module M , TFAE:
(i) M is free.
(ii) M is projective.
(iii) M is flat.
(iv) The natural map m⊗RM → mM is an injection.

Proof. Each of the implications (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) is immediate.
Assume (iv). Then, since m is maximal, R/m is a field, so every R/m-module is
free. Therefore Lemma 3.48 applies to complete the proof. �

3.9. Ordinal Filtrations and Applications.

3.9.1. The Transfinite Dévissage Lemma.

Let M be an R-module. By an ordinal filtration on M we mean an ordinal
number α and for each i ≤ α a submodule Mi of M satisfying all of the following:
(OF1) M0 = 0, Mα =M .
(OF2) For all i, j ∈ α+ 1, i ≤ j =⇒ Mi ⊂Mj .
(OF3) For all limit ordinals i ≤ α, Mi =

∪
j<iMj .
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So for instance, taking α = ω = {1, 2, 3, . . .} the first infinite ordinal, we recover
the usual notion of an exhaustive filtration by submodules Mn, with the additional
convention that Mω =

∪
n∈ωMn.

For i < α, we call Mi+1/Mi the ith successive quotient. If for a class C of
R-modules each successive quotient lies in C, we say the filtration is of class C.

Define the associated graded module Gr(M) =
⊕

i<αMi+1/Mi.

Lemma 3.50. (Transfinite Dévissage Lemma) LetM be an R-module and {Mi}i≤α
an ordinal filtration of M .
a) Suppose we make the following hypothesis:
(DS) For all i < α the submodule Mi is a direct summand of Mi+1. Then

M ∼= Gr(M) =
⊕
i<α

Mi+1/Mi.

b) Hypothesis (DS) holds if each successive quotient Mi+1/Mi is projective.
c) Hypothesis (DS) holds if each Mi is injective.

Exercise 3.63: Prove Lemma 3.50. (Hint: transfinite induction.)

Corollary 3.51. For an R-module M , TFAE:
(i) M is free.
(ii) M admits an ordinal filtration with successive quotients isomorphic to R.
(iii) M admits an ordinal filtration with free successive quotients.

Proof. (i) =⇒ (ii): If M is free, then M ∼=
⊕

i∈I R. By the Well-Ordering

Principle20, I is in bijection with an ordinal α, so we may write M ∼=
⊕

i<αR, and
put Mi =

⊕
j<iR.

(ii) =⇒ (iii) is immediate.
(iii) =⇒ (i) follows from Lemma 3.50 since free modules are projective. �

3.9.2. Hereditary and semihereditary rings.

An R-module is hereditary if every submodule is projective. (In particular a
hereditary module is projective, and thus the property of being projective is “in-
herited” by its submodules.) We say that a ring R is hereditary if R is a hereditary
R-module, or equivalently every ideal of R is projective as an R-module.

Exercise 3.64:
a) Show that every submodule of a hereditary module is hereditary.
b) Show that the zero module is hereditary.
c) Show that there are nonzero rings R for which the only hereditary R-module is
the zero module.

Example: A PID is a hereditary ring. Indeed, any nonzero ideal of a PID R is
isomorphic as an R-module to R.

20This set-theoretic axiom is equivalent to the Axiom of Choice and also to Zorn’s Lemma.
Our running convention in these notes is to freely use these axioms when necessary.
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Theorem 3.52. a) Let {Mi}i∈I a family of hereditary R-modules, put M =⊕
i∈IMi, and let πi : M → Mi be projection onto the ith factor. Then, for any

submodule N of M , N ∼=
⊕

i∈I πi(N).
b) Let R be a hereditary ring, and let M be an R-module. TFAE:
(i) M is isomorphic to to a direct sum of ideals of R.
(ii) M can be embedded in a free R-module.

Proof. a) By the Well-Ordering Principle there is a bijection from I to some ordinal
α, and without loss of generality we may assume M =

⊕
i∈αMi. For j ∈ α+, put

Pj =
⊕

i<j+ Mi, so that {Mj} is an ordinal-indexed chain of R-submodules of M

with final element Pα =M . For each j ∈ α+, put

Nj = N ∩ Pj ,
so {Nj} is an ordinal filtration on N with Nα = N . Moreover, for all i ∈ α we have
Ni = Ni+1 ∩ Pi and thus

Ni+1/Ni = Ni/(Ni+1 ∩ Pi) ∼= (Ni+1 + Pi)/Pi.

Thus Ni+1/Ni is isomorphic to a submodule of Pi+1/Pi ∼= Mi. Since each Mi

is hereditary, each successive quotient Ni+1/Ni is projective, and the Transfinite
Dévissage Lemma (Lemma 3.50) applies to show that

N ∼= GrN =
⊕
j<α+

Nj+1/Nj

=
⊕
j<α+

(N ∩
⊕
i<j++

Mj)/(N ∩
⊕
i<j+

Mj)

 ∼=
⊕
j<α+

πj(N).

b) (i) =⇒ (ii) holds over any ring. (ii) =⇒ (i) follows from part a). �
Corollary 3.53. Let {Mi}i∈I be a family of R-modules. Then M =

⊕
i∈IMi is

hereditary iff Mi is hereditary for all i.

Proof. Suppose eachMi is hereditary, and letN be a submodule ofM . By Theorem
3.52, N ∼=

⊕
i∈I πi(N). For all i, πi(N) is a submodule of the hereditary moduleMi

hence is projective. Thus N is a direct sum of projective modules, hence projective.
Conversely, if M is hereditary, so are all of its submodules Mi. �
Lemma 3.54. a) (Checking Projectivity With Injectives) Let P be an R-module
such that: for every injective module I, surjection q : I → Q and module map
f : P → Q, there is F : P → I such that q ◦ F = f . Then P is projective.
b) (Checking Injectivity With Projectives) Let I be an R-module such that: for every
projective R-module P , injection ι : S → P and module map f : S → I, there is
F : P → I such that F ◦ ι = f . Then I is injective.

Proof. a) Let 0 → A′ ι→ A
τ→ A′′ → 0 be a short exact sequence of R-modules, and

let f : P → A′′ be a module map. Let σ : A→ I be an embedding into an injective
module, and consider the following commutative diagram with exact rows:

0 −−−−→ A′ ι−−−−→ A
τ−−−−→ A′′ −−−−→ 0∥∥∥ yσ

0 −−−−→ A′ σ◦ι−−−−→ I
q−−−−→ Q −−−−→ 0
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Step 1: We claim there is ρ : A′′ → Q making the diagram commute.
Proof: This is a routine diagram chase: choose y ∈ A′′, lift to x in A, and put
ρ(y) = (q ◦ σ)(x). Let us check that this is well-defined: if we chose a different lift
x′ in A, then x− x′ ∈ A′, so (q ◦ σ)(x− x′) = 0.
Step 2: By hypothesis, the map ρ ◦ f : P → Q can be lifted to G : P → I. To
complete the proof it suffices to show G(P ) ⊂ σ(A). To see this, let x ∈ P and
choose a ∈ A such that τ(a) = f(x). Then

q(G(x)) = ρ(f(x)) = ρ(τ(a)) = q(σ(a)),

so G(x)− σ(a) ∈ Ker q = Im(σ ◦ q). That is, there is a′ ∈ A′ such that σ(ι(a′)) =
G(x)− σ(a), so

G(x) = σ(ι(a′) + a) ∈ σ(A).

b) This is the dual version of part a), i.e., obtained by reversing all the arrows. The
above proof also dualizes, as we leave it to the reader to check. �
Corollary 3.55. (Cartan-Eilenberg) For a ring R, the following are equivalent:
(i) R is hereditary.
(ii) Every free R-module is hereditary.
(iii) Every projective R-module is hereditary.
(iv) Every quotient of an injective R-module is injective.

Proof. (i) =⇒ (ii) is immediate from Corollary 3.53.
(ii) =⇒ (iii): Suppose that every free R-module is hereditary. Then if P is a
projective R-module, P is a submodule of a free module, hence a submodule of a
hereditary module, hence itself hereditary.
(iii) =⇒ (i): R is a projective R-module.
(iv) ⇐⇒ (iii): Let P ′ be a submodule of a projective R-module P ; call the
inclusion j. We will use Lemma 3.54a) : let I be an injective module, q : I → I ′ a
surjection, and f : P ′ → I ′ a module map. By assumption I ′ is injective, so there
is h : P → I ′ such that h ◦ j = f . Since P is projective, there is k : P → I such
that q ◦ k = h. Then F = k ◦ j : P ′ → I lifts f : q ◦ F = q ◦ k ◦ j = h ◦ j = f .
(iii) =⇒ (iv): Using Lemma 3.54b) we may dualize the proof of (iv) =⇒ (iii). �
Theorem 3.56. Let R be a a PID and F =

⊕
i∈I R a free R-module. Then any

submodule M of F is again free, of rank less than or equal to the rank of F .

Proof. Let N be a submodule of F . By Theorem 3.52, N ∼=
⊕

i∈I σi(N), where
each σi(N) is an R-submodule of R, i.e., an ideal of R. Since R is a PID, either
σi(N) is the zero module or is isomorphic as an R-module to R. �
Corollary 3.57. A projective module over a PID is free.

We expect that the following result is familiar to the reader as a special case of the
classification of (all) finitely generated modules over a PID, but while we are here
we may as well give a commutative algebraic proof.

Proposition 3.58. A finitely generated torsionfree module over a PID is free.

Proof. Let M be finitely generated and torsionfree. Certainly we may assume that
M is nonzero. Let X be a finite generating set for M with 0 /∈ X. Let S ⊂ X be
a maximal R-linearly independent subset. Since M is torsionfree, S is not empty.
Let N = ⟨S⟩R be the R-module spanned by S. Clearly N is free with basis S, and
we will be done if we can show N =M .
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There is an annoying technicality here: we must check that S is finite. In fact,
let n = #X, and let S be any finite R-linearly independent subset and let s = #S.
We claim that s ≤ n. To see this, we tensor with the fraction field K of R, getting

Ks ∼= S ⊗R K
ιK→ M ⊗R K ∼= Km with m ≤ n. We may conclude that s ≤ m ≤ n

provided we know that ιK is injective. And this holds because K is a flat R-module,
which we will prove later on as a special case of the flatness of localization maps.
Until then, the reader must take this part of the proof on faith.
Say S = {x1, . . . , xk}. Of course we are done already if S = X, so assume that
X \ S is nonempty. For each y ∈ X \ S there exist ry, r1, . . . , rk ∈ R, not all zero,
such that ryy = r1x1 + . . . + rkxk. Then ry ̸= 0, since otherwise by the linear
independence of S all the ri would be zero. In other words, we have shown that
for each y ∈ X \ S there exists ry ∈ R• such that ryy ∈ N . Put r :=

∏
y∈X\S ry.

Then rX ⊂ N and thus rM ⊂ N . Now consider the R-module homomorphism
L : M → M given by multiplication by r: x 7→ rx. We have just established that
L(M) ⊂ N , so we may regard L as a homomorphism M → N . Moreover, since M
is torsionfree, L is injective, and therefore L realizes M as a submodule of the free
R-module N . By Theorem 3.56 we conclude that M is free. �

Exercise 3.65: Let R be a ring with the following property: every submodule of a
finitely generated free R-module is free. Show that R is a principal ring (i.e., every
ideal of R is principal).

An R-module M is semihereditary if every finitely generated submodule is pro-
jective. Thus a Noetherian semihereditary module is hereditary. A ring R is semi-
hereditary if R is a semihereditary R-module, or equivalently every finitely gen-
erated ideal of R is projective as an R-module.

Example: A domain R is semihereditary if every finitely generated ideal is principal.
Such domains are called Bézout domains and will be studied later on.

Theorem 3.59. Let {Mi}i∈I a family of semihereditary R-modules, put M =⊕
i∈IMi, and let πi : M → Mi be projection onto the ith factor. Then, for any

finitely generated submodule N of M , N ∼=
⊕

i∈I πi(N).

Proof. The proof of Theorem 3.52 goes through verbatim. �

Theorem 3.60. Let R be a domain in which every finitely generated ideal is prin-
cipal, and let F be a free R-module. Then any finitely generated submodule N of F
is free, of rank less than or equal to the rank of F .

Proof. One can adapt the proof of Theorem 3.57, using Theorem 3.59 in place of
Theorem 3.52. �

Theorem 3.61. Let R be a domain in which every finitely generated ideal is prin-
cipal. Then every finitely generated torsionfree R-module is principal.

Proof. The argument is the same as that of Proposition 3.58 (a special case), using
Theorem 3.60 in place of Theorem 3.56. �

Theorem 3.62. (F. Albrecht) Let R be a semihereditary ring, F a free R-module,
and P a finitely generated submodule of F .
a) P is isomorphic to a finite direct sum of finitely generated ideals of R.
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b) In particular, P is a finitely generated projective module.
c) If R is a domain with fraction field K and F is free of finite rank n, then the
rank of P – i.e., dimK P ⊗R K – is at most n.

Exercise 3.66: Use Theorem 3.59 to prove Theorem 3.62.

3.9.3. Big modules.

Lemma 3.63. (Kaplansky) Let R be a ring, and let F be an R-module which is
a direct sum of countably generated submodules: say F =

⊕
λ∈ΛEλ. Then every

direct summand of F is again a direct sum of countably generated submodules.

Proof. We claim that there is an ordinal filtration {Fi}i≤α on F satisfying all of
the following properties. (i) For all i < α, Fi+1/Fi is countably generated.
(ii) If Mi = Fi ∩M, Ni = Fi ∩N , then Fi =Mi ⊕Ni.
(iii) For each i there is a subset Λi of Λ such that Fi =

⊕
λ∈Λi

Λi.

sufficiency of claim: If so, {Mi}i≤α is an ordinal filtration on M . Moreover,
sinceMi ⊂Mi+1 are both direct summands of F , Mi is a direct summand ofMi+1.
The Transfinite Dévissage Lemma (Lemma 3.50) applies to give

M ∼= Gr(M) =
⊕
i<α

Mi+1/Mi.

Moreover, for all i < α we have

Fi+1/Fi = (Mi+1 ⊕Ni+1)/(Mi ⊕Ni) ∼=Mi+1/Mi ⊕Ni+1/Ni,

which shows that each successive quotientMi+1/Mi is countably generated. There-
fore M is a direct sum of countably generated submodules.
proof of claim: We will construct the filtration by transfinite induction. The
base case and the limit ordinal induction step are forced upon us by the definition
of ordinal filtration: we must have F0 = {0}, and for any limit ordinal β ≤ α,
assuming we have defined Fi for all i < β we must have Fβ =

∪
i<β Fi.

So consider the case of a successor ordinal β = β′ + 1. Let Q1 be any Eλ which
is not contained in Fβ′ . (Otherwise we have Fβ′ = F and we may just define
Fi = F for all β ≤ i ≤ α.) Let x11, x12, . . . be a sequence of generators of Q1, and
decompose x11 into its M - and N -components. Let Q2 be the direct sum of the
finitely many Eλ which are necessary to write both of these components, and let
x21, x22, . . . be a sequence of generators for Q2. Similarly decompose x12 into M
and N components, and let Q3 be the direct sum of the finitely many Eλ needed
to write out these components, and let x31, x32, . . . be a sequence of generators
of Q3. We continue to carry out this procedure for all xij , proceeding accord-
ing to a diagonal enumeration of Z+ × Z+: i.e., x11, x12, x21, x13, x22, x31, . . .. Put
Fβ = ⟨Fβ′ , {xij}i,j∈Z+⟩R. This works! �

For a cardinal number κ, we say that a module is κ-generated if it admits a gen-
erating set of cardinality at most κ.

Exercise 3.67 (Warfield): Let κ be an infinite cardinal. Formulate and prove a ver-
sion of Lemma 3.63 in which “countably generated” is replaced by “κ-generated”.

Theorem 3.64. (Kaplansky) For a ring R, let Pc be the class of countably gen-
erated projective R-modules. For an R-module M , TFAE:
(i) M admits an ordinal filtration of class Pc.
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(ii) M is a direct sum of countably generated projective submodules.
(iii) M is projective.

Proof. (i) ⇐⇒ (ii) follows immediately from Lemma 3.50.
(ii) =⇒ (iii): any direct sum of projective modules is projective.
(iii) =⇒ (ii): If M is projective, let F be a free R-module with F = M ⊕
N . Certainly F is a direct sum of countably generated submodules (indeed, of
singly generated submodules!), so by Lemma 3.63 M is a direct sum of a family of
countably generated submodules, each of which must be projective. �

While pondering the significance of this result, one naturally inquires:

Question 2. Is there a ring R and an R-module M which is not a direct sum of
countably generated submodules?

Theorem 3.65. (Cohen-Kaplansky [CK51], Griffith) For a ring R, TFAE:
(i) Every R-module is a direct sum of cyclic (i.e., singly generated) R-modules.
(ii) Every R-module is a direct sum of finitely generated submodules.
(iii) R is an Artinian principal ideal ring.

Building on these results as well as work of Faith and Walker [FW67], R.B. Warfield
Jr. proved the following striking results.

Theorem 3.66. (Warfield [Wa]) Let R be a Noetherian ring which is not a prin-
cipal Artinian ring. Then for any cardinal κ, there exists a module M with the
following properties:
(i) M is not κ-generated, and
(ii) Any decomposition of M into the direct sum of nonzero submodules has only
finitely many direct summands.

The hypotheses of Theorem 3.66 apply for instance to the ring Z of integers and
yields, in particular, for any infinite cardinal κ a commutative group M which is
not a direct sum of κ-generated submodules.

Theorem 3.67. (Warfield [Wa]) For a ring R, TFAE:
(i) Every R-module is a direct sum of cyclic submodules.
(ii) There exists a cardinal number κ such that every R-module is a direct sum of
κ-generated submodules.
(iii) R is a principal Artinian ring.

It is natural to wonder whether Theorem 3.66 can be strengthened in the following
way: an R-moduleM is indecomposable if it cannot be expressed as a direct sum
of two nonzero submodules.

Question 3. For which rings R do there exist indecomposable R-modules of all
infinite cardinalities?

However, Question 3 has turned out to be bound up with sophisticated set-theoretic
considerations. Namely, in a 1959 paper [Fu59], L. Fuchs claimed that there exist
indecomposable commutative groups of all infinite cardinalties, thus giving an affir-
mative answer to Question 3 for the ring R = Z. However, it was later observed (by
A.L.S. Corner) that Fuchs’ argument is valid only for cardinals κ less than the first
inaccessible cardinal. Exactly what an inaccessible cardinal is we do not wish to
say, but we mention that the nonexistence of inaccessible cardinals is equiconsistent
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with the standard ZFC axioms of set theory (in other words, if the ZFC axioms
are themselves consistent, then ZFC plus the additional axiom that there are no
inaccessible cardinals remains consistent) but that nevertheless set theorists have
reasons to believe in them. See also [Fu74] in which these issues are addressed
and he proves that there is an indecomposable commutative group of any infinite
nonmeasurable cardinality (note: accessible implies nonmeasurable).

Question 4. Is there a ring R and a projective R-module M which is not a direct
sum of finitely generated submodules?

Again the answer is yes. A very elegant example was given by Kaplansky (unpub-
lished, apparently).21 Namely that R be the ring of all real-valued continuous func-
tions on the unit interval [0, 1], and let I be the ideal of functions f : [0, 1] → R which
vanish near zero: i.e., for which there exists ϵ = ϵ(f) > 0 such that f |[0,ϵ(f)] = 0.

Exercise 3.68: Show the ideal I defined above gives a projective R-module which is
not the direct sum of finitely generated submodules. (Suggestions: (i) to show that
I is projective, use the Dual Basis Lemma. (ii) A slick proof of the fact that I is
not a direct sum of finitely generated submodules can be given by Swan’s Theorem
using the contractibility of the unit interval.)

Lemma 3.68. Let M be a projective module over the local ring R, and let x ∈M .
There is a direct summand M ′ of M such that M ′ contains F and M ′ is free.

Proof. Let F be a free module with F = M ⊕ N . Choose a basis B = {ui}i∈I of
F with respect to which the element x of M has the minimal possible number of
nonzero coordinates. Write

x = r1u1 + . . .+ rnun, ri ∈ R•.

Then for all 1 ≤ i ≤ n, ri /∈
∑
j ̸=iRrj . Indeed, if say rn =

∑n−1
i=1 siri, then

x =
∑n−1
i=1 ri(ui + siun), contradicting the minimality of the chosen basis.

Now write ui = yi + zi with yi ∈M, zi ∈ N , so

(6) x =
∑
i

riui =
∑
i

riyi.

We may write

(7) yi =
n∑
j=1

cijuj + ti,

with ti a linear combination of elements of B \ {u1, . . . , un}. Substituting (7) into
(6) and projecting onto M gives the relations

ri =
n∑
j=1

cjirj ,

or equivalently, for all i,

(1− cii)ri =
∑
j ̸=i

cjirj .

If for any i and j, then one of the coefficients of rj in the above equation is a unit
of R, then dividing through by it expresses rj as an R-linear combination of the

21Warm thanks to Gjergji Zaimi for bringing this important example to my attention.
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other ri’s, which as above is impossible. Therefore, since R is local, each coefficient
must lie in the maximal ideal of R:

∀i, 1− cii ∈ m, ∀i ̸= j, cij ∈ m.

It follows that the determinant of the matrix C = (cij) is congruent to 1 modulo m,
hence invertible: if x ∈ m and 1 + x is not invertible, then 1 + x = y for y ∈ m, so
1 = y − x ∈ m, contradiction. Therefore replacing u1, . . . , un in B with y1, . . . , yn
still yields a basis of F . It follows that M ′ = ⟨y1, . . . , yn⟩R is a direct summand of
F hence also of M which is a free module containing x. �

Theorem 3.69. (Kaplansky) Let (R,m) be a local ring, and let P be any projective
R-module. Then P is free.

Proof. Step 1: Since by Theorem 3.64 P is a direct sum of countably generated
projective submodules, we may as well assume that P itself is countably generated.
Step 2: Suppose M = ⟨{xn}∞n=1⟩R is a countably generated projective module over
the local ring R. By Lemma 3.68, M = F1 ⊕M1 with F1 free containing x1. Note
thatM1 is again projective and is generated by the images {x′n}∞n=2 of the elements
xn under the natural projection map M → M1. So reasoning as above, we may
write M2 = F2⊕M2 with F2 free containing x′2. Continuing in this manner, we get

M =
∞⊕
n=1

Fn,

so M is free. �

Exercise 3.69: Give an example of a (necessarily infinitely generated) module over
a local PID which is flat but not free.

3.10. Tor and Ext.

3.10.1. Co/chain complexes.

Let R be a ring. A chain complex C• of R-modules is a family {Cn}n∈Z of
R-modules together with for all n ∈ Z, an R-module map dn : Cn → Cn−1 such
that for all n, dn−1 ◦ dn = 0. (It is often the case that Cn = 0 for all n < 0, but
this is not a required part of the definition.)

An example of a chain complex of R-modules is any long exact sequence. How-
ever, from the perspective of homology theory this is a trivial example in the follow-
ing precise sense: for any chain complex we may define its homology modules:
for all n ∈ Z, we put

Hn(C) = Ker(dn)/ Im(dn+1).

Example: Let X be any topological space. For any ring R, we have the singular
chain complex S(X)•: S(X)n = 0 for n < 0, and for n ≥ 0, S(X)n is the free
R-module with basis the set of all continuous maps ∆n → X, where ∆n is the
standard n-dimensional simplex. A certain carefully defined alternating sum of re-
strictions to faces of ∆n gives rise to a boundary map dn : S(X)n → S(X)n−1, and
the indeed the homology groups of this complex are nothing else than the singular
homology groups Hn(X,R) with coefficients in R.

If C• and D• are two chain complexes of R-modules, a homomorphism η : C• →
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D• is given by maps ηn : Cn → Dn for all n rendering the following infinite ladder
commutative:

INSERT ME!.

In this way one has evident notions of a monomorphism and epimorphisms of
chain complexes. In fact the chain complexes ofR-modules form an abelian category
and thus these notions have a general categorical meaning, but it turns out they
are equivalent to the much more concrete naive conditions: η is a monomorphism
iff each ηn is injective and is an epiomorphism iff each ηn is surjective.

In particular it makes sense to consider a short exact sequence of chain complexes:

0 −→ A• −→ B• −→ C•.

Here is the first basic theorem of homological algebra.

Theorem 3.70. Let

0 −→ A•
f−→ B•

g−→ C• −→ 0

be a short exact sequence of chain complexes of R-modules. Then for all n ∈ Z
there is a natural connecting homomorphism ∂ : Hn(C) → Hn−1(A) such that

. . .
g−→ Hn+1(C)

∂−→ Hn(A)
f→ Hn(B)

g−→ Hn(C)
∂−→ Hn−1(A)

f−→ . . .

is exact.

Proof. No way. See [W, Thm. 1.3.1]. �

Moreover, the homology modules Hn are functors: if f : C• → D• is a morphism
of chain complexes, there are induced maps on the homology groups

Hn(f) : Hn(C) → Hn(D).

Example: Let f : X → Y be a continuous map of topological spaces. Then for any
basic n-chain ∆n → X in S(X)n, composition with f gives a basic n-chain ∆n → Y
in S(Y )n and thus a homomorphism of chain complexes S(f) : S(X)• → S(Y )•.
There are induced maps on homology, namely the usual maps

Hn(f) : Hn(X,R) → Hn(Y,R).

There is an entirely parallel story for cochain complexes of R-modules, which are
exactly the same as chain complexes but with a different indexing convention: a
cochain complex C• consists of for each n ∈ Z+ an R-module Cn and a “coboundary
map” dn : Cn → Cn+1. To any cochain complex we get cohomology modules:
for all n ∈ Z, put

Hn(C) = Ker(dn)/ Im(dn−1).

The rest of the discussion proceeds in parallel to that of chain complexes (including
the realization of singular cohomology as a special case of this construction).

3.10.2. Chain homotopies.

Let C•, D• be two chain complexes, and let f, g : C• → D• be two homomor-
phisms between them. We say that f and g are chain homotopic if there exist
for all n ∈ Z+ R-module maps sn : Cn → Dn+1 such that

fn − gn = dn+1sn + sn−1dn.

The sequence {sn} is called a chain homotopy from f to g.
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Exercise 3.70: Show that chain homotopy is an equivalence relation on morphisms
from C• to D•.

What on earth is going on here? Again topology is a good motivating example: we
say that two maps f, g : X → Y are homotopic if there exists a continuous map
F : X × [0, 1] → Y such that for all x ∈ X, F (x, 0) = f(x) and F (x, 1) = g(x).
This is an equivalence relation and is generally denoted by f ∼ g. We then define
two topological spaces to be homotopy equivalent if there exist maps φ : X → Y
and ψ : Y → X such that

ψ ◦ φ ∼ 1X , φ ◦ ψ ∼ 1Y .

(We say that φ : X → Y is a homotopy equivalence if there exists a map ψ as
above.) E.g. a space is contractible if it is homotopy equivalent to a single point.

One of the basic tenets of algebraic topology is that it aspires to study topo-
logical spaces only up to homotopy equivalence. That is, all of the fundamen-
tal invariants of spaces should be the same on homotopy equivalent spaces and
homomorphisms between these invariants induced by homotopic maps should be
identical. Especially, if f : X → Y is a homotopy equivalence, the induced maps
Hn(f) : Hn(X) → Hn(Y ) should be isomorphisms. In fact, if f, g : X → Y are ho-
motopic, the induced morphisms S(f), S(g) : S(X)• → S(Y )• are chain homotopic.
So the following result ensures that the induced maps on homology are equal.

Proposition 3.71. If f, g : C• → D• are chain homotopic, then for all n ∈ Z,
Hn(f) = Hn(g).

Proof. Replacing f and g by f − g and 0, it is enough to assume that there exists
a chain homotopy s from f to the zero map – i.e., for all n fn = dn+1sn + sn−1dn
– and show that f induces the zero map on homology. So take x ∈ Hn(C). Then
x is represented by an element of Cn lying in the kernel of dn, so

fn(x) = dn+1snx+ sn−1dnx = dn+1snx+ 0 = dn+1snx.

Thus fn(x) lies in the image of dn+1Dn+1 → Dn so represents 0 ∈ Hn(D). �
3.10.3. Resolutions.

Let M be an R-module. A left resolution of M is an infinite sequence {Ai}∞i=0

of R-modules, for all n ∈ N an R-module map An+1 → An and an R-module map
A0 →M such that the sequence

. . . −→ An+1 → An −→ . . . −→ A1 −→ A0 −→M −→ 0

is exact. By abuse of notation, we often speak of “the resolution A•. Dually, a
right resolution of M is an infinite sequence {Bi}∞i=0 of R-modules, for all n ∈ N
an R-module map Bn → Bn+1 and an R-module map M → B0 such that the
sequence

0 −→M −→ B0 −→ B1 −→ . . . −→ Bn −→ Bn1 . . .

is exact. We speak of “the resolution B•”.

A projective resolution of M is a left resolution A• such that each An is projec-
tive. A injective resolution of M is a right resolution B• such that each Bn is
injective. (Exactly why we are not interested in left injective resolutions and right
projective resolutions will shortly become clear.)
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Theorem 3.72. (Existence of resolutions) Let M be an R-module.
a) Since every R-module is the quotient of a projective (indeed, of a free) module,
M admits a projective resolution.
b) Since every R-module can be embedded in an injective module, M admits an
injective resolution.

Proof. a) Choose a projective module P0, a surjection ϵ0 : P0 → M , and put
M0 = ker(ϵ0). Inductively, given Mn−1, we choose a projective module Pn, a
surjection ϵn : Pn → Mn−1, and put Mn = ker(ϵ0). As our map dn : Pn → Pn−1

we take the composite

Pn
ϵn−→Mn−1

ker(ϵn−1)−→ Pn−1.

We claim that the resulting sequence

. . . −→ Pn+1 → Pn −→ . . . −→ P1 −→ P0 −→M −→ 0

is exact. It is certainly exact at M . If x ∈ P0 and ϵ0(x) = 0, then x0 ∈ M0.
Lifting x0 via the surjection ϵ1 to x1 ∈ P1, we find d1(x1) = ϵ1(x1) = x0, so
ker(ϵ0) ⊂ Im(d1). Conversely, since d1 factors through ker(ϵ0), it is clear that
Im(d1) ⊂ ker(ϵ0). Exactly the same argument verifies exactness at Pn for each
n > 0, so P• is a projective resolution of M .
b) We leave the proof of this part to the reader as an exercise, with the following
comforting remark: the notion of an injective module is obtained from the notion
of a projective module by “reversing all the arrows”, which is the same relationship
that a left resolution bears to a right resolution. Therefore it should be possible to
prove part b) simply by holding up the proof of part a) to a mirror. (And it is.) �
Theorem 3.73. (Comparison theorem for resolutions)
a) Let P• be a projective resolution of the R-module M . Let N be another R-module
and f−1 : M → N be an R-module map. Then for every left resolution A• of N
there exists a homomorphism η from the chain complex P• → M → 0 to the chain
complex A• → N → 0. Moreover η is unique up to chain homotopy.
b) Let E• be an injective resolution of the R-module N . LetM be another R-module
and f ′ : M → N be an R-module map. Then for every right resolution A• of M
there exists a homomorphism η from the chain complex 0 →M → A• to the chain
complex 0 → N → E•. Moreover η is unique up to chain homotopy.

Proof. No way. See [W, Thms. 2.2.6 and 2.3.7]. �
Exercise 3.71: Let F be a covariant additive functor on the category of R-modules.
Let C• and D• be two chain complexes of R-modueles and f, g : C• → D• be two
homomorphisms between them.
a) Show that FC• and FD• are chain complexes and there are induced chain
homomorphisms Ff, Fg : FC• → FD•.
b) Show that if f and g are chain homotopic, so are Ff and Fg. (Suggestion: Show
that it makes sense to apply F to a chain homotopy s.)

3.10.4. Derived functors.

Let us consider covariant, additive functors F from the category of R-modules to it-
self. (Recall that additive means that for anyM,N , the induced map Hom(M,N) →
Hom(F (M), F (N)) is a homomorphism of commutative groups.)
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Exercise 3.72: For any additive functor F and any chain complex C• of R-modules,
FC• is again a chain complex. (Hint: the point here is that an additive functor
takes the zero homomorphism to the zero homomorphism.)

Thus if
0 −→M1 −→M2 −→M3 −→ 0

is a short exact sequence of R-modules, then

0 −→ F (M1) −→ F (M2) −→ F (M3) −→ 0

is necessarily a complex of modules but not necessarily exact: it may have nonzero
homology.

Example: For any ring R, the functor F (M) = M ⊕ M is exact. For R = Z
the functor F (M) = M ⊗ Z/2Z is not exact: for instance it takes the short exact
sequence

0 −→ Z ·2−→ Z −→ Z/2Z −→ 0

to the complex

0 −→ Z/2Z ·2−→ Z/2Z → Z/2Z −→ 0,

but multiplication by 2 on Z/2Z is not an injection.

Although an exact functor is a thing of beauty and usefulness to all, it turns out
that from a homological algebraic point of view, it is the functors which are “half
exact” which are more interesting: they give rise to co/homology theories.

An additive functor F is right exact if for any exact sequence of the form

M1 −→M2 −→M3 −→ 0,

the induced sequence

FM1 −→ FM2 −→ FM3 −→ 0

is again exact. Note that this much was true for the functor F (M) = M ⊗ Z/2Z,
at least for the sequence we chose above. In fact this holds for all tensor products.

Proposition 3.74. For any ring R and any R-module N , the functor F (M) =
M ⊗R N is right exact.

Exercise 3.73: Prove Proposition 3.74.

We have also the dual notion of an additive functor F being left exact: for any
exact sequence of the form

0 →M1 →M2 →M3,

the induced sequence
0 → FM1 → FM2 → FM3

is again exact.

We now wish to press our luck a bit by extending this definition to contravari-
ant functors. Here a little abstraction actually makes me less confused, so I will
pass it along to you: we say that a contravariant functor F from the abelian cate-
gory C to the abelian category D is left exact (resp. right exact) if the associated
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covariant functor F opp : Copp → D is left exact (resp. right exact). Concretely, a
contravariant functor F from R-modules to R-modules is left exact if every exact
sequence of the form

M1 →M2 →M3 → 0

is transformed to an exact sequence

0 → FM3 → FM2 → FM1.

(And similarly for right exact contravariant functors.)

Proposition 3.75. Let R be a ring and X be an R-module.
a) The functor M 7→ Hom(X,M) is covariant and left exact.
(Recall that it is exact iff X if projective.)
b) The functor M 7→ Hom(M,X) is contravariant and left exact.
(Recall that it is exact iff X is injective.)

Exercise 3.74: Prove Proposition 3.75.

Let F be a right exact additive functor on the category of R-modules. We will
define a sequence {LnF}n∈N of functors, with L0F = F , called the left derived
functors of F . The idea here is that the left-derived functors quantify the failure
of F to be exact.

Let M be an R-module. We define all the functors LnM at once, as follows:
first we choose any projective resolution P• →M → 0 of M . Second we take away
the M , getting a complex P• which is exact except at P0, i.e.,

H0(P ) = P0/ Im(P1 → P0) = P0/Ker(P0 →M) =M,

∀n > 0,Hn(P ) = 0.

Third we apply the functor F getting a new complex FP•. And finally, we take
homology of this new complex, defining

(LnF )(M) := Hn(FP•).

Now there is (exactly?) one thing which is relatively clear at this point.

Proposition 3.76. We have (L0F )(M) = FM .

Proof. Since P1 → P0 → M → 0 is exact and F is right exact, FP1 → FP0 →
FM → 0 is exact, hence

Im(FP1 → FP0) = Ker(FP0 → FM).

Thus

(L0F )(M) = H0(FP•) = Ker(FP0 → 0)/ Im(FP1 → FP0)

= FP0/Ker(FP0 → FM) = FM.

�

Before saying anything else about the left derived functors LnF , there is an obvious
point to be addressed: how do we know they are well-defined? On the face of it,
they seem to depend upon the chosen projective resolution P• of M , which is very
far from being unique. To address this point we need to bring in the Comparison
Theorem for Resolutions (Theorem 3.73). Namely, let P ′

• → M → 0 be any other
projective resolution of M . By Theorem 3.73, there exists a homomorphism of
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chain complexes η : P• → P ′
• which is unique up to chain homotopy. Interchanging

the roles of P ′
• and P•, we get a homomorphism η′ : P ′

• → P•. Moreover, the
composition η′ ◦ η is a homomorphism from P• to itself, so by the uniqueness η′ ◦ η
is chain homotopic to the identity map on P•. Similarly η ◦ η′ is chain homotopic
to the identity map on P ′

•, so that η is a chain homotopy equivalence. By Exercise
3.71, Fη : FP• → FP ′

• is a chain homotopy equivalence, and therefore the induced
maps on homology Hn(Fη) : Hn(FP•) → Hn(FP

′
•) are isomorphisms. Thus we

have shown that two different choices of projective resolutions forM lead to canon-
ically isomorphic modules (LnF )(M).

Exercise 3.75: Suppose M is projective. Show that for any right exact functor
F and all n > 0, (LnF )(M) = 0.

The next important result shows that a short exact sequence of R-modules induces
a long exact sequence involving the left-derived functors and certain connecting
homomorphisms (which we have not defined and will not define here).

Theorem 3.77. Let

(8) 0 −→M1 −→M2 −→M3 −→ 0

be a short exact sequence of R-modules, and let F be any left exact functor on the
category of R-modules. Then:
a) There is a long exact sequence
(9)

. . .→ (L2F )(M3)
∂→ (L1F )(M1) → (L1F )(M2) → (L1F )(M3)

∂→ FM1 → FM2 → FM3 → 0.

b) The above construction is functorial in the following sense: if 0 −→ N1 −→
N2 −→ N3 −→ 0 is another short exact sequence of R-modules and we have maps
Mi → Ni making a “short commutative ladder”, then there is an induced “long
commutative latter” with top row the long exact sequence associated to the first
short exact sequence and the bottom row the long exact sequence associated to the
second short exact sequence.

Proof. No way. See [W, Thm. 2.4.6]. �

Remark: One says that (9) is the long exact homology sequence associated to
the short exact sequence (8).

Now, dually, if F is a right exact functor on the category of R-modules, we may
define right derived functors RnF . Namely, for an R-module M , first choose
an injective resolution 0 → M → E•, then take M away to get a cochain com-
plex E•, then apply F to get a cochain complex FE•, and then finally define
(RnF )(M) = Hn(FE•). In this case, a short exact sequence of modules (8) in-
duces a long exact cohomology sequence
(10)

0 → FM1 → FM2 → FM3
∂→ (R1F )(M1) → (R1F )(M2) → (R1F )(M3)

∂→ (R2F )(M1) . . .

Exercise 3.76: Suppose M is injective. Show that for any left exact functor F and
all n > 0, (RnF )(M) = 0.
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3.10.5. Tor.

Let M,N be R-modules, and let F : N → M ⊗R N be the functor “tensor with
M”. By X.X F is right exact so has left derived functors (LnF ). By definition, for
all n ∈ N,

Torn(M,N) := (LnF )(N).

Now un/fortunately the situation is even a little richer than the general case of
left-derived functors discussed above. Namely, the tensor product is really a bi-
functor: i.e., a functor inM as well as in N , additive and covariant in each variable
separately. So suppose we took the right-derived functors of M 7→ M ⊗R N and
applied them to M : this would give us Torn(N,M). So it is natural to ask: how
does Torn(M,N) compare to Torn(N,M)? Since for n = 0 we have that M ⊗R N
is canonically isomorphic to N ⊗R M , it is natural to hope that the Tor functors
are symmetric. And indeed this turns out to be the case.

Theorem 3.78. (Balancing Tor) For any R-modules M and N and all n ≥ 0,
there are natural isomorphisms Torn(M,N) = Torn(N,M).

Proof. No way. See [W, Thm. 2.7.2]. �

Exercise 3.77: In order to use the Universal Coefficient Theorem (for homology) in
algebraic topology, it is necessary to know the values of Tor1(M,N) for any two
finitely generated Z-modules M and N .
a) Show that for any m,n ∈ Z+, Tor1(Z/mZ,Z/nZ) ∼= Z/ gcd(m,n)Z.
b) Show that for all Z-modules N , Tor1(Z, N) = 0.
c) Explain how the structure theorem for finitely generated Z-modules reduces the
problem of computation of Tor1(M,N) for any finitely generated M and N to the
two special cases done in parts a) and b).

Exercise 3.78: Show that the tor functors commute with direct limits: for all
n ∈ N, any directed system {Mi}i∈I of R-modules M and any R-module N we
have a canonical isomorphism

Torn(lim−→
i

Mi, N) → lim−→
i

Torn(Mi, N).

(Suggestion: the case n = 0 is Proposition 3.9. Use this to show the general case
by brute force: i.e., take a projective resolution of N and track these isomorphisms
through the definition of Torn.)

3.10.6. Ext.

Nota Bene: At the present time, we do not use the Ext functors for anything
in these notes. However they certainly do appear in commutative algebra and else-
where. Moreover, having taken the trouble (and it was some trouble!) to set up
enough machinery to define the Tor functors, we might as well follow it up with the
parallel disucssion of the Ext functors.

Let M,N be R-modules, and let F : N → Hom(M,N). By Proposition X.X,
F is covariant and left exact. By definition, for all n ∈ N,

Extn(M,N) = (RnF )(N).
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But again, we have an embarrassment of riches: why didn’t we define the Ext
functors as the right-derived functors of the contravariant left exact functor G :
N → Hom(N,M)? Again, we can do this.

Theorem 3.79. (Balancing Ext) Let M and N be R-modules. Define functors
FM : N → Hom(M,N) and GN :M → Hom(M,N). Then for all n ≥ 0,

(RnFM )(N) = (RnGN )(M).

Proof. No way. See [W, Thm. 2.7.6]. �

Exercise 3.79: In order to use the Universal Coefficient Theorem (for cohomology)
in algebraic topology, it is necessary to know the values of Ext1(M,N) for any two
finitely generated Z-modules M and N . Compute them. (Hint: as for the analgous
problem with Tor, one reduces immediately to the case in which M and N are
cyclic.)

Theorem 3.80. a) For an R-module P , the following are equivalent:
(i) P is projective.
(ii) Ext1R(P,B) = 0 for all R-modules B.
b) For an R-module E, the following are equivalent:
(i) E is injective.
(ii) Ext1R(A,E) = 0 for all R-modules A.

Theorem 3.81. a) For a ring R, the following are equivalent:
(i) R is hereditary.
(ii) Every R-module M admits a projective resolution of the form 0 → P1 → P0 →
M → 0.
(iii) For all R-modules M and N and all n ≥ 2, ExtnR(M,N) = 0.
b) The conditions of part a) imply:
(iv) For all R-modules M and N and all n ≥ 2, TornR(M,N) = 0.
c) If R is Noetherian, then (iv) =⇒ (i) and thus all are equivalent.

Proof. CITE. �

Exercise: Use Corollary 3.56 to show (i) =⇒ (ii) =⇒ (iii).

Theorem 3.82. For R-modules A and C, the following are equivalent:
(i) Every short exact sequence 0 → A→ B →→ C → 0 splits.
(ii) Ext1R(C,A) = 0.

Proof. See e.g. [Rot, Thm. 7.31]. �

3.11. More on flat modules.

Theorem 3.83. (Tensorial Criterion for Flatness) For an R-module M , TFAE:
(i) M is flat.
(ii) For every finitely generated ideal I of R the canonical map I ⊗R M → IM is
an isomorphism.

Proof. Fist note that the canonical map I ⊗RM → IM is always a surjection.
(i) =⇒ (ii): if M is flat, then since I ↪→ R, I ⊗R M ↪→ R ⊗R M = M , so

I ⊗RM
∼→ IM .

(ii) =⇒ (i): Every ideal of R is the direct limit of its finitely generated subideals,
so it follows from Proposition 3.9 and the exactness of direct limits that I⊗M →M
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is injective for all ideals I. Moreover, if N is an R-module and N ′ ⊂ N is an R-
submodule, then since N is the direct limit of submodule N ′ + F with F finitely
generated, to show that N ′ ⊗M → N ⊗M is injective we may assume

N = N ′ + ⟨ω1, . . . , ωn⟩R.

We now proceed by dévissage: putting Ni = N ′ + ⟨ω1, . . . , ωi⟩R, it is enough to
show injectivity at each step of the chain

N ′ ⊗M → N1 ⊗M → . . .→ N ⊗M,

and further simplifying, it is enough to show that if N = N ′+Rω, then N ′⊗M ↪→
N ⊗M . Let I be the “conductor ideal of N/N ′”, i.e., I = {x ∈ R | xω ∈ N ′}, so
that we get a short exact sequence of R-modules

0 → N ′ → N → R/I → 0

which gives rise to a long exact homology sequence

. . .→ TorR1 (M,R/I) → N ′ ⊗M → N ⊗M →M/IM → 0.

Thus it suffices to prove TorR1 (M,R/I) = 0. For this we consider the homology
sequence associated to

0 → I → R→ R/I → 0,

namely

. . .→ TorR1 (M,R) = 0 → TorR1 (M/R/I) → I ⊗M →M → . . . ,

and from the injectivity of I ⊗M →M we deduce TorR1 (M,R/I) = 0. �

Theorem 3.84. (Homological Criterion for Flatness) For an R-moduleM , TFAE:
(i) M is flat.

(ii) For every R-module N all i > 0, TorRi (M,N) = 0.

(ii′) For every R-module N , TorR1 (M,N) = 0.

(iii) For every finitely generated ideal I of R, TorR1 (M,R/I) = 0.

Proof. (i) =⇒ (ii): This is a statement about projective resolutions, but given
that it is just about the most basic possible one. Namely, let L• → N → 0 be a
projective resolution of N . Then

. . .→ Ln ⊗M → Ln−1 ⊗M → . . .→ L0 ⊗M

is exact, so TorRi (M,N) = 0 for all i > 0.
(ii) =⇒ (ii′) and (ii′) =⇒ (iii) are both immediate.
(iii) =⇒ (i): For each finitely generated ideal I of R, the short exat sequence

0 → I → R→ R/I → 0

of R-modules induces a long exact sequence in homology, which ends

. . .→ TorR1 (M,R/I) = 0 → I ⊗M →M →M/IM → 0,

i.e., the map I ⊗M → M is injective and thus induces an isomorphism I ⊗M
∼→

IM . Using the Tensorial Criterion for Flatness (Theorem 3.83), we conclude M is
flat. �

Corollary 3.85. (Direct limits preserve flatness) Let R be a ring and {Mi}i∈I a
directed system of flat R-modules. Then M = lim−→Mi is a flat R-module.
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Proof. For every R-module N , we have

TorR1 (lim−→Mi, N) ∼= TorR1 (N, lim−→Mi) = lim−→TorR1 (N,Mi) ∼= lim−→TorR1 (Mi, N) = lim−→ 0 = 0.

Now apply the Homological Criterion for Flatness. �

Corollary 3.86. For a domain R, TFAE:
(i) Every finitely generated torsionfree R-module is flat.
(ii) Every torsionfree R-module is flat.

Proof. Every submodule of a torsionfree R-module is torsionfree, and every R-
module is the direct limit of its finitely generated submodules. So the result follows
immediately from Proposition 3.85. �

Corollary 3.87. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of
R-modules, with M ′′ flat. Then M ′ is flat iff M is flat.

Exercise 3.80: Use the Homological Criterion of Flatness to prove Corollary 3.87.

Exercise 3.81: In a short exact sequence of R-modules as in Corollary 3.87, if
M ′ and M are flat, must M ′′ be flat?

Now recall that a finitely generated torsion free module over a PID is free (Propo-
sition 3.58). From this we deduce:

Corollary 3.88. A module over a PID is flat iff it is torsionfree.

Exercise 3.82: Let R be a domain and M a torsion R-module. Show that for all
R-modules N and all n ≥ 0, Torn(M,N) is a torsion R-module.

Theorem 3.89. Let R be a PID and let M,N be R-modules.
a) For all n ≥ 2, Torn(M,N) = 0.
b) Tor1(M,N) is a torsion R-module.

Proof. a) Choose a free module F0 and a surjection d0 : F0 → N . By X.X, F1 =
Ker(d0) is free, so we get a finite free resolution of N:

0 → F1 → F0 → N → 0.

Therefore we certainly have Torn(M,N) for all M and all n ≥ 2.
b) Let {Mi}i∈I be the direct system of all finitely generated submodules of M . As
above, we have M = lim−→Mi, so

Tor1(M,N) = Tor1(lim−→Mi, N)) = lim−→Tor1(Mi, N).

By Corollary 3.88, eachMi which is torsionfree is flat, hence Tor1(Mi, N) = 0. Thus
the only possible contribution to lim−→Tor1(Mi, N) comes from torsion modules Mi,

and by Exercise X.X, Mi torsion implies Tor1(Mi, N) torsion. Thus Tor1(M,N) is
a direct limit of torsion modules, hence itself a torsion module. �

Theorem 3.90. (Equational Criterion for Flatness) Let M be an R-module.
a) Suppose M is flat, and that we are given r, n ∈ Z+, a matrix A = (aij) ∈
Mr×n(R) and elements x1, ldots, xn ∈M such that

∀1 ≤ i ≤ r,
∑
j

aijxj = 0.
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Then there exists s ∈ Z+, bjk ∈ R and yk ∈M (for 1 ≤ j ≤ n and 1 ≤ k ≤ s) such
that

∀i, k,
∑
j

aijbj = 0

and

∀j, xj =
∑
j

bjkyk = 0.

Thus the solutions in a flat module of a system of linear equations with R-coefficients
can be expressed as a linear combination of solutions of the system in R.
b) Conversely, if the above conditions hold for a single equation (i.e., with r = 1),
then M is a flat R-module.

Proof. a) Let φ : Rn → Rr be the linear map corresponding to multiplication by
the matrix A and let φM : Mn → Mr be the same for M , so that φM = φ ⊗ 1M .
Let K = Kerφ. Since M is flat, tensoring with M preserves exact sequences, thus
the sequence

K ⊗RM
ι⊗1→ Mn φ→Mr

is exact. By our hypothesis we have φM (x1, . . . , xn) = 0, so that we may write

(x1, . . . , xn) = (ι⊗ 1)

(
s∑

k=1

βk ⊗ yk

)
with βk ∈ K and yk ∈ M . Writing out each βk as an element (b1k, . . . , bnk) ∈ Rn

gives the desired conclusion.
b) We will use the Tensorial Criterion for Flatness to show that M is flat. Let
I = ⟨a1, . . . , an⟩ be a finitely generated ideal of R. We may write an arbitrary
element z of I ⊗M as

∑n
i=1 ai ⊗mi with mi ∈M . Let z =

∑n
i=1 aimi denote the

image of z in IM ⊂ M . We want to show that z = 0 implies z = 0, so suppose
that

∑
i aimi = 0. By hypothesis, there exist bij ∈ R and yj ∈M such that for all

j,
∑
i aibij = 0 and for all i, mi =

∑
j bijyj . Thus

z =
∑
i

ai ⊗mi =
∑
i

∑
j

aibij ⊗ yj =
∑
j

(∑
i

aibij

)
⊗ yj =

∑
j

0⊗ yj = 0.

�

As an application, we can now improve Theorem 3.49 by weakening the hypothesis
of “finite presentation” to the simpler one of “finite generation”.

Theorem 3.91. Let M be a finitely generated flat module over the local ring
(R,m). Then for all n ∈ Z+, x1, . . . , xn are elements of M such that the images in
R/m are R/m-linearly independent, then x1, . . . , xn are R-linearly independent.

Proof. We go by induction on n. Suppose first that n = 1, in which case it is
sufficient to show that a1 ∈ R, a1x1 ̸= 0 implies a1 = 0. By the Equational
Criterion for Flatness, there exist b1, . . . , bs ∈ R such that abi = 0 for all i and
x1 ∈

∑
i biM . By assumption, x1 does not lie in mM , so that for some i we must

have bi ∈ R×, and then abi = 0 implies a = 0.
Now suppose n > 1, and let a1, . . . , an ∈ R are such that a1x1 + . . .+ anxn = 0.

Again using the Equational Criterion for Flatness, there are bij ∈ R and y1, . . . , ys ∈
M such that for all j,

∑
aibij = 0 and xi =

∑
bijyj . Since the set of generators
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is minimal, by Nakayama’s Lemma their images in M/mM must be R/m-linearly
independent. In particular xn /∈ mM , so that at least one bnj is a unit. It follows

that there exist c1, . . . , cn−1 ∈ R such that an =
∑n−1
i=1 aici. Therefore

a1(x1 + c1xn) + . . .+ an−1(xn−1 + cn−1xn) = 0.

The images in M/mM of the n − 1 elements x1 + c1xn, . . . , xn−1 + cn−1xn are
R/m-linearly independent, so by induction a1 = . . . = an−1 = 0. Thus an = 0. �
Theorem 3.92. For a finitely generated module M over a local ring R, TFAE:
(i) M is free.
(ii) M is projective.
(iii) M is flat.

Proof. For any module over any ring we have (i) =⇒ (ii) =⇒ (iii). So suppose that
M is a finitely generated flat module over the local ring (R,m). Let (x1, . . . , xn) be
a set of R-module generators forM of minimal cardinality. By Nakayama’s Lemma
the images of x1, . . . , xn in R/m are R/m-linearly independent, and then Theorem
3.91 implies that x1, . . . , xn is a basis for M as an R-module. �
A ring R is called absolutely flat if every R-module is flat.

Exercise 3.83: Show that any quotient of an absolutely flat ring is absolutely flat.

Proposition 3.93. For a ring R, TFAE:
(i) R is absolutely flat.
(ii) For every principal ideal I of R, I2 = I.
(iii) Every finitely generated ideal of R is a direct summand of R.

Proof. (i) =⇒ (ii): Assume R is absolutely flat, and let I = (x) be a principal
ideal. Tensoring the natural inclusion (x) → R with R/(x), we get a an injection
(x) ⊗R R/(x) → R/(x). But this map sends x ⊗ r 7→ xr + (x) = (x), so it is
identically zero. Therefore its injectivity implies that 0 = (x)⊗RR/(x) ∼= (x)/(x2),
so (x) = (x2).

(ii) =⇒ (iii): Let x ∈ R. Then x = ax2 for some a ∈ R, so putting e = ax we
have e2 = a2x2 = a(ax2) = ax = e, so e is idempotent, and (e) = (x). In general,
for any two idempotents e, f , we have ⟨e, f⟩ = (e + f − ef). Hence every finitely
generated ideal is principal, generated by an idempotent element, and thus a direct
summand.

(iii) =⇒ (i): Let M be an R-module, and let I be any finitely generated ideal
of R. By assumption, we may choose J such that R = I ⊕ J . Therefore J is
projective, so Tor1(R/I,M) = Tor1(J,M) = 0. By the Homological Criterion for
Flatness, M is flat. �
Exercise 3.84: Show that any (finite or infinite) product of absolutely flat rings is
absolutely flat.

The following striking result came relatively late in the game: it is due indepen-
dently to Govorov [Gov65] and Lazard [Laz64].

Theorem 3.94. (Govorov-Lazard) For a module M over a ring R, TFAE:
(i) M is flat.
(ii) There exists a directed family {Fi}i∈I of finitely generated free submodules of
M such that M = lim−→Fi.
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Proof. (i) =⇒ (ii): Suppose M = lim−→Fi is a direct limit of free modules. Then in
particular M is a direct limit of flat modules, so by Corollary 3.85 M is flat.
(ii) =⇒ (i): see [Eis, Thm. A6.6]. �

3.11.1. Flat Base Change.

Proposition 3.95. (Stability of flatness under base change) Let M be a flat R-
module, and f : R→ S a ring homomorphism. Then S ⊗RM is a flat S-module.

Exercise 3.85: Prove Proposition 3.95.

Exercise 3.86: Show that the tensor product of flat R-modules is a flat R-module.

Exercise 3.87: Let R be a nonzero commutative ring, and n,m ∈ N.
a) Show that Rm ∼= Rn iff m = n.
b) Suppose that φ : Rm → Rn is a surjective R-module map. Show that m ≥ n.
c)22 Suppose that φ : Rm → Rn is an injective R-module map. Show that m ≤ n.
d) Find a noncommutative ring R for which part a) fails.

Theorem 3.96. (Hom commutes with flat base change) Let S be a flat R-algebra
and M,N R-modules with M finitely presented. Then the canonical map

ΦM : S ⊗R HomR(M,N) → HomS(M ⊗R S,N ⊗R S)

induced by (s, f) 7→ (m⊗ t) 7→ f(m)⊗ st is an isomorphism.

Proof. (Hochster) It is immediate that ΦR is an isomorphism and that ΦM1⊕M2 =
ΦM1 ⊕ΦM2 , and thus ΦM is an isomorphism whenM is finitely generated free. For
finitely presented M , there is an exact sequence

H → G→M → 0

with H and G finitely generated free modules. Now we have the following commu-
tative diagram:

0 −→ 0

S ⊗R HomR(M,N)
θM−→ HomS(M ⊗R S,N ⊗R S)

S ⊗R HomR(G,N)
θG−→ HomS(G⊗R S,N ⊗R S)

S ⊗R HomR(H,N)
θH−→ HomS(H ⊗R S,N ⊗R S).

Note that the right column is obtained by first applying the exact functor A 7→
A ⊗R S and then applying the right exact cofunctor U 7→ HomS(U,N ⊗R S), so
it is exact. Similarly, the left column is obtained by first applying the right exact
cofunctor A 7→ HomR(A,N) and then applying the exact (since R is flat) functor
A 7→ A⊗R S, so is exact. Since G and H are finitely generated free, θG and θH are
isomorphisms, and a diagram chase shows that θM is an isomorphism. �

22This is actually quite challenging.
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3.12. Faithful flatness.

Proposition 3.97. For an R-module M , TFAE:
(i) For a sequence

(11) N1
α−→ N2

β−→ N3

of left R-modules to be exact it is necessary and sufficient that

(12) M ⊗R N1
A−→M ⊗R N2

B−→M ⊗R N3

be exact.
(ii) M is flat and for all nonzero R-modules N , M ⊗R N ̸= 0.
(iii) M is flat and for all nonzero R-module maps u : N → N ′,

1M ⊗ u :M ⊗R N →M ⊗R N ′ is not zero .

(iv) M is flat and for every m ∈ MaxSpecR, mM (M .
(v) M is flat and for every p ∈ SpecR, pM (M .
A module satisfying these equivalent conditions is faithfully flat.

Proof. (i) =⇒ (ii): Certainly (i) implies that M is flat. Moreover, if N is a
nonzero R-module such that M ⊗ N = 0, then 0 → N → 0 is not exact but its
tensor product with M is exact, contradicting (i).
(ii) =⇒ (iii): Let I = Im(u); then M ⊗ I = Im(1M ⊗ u). So assuming (ii) and
that I ̸= 0, we conclude Im(1M ⊗ u) ̸= 0.
(iii) =⇒ (i): Assume (iii). Then, since M is flat, if (11) is exact, so is (12).
Conversely, suppose (12) is exact, and put I = Im(α), K = ker(β). Then B ◦ A =
1M ⊗ (β ◦ α) = 0, so β ◦ α = 0, or in other words, I ⊂ K. We may therefore form
the exact sequence

0 → I → K → K/I → 0,

and tensoring with the flat module M gives an exact sequence

0 →M ⊗ I →M ⊗K →M ⊗K/I → 0.

But M ⊗K =M ⊗ I by hypothesis, so K/I = 0 and I = K.
(ii) =⇒ (iv): Let m ∈ MaxSpecR. Then R/m is a nonzero R-module, so by (ii)
so is M ⊗R/m =M/mM , i.e., mM (M .
(iv) =⇒ (ii): Assume (iv) holds. Then, since every proper ideal is contained in
a maximal ideal, we have moreover that for all proper ideals I of R, IM ( M , or
equivalently M ⊗ (R/I) ̸= 0. But the modules of the form R/I as I ranges over
all proper ideals of R are precisely all the cyclic (a.k.a. monogenic) R-modules, up
to isomorphism. Now if N is any nonzero R-module, choose 0 ̸= x ∈ M and let
N ′ = ⟨x⟩ by the cyclic submodule spanned by x. It follows that M ⊗N ′ ̸= 0. Since
M is flat, N ′ ↪→ N implies M ⊗N ′ ↪→M ⊗N , so M ⊗N ̸= 0.
(iv) ⇐⇒ (v): this follows immediately from the proofs of the last two implications,
as we leave it to the reader to check. �

Exercise 3.88: Show that (iv) ⇐⇒ (v) in Proposition 3.97.

Corollary 3.98. Let M be a faithfully flat and u : N → N ′ an R-module map.
Then:
a) u is injective iff 1M ⊗ u :M ⊗N →M ′ ⊗N is injective.
b) u is surjective iff 1M ⊗ u is surjective.
c) u is an isomorphism iff 1M ⊗ u is an isomorphism.
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Exercise 3.89: Deduce Corollary 3.98 from Proposition 3.97.

Exercise 3.90: Use each of the criteria of Proposition 3.97 to show that the (flat)
Z-module Q is not faithfully flat.

Exercise 3.91: Show that a faithfully flat module is faithful and flat, and that
– unfortunately! – a flat, faithful module need not be faithfully flat.

Exercise 3.92: Show that a nonzero free module is faithfully flat but that a nonzero
(even finitely generated) projective module need not be.

Exercise 3.93: Let {Mi}i∈I be a family of flat R-modules, and put M =
⊕

i∈IMi.
a) Suppose that for some i, Mi is faithfully flat. Show that M is faithfully flat.
b) Give an example where no Mi is faithfully flat yet M is faithfully flat.

Proposition 3.99. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of
R-modules. Suppose M ′ and M ′′ are flat and that at least one is faithfully flat.
Then M is faithfully flat.

Proof. By Proposition 3.87, M is flat. Now let N be any R-module. Since M ′′ is
flat, Tor1(M

′′, N) = 0 so

0 →M ′ ⊗N →M ⊗N →M ′′ ⊗N → 0

is exact. Thus if M ⊗N = 0 then M ′ ⊗N = M ′′ ⊗N = 0. Since one of M ′,M ′′

is faithfully flat, by criterion (ii) of Proposition 3.97 we have N = 0, and then that
same criterion shows that M is faithfully flat. �
By a faithfully flat R-algebra, we mean a ring S equipped with a ring homo-
morphism R→ S making S into a faithfully flat R-module.

Proposition 3.100. Let f : R→ S be a ring map and M an R-module. Then:
M is faithfully flat iff M ⊗R S is faithfully flat.

Proof. The key fact is that for any S-module N , we have

(M ⊗R S)⊗S N ∼=R M ⊗R N.
With this, the proof becomes straightforward and is left to the reader. �
Exercise 3.94: Complete the proof of Proposition 3.100.

Theorem 3.101. For a flat algebra f : R→ S, TFAE:
(i) S is faithfully flat over R.
(ii) f∗ : MaxSpecS → MaxSpecR is surjective.
(iii) f∗ : SpecS → SpecR is surjective.

Proof. (i) ⇐⇒ (ii): Let m be any maximal ideal of R. Then mS ( S holds iff
there is a maximal ideal M of S containing mS iff f∗(M) = m. The equivalence
now follows from criterion (iv) of Proposition 3.97.
(i) =⇒ (iii): Let p ∈ SpecR, and let k(p) be the fraction field of the domain
R/p. By faithful flatness, S ⊗R k(p) is a nonzero k(p)-algebra so has a prime

ideal P. Consider the composite map h : R
f→ S

g→ S ⊗R k(p). We claim that
g∗ : Spec(S ⊗R k(p)) → SpecR has image precisely {p}. The proof of this result, a
spectral description of the fiber of the morphism f : R→ S over p, will have to
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wait until we have developed the theory of localization in §7.3. Assuming it for now,
we get that g∗(P) is a prime ideal of SpecS such that f∗g∗(P) = (g ◦ f)∗(P) = p,
so f∗ : SpecS → SpecR is surjective.
(iii) =⇒ (ii): Let m ∈ MaxSpecR ⊂ SpecR. By assumption, the set of prime
ideals P of S such that f∗P = m is nonempty. Moreover the union of any chain of
prime ideals pulling back to m is again a prime ideal pulling back to p, so by Zorn’s
Lemma there exists an ideal M which is maximal with respect to the property that
f∗M = m. Suppose M is not maximal and let M′ be a maximal ideal properly
containing M. Then by construction f∗(M′) properly contains the maximal ideal
m of R, i.e., f∗(M)′) = R, contradicting the fact that prime ideals pull back to
prime ideals. So M is indeed maximal in S. �

Proposition 3.102. Let f : R ↪→ S be a ring extension such that S is a faithfully
flat R-module, and let M be an R-module. Then:
a) M is finitely generated iff M ⊗R S is finitely generated.
b) M is finitely presented iff M ⊗R S is finitely presented.

Proof. Note first that the properties of finite generation and finite presentation are
preserved by arbitrary base change f : R→ S. So it suffices to prove that ifM⊗RS
is finitely generated (resp. finitely presented), then M is finitely generated (resp.
finitely presented).
a) SinceM⊗RS is finitely generated over S, it has a finite set of S-module generators
of the form xi ⊗ 1. Let N = ⟨x1, . . . , xn⟩R and ι : N ↪→M the canonical injection.
Then ιS : N ⊗R S →M ⊗R S is an isomorphism, so by faithful flatness ι was itself
an isomorphism and thus M = ⟨x1, . . . , xn⟩ is finitely generated.
b) By part a), M is finitely generated over R, so let u : Rn → M be a surjection.
Since M ⊗R S is finitely presented, the kernel of uS : Sn → M ⊗R S is finitely
generated over S. Since by flatness keruS = (keru)S , part a) shows that keru is
finitely generated and thus that M is finitely presented. �

Lemma 3.103. Let f : R→ S be a ring map, and let M,N be R-modules.
a) There is a canonical S-module map

ω : HomR(M,N)⊗R S → HomS(M ⊗R S,N ⊗R S)

such that for all u ∈ HomR(M,N), ω(u⊗ 1) = u⊗ 1B.
b) If S is flat over R and M is finitely generated, then ω is injective.
c) If S is flat over R and M is finitely presented, then ω is an isomorphism.

Exercise 3.95: Prove Lemma 3.103. (It is not difficult, really, but it is somewhat
technical. Feel free to consult [B, p. 23] for the details.)

Theorem 3.104. (Faithfully flat descent for projective modules) Let f : R ↪→ S
be a faithfully flat ring extension, and let P be an R-module. Then P is finitely
generated and projective iff P ⊗R S is finitely generated and projective.

Proof. Begin, once again the implication P finitely generated projective implies
P ⊗R S is finitely generated projective holds for any base change. So suppose
P ⊗R S is finitely generated projective. Then P ⊗R S is finitely presented, so by
Proposition 3.102, M is finitely presented. It remains to show thatM is projective.

Let v :M → N be a surjection of R-modules. We wish to show that the natural
map HomR(P,M) → HomR(P,N) is surjective. Because of the faithful flatness



COMMUTATIVE ALGEBRA 81

of S/R, it is sufficient to show that HomR(P,M) ⊗R S → HomR(P,N) ⊗R S is
surjective, and by Lemma 3.103 this holds iff

HomS(P ⊗R S,M ⊗R S) → HomS(P ⊗R S,N ⊗R S)

is surjective. But this latter map is surjective because M ⊗R S → N ⊗R S is
surjective and the S-module P ⊗R S is projective by assumption. �

4. First Properties of Ideals in a Commutative Ring

4.1. Introducing maximal and prime ideals.

Consider again the set I(R) of all ideals of R, partially ordered by inclusion. The
maximal element is the ideal R itself, and the minimal element is the ideal (0).

In general our attitude to the ideal R of R is as follows: although we must grudg-
ingly admit its existence – otherwise, given a subset S of R it would be in general
a difficult question to tell whether the ideal ⟨S⟩ generated by S “exists” (i.e., is
proper) or not – nevertheless we regard it as exceptional and try to ignore it as
much as possible. Because of this we define an ideal I of R to be maximal if it is
maximal among all proper ideals of R, i.e., I ( R and there does not exist J such
that I ( J ( R. That this is a more interesting concept than the literally maximal
ideal R of R is indicated by the following result.

Proposition 4.1. For an ideal I of R, TFAE:
(i) I is maximal.
(ii) R/I is a field.

Proof. Indeed, R/I is a field iff it has precisely two ideals, I and R, which by
the Correspondence Theorem says precisely that there is no proper ideal strictly
containing I. �

Example: In R = Z, the maximal ideals are those of the form (p) for p a prime
number. The quotient Z/pZ is the finite field of order p.

Does every ring have a maximal ideal? With a single (trivial) exception, the answer
is yes, assuming – as we must, in order to develop the theory as it is used in other
branches of mathematics – suitable transfinite tools.

Proposition 4.2. Let R be a nonzero ring and I a proper ideal of R. Then there
exists a maximal ideal of R containing I.

Proof. Consider the set S of all proper ideals of R containing I, partially ordered
by inclusion. Since I ∈ S, S is nonempty. Moreover the union of a chain of ideals
is an ideal, and the union of a chain of proper ideals is proper (for if 1 were in the
union, it would have to lie in one of the ideals of the chain). Therefore by Zorn’s
Lemma we are entitled to a maximal element of S, which is indeed a maximal ideal
of R that contains I. �

Corollary 4.3. A nonzero ring R contains at least one maximal ideal.

Proof. Apply Proposition 4.2 with I = (0). �
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Remark: The zero ring has the disquieting property of having no maximal ideals.

Remark: The appeal to Zorn’s Lemma cannot be avoided, in the sense that Corol-
lary 4.3 implies the Axiom of Choice (AC). In fact, W. Hodges has shown that the
axioms of ZF set theory together with the statement that every UFD (see §15) has
a maximal ideal already implies AC [Ho79].

A proper ideal I of a ring R is prime if xy ∈ I implies x ∈ I or y ∈ I.

Exercise 4.1: Let p be a prime ideal of R.
a) Suppose x1, . . . , xn are elements of R such that x1 · · ·xn ∈ p. Then xi ∈ p for
some at least one i.
b) In particular, for x ∈ R and n ∈ Z+ we have xn ∈ p, then x ∈ p.

Proposition 4.4. Let f : R → S be a homomorphism of rings, and let J be an
ideal of S.
a) Put f∗(J) := f−1(J) = {x ∈ R | f(x) ∈ J}. Then f∗(J) is an ideal of R.
b) If J is a prime ideal, so is f∗(J).

Exercise 4.2: Prove Proposition 4.4.

Proposition 4.5. For a commutative ring R, TFAE:
(i) If x, y ∈ R are such that xy = 0, then x = 0 or y = 0.
(ii) If 0 ̸= x ∈ R and y, z ∈ R are such that xy = xz, then y = z.
A ring satisfying either of these two properties is called an integral domain.

Proof. Assume (i), and consider xy = xz with x ̸= 0. We have x(y − z) = 0, and
since x ̸= 0, (i) implies y − z = 0, i.e., y = z. Assuming (ii) suppose xy = 0 with
x ̸= 0. Then xy = 0 = x · 0, so applying cancellation we get y = 0. �
A zero divisor in a ring R is an element x such that there exists 0 ̸= y ∈ R with
xy = 0. (In particular 0 is a zero divisor, albeit not a very interesting one.) So
property (i) expresses that there are no zero divisors other than 0 itself. Property
(ii) makes sense in any commutative monoid and is called cancellation.

Remark: The terminology “integral domain” is motivated by the fact the integers
Z satisfy (i) and (ii) of Proposition 4.5, so any ring which satisfies these properties
can be viewed as a sort of ring of “generalized integers.” The analogy is apt – in
particular, later on we shall build from any integral domain a field of fractions in
exactly the same way that the rational numbers are constructed from the integers
– but the terminology is quite awkward, as the reader will come to appreciate.
First of all the word “integral” is logically superfluous – we do not have any other
definition of a domain, and indeed often we will use domain as a more succinct
synonym for “integral domain”. So why not just “domain”? One problem is that,
being a property of an object and not an object itself, we would prefer an English
word which is an adjective rather than a noun. So why not just “integral”? The
problem is that the word “integral” will be used later for something else (not a
property of a single ring but a property of an extension ring S of R). It would cer-
tainly be confusing to use the term integral for these two different concepts. Ideal
would probably be to reserve the term “integral” for a ring without zero divisors,
give some other name to integral extensions (integrally algebraic?), and elimi-
nate the use of “domain” from terms like “principal ideal domain.” (This would be
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consistent with geometric terminology: an affine scheme SpecR is called integral
iff R is an integral domain.) However, the terminology is too entrenched for this to
be a feasible solution.

Proposition 4.6. For an ideal I in a ring R, TFAE:
(i) I is prime.
(ii) R/I is an integral domain.

Exercise 4.3: Prove Proposition 4.6.

Corollary 4.7. A maximal ideal is prime.

Proof. If I is maximal, R/I is a field, hence an integral domain, so I is prime. �

Corollary 4.7 is the first instance of a somewhat mysterious meta-principle in ideal
theory: for some property P of ideals in a ring, it is very often the case that an
ideal which is maximal with respect to the satisfaction of property P (i.e., is not
strictly contained in any other ideal satisfying P) must be prime. In the above, we
saw this with P = “proper”. Here is another instance:

Proposition 4.8. (Multiplicative Avoidance) Let R be a ring and S ⊂ R. Suppose:
1 is in S; 0 is not in S; and S is closed under multiplication: S · S ⊂ S.
Let IS be the set of ideals of R which are disjoint from S. Then:
a) IS is nonempty;.
b) Every element of IS is contained in a maximal element of IS.
c) Every maximal element of IS is prime.

Proof. a) (0) ∈ IS . b) Let I ∈ IS . Consider the subposet PI of IS consisting of
ideals which contain I. Since I ∈ PI , PI is nonempty; moreover, any chain in PI
has an upper bound, namely the union of all of its elements. Therefore by Zorn’s
Lemma, PI has a maximal element, which is clearly also a maximal element of IS .
c) Let I be a maximal element of IS ; suppose that x, y ∈ R are such that xy ∈ I.
If x is not in I, then ⟨I, x⟩ ) I and therefore contains an element s1 of S, say

s1 = i1 + ax.

Similarly, if y is not in I, then we get an element s2 of S of the form

s2 = i2 + by.

But then

s1s2 = i1i2 + (by)i1 + (ax)i2 + (ab)xy ∈ I ∩ S,
a contradiction. �

In fact Corollary 4.7 is precisely the special case S = {1} of Proposition 4.8.

If I and J are ideals of R, we define the product IJ to be the ideal generated
by all elements of the form xy with x ∈ I, y ∈ J . Every element of IJ is of the
form

∑n
i=1 xiyi with x1, . . . , xn ∈ I, y1, . . . , yn ∈ J .

The following simple result will be used many times in the sequel.

Proposition 4.9. Let p be a prime ideal and I1, . . . , In be ideals of a ring R. If
p ⊃ I1 · · · In, then p ⊃ Ii for at least one i.
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Proof. An easy induction argument reduces us to the case of n = 2. So suppose
for a contradiction that p ⊃ I1I2 but there exists x ∈ I1 \ p and y ∈ I2 \ p. Then
xy ∈ I1I2 ⊂ p; since p is prime we must have x ∈ p or y ∈ p, contradiction. �
Exercise 4.4: Show that Proposition 4.9 characterizes prime ideals, in the sense that
if p is any ideal such that for all ideals I, J of R, p ⊂ IJ implies p ⊂ I or p ⊂ JJ ,
then p is a prime ideal.

For an ideal I and n ∈ Z+, we denote the n-fold product of I with itself by In.

Corollary 4.10. If p is a prime ideal and I is any ideal, then p ⊃ In =⇒ p ⊃ I.

4.2. Radicals.

An element x of a ring R is nilpotent if xn = 0 for some n ∈ Z+. Obviously
0 is a nilpotent element; a ring in which 0 is the only nilpotent element is called
reduced. An ideal I of R is nil if every element of I is nilpotent. An ideal I is
nilpotent if there exists n ∈ Z+ such that In = (0).

Proposition 4.11. Let I be an ideal of a ring R.
a) If I is nilpotent, then I is a nil ideal.
b) If I is finitely generated and nil, then I is nilpotent.

Proof. Part a) is immediate from the definition, as we invite the reader to check.
Suppose I = ⟨a1, . . . , an⟩R. Since I is nil, for each i, 1 ≤ i ≤ r, there exists ni

such that ani
i = 0. Let N = n1 + . . .+ nr. We claim IN = 0. Indeed, an arbirary

element of I is of the form x1a1+ . . .+xnan. Raising this element to the nth power
yields a sum of monomials of the form xj11 · · ·xjrr a

j1
1 · · · ajrr , where

∑r
i=1 ji = N . If

we had for all i that ji < ni, then certainly j1 + . . .+ jr < N . So for at least one i
we have ji ≥ ni and thus xjii = 0; so every monomial term equals zero. �
Exercise 4.5: Find a ring R and an ideal I of R which is nil but not nilpotent.

The nilradical N of R is the set of all nilpotent elements of R.

Proposition 4.12. Let R be a ring.
a) The nilradical N is a nil ideal of R.
b) The quotient R/N is reduced.
c) The map q : R→ R/N is universal for maps from R into a reduced ring.
d) The nilradical is the intersection of all prime ideals of R.

Proof. a) In establishing that N is an ideal, the only property which is not abso-
lutely immediate is its closure under addition. Suppose xm = 0 = yn. Then every
term in the binomial expansion of (x + y)m+n−1 is an integer times xiym+n−1−i

for 0 ≤ i ≤ m + n. Here either i ≥ m so xiym+n−1−i = 0 · ym+n−i = 0, or
m + n − 1 − i ≥ n, so xiym+n−i−i = xi · 0 = 0, so x + y is nilpotent and N is an
ideal, and by definintion a nil ideal.
b) Let r + N be a nilpotent element of R/N , so there exists n ∈ Z+ such that
rn ∈ N . But this means there exists m ∈ Z+ such that 0 = (rn)m = rnm, and thus
r itself is a nilpotent element.
c) In plainer terms: if S is a reduced ring and f : R→ S is a ring homomorphism,
then there exists a unique homomorphism f : R/N → S such that f = f ◦q. Given
this, the proof is straightforward, and we leave it to the reader.
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d) Suppose x is a nilpotent element of R, i.e., ∃n ∈ Z+ such that xn = 0. If p is
a prime ideal, then since 0 = x · · ·x ∈ p, we conclude x ∈ p: this shows N ⊂

∩
p.

Conversely, suppose x is not nilpotent. Then the set Sx := {xn | n ∈ N} satisfies
(i) and (ii) of Proposition 4.8, so we may apply that result to get a prime ideal p
which is disjoint from Sx, hence not containing x. �

Exercise 4.6: Prove Proposition 4.12c).

An ideal I of a ring R is radical if for all x ∈ R, n ∈ Z+, xn ∈ I implies x ∈ I.

Exercise 4.7: a) Show that a prime ideal is radical.
b) Exhibit a radical ideal which is not prime.
c) Find all radical ideals in R = Z.
d) Show that R is reduced iff (0) is a radical ideal.
e) Let {Ii} be a set of radical ideals in a ring R. Show I =

∩
i Ii is a radical ideal.

For any ideal I of R, we define the radical of I:

r(I) = {x ∈ R | ∃n ∈ Z+ xn ∈ I}.

Proposition 4.13. Let R be a commutative ring and I, J ideals of R.
a) r(I) is the intersection of all prime ideals containing I, and is a radical ideal.
b) (i) I ⊂ r(I), (ii) r(r(I)) = r(I); (iii) I ⊂ J =⇒ r(I) ⊂ r(J).
c) r(IJ) = r(I ∩ J) = r(I) ∩ r(J).
d) r(I + J) = r(r(I) + r(J)).
e) r(I) = R ⇐⇒ I = R.
f) For all n ∈ Z+, r(In) = r(I).
g) If R is Noetherian and r(I) ⊃ J , then there is n ∈ Z+ such that I ⊃ Jn.

Proof. First we make the following observation: under the canonical homomor-
phism q : R→ R/I, r(I) = q−1(N (R/I)). By Proposition 4.4a), r(I) is an ideal.
a) Since N is the intersection of all prime ideals of R/I, r(I) is the intersection of
all prime ideals containing I, which is, by Exericse X.Xe), a radical ideal.
b) (i) is immediate from the definition, and (ii) and (iii) follow from the character-
ization of r(I) as the intersection of all radical ideals containing I.
c) Since IJ ⊂ I ∩ J , r(IJ) ⊂ r(I ∩ J). If xn ∈ I ∩ J , then x2n = xnxn ∈ IJ , so
x ∈ r(IJ); therefore r(IJ) = r(I ∩ J). Since I ∩ J is a subset of both I and J ,
r(I ∩ J) ⊂ r(I) ∩ r(J). Conversely, if x ∈ r(I) ∩ r(J), then there exist m and n
such that xm ∈ I and xn ∈ J , so xmn ∈ I ∩ J and x ∈ r(I ∩ J).
d) Since I + J ⊂ r(I) + r(J), r(I + J) ⊂ r(r(I) + r(J)). A general element of
r(I)+r(J) is of the form x+y, where xm ∈ I and yn ∈ J . Then (x+y)m+n ∈ I+J ,
so x+ y ∈ r(I + J).
e) Evidently r(R) = R. Conversely, if r(I) = R, then there exists n ∈ Z+ such that
1 = 1n ∈ I.
f) By part a), r(In) is the intersection of all prime ideals p ⊃ In. But by Corollary
4.10, a prime contains In iff it contains I, so r(In) = r(I).
g) Replacing R with R/I we may assume I = 0. Then J is a nil ideal in a Noetherian
ring, so it is nilpotent. �

Remark: Proposition 4.13b) asserts that the mapping I 7→ r(I) is a closure op-
erator on the lattice I(R) of ideals of R.
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Exercise 4.8: Let I be an ideal in the ring R. Show that r(I) is the intersec-
tion of all prime ideals containing I. (Hint: reduce to the case I = 0.)

An ideal p of a ring R is primary if every zero divisor of R/p is nilpotent. Equiva-
lently, xy ∈ p, x /∈ p =⇒ yn ∈ p for some n ∈ Z+. More on primary ideals in §X.X.

We also define the Jacobson radical J(R) as the intersection of all maximal
ideals of R. Evidently we have N ⊂ J(R).

Proposition 4.14. Let R be a ring. An element x of R lies in the Jacobson radical
J(R) iff 1− xy ∈ R× for all y ∈ R.

Proof. Suppose x lies in every maximal ideal of R. If there exists y such that 1−xy
is not a unit of R, then 1−xy lies in some maximal ideal m, and then x ∈ m implies
xy ∈ m and then 1 = (1− xy) + xy ∈ m, a contradiction. Conversely, suppose that
there is a maximal ideal m of R which does not contain x. Then ⟨m, x⟩ = R, so
1 = m+ xy for some m ∈ m and y ∈ R, and thus 1− xy is not a unit. �

Proposition 4.15. Let J be an ideal of R contained in the Jacobson radical, and
let φ : R→ R/J be the natural map.
a) For all x ∈ R, x ∈ R× ⇐⇒ φ(x) ∈ (R/J)×: φ is unit-faithful.
b) The map φ× : R× → (R/J)× is surjective.

Proof. a) For any homomorphism of rings φ : R → S, if x ∈ R× then there is
y ∈ R with xy = 1, so 1 = φ(1) = φ(xy) = φ(x)φ(y), and thus φ(x) ∈ S×. For the
converse we assume S = R/J and let x ∈ R be such that φ(x) ∈ (R/J)×. Then
there is y ∈ R such that xy−1 ∈ J . Thus for each maximal ideal m of R, xy−1 ∈ m.
It follows that x /∈ m, for otherwise xy ∈ m and thus 1 = xy − (xy − 1) ∈ m. So x
is not contained in any maximal ideal and thus x ∈ R×.
b) This is immediate from part a): in fact we’ve shown that every preimage under
φ of a unit in R/J is a unit in R. �

Remark: It is not yet clear why we have defined these two different notions of
“radical.” Neither is it so easy to explain in advance, but nevertheless let us make
a few remarks. First, the Jacobson radical plays a very important role in the the-
ory of noncommutative rings, especially that of finite dimensional algebras over a
field. (Indeed, a finite dimensional k-algebra is semisimple – i.e., a direct product
of algebras without nontrivial two-sided ideals – iff its Jacobson radical is zero.
In the special case of commutative algebras this comes down to the simpler result
that a finite dimensional commutative k-algebra is reduced iff it is a product of
fields.) Note that one important place in commutative algebra in which the Jacob-
son radical J(R) appears – albeit not by name, because of the necessity of putting
the results in a fixed linear order – is in the statement of Nakayama’s Lemma. In
general, the defining condition of nil(R) – i.e., as the intersection of all prime ideals
of R – together with the fact that the radical of an arbitrary ideal I corresponds
to the nilradical of R/I, makes the nilradical more widely useful in commutative
algebra (or so it seems to the author of these notes). It is also important to consider
when the nil and Jacobson radicals of a ring coincide. A ring R for which every
homomorphic image S has nil(S) = J(S) is called a Jacobson ring; such rings
will be studied in detail in §12.
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4.3. Comaximal ideals.

Recall that two ideals I and J in a ring R are comaximal if I + J = R. A
family of ideals in R is pairwise comaximal if any two members of the family are
comaximal.

Exercise 4.9: Let I1, . . . , In be pairwise comaximal. Show:
∑n
j=1

∏
i ̸=j Ii = R.

Proposition 4.16. Let I and J be ideals in R. If r(I) and r(J) are comaximal,
so are I and J .

Proof. Apply Proposition 4.13d) and then Proposition 4.13e) to r(I) + r(J) = R:

R = r(r(I) + r(J)) = r(I + J) = I + J.

�
Recall that a set {Ii} of ideals of R is pairwise comaximal if for each i ̸= j,
Ii+ Ij = R. An immediate corollary of Proposition 4.16 is that if {Ii} are pairwise
comaximal and {ni} are any positive integers, then {Ini

i } are pairwise comaximal.

Lemma 4.17. Let K1, . . . ,Kn be pairwise comaximal ideals in the ring R. Then
K1 · · ·Kn =

∩n
i=1Ki.

Proof. We go by induction on n: n = 1 is trivial and n = 2 is Lemma 3.17b).
Suppose the theorem is true for any family of n− 1 pairwise comaximal ideals. Let
K ′ =

∩n
i=2; by induction, K ′ = K2 · · ·Kn. By Lemma 3.17c), K1 +K ′ = R, so by

the n = 2 case
∩n
i=1Ki = K1 ∩K ′ = K1K

′ = K1 · · ·Kn. �
Theorem 4.18. (Chinese Remainder Theorem, or “CRT”) Let R be a ring and
I1, . . . , In a finite set of pairwise comaximal ideals. Consider the natural map

Φ : R→
n∏
i=1

R/Ii,

x 7→ (x + Ii)
n
i=1. Then Φ is surjective with kernel I1 · · · In, so that there is an

induced isomorphism

(13) Φ : R/(I1 · · · In)
∼→

n∏
i=1

R/Ii.

Proof. The map Φ is well-defined and has kernel
∩n
i=1 Ii. Since the Ii’s are pairwise

comaximal, Lemma 4.17 gives
∩n
i=1 Ii = I1 · · · In. So it remains to show that Φ is

surjective. We prove this by induction on n, the case n = 1 being trivial. So we
may assume that the natural map Φ′ : R → R′ :=

∏n−1
i=1 R/Ii is surjective, with

kernel I ′ := I1 · · · In−1. Let (r′, s) be any element of R′ × R/In. By assumption,
there exists r ∈ R such that Φ′(r + I ′) = r′. Let s be any element of R mapping
to s ∈ R/In. By Lemma 3.15, I ′ + In = R, so there exist x ∈ I ′, y ∈ In such
that s − r = x + y. Then Φ′(r + x) = r′, and r + x ≡ r + x + y ≡ s (mod In), so
Φ(r + x) = (r′, s) and Φ is surjective. �
Remark: In the classical case R = Z, we can write Ii = (ni) and then we are
trying to prove – under the assumption that the ni’s are coprime in pairs in
the sense of elementary number theory – that the injective ring homomorphism
Z/(n1 · · ·nn) → Z/n1 × · · · × Z/nn is an isomorphism. But both sides are finite
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rings of order n1 · · ·nn, so since the map is an injection it must be an isomorphism!
Nevertheless the usual proof of CRT in elementary number theory is much closer
to the one we gave in the general case: in particular, it is constructive.

The following modulization of CRT is sometimes useful.

Theorem 4.19. (Module-theoretic CRT) Let R be a ring, I1, . . . , In a finite set
of pairwise comaximal ideals, and let M be an R-module. Then (I1 · · · In)M =∩r
i=1 IiM , and there is an induced R-moduleisomorphism

(14) ΦM :M/(I1 · · · Ir)M →
n∏
i=1

M/IiM.

Proof. Indeed ΦM = Φ⊗RM , so it is an isomorphism. Thus
r∩
i=1

IiM = ker

(
M →

n∏
i=1

M/IiM

)
= (I1 · · · Ir)M.

�
Exercise 4.10: Let R be a ring and I1, . . . , In any finite sequence of ideals. Consider
the map Φ : R→

∏n
i=1R/Ii as in CRT.

a) Show that Φ is surjective only if the {Ii} are pairwise comaximal.
b) Show that Φ is injective iff

∩n
i=1 Ii = (0).

Exercise 4.11:
a) Let G be a finite commutative group with exactly one element z of order 2. Show
that

∑
x∈G x = z.

b) Let G be a finite commutative group which does not have exactly one element
of order 2. Show that

∑
x∈G x = 0.

c) Prove the following result of Gauss (a generalization of Wilson’s Theorem):
let N ∈ Z+, and put

P (N) =
∏

x∈(Z/NZ)×
x.

Then: P (N) = ±1, and the minus sign holds iff N = 4 or is of the form pm or 2pm

for an odd prime p and m ∈ Z+.
d) For a generalization to the case of (ZK/A)×, where A is an ideal in the ring ZK
of integers of a number field K, see [Da09]. Can you extend Dalawat’s results to
the function field case?

Exercise 4.12: Let K be any field, and put R = K[t].
a) Let n1, . . . , nk be a sequence of non-negative integers and {x1, . . . , xk} a k-
element subset of K. For 1 ≤ i ≤ k, let ci0, . . . , cini be a finite sequence of ni + 1
elements of k (not necessarily distinct). By applying the Chinese Remainder The-
orem, show that there is a polynomial P (t) such that for 1 ≤ i ≤ k and 0 ≤ j ≤ ni
we have P (j)(xi) = cij , where P

(j)(xi) denotes the jth “formal” derivative of P
evaluated at xi. Indeed, find all such polynomials; what can be said about the least
degree of such a polynomial?
b) Use the proof of the Chinese Remainder Theorem to give an explicit formula for
such a polynomial P .
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Exercise 4.13: Let (M, ·) be a monoid and k a field. A character on M with
values in k is a homomorphism of monoids from M to the multiplicative group k×

of k. Each character lies in the k-vector space kM of all functions from M to k.
a) (Dedekind) Show that any finite set of characters is k-linearly independent.
b) Give an example of an infinite set of characters which is k-linearly dependent.

Exercise 4.14: Show that for a ring R, TFAE:
(i) R has finitely many maximal ideals.23

(ii) The quotient of R by its Jacobson radical J(R) is a finite product of fields.

We now give a commutative algebraic version of Euclid’s proof of the infinitude
of prime numbers. A special case for domains appears in [K, § 1.1, Exc. 8]. The
case in which R is infinite and R× is finite has appeared on an algebra qualifying
exam at UGA; the appearance of this unusually interesting and challenging prob-
lem on a qual was remarked to me by both D. Lorenzini and B. Cook. I learned
the slightly stronger version presented here from W.G. Dubuque.

Theorem 4.20. If R is infinite and #R > #R×, then MaxSpecR is infinite.

Proof. Since R is not the zero ring, it has at least one maximal ideal m1. We proceed
by induction: given maximal idealsm1, . . . ,mn, we construct another maximal ideal.
Step 1: Suppose J + 1 ⊂ R×. Then

#J = #(J + 1) ≤ #R× < #R.

Moreover, by Proposition 4.14, J is contained in the Jacobson radical of R and
thus by Proposition 4.15, R× → (R/J)× is surjective. It follows that #(R/J)× ≤
#R× < #R: by the Chinese remainder Theorem, R/J ∼=

∏n
i=1R/mi, hence there

is an injection (R/mi)
× → (R/J)×. Putting the last two sentences together we

conclude #(R/mi)
× < #R, and thus, since R/mi is a field and R is infinite,

#R/mi = #R/mi + 1 < #R. Finally this gives

#R = #J ·#R/J = #J ·
n∏
i=1

#R/mi < (#R)n+1 = #R,

a contradiction.
Step 2: So J+1 ̸⊂ R×. Let x ∈ J+1\R×, and let m be a maximal ideal containing
x. Then for all 1 ≤ i ≤ n, x− 1 ∈ J ⊂ mi, so 1 = x+ (1− x) ∈ m+mi. It follows
that m ̸⊆ mi, so it’s a new maximal ideal.

�

4.4. Local rings.

Proposition 4.21. For a ring R, TFAE:
(i) There is exactly one maximal ideal m.
(ii) The set R \R× of nonunits forms a subgroup of (R,+).
(iii) The set R \R× is a maximal ideal.
A ring satisfying these equivalent conditions is called a local ring.

23Such rings are typically called semilocal. I am not a fan of the terminology – it seems to

either suggest that R has one half a maximal ideal (whatever that could mean) or two maximal
ideals. But it is well entrenched, and I will not campaign to change it.
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Proof. Since R× = R \
∪

m m, the union extending over all maximal ideals of R, it
follows that if there is only one maximal ideal m then m = R \ R×. This shows
(i) =⇒ (iii) and certainly (iii) =⇒ (ii). Conversely, since the set of nonunits of
a ring is a union of ideals, it is closed under multiplication by all elements of the
ring. Thus it is itself an ideal iff it is an additive subgroup: (ii) =⇒ (iii). The
implication (iii) implies (i) is very similar and left to the reader. �

Warning: In many older texts, a ring with a unique maximal ideal is called “quasi-
local” and a local ring is a Noetherian quasi-local ring. This is not our convention.

Local rings (especially Noetherian local rings) play a vital role in commutative al-
gebra: the property of having a single maximal ideal simplifies many ideal-theoretic
considerations, and many ring theoretic considerations can be reduced to the study
of local rings (via a process called, logically enough, localization: see §X).

A field is certainly a local ring. The following simple result builds on this triv-
ial observation to give some further examples of local rings:

Proposition 4.22. Let I be an ideal in the ring R.
a) If rad(I) is maximal, then R/I is a local ring.
b) In particular, if m is a maximal ideal and n ∈ Z+ then R/mn is a local ring.

Proof. a) We know that rad(I) =
∩

p⊃I p, so if rad(I) = m is maximal it must be

the only prime ideal containing I. Therefore, by correspondence R/I is a local ring.
(In fact it is a ring with a unique prime ideal.)

b) By Proposition 4.13f), r(mn) = r(m) = m, so part a) applies. �

So, for instance, for any prime number p, Z/(pk) is a local ring, whose maximal
ideal is generated by p. It is easy to see (using, e.g. the Chinese Remainder Theo-
rem) that conversely, if Z/(n) is a local ring then n is a prime power.

Example: The ring Zp of p-adic integers is a local ring. For any field k, the ring
k[[t]] of formal power series with coefficients in k is a local ring. Both of these rings
are also PIDs. A ring which is a local PID is called a discrete valuation ring;
these especially simple and important rings will be studied in detail later.

Exercise 4.16: Show that a local ring is connected, i.e., e2 = e =⇒ e ∈ {0, 1}.

4.5. The Prime Ideal Principle of Lam and Reyes.

A recurrent meta-principle in commutative algebra is that if F is a naturally given
family of ideals in commutative ring R, then it is often the case that every maximal
element of F is prime. In this section we review some known examples, give some
further classical ones, and then discuss a beautiful theorem of T.-Y. Lam and M.
Reyes which gives a general criterion for this phemenon to occur.

Recall that for a ring R, I(R) is the monoid of ideals of R under multiplication.
For any F ⊂ I(R), let MaxF denote the maximal elements of F (to be sure, this
means the elements of F which are not properly contained in any other element of
F , not the elements of F which are not contained in any other proper ideal!). We
say that F is an MP family if MaxF ⊂ SpecR.
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We have already seen two instances of this principle.

First, by Exercise 1.24 / Corollary 4.7, the set F of all proper ideals of R is an MP
family: in other words, maximal ideals are prime.

Second, if S ⊂ R is multiplicatively closed subset containing 1 but not 0, then
the set of all ideals which are disjoint from S is an MP family (Multiplicative
Avoidance).24

Later we will naturally encounter the following further instances of MP families:

Third, the set of of all ideals which are not principal is an MP family. (Thus
if in a ring every prime ideal is principal, every ideal is principal.)

Fourth, the set of all ideals which are not finitely generated is an MP family. (Thus
if in a ring every prime ideal is finitely generated, every ideal is finitely generated.)

The challenge is to come up with a common explanation and proof for all of these
examples. One first observation is that there is a complementation phenomenon in
play here: for F ⊂ I(R), put F ′ = I(R)\F . Then in each of the last three cases it
is most natural to view the MP family as F ′ for a suitable F : in the second case, F
is the set of ideals meeting S; in the third case, F is the set of all principal ideals;
in the fourth case F is the set of all finitely generated ideals.

Let us also recall that for I, J ∈ I(R),

(I : J) = {x ∈ R | xJ ⊂ I}.

For a, b ∈ R, we write (I : b) for (I : Rb) and (a : J) for (aR : J).

Exercise 4.17: For ideals I, J in R, show that

(15) (I : J)⟨I, J⟩ ⊆ I.

Exercise 4.18: Let R be a PID, and let a, b ∈ R•. We will use the fact that a and b
can be uniquely (up to units) factored into products of principal prime ideals, say

a = πa11 · · ·πarr , b = πb11 · · ·πbrr , ai, bi ∈ N.

a) Show ⟨a, b⟩ = ⟨πmin(a1,b1)
1 · · ·πmin(ar,br)

r ⟩.
b) Show (a : b) = ⟨πmax(a1−b1,0)

1 · · ·πmax(ar−br,0)
r ⟩.

c) Show ⟨a⟩ ⊂ (a : b) and (of course!) ⟨a⟩ ⊂ ⟨a, b⟩.
d) Show that (a : b)⟨a, b⟩ = ⟨a⟩.
e) Suppose that R has at least two nonzero prime ideals. Find a, b ∈ R• such that:
(i) (a : b) ⊂ ⟨a, b⟩.
(ii) ⟨a, b⟩ ⊂ (a : b).
(iii) Neither of (a : b), ⟨a, b⟩ contains the other.

24Recall that this is direct genealization of the first example: take S = {1}.



92 PETE L. CLARK

Here is the key definition: F ⊂ I(R) is an Oka family if for all x ∈ R and
I ∈ I(R), if ⟨I, x⟩, (I : x) ∈ F , then I ∈ F .

Proposition 4.23. For a ring R, each of the following families F ⊂ I(R) is Oka:
(i) The set of all ideals meeting a multiplicatively closed subset S ⊂ R.
(ii) The set of all principal ideals.
(iii) The set of all finitely generated ideals.

Proof. (i) Let x ∈ R, I ∈ I(R) be such that ⟨I, x⟩, (I : x) ∈ F . Then there are
s1, s2 ∈ S, i1, i2 ∈ I and a, b ∈ R such that

s1 = ai1 + bx, s2x = i2.

Then
s2s2 = as2i1 + bs2x = as2i1 + bi2 ∈ S ∩ I.

(ii) Suppose (I : x) = ⟨a⟩ and ⟨I, x⟩ = ⟨b⟩. Exercise 4.18d) gives us a useful hint:
we will show I = ⟨ab⟩. Let i ∈ I; since I ⊂ ⟨I, x⟩, i = αb for some α ∈ R. Thus
α⟨b⟩ ⊂= α⟨I, c⟩ ⊂ I, so αx ∈ I and thus α ∈ (I : x) = ⟨a⟩ and we may write
α = βa. It follows that i = αb = βab ∈ ⟨ab⟩, so I ⊂ ⟨ab⟩. The containment
(I : x)⟨I, x⟩ ⊂ I is a special case of (15).
(iii) Suppose (I : x) = ⟨a1, . . . , am⟩ and ⟨I, x⟩ = ⟨i1 + α1x, . . . , in + αnx⟩. Let
J = ⟨i1, . . . , in, xa1, . . . , xam⟩. We will show I = J , hence I is finitely generated.
It is immediate that J ⊂ I. Conversely z ∈ I; since I ⊂ ⟨I, x⟩, we may write

z = β1(i1+α1x)+ . . .+βn(i1+αnx) = (β1i1 + . . .+ βnin)+ (α1β1+ . . .+αnβn)x.

Since z and β1i1+. . .+βnin ∈ I, so is (α1β1+. . .+αnβn)x, i.e., α1β1+. . .+αnβn ∈
(I : x) = ⟨a1, . . . , am⟩, so (α1β1+. . .+αnβn)x ∈ ⟨xa1, . . . , xam⟩ and thus z ∈ J . �
Exercise 4.19: a) Let κ be any infinite cardinal. Show that in any ring R, the family
of ideals which can be generated by a set of cardinality less than κ is Oka.
b) Proposition 4.23(ii) is equivalent to the statement that in any ring R, the family
of ideals which can be generated by a set of cardinality less than 2 is Oka. The case
of κ = 1 is a triviality. What if 2 < κ < ℵ0: must it be the case that the family of
ideals generated by a set of cardinality κ is Oka?

Theorem 4.24. (Prime Ideal Principle [LR08, 2.4]) Let R be a ring and F ⊂
I(R). If F is an Oka family, then F ′ is an MP family.

Proof. By contraposition: let I ∈ MaxF ′ be an ideal which is not prime, so there
are a, b ∈ R \ I with ab ∈ I. Since b ∈ (I : a), the ideals ⟨I, a⟩, (I : a) each properly
contain I, so by maximality ⟨I, a⟩, (I : a) ∈ F . Since I /∈ F , F is not Oka. �
Combining Proposition 4.23 and Theorem 4.24 we deduce a new proof of Multi-
plicative Avoidance as well as the following results.

Theorem 4.25. If every prime ideal of R is principal, every ideal of R is principal.

Proof. Let F ⊂ I(R) be the family of principal ideals. By Proposition 4.23 and
Theorem 4.24, every maximal element of F ′ is prime. It remains to show that if F ′

is nonempty, it has maximal elements, but this is an easy Zorn’s Lemma argument:
let {Ii} be a chain of nonprincipal ideals, and put I =

∪
Ii. If I = ⟨x⟩, then for

some i we must have x ∈ Ii ⊂ I = ⟨x⟩, so Ii = ⟨x⟩, contradiction. �
Theorem 4.26. (Cohen [Coh50]) If every prime ideal of R is finitely generated,
then every ideal of R is finitely generated.
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Proof. Let F ⊂ I(R) be the family of ideals which can be generated by finitely
many elements. By Exercise X.X and Theorem 4.24, every maximal element of F ′

is prime. Again we must show that if F ′ is nonempty, it has maximal elements, and
again this is an easy Zorn’s Lemma argument:25 {Ii}i∈I be a chain of non-finitely
generated ideals, and put I =

∪
Ii. If I = ⟨x1, . . . , xn⟩, then for 1 ≤ j ≤ n, there

exists an index ij such that xj ∈ Iij , and thus if i• = max1≤j≤n ij , ⟨x1, . . . , xn⟩ ⊂
Ii• ⊂ I = ⟨x1, . . . , xn⟩, so Ii• is finitely generated, contradiction. �

Exercise 4.20: By Exercise 4.19, for any infinite cardinal κ and any ring R, the
family Iκ of ideals of R with fewer than κ generators is an Oka family. So it’s
tempting to generalize Theorem 4.26 to: for any infinite cardinal κ, if every prime
ideal of a ring R can be generated by fewer than κ elements then every ideal of R
can be generated by fewer than κ elements. Is this generalization true?

4.6. Minimal Primes.

Let R be a ring. A minimal prime p of R is just what it sounds like: a min-
imal element of the set SpecR of prime ideals of R, partially ordered by inclusion.

The mind of the novitiate algebraist tends to balk a bit at this definition, since
until we are trained otherwise we naturally think first of domains, and in a domain
the uniqu minimal prime is zero. (In particular, minimal prime does not mean
“minimal nonzero prime”!) However the minimal primes play an important (and
easy to grasp) role in understanding the basic structure of a general ring.

Of course the zero ring contains no primes, hence no minimal primes. It is not
completely obvious that a nonzero ring necessarily has at least one minimal prime,
but this, and a bit more, is true.

Exercise: Let C be a chain of prime ideals in a ring R. Show that
∩

p∈C p is a
prime ideal.

Proposition 4.27. Let I ⊂ P be ideals of R, with P prime. Then the set S of all
prime ideals p of R with I ⊂ p ⊂ P has a minimal element.

Proof. We partially order S by reverse inclusion i.e., p1 ≤ p2 ⇐⇒ p1 ⊃ p2. Let
C be any chain in S. By Exercise X.X,

∩
p∈C p is a prime ideal and thus it is an

upper bound for C in S. By Zorn’s Lemma, S contains a maximal element, i.e., a
minimal element under ordinary containment. �

Corollary 4.28. Every nonzero ring has at least one minimal prime.

Exercise: Prove Corollary X.X.

We write MinSpecR for the set of all minimal primes of R and ZD(R) for the
set of all zerodivisors in R.

Exercise: Show that in any ring R,

r(R) =
∩

p∈MinSpecR

p.

25But we have our reasons for spelling it out in detail: see the following exercise!
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In order to prove the next result, it is convenient (though not strictly necessary)
to use the theory of localization, which we will (unfortunately) not develop until §
7. Nevertheless we have decided to put the complete proof here, as it fits logically
with the other results of the section (and the reader can verify that there is no
logical circularity).

Theorem 4.29. Let R be a ring.
a) We have

∪
p∈MinSpecR p ⊂ ZD(R).

b) If R is reduced, then equality holds:

(16)
∪

p∈MinSpecR

p = ZD(R).

Proof. a) Let p ∈ MinSpecR and let x ∈ p. Then pRp is the unique prime ideal of
Rp, so x ∈ r(pAp) is nilpotent. By Exercise 7.4, this implies that there is y ∈ R \ p
such that yxn = 0. Since y ̸= 0, xn – and thus also x – is a zero-divisor.
b) Suppose a ∈ ZD(R), so there is b ∈ R• with ab = 0. Since b ̸= 0 and R is
reduced, by Exercise X.X,

b /∈
∩

p∈MinSpecR

p,

so there is a minimal prime p not containing b. Since 0 = ab ∈ p and p is prime,
a ∈ p. �

5. Examples of Rings

5.1. Rings of numbers.

The most familiar examples of rings are probably rings of numbers, e.g.

Z ⊂ Q ⊂ R ⊂ C.
These are, respectively, the integers, the rational numbers, the real numbers and
the complex numbers. For any positive integer N the ring integers modulo N , de-
noted Z/NZ. We assume that the reader has seen all these rings before.

Historically, the concept of a ring as an abstract structure seems to have arisen
as an attempt formalize common algebraic properties of number rings of various
sorts. It is my understanding that the term “ring” comes from Hilbert’s Zahlring
(“Zahl” means “number” in German). Indeed, various sorts of extension rings of
C – most famously Hamilton’s quaternions H – have been referred to as systems
of hypercomplex numbers. This terminology seems no longer to be widely used.

The adjunction process gives rise to many rings and fields of numbers, as already
seen in §2.2. For instance, for any nonsquare integer D, let

√
D be a complex

number whose square is D: then Z[
√
D] is an interesting ring.

Exercise 5.1: Show that Z[
√
D] = {a+ b

√
D | a, b ∈ Z}.

In particular, (Z[
√
D],+) ∼= (Z2,+) as abelian groups, although not as rings, since

Z[
√
D] is an integral domain and Z2 has nontrivial idempotents.

More generally, let K be any number field (a finite degree field extension of Q),
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and let ZK be the set of elements x ∈ K which satisfy a monic polynomial with
Z-coefficients. It turns out that ZK is a ring, the ring of algebraic integers in
K. This is a special case of the theory of integral closure: see §14.

Algebraic number theory proper begins with the observation that in general the
rings ZK need not be UFDs but are otherwise as nice as possible from a commuta-
tive algebraic standpoint. That is, every ring ZK is a Dedekind domain, which
among many other characterizations, means that every nonzero ideal factors into a
product of prime ideals. That the rings ZK are Dedekind domains is an example of
a normalization theorem, more specifically a very special case of theKrull-Akizuki
Theorem of §18.

Let Q be an algebraic closure of Q. (This is not a number field, being an infi-
nite degree algebraic extension of Q.) We may define Z to be the set of all elements
of Q which satsify a monic polynomial with integer coefficients: this is the ring of
all algebraic integers. In particular,

Z = lim−→ZK
is the direct limit of all rings of integers in fixed number fields.

Exercise 5.2: Let Z be the set of all algebraic integers.
a) Taking as given that for any fixed number field K, the algebraic integers in K
form a subring of K, show that Z is a subring of Q.
b) Show that Z is an integral domain which is not Noetherian. Hint: use the fact
that the nth root of an algebraic integer is an algebraic integer to construct an
infinite strictly ascending chain of principal ideals in Z.

Theorem 5.1. Every finitely generated ideal in the ring Z is principal.

Thus, if only Z were Noetherian, it would be a principal ideal domain! Later on
we will prove a more general theorem, due to Kaplansky, in the context of limits of
Dedekind domains with torsion Picard groups.

5.2. Rings of continuous functions.

5.2.1. The ring of real-valued functions.

Let R be a ring, X a set, and consider the set RX of all functions f : X → R. We
may endow RX with the structure of a ring by defining addition and multiplication
“pointwise”, i.e.,

(f + g) : x 7→ f(x) + g(x),

(fg) : x 7→ f(x)g(x).

Exercise 5.3: Show that this makes RX into a ring with additive identity the con-
stant function 0 and multiplicative identity the constant function 1.

However, this is not really a “new” example of a ring.

Exercise 5.4: Show that RX is isomorphic as a ring, to
∏
x∈X R.

Later on we will see this construction in the special case R = F2, in which case
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we get an important subclass of Boolean rings. However, in general RX is quite
a roomy ring. It contains many interesting subrings, some of which can be nicely
consructed and analyzed using topological, geometric and analytic considerations.

5.2.2. Separation axioms and C(X).

Suppose instead that we specialize to the following situation: R = R (the real
numbers!), X is a topological space, and instead of the ring RX of all functions
f : X → R we look at the subring C(X) of continuous functions.

Exercise 5.5: Show that for a topological space X, TFAE:
(i) For every x, y ∈ X with x ̸= y, there exists f ∈ C(X) with f(x) ̸= f(y).
(ii) For every x, y ∈ X with x ̸= y and every α, β ∈ R, there exists f ∈ C(X) with
f(x) = α, f(y) = β.
(iii) For every finite subset S of X and any function g : S → R, there exists
f ∈ C(X) such that f |S = g.
A space which satisfies these equivalent conditions is called C-separated.26

Recall the following chains of implications from general topology:

Lemma 5.2. For any topological space, the following implications hold (and none
of the arrows may be reversed)):
a) X compact =⇒ X normal =⇒ X Tychonoff =⇒ X regular =⇒ X
Hausdorff =⇒ X separated =⇒ X Kolmogorov.
b) X locally compact =⇒ X Tychonoff.

Exercise 5.6: a) Show that a Tychonoff space is C-separated.
b) Show that a C-separated space is Hausdorff.
c)* Show that a regular space need not be C-separated. (Suggestion: see [Ga71].)

For a topological space X, a zero set is a set of the form f−1(0) for some con-
tinuous function f : X → R. A cozero set is a complement of a zero set. The
cozero sets in fact form a base for a topology on X, called (by us, at least) the
Z-topology. Let us write XZ for X endowed with the Z-topology. Since every
cozero set is an open set in the given topology on X, XZ is a coarser topology than
the given topology on X: of course by this we allow the possibility that the two
topologies coincide: i.e., every closed set is an intersection of zero sets of continuous
R-valued functions. The following basic (but not so widely known) result gives a
condition for this.

Theorem 5.3. a) For a Hausdorff topological space X, TFAE:
(i) XZ = X: every closed set is an intersection of zero sets of continuous functions.
(ii) X is Tychonoff, i.e., if Y is a closed subset of X and x ∈ X \ Y , then there
exists a continuous function f : X → [0, 1] with f(x) = 0, f |Y ≡ 1.
b) For any topological space X, the space XZ is completely regular, and is the finest
completely regular topology on the underlying set of X which is coarser than X.

Proof. [GJ76, p. 38]. �

26More standard terminology: “the continuous functions on X separate points”.
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Let X be a topological space, and let x ∈ X be any point. Consider the set

mx = {f ∈ C(X) | f(x) = 0}.

Evidently mx is an ideal of C(X). But more is true.

Proposition 5.4. Evaluation at x gives a canonical isomorphism C(X)/mx
∼→ R.

In particular, mx is a maximal ideal of C(X).

Exercise 5.7: Prove Proposition 5.4.

Thus x 7→ mx gives a map of sets M : X →M(X).

Proposition 5.5. The map M : X →M(X) is injective iff X is C-separated.

Proof. This is left to the reader as a routine check on parsing the definitions. �

5.2.3. Quasi-compactness and C(X).

Proposition 5.6. If X is quasi-compact, then M is surjective, i.e., every maximal
ideal of C(X) is of the form mx for at least one point x ∈ X.

Proof. It suffices to show: let I be an ideal of C(X) such that for no x ∈ X do we
have I ⊂ mx. Then I = C(X).

By hypothesis, for every x ∈ X there exists fx ∈ I such that fx(x) ̸= 0. Since
fx is continuous, there exists an open neighborhood Ux of x such fx is nowhere
vanishing on Ux. By quasi-compactness of X, there exists a finite set x1, . . . , xN
such X =

∪N
i=1 Uxi . Then the function f = f2x1

+ . . .+f2xn
is an element of m which

is strictly positive at every x ∈ X. But then 1
f is also a continuous function on X,

i.e., f ∈ C(X)×, so I = R. �

A compact space is quasi-compact and C-separated. Thus previous results yield:

Theorem 5.7. If X is compact, then M : X → M(X) is a bijection: every
maximal ideal of C(X) is of the form mx for a unique x ∈ X.

In fact more is true. There is a natural topology on M(X), the initial topology:
namely, each f ∈ C(X) induces a functionMf :M(X) → R, namelyMf maps m to
the image of f in C(X)/m = R. Now we endow M(X) with the coarsest topology
which makes each of the functions Mf continuous.

Lemma 5.8. For a compact space X, the initial topology on M(X) is Hausdorff.

Proof. For distinct x, x′ ∈ X, consider the maximal idealsmx,mx′ . By C-separatedness,
there exists f ∈ C(X) with f(x) = 0, f(x′) ̸= 0. Thus choose disjoint neighbor-
hoods V, V ′ of f(x), f(x′) ∈ R. The sets

Uf,V = {x ∈ X | f(x) ∈ V }, Uf,V ′ = {x ∈ X | f(x) ∈ V ′}

are disjoint open neighborhoods of x and x′. �

Theorem 5.9. For a compact space X, let M(X) be the set of maximal ideals of
C(X) endowed with the initial topology. Then M : X → M(X), x 7→ mx is a
homeomorphism.
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Proof. Step 1: We claim that M is continuous. But indeed, by the universal
property of the initial topology, it is continuous iff for all f ∈ C(X), the composite
function x 7→ mx 7→ f(mx) is continuous. But this is nothing else than the function
x 7→ f(x), i.e., the continuous function f ! So that was easy.
Step 2: We now know that M is a continuous bijection from a compact space to
a Hausdorff space. Therefore it is a closed map: if Y is closed in X, then Y is
compact, so M(Y ) is compact, so M(Y ) is closed. Therefore M−1 is continuous
and thus M is a homeomorphism. �

5.2.4. The Zariski topology on C(X).

For any commutative ring R, we define MaxSpec(R) to be the maximal ideals
and put a topology on it: for any ideal I of R, we define

V (I) = {m ∈ MaxSpecR | I ⊂ m}

The sets V (I) are the closed sets for a unique topology on MaxSpecR, the Zariski
topology. Another way to say it is that the closed sets in the Zariski topology are
precisely all sets obtained by intersecting sets of the form

V (f) = {m ∈ MaxSpecR | f ∈ m}.

To see this, note first that for any ideal I of R,

V (I) =
∩
f∈I

V (f)

and for any subset S of R, ∩
f∈S

V (f) =
∩

f∈⟨S⟩R

V (f).

Thus, from the perspective of the rest of these notes, it is natural to consider
M(X) = MaxSpecC(X) as being endowed with the Zariski topology rather than
the initial topology (note that the latter is defined only in the quasi-compact case).

Proposition 5.10. Let X be any topological space. Then the map M : X →
MaxSpecC(X) is continuous when MaxSpecX is given the Zariski topology.

Proof. As above, it is enough to show that for all f ∈ C(X), the preimageM−1(V (f))
is closed in X. Unpacking the definitions, we find

M−1(V (f)) = f−1(0),

thus the preimage is the zero set of the continuous function f , hence closed. �

Corollary 5.11. For a compact space X, the Zariski topology onM(X) = MaxSpecC(X)
coincides with the initial topology.

Proof. By Theorem 5.9, we may compare the Zariski topology on X – the topology
obtained by pulling back the Zariski topology on MaxSpecC(X) via M – with the
given topology on X. But the proof of Proposition 5.10 shows that the Zariski
topology on X is precisely the Z-topology, i.e., the one in which the closed subsets
are the intersections of zero sets. But X is compact hence quasi-Tychonoff, so by
Theorem 5.3 the Z-topology on X coincides with the given topology on X. �
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Now let π : X → Y be a continuous map between compact spaces. There is an
induced map C(π) : C(Y ) → C(X): given g : Y → R, we pullback by π to get
g ◦π : X → R. It is no problem to see that C(π) is a homomorphism of rings. Now
let mx ∈ MaxSpecC(X) be a maximal ideal and consider its pullback C(π)∗(mx)
to an ideal of C(Y ): we find

C(π)∗(mx) = {g : Y → R | g(π(x)) = 0} = mπ(x).

Thus the pullback map carries maximal ideals to maximal ideals (recall this is
certainly not true for all homomorphisms of rings!) and thus induces a map from
X to Y which is indeed nothing else than the given map π.

All in all we see that the functors C and MaxSpec give a duality between the
categories of compact spaces and rings of continuous R-valued functions on compact
spaces. In functional analysis this the first step in an important circle of ideas
leading up to Gelfand duality for commutative Banach algebras.

5.2.5. Further results when X is not compact.

What about the case of noncompact spaces X?

Example: Let X be an infinite discrete space, so C(X) = RX is the ring of all
functions from X to R. Thus X is a noncompact Tychonoff space. So it follows
from our work so far that M gives a continuous injection from M to the quasi-
compact space MaxSpecC(X). In fact M is an embedding: for any subset Y ⊂ X,
let IY be the ideal of functions vanishing identically on Y . Then the restriction of
the closed subset V (I) of MaxSpecC(X) to M(X) is precisely M(Y ), so M(Y ) is
closed in MaxSpecC(X). Thus M(X) is discrete as a subspace of MaxSpecC(X),
and this implies that M is not surjective.

Theorem 5.12. For any topological space X, MaxSpecC(X) endowed with the
Zariski topology is compact.

Theorem 5.13. Let X be any topological space, let M : X → MaxSpecC(X), and
let XT = M(X), viewed as a subspace of MaxSpecC(X).
a) XT is a Tychonoff space.
b) The map M : X → XT is the Tychonoff completion of X: i.e., it is universal
for continuous maps from X to a Tychonoff space.
c) The induced map C(M) : C(XT ) → C(X) is an isomorphism of rings.

Proof. See [GJ76, §3.9]. �
Thus the ring of continuous functions on an arbitrary space X “sees” precisely its
Tychonoff completion XT . Henceforth we restrict to Tychonoff spaces.

Theorem 5.14. Let X be a Tychonoff space. Then the map M : X → C(X) is
nothing else than the Stone-Cech compactification.

Proof. See [GJ76, §7.10]. �
Exercise 5.8: a) Show that C(X) is an R-subalgebra of RX .
b) Show that C(X) is reduced: it contains no nonzero nilpotent elements.
c) (T. Rzepecki) Show that for a topological space, the following are equivalent:
(i) The Tychonoff completion XT of X is a one-point space.
(ii) C(X) = R.
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(iii) C(X) is a domain.
(Suggestion: (ii) ⇐⇒ (i) =⇒ (iii) are straightforward. For (iii) =⇒ (ii),
let f ∈ C(X) be nonconstant, so f(x) ̸= f(y) for some x, y ∈ X. Show that
for suitable real numbers C1 and C2 the functions g1 = max(0, f1 + C1) and
g2 = max(0,−f1 + C2) give nonzero elements of C(X) with g1g2 = 0.)

Exercise 5.9: Show that C(X) is connected in the algebraic sense – i.e., there
are no idempotents other than 0 and 1 – iff the topological space X is connected.

Exercise 5.10: Show that there is an antitone Galois connection between 2X and
the set of ideals of C(X), as follows:
S ⊂ X 7→ IS = {f ∈ C(X) | f |S ≡0} and
I 7→ VI = {x ∈ X | ∀f ∈ I, f(x) = 0}.

Exercise 5.11: Let X be a compact space.
a) Let p be a prime ideal of C(X). Show that V (p) consists of a single point.
b) Deduce that a prime ideal p of C(X) is closed in the sense of the Galois connec-
tion – i.e., p = IVp

iff p is maximal.
c) Deduce that each prime ideal p of C(X) is contained in a unique maximal ideal.

Exercise 5.12: Let X = [0, 1] with the standard Euclidean topology. Let r0 be

the ideal of all functions f ∈ C(X) such that for all k ∈ N, limx→0+
f(x)
xk = 0.

Equivalently r0 is the ideal of all functions which are infinitely differentiable at 0
and have identically zero Taylor series at zero.
a) Show that r0 is a radical ideal but not a prime ideal.
b) Show that the only maximal ideal containing r0 is m0, the set of all functions
vanishing at 0.
c) Deduce that there exist ideals of C(X) which are prime but not maximal.

Exercise 5.13: Let X be a C-separated topological space.
a) Let S ⊂ X with #S > 1. Show that IS is not maximal.
b) Suppose X is Tychonoff and S, T ⊂ X. Show that IS ⊂ IT ⇐⇒ T ⊂ S.
c) In particular if X is Tychonoff, then for closed subsets S and T of X, IS =
IT ⇐⇒ S = T .

Exercise 5.14: Let φ : X → Y be a continuous function between topological spaces.
a) Show that φ induces a ring homomorphism C(φ) : C(Y ) → C(X) by g ∈
C(Y ) 7→ φ∗g = g ◦ φ.
b) Suppose Y is normal, X is a closed subspace of X and φ : X → Y is the inclusion
map. Show that C(φ) is surjective.

Exercise 5.15: Let X be a normal topological space. Show that the closure opera-
tor on subsets of X given by the Galois connection coincides with the topological
closure operator on X.

Exercise 5.16: Let X be the subspace { 1
n}n∈Z+∪{0} of R, and let m be the maximal

ideal of all functions vanishing at 0. Fill in the details of the following outline of
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a proof that m is not finitely generated.27 Assume otherwise: m = ⟨a1, . . . , an⟩.
Then for every element g ∈ m, limx→0

g2(x)
|a1(x)|+...+|an(x)| = 0. (In particular, there

exists δ > 0 such that the denominator is strictly positive on (0, δ).) Now choose
g ∈ m so as to get a contradiction.

Exercise 5.17: Let X be a normal space, and let x ∈ X.
a) Show that the following are equivalent:
(i) The ideal Ix is finitely generated.
(ii) The ideal Ix is principal.
(iii) The point x is isolated in X (i.e., {x} is open).
b) Suppose X is compact. Show that the following are equivalent:
(i) C(X) is a Noetherian ring.
(ii) C(X) is finite-dimensional as an R-vector space.
(iii) X is finite.

Exercise 5.18: Show that if we worked throughout with rings C(X,C) of continuous
C-valued functions, then all of the above results continue to hold.

Exercise 5.19: Suppose that we looked at rings of continuous functions from a topo-
logical space X to Qp. To what extent to the results of the section continue to hold?

Exercise 5.20: Let X be a compact smooth manifold and consider the ring C∞(X)
of smooth functions f : X → R.
a)* Show that for x ∈ X, the ideal mx of all functions vanishing at x is maximal
and finitely generated.
b) Note that the phenomenon of part a) is in contrast to the case of maximal ideals
in the ring C([0, 1]), say. However, I believe that with this sole exception, all of the
results of this section hold for the rings C∞(X) just as for the rings C(X). Try it
and see.

5.2.6. A theorem of B. Sury.

The recent note [Su11] gives the following striking generalization of Exercise 5.16.

Theorem 5.15. (Sury) Let c ∈ [0, 1], and let mc = {f ∈ C[0, 1] | f(c) = 0}. Then
mc admits no countable generating set.

Proof. Let {fn}∞n=1 be a countably infinite subset of mc, and let J = ⟨{fn}∞n=1⟩. It
suffices to exhibit f ∈ mc \ J .

By rescaling, we may assume ||fn|| ≤ 1 for all n. Moreover, we may assume that∩∞
n=1 f

−1
n (0) = {c}, for otherwise x 7→ |x− c| lies in mc \ J . Consider

f(x) =
∞∑
n=1

√
|fn(x)|
2n

.

The series is uniformly convergent (by “Weierstrass’s M-Test”) and thus f , being
the uniform limit of continuous functions, is itself continuous. Moreover f−1(0) =

27Or, if you like, give your own proof that m is not finitely generated!
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{c}, and in particular f ∈ mc. Seeking a contradiction, we suppose f ∈ J : then
there is r ∈ Z+ and g1, . . . , gr ∈ C([0, 1]) such that

f =
r∑

n=1

gnfn.

Let M = max1≤n≤r ||gn||, so ||f || ≤ M
∑r
n=1 ||fn||. Let U be a neighborhood of c

such that ||
√
fn||U < 1

2nM for 1 ≤ n ≤ r. Since f =
∑r
n=1 gnfn vanishes only at c,

for each x ∈ U \ {c}, there exists 1 ≤ N ≤ r such that fN (x) ̸= 0 and thus

|fN (x)| <
√
|fN (x)|
2NM

.

Hence

|f(x)| ≤M
r∑

n=1

|fn(x)| <
r∑

n=1

√
|fn(x)|
2n

≤ |f(x)|,

a contradiction. �
5.3. Rings of holomorphic functions.

As we saw in the previous section, one of the characteristic properties of the ring of
continuous functions on a normal space (or even smooth functions on a manifold)
is that it is typically very far from being an integral domain. A remedy for this is
to consider more “rigid” collections of functions.

Let U be an open subset of the complex plane C, and let Hol(U) be the set of
holomorphic functions f : U → C. (Recall that a holomorphic function on U is one
for which the complex derivative f ′(z) exists for each z ∈ U . Equivalently, for each
z ∈ U f admits a power series development with positive radius of convergence.)
It is immediate that Hol(U) is a subring of the ring CU of all C-valued functions
on U .

Proposition 5.16. For a nonempty open subset U of C, TFAE:
(i) U is connected.
(ii) Hol(U) is a domain.

Proof. (i) =⇒ (ii): For any f ∈ C(U,C) let Z(f) = {z ∈ U | f(z) = 0} be the
zero set of f . Since f is continuous, Z(f) is a closed subset of U . If f is moreover
holomorphic, then Z(f) has no accumulation point in U , i.e., f ̸= 0 =⇒ Z(f) is
discrete – 28 in particular Z(f) is countable. Moreover, for any f, g ∈ C(U,C) we
have Z(fg) = Z(f) ∪ Z(g), so if f, g ∈ Hol(U)• then Z(fg) is at most countable,
whereas U is uncountable, so fg ̸= 0.
(ii) =⇒ (i): we argue by contrapositive. If U is not connected, it is of the form V1∪
V2 where V1 and V2 are disjoint open subsets. Let χi be the characteristic function
of Vi for i = 1, 2. Then each χi is locally constant on U – hence holomorphic, and
nonzero, but χ1χ2 = 0. �
Recall that in complex function theory it is common to call a nonempty open subset
U of C a domain. In this language, Proposition 5.16 simply asserts that U is a
domain iff Hol(U) is a domain. Henceforth we assume that U is a domain.

28Recall that this is proved by considering the Taylor series development of f about any
accumulation point.
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For every z ∈ U there is a function ordz : Hol(U)• → N, the order of vanishing
of f at z. Precisely, we exand f into a power series at z: f(ζ) =

∑∞
n=0 an(ζ − z)n

and put ordz(f) to the least n for which an ̸= 0. Compiling all these together
we may associate to each f ∈ Hol(U)• its total order Ord(f) : U → N given by
Ord(f)(z) = ordz(f).

Consider the set NU of all functions from U to N. For O ∈ NU , we define the
support of O to be the set of z ∈ U such that O(z) > 0.

Recall that a meromorphic function on U is a function which is holomorphic on U
except for isolated finite order singularities. More precisely, a meromorphic function
is a function which is holomorphic on U \Z for some discrete closed subset Z of U
and such that for all z0 ∈ Z, there exists n ∈ Z+ such that (z−z0)nf(z) extends to
a holomorphic function on a neighborhood of z. If the least n as above is positive,
we say that f has a pole at z0, and we employ the convention that f(z0) = ∞. Let
Mer(U) be the set of all meromorphic functions on U ; it is a ring under pointwise
addition and multiplication, under the conventions that for all z ∈ C,

z +∞ = ∞+∞ = z · ∞ = ∞ ·∞ = ∞.

Theorem 5.17. Let U be a domain in the complex plane.
a) (Weierstrass) For each O ∈ NU with closed, discrete support, there exists f ∈
Hol(U)• with Ord(f) = O.
b) (Weierstrass + Mittag-Leffler) Let Z ⊂ U be a closed subset without limit points.
To each z ∈ Z we associate a natural number nz and for all 0 ≤ k ≤ nz, a complex
number wz,k. Then there exists f ∈ Hol(U) such that for all z ∈ Z and 0 ≤ k ≤ nz,

f (k)(z) = k!wz,k.

Proof. Part a) is of the two main results in Weierstrass’ Factorization Theory: see
e.g. [Ru87, Thm. 15.11]. Part b) is proved by combining part a) with Mittag-
Leffler’s famous result on the existence of meromorphic functions with prescribed
principal parts: see e.g. [Ru87, Thm. 15.13]. �

Corollary 5.18. The ring Mer(U) of meromorphic functions on U is a field, and
indeed is the field of fractions of Hol(U).

Exercise 5.21: Prove Proposition 5.18.

Exercise 5.22: Fix z0 ∈ U . For f ∈ Mer(U), choose n ∈ N such that (z − z0)
nf is

holomorphic at z0, and put ordz0(f) = ordz0((z − z0)
nf)− n.

a) Show that this gives a well-defined function ordz0 : Mer(U)• → Z (i.e., indepen-
dent of the choice of n in the definition).
b) Show that for all f, g ∈ Mer(U)×, ordz0(fg) = ordz0(f) + ordz0(g).
c) We formally extend ordz0 to a function from Mer(U) to Z ∪ {∞} by setting
ordz0(0) = ∞. Show that, under the convention that ∞ + n = ∞ + ∞ = ∞, we
have for all f, g ∈ Mer(U) that ordz0(f + g) ≥ min ordz0(f), ordz0(g).
d) Show that if ordz0(f) ̸= ordz0(g) then ordz0(f + g) = min ordz0 f, ordz0(g).

Similarly we may extend Ord to a function from Mer(U)• to ZU .
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Lemma 5.19. For f, g ∈ Hol(U)•, TFAE:
(i) Ord(f) = Ord(g).
(ii) f = ug for u ∈ Hol(U)×.
(iii) (f) = (g).

Proof. (ii) ⇐⇒ (iii) for elements of any integral domain.
(ii) =⇒ (i) is easy and left to the reader.

(i) =⇒ (ii): The meromorphic function f
g has identically zero order, hence is

nowhere vanishing and is thus a unit u in Hol(U). �

Theorem 5.20. (Helmer [Hel40]) For a domain U in the complex plane, every
finitely generated ideal of Hol(U) is principal. More precisely, for any f1, . . . , fn ∈
Hol(U)•, there exists f ∈ Hol(U) such that Ord(f) = miniOrd(fi), unique up to
associates, and then ⟨f1, . . . , fn⟩ = ⟨f⟩.

Proof. Step 1: Suppose that f1, f2 ∈ Hol(U)• do not simultaneously vanish at any
point of U . We claim that ⟨f1, f2⟩ = Hol(R).
proof of claim Let Z be the zero set of f1, so that for all z ∈ Z, f2(z) ̸= 0. By
Theorem 5.17b) there exists g2 ∈ Hol(U) such that for all z ∈ Z, ordz(1− g2f2) ≥
ordz(f1). Thus Ord(1 − g2f2) ≥ Ord(f1), so that g1 := 1−g2f2

f1
∈ Hol(U) and thus

f1g1 + f2g2 = 1.
Step 2: Now let f1, f2 ∈ Hol(U)• be arbitrary. By Theorem 5.17a), there exists

f ∈ Hol(U) with Ord(f) = minOrd(f1),Ord(f2). For i = 1, 2, put gi =
fi
f . Then g1

and g2 are holomorphic and without a common zero, so by Step 1 ⟨g1, g2⟩ = Hol(U).
Multiplying through by f gives ⟨f1, f2⟩ = ⟨f⟩.
Step 3: An easy induction argument shows that in a ring R in which every ideal of
the form ⟨x1, x2⟩ is principal, every finitely generated ideal is principal. By Step 2,
this applies in particular to Hol(U). Moreover, if the ideal ⟨f1, . . . , fn⟩ is generated
by any single element f , then we must have Ord f = minOrd fi. �

Exercise 5.23: Explain carefully why in Step 1 of the above proof, Theorem 5.17b)
implies the existence of g2.

Of course the most familiar class of domains in which every finitely generated ideal
is principal are those domains in which every ideal is principal: PIDs! But as the
reader has probably already suspected, Hol(U) is not a PID.

One way to see this is to show that Hol(U) is not even a UFD. Remarkably, this is
an immediate consequence of the Weierstrass Factorization Theory, which succeeds
in decomposing every holomorphic function into a product of prime elements! The
catch is that most holomorphic functions require infinite products, a phenomenon
which is not countenanced in the algebraic theory of factorization.

Exercise 5.24: Let f ∈ Hol(U)•.
a) Show that f is an irreducible element of Hol(U) – i.e., if f = g1g2 then exactly
one of g1, g2 is a unit – iff it has exactly one simple zero.
b) Suppose f is irreducible. Show that Hol(U)/(f) = C. In particular, (f) is a
prime ideal.
c) Show that f admits a (finite!) factorization into irreducible elements iff it has
only finitely many zeros. Conclude that Hol(U) is not a UFD.
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Exercise 5.25: Extract from the previous exercise an explicit ideal of Hol(C) which
is not finitely generated.

Exercise 5.26*: Show that all of the results of this section extend to the ring of
holomorphic functions on a noncompact Riemann surface.

Exercise 5.27*: Investigate the extent to which the results of this section continue
to hold for Stein manifolds. (Step 1: learn the definition of a Stein manifold!)

5.4. Polynomial rings.

Let R be a ring (possibly non-commutative, but – as ever – with identity). Then
R[t] denotes the ring of univariate polynomials with R-coefficients.

We assume the reader knows what this means in at least an informal sense: an
element of R will be an expression of the form ant

n+ . . .+a1t+a0, where n is some
non-negative integer and an, . . . , a0 are in R. The degree of a polynomial is the
supremum over all numbers n such that an ̸= 0. We say “supremum” rather than
“maximum” as an attempt to justify the convention that the degree of the 0 poly-
nomial should be −∞ (for that is the supremum of the empty set). A polynomial
of degree 0 is called constant, and we can view R as a subset of R[t] by map-
ping a ∈ R to the constant polynomial a. As an abelian group, R[t] is canonically
isomorphic to

⊕∞
n=0R, the isomorphism being given by

∑
n ant

n 7→ (a0, a1, . . .).
(The key point here is that on both sides we have an = 0 for all sufficiently large
n.) Multiplication of polynomials is obtained by applying the relations t0 = 1,
ti+j = titj at = ta for all a ∈ R, and distributivity, i.e.,

(ant
n + . . .+ ant

1 + a0) · (bmtm + . . .+ b1t+ b0) =
∑

0≤i≤n, 0≤j≤m

aibjt
i+j .

For any P ∈ R[t], the identity 1 ∈ R has the property 1 · P = P · 1 = 1.

Unfortunately there are some minor annoyances of rigor in the previous descrip-
tion. The first one – which a sufficiently experienced reader will immediately either
dismiss as silly or know how to correct – is that it is not set-theoretically correct :
technically speaking, we need to say what R[t] is as a set and this involves saying
what t “really is.” It is common in abstract algebra to refer to t is an indeter-
minate, a practice which is remarkably useful despite being formally meaningless:
essentially it means “Don’t worry about what t is; it can be anything which is not
an element of R. All we need to know about t is encapsulated in the multiplication
rules at = ta, t0 = 1, titj = ti+j .” In other words, t is what in the uncomplicated
days of high school algebra was referred to as a variable.

If someone insists that R[t] be some particular set – a rather unenlighened atti-
tude that we will further combat later on – then the solution has already been
given: we can take R[t] =

⊕∞
n=0R. (It is fair to assume that we already know

what direct sums of abelian groups “really are”, but in the next section we will
give a particular construction which is in fact rather useful.) This disposes of the
set-theoretic objections.
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Not to be laughed away completely is the following point: we said R[t] was a
ring, but how do we know this? We did explain the group structure, defined a mul-
tiplication operation, and identified a multiplicative identity. It remains to verify
the distributivity of multiplication over addition (special cases of which motivated
our definition of multiplication, but nevertheless needs to be checked in general)
and also the associativity of multiplication.

Neither of these properties are at all difficult to verify. In fact:

Exercise 5.28: a) Show that R[t] is a ring.
b) Show that R[t] is commutative iff R is commutative.

Let us now attempt a “conceptual proof” of the associativity of polynomial multi-
plication. For this we shall assume that R is commutative – this is the only case
we will be exploring further anyway. Then we can, as the P (t) notation suggests,
view an element of R[t] as a function from R to R. Namely, we just plug in values:

a ∈ R 7→ P (a) ∈ R.

To be clear about things, let us denote this associated function from R to R by
P . As we saw above, the set of all functions RR from R to R forms a commuta-
tive ring under pointwise addition and multiplication: (f + g)(a) := f(a) + g(a),
(fg)(a) := f(a) · g(a). In particular, it really is obvious that the multiplication of
functions is associative. Let P be the subset of RR of functions of the form P for
some P ∈ R[t]. More concretely, we are mapping the constant elements of R[t] to
constant functions and mapping t to the identity function. This makes it clear that
P is a subring of RR: in fact it is the subring of RR generated by the constant
functions and the identity function.

So why don’t we just define R[t] to be P, i.e., identify a polynomial with its asso-
ciated function?

The problem is that the map R[t] → P need not be an injection. Indeed, if R
is finite (but not the zero ring), P is a subring of the finite ring RR so is obviously
finite, whereas R[t] is just as obviously infinite. If R is a domain this turns out to
be the only restriction.

Proposition 5.21. Let R be an integral domain.
a) Suppose that R is infinite. Then the canonical mapping R[t] → P is a bijection.
b) Suppose that R is finite, say of order q, and is therefore a field. Then the kernel
of the canonical mapping R[t] → P is the principal ideal generated by tq − t.

We leave the proof as a (nontrivial) exercise for the interested reader.

Exercise 5.29: Exhibit an infinite commutative ring R for which the map R[t] → P
is not injective. (Suggestion: find an infinite ring all of whose elements x satisfy
x2 = x.)

Exercise 5.30: Show that the map R[t] → P is a homomorphism of rings.
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So if we restrict to infinite integral domains, the map R[t] → P is an isomor-
phism of rings. Thus we see, after the fact, that we could have defined the ring
structure in terms of pointwise multiplication.

5.5. Semigroup algebras.

A semigroup M is a set equipped with a single binary operation ·, which is re-
quired (only!) to be associative. Amonoid is a semigroup with a two-sided identity.

Exercise 5.31: Show that a semigroup has at most one two-sided identity, so it
is unambiguous to speak of “the” identity element in a monoid. We will denote it
by e (so as not to favor either addditive or multiplicative notation).

Example: Let (R,+, ·) be an algebra. Then (R, ·) is a semigroup. If R is a ring
(i.e., has an identity 1) then (R, ·) is a monoid, with identity element 1.

Example: Any group is a monoid. In fact a group is precisely a monoid in which
each element has a two-sided inverse.

Example: The structure (N,+) of natural numbers under addition is a monoid;
the identity element is 0.

Example: The structure (Z+, ·) of positive integers under multiplication is a monoid;
the identity element is 1.

Let M and N be two semigroups. Then the Cartesian product M × N becomes
a semigroup in an obvious way: (m1, n1) · (m2, n2) := (m1 · m2, n1 · n2). If M
and N are monoids with identity elements eM and eN , then M × N is a monoid,
with identity element (eM , eN ). Exactly the same discussion holds for any finite
set M1, . . . ,MN of semigroups: we can form the direct sum M =

⊕n
i=1Mi, i.e.,

the Cartesian product of sets with componentwise operations; if all the Mi’s are
monoids, so is M .

If we instead have an infinite family {Mi}i∈I of semigroups indexed by a set I, we
can define a semigroup structure on the Cartesian product

∏
i∈IMi in the obvious

way, and if each Mi is a monoid with identity ei, then the product semigroup is a
monoid with identity (ei)i∈I . If each Mi is a monoid, we can also define the direct
sum

⊕
i∈IMi, which is the subset of the direct product

∏
i∈IMi consisting of all

I-tuples (mi ∈Mi)i∈I such that mi = ei for all but finitely many i. Then we have
that

⊕
i∈IMi is a submonoid of the direct product monoid

∏
i∈IMi.

If M and N are semigroups, then a map f : M → N is a homomorphism of
semigroups if f(m1 ·m2) = f(m1) · f(m2) for all m1, m2 ∈ M . If M and N are
monoids, a homomorphism of monoids is a homomorphism of semigroups such that
moreover f(eM ) = eN . A homomorphism f : M → N of semigroups (resp. of
monoids) is an isomorphism iff there exists a homomorphism of semigroups (resp.
monoids) g : N →M such that g ◦ f = IdM , f ◦ g = IdN .

Exercise 5.32: a) Exhibit monoids M and N and a homomorphism of semigroups
f :M → N which is not a homomorphism of monoids.
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b) Show that a homomorphism of semigroups f : M → N is an isomorphism iff it
is bijective. Same for monoids.

Exercise 5.33: Show that the monoid (Z+, ·) of positive integers under multipli-
cation is isomorphic to

⊕∞
i=1(N,+), i.e., the direct sum of infinitely many copies

of the natural numbers under addition. (Hint: a more natural indexing set for the
direct sum is the set of all prime numbers.)

Now let R be an algebra and M be a semigroup. We suppose first that M is
finite. Denote by R[M ] the set of all functions f :M → R.

As we saw, using the operations of pointwise addition and multiplication endow
this set with the structure of an associative algebra (which has an identity iff M
does). We are going to keep the pointwise addition but take a different binary
operation ∗ : R[M ]×R[M ] → R[M ].

Namely, for f, g ∈ R[M ], we define the convolution product f ∗ g as follows:

(f ∗ g)(m) :=
∑

(a,b)∈M2 | ab=m

f(a)g(b).

In other words, the sum extends over all ordered pairs (a, b) of elements ofM whose
product (in M , of course), is m.

Proposition 5.22. Let R be an associative algebra and M a finite semigroup. The
structure (R[M ],+, ∗) whose underlying set is the set of all functions from M to
R, and endowed with the binary operations of pointwise additition and convolution
product, is an associative algebra. If R is a ring and M is a monoid with identity
e, then R[M ] is a ring with multiplicative identity the function I which takes eM
to 1R and every other element of M to 0R.

Proof. First, suppose that R is a ring and M is a monoid, then for any f ∈ R[M ]
and m ∈M , we have

(f∗I)(m) =
∑

(a,b)∈M2 | ab=m

f(a)I(b) = f(m)I(1) = f(m) = I(1)f(m) = . . . = (I∗f)(m).

We still need to check the associativity of the convolution product and the distribu-
tivity of convolution over addition. We leave the latter to the reader but check the
former: if f, g, h ∈ R[M ], then

((f ∗ g) ∗ h)(m) =
∑
xc=m

(f ∗ g)(x)h(c) =
∑
xc=m

∑
ab=x

f(a)g(b)h(c)

=
∑
abc=m

f(a)g(b)h(c)

=
∑
ay=m

∑
bc=y

f(a)g(b)h(c) =
∑
ay=m

f(a)(g ∗ h)(y) = (f ∗ (g ∗ h))(m).

�

A special case of this construction which is important in the representation theory
of finite groups is the ring k[G], where k is a field and G is a finite group.
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Now suppose that M is an infinite semigroup. Unless we have some sort of ex-
tra structure on R which allows us to deal with convergence of sums – and, in
this level of generality, we do not – the above definition of the convolution product
f ∗ g is problematic because the sum might be infinite. For instance, if M = G
is any group, then our previous definition of (f ∗ g)(m) would come out to be∑
x∈G f(x)g(x

−1m), which is, if G is infinite, an infinite sum.

Our task therefore is to modify the construction of the convolution product so
as to give a meaningful answer when the semigroupM is infinite, but in such a way
that agrees with the previous definition for finite M .

Taking our cue from the infinite direct sum, we restrict our domain: define R[M ] to
be subset of all functions f : M → R such that f(m) = 0 except for finitely many
m (or, for short, finitely nonzero functions). Restricting to such functions,

(f ∗ g)(m) :=
∑
ab=m

f(a)g(b)

makes sense: although the sum is apparently infinite, all but finitely terms are zero.

Proposition 5.23. Let R be an associative algebra andM a semigroup. The struc-
ture (R[M ],+, ∗) whose underlying set is the set of all finitely nonzero functions
from M to R, and endowed with the binary operations of pointwise additition and
convolution product, is an associative algebra. If R is a ring and M is a monoid
with identity element e, then R[M ] is a ring with multiplicative identity the function
I which takes eM to 1R and every other element of M to 0R.

Exercise 5.34: Prove Proposition 5.23. More precisely, verify that the proof of
Proposition 5.22 goes through completely unchanged.

Note that as an abelian group, R[M ] is naturally isomorphic to the direct sum⊕
m∈M R, i.e., of copies of R indexed by M . One can therefore equally well view

an element R[M ] as a formal finite expressions of the form
∑
m∈M amm, where

am ∈ R and all but finitely many are 0. Written in this form, there is a natural
way to define the product (∑

m∈M

amm

)(∑
m∈M

bmm

)
of two elements f and g of R[M ]: namely we apply distributivity, use the multi-
plication law in R to multiply the am’s and the bm’s, use the operation in M to
multiply the elements of M , and then finally use the addition law in R to rewrite
the expression in the form

∑
m cmm. But a moment’s thought shows that cm is

nothing else than (f ∗ g)(m). On the one hand, this makes the convolution product
look very natural. Conversely, it makes clear:

The polynomial ring R[t] is canonically isomorphic to the monoid ring R[N]. In-
deed, the explict isomorphism is given by sending a polynomial

∑
n ant

n to the
function n 7→ an.

This gives a new proof of the associativity of the product in the polynomial ring
R[t]. We leave it to the reader to decide whether this proof is any easier than direct
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verification.. Rather the merit is that this associativity computation has been done
once and for all in a very general context.

As an aside, let me point out something very curious: in searching for a slick
proof of associativity of multiplication in the polynomial ring R[t], we attempted
to show that the multiplication was just multiplication of the associated functions
f : R → R. As we saw, this works in many but not all cases (because the homo-
morphism from R[t] to the ring of functions RR is not always surjective). Then
we observed that the associativity of multiplication of polynomials is a special case
of associativity of the product in a semigroup ring. What is strange is that the
elements of this semigroup ring R[N] are themselves defined as functions, but func-
tions from N to R, and the product is not the most obvious (pointwise) one –
which has nothing to do with the semigroup structure on N – but rather a “funny”
convolution product. Suitably mathematically urbane readers will, upon seeing a
homomorphism from an abelian group (here R[t]) to another abelian group (here
P) which converts a “convolution product” on the first group to a “pointwise prod-
uct” on the second group, be tempted to view the mapping R[t] → P as some sort
of Fourier transform. If I understood this phenomenon more completely myself,
I might be more willing to digress to explain it (but I don’t, so I won’t).

The semigroup algebra construction can be used to define several generalizations
of the polynomial ring R[t].

Exercise 5.35: For any ring R, identify the monoid ring R[Z] with the ring R[t, t−1]
of Laurent polynomials.

First, let T = {ti} be a set. Let FA(T ) :=
⊕

i∈T (N,+) be the direct sum of a
number of copies of (N,+) indexed by T . Let R be a ring, and consider the monoid
ring R[FA(T )]. Let us write the composition law in FA(T ) multiplicatively; more-
over, viewing an arbitrary element I of FA(T ) as a finitely nonzero function from T
to N, we use the notation tI for

∏
t∈T t

I(t). Then an arbitrary element of R[FA(T )]

is a finite sum of the form
∑n
k=1 rkt

Ik , where I1, . . . , Ik are elements of FA(t). This
representation of the elements should make clear that we can view R[FA(T )] as
a polynomial ring in the indeterminates t ∈ T : we use the alternate notation R[{ti}].

Let us go back to the monoid ring R[N], whose elements are finitely nonzero func-
tions f : R → N. Notice that in this case the precaution of restricting finitely
nonzero functions is not necessary: the monoid (N,+), although infinite, has the
property that for any m ∈ N, the set of all x, y ∈ N such that x + y = m is finite
(indeed, of cardinality m + 1). Let us call an arbitrary monoid M divisor-finite
if for each m in M , the set {(x, y) ∈M2 | xy = m} is finite.

Exercise 5.36: a) For any set T , FA(T ) =
⊕

t∈T (N,+) is divisor-finite.
b) A group is divisor-finite iff it is finite.

For a divisor-finite monoid M , and any ring R, we may define the big monoid
ring R[[M ]] to be the collection of all functions M → R, with pointwise addition
and convolution product.
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For example, if M = (N,+), then writing M multiplicatively with n ∈ N 7→ tn for
some formal generator t, an element of the ring R[[M ]] is an infinite formal sum∑
n∈N rnt

n. Such sums are added coordinatewise and multiplied by distributivity:

(
∑
n∈N

rnt
n)(
∑
n∈N

snt
n) = r0s0 + (r0s1 + r1s0)t+ . . .+ (

n∑
k=0

rksn−k)t
n + . . . .

This ring is denoted by R[[t]] and called the formal power series ring over R.

Exercise 5.37: Using Exercise 5.36, define, for any set T = {ti} and any ring
R, a formal power series ring R[[{ti}]].

Here is yet another variation on the construction: suppose M is a commutative,
cancellative divisor-finite monoid endowed with a total order relation ≤. (Example:
(N,+) or FA(T ) for any T .) There is then a group completion G(M) together with
an injective homomorphism of monoidsM → G(M). IfM is finite and cancellative,
it is already a group. IfM is infinite, then so is G(M), so it cannot be divisor-finite.
Nevertheless, the ordering ≤ extends uniquely to an ordering on G(M), and we can
define a ring R((G(M)) whose elements are the functions from f : G(M) → R
such that {x ∈ G(M) | x < 0, f(x) ̸= 0} is finite, i.e., f is finitely nonzero on the
negative values of G(M).

Exercise 5.38: a) Show that under the above hypotheses, the convolution prod-
uct on R((G(M)) is well-defined, and endows R((G(M)) with the structure of a
ring.
b) When M = (N,+), identify R((M)) as R((t)), the ring of formal finite-tailed
Laurent series with coefficients in R. Give a multi-variable analogue of this by
taking M = FA(T ) for arbitrary T .

Exercise 5.39: Let R be a possibly non-commutative ring. Give a rigorous defi-
nition of the ring R⟨t1, t2⟩ of “noncommutative polynomials” – each ti commutes
with each element of R, but t1 and t2 do not commute – as an example of a small
monoid ring R[M ] for a suitable monoid M . Same question but with an arbitrary
set T = {ti} of noncommuting indeterminates.

The universal property of semigroup rings: Fix a commutative ring R. Let B
be a commutative R-algebra and M a commutative monoid. Let f : R[M ] → B be
an R-algebra homomorphism. Consider f restricted to M ; it is a homomorphism
of monoids M → (B, ·). Thus we have defined a mapping

HomR-alg(R[M ], B) → HomMonoid(M, (B, ·)).

Interestingly, this map has an inverse. If g :M → B is any homomorphism satisfy-
ing g(0) = 0, g(m1 +m2) = g(m1) + g(m2), then g extends to a unique R-algebra
homomorphism R[M ] → B:

∑
m∈M rmm 7→

∑
m rmg(m). The uniqueness of the

extension is immediate, and that the extended map is indeed an R-algebra homo-
morphism can be checked directly (please do so).

In more categorical language, this canonical bijection shows that the functor M 7→



112 PETE L. CLARK

R[M ] is the left adjoint to the forgetful functor (S,+, ·) 7→ (S, ·) from R-algebras
to commutative monoids. Yet further terminology would express this by saying
that R[M ] is a “free object” of a certain type.

Theorem 5.24. (Universal property of polynomial rings) Let T = {ti} be a set of
indeterminates. Let R be a commutative ring, and S an R-algebra. Then each map
of sets T 7→ S extends to a unique R-algebra homomorphism R[T ] → S.

Proof: By the previous result, each monoid map from the free commutative monoid⊕
t∈T Z to S extends to a unique R-algebra homomorhpism. So what is needed is

the fact that every set map T → M to a commutative monoid extends uniquely
to a homomorphism

⊕
t∈T Z → M (in other words, we pass from the category of

sets to the category of commutative R-algebras by passing through the category
of commutative monoids, taking the free commutative monoid associated to a set
and then the free R-algebra associated to the monoid). As before, the uniqueness
of the extension is easy to verify.

Exercise 5.40: a) Formulate analogous universal properties for Laurent polyno-
mial rings, and non-commutative polynomial rings.
b) Suppose M is a divisor-finite monoid. Is there an analogous extension property
for the big monoid ring R[[M ]]?

This result is of basic importance in the study of R-algebras. For instance, let
S be an R-algebra. A generating set for S, as an R-algebra, consists of a subset T
of S such that the least R-subalgebra of S containing T is S itself. This definition
is not very concrete. Fortunately, it is equivalent to the following:

Theorem 5.25. Let R be a commutative ring, S a commutative R-algebra, and T
a subset of S. TFAE:
(i) T generates S as an R-algebra.
(ii) The canonical homomorphism of R-algebras R[T ] → S – i.e., the unique one
sending t 7→ t – is a surjection.

Exercise 5.41: Prove Theorem 5.25.

In particular, a commutative R-algebra S is finitely generated iff it is a quotient
ring of some polynomial ring R[t1, . . . , tn].

Another application is that every commutative ring whatsoever is a quotient of
a polynomial ring (possibly in infinitely many indeterminates) over Z. Indeed, for
a ring R, there is an obvious surjective homomorphism from the polynomial ring
Z[R] – here R is being viewed as a set of indeterminates – to R, namely the one
carrying r 7→ r.

A ring R is said to be absolutely finitely generated if it is finitely generated as
a Z-algebra; equivalently, there exists an n ∈ N and an ideal I in Z[t1, . . . , tn] such
that Z[t1, . . . , tn] is isomorphic to R.

Exercise 5.42: a) Show that every finitely generated ring has finite or countably
infinite cardinality.
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b) Find all fields which are finitely generated as rings. (N.B.: In field there is an-
other notion of absolute finite generation for a field. This a much weaker notation:
e.g. Q(x) is absolutely finitely generated as a field but not as a ring.)

6. Swan’s Theorem

We now digress to discuss an important theorem of R.G. Swan on projective mod-
ules over rings of continuous functions.

Throughout this section K denotes either the field R or the field C, each endowed
with their standard Euclidean topology. For a topological space X, the set C(X)
of all continuous functions f : X → K forms a commutative ring under pointwise
addition and multiplication.

6.1. Introduction to (topological) vector bundles.

Recall29 the notion of a K-vector bundle over a topological space X. This is given
by a topological space E (the “total space”), a surjective continuous map π : E → X
and on each fiber Ex := π−1(x) the structure of a finite-dimensional K-vector space
satisfying the following local triviality property: for each x ∈ X, there exists an
open neighborhood U containing x and a homeomorphism f : π−1U → U × Kn

such that for all y ∈ U f carries the fiber Ey over y to {y} ×Kn and induces on
these fibers an isomorphism of K-vector spaces. (Such an isomorphism is called
a local trivialization at x.) As a matter of terminology we often speak of “the
vector bundle E on X” although this omits mention of some of the structure.

On any K-vector bundle E over X we have a rank function r : X → N, namely
we define r(x) to be the dimension of the fiber Ex. We say that E is a rank n
vector bundle if the rank function is constantly equal to n. The existence of local
trivializations implies that the rank function is locally constant – or equivalently,
continuous when N is given the discrete topology, so if the base space X is con-
nected the rank function is constant.

As a basic and important example, for any n ∈ N we have the trivial rank n
vector bundle on X, with total space X ×Kn and such that π is just projection
onto the first factor.

If π : E → X and π′ : E′ → X are two vector bundles over X, a morphism
of vector bundles f : E → E′ is a continuous map of topological spaces from E to
E′ over X in the sense that π = π′ ◦ f – equivalently f sends the fiber Ex to the
fiber E′

x – and induces a K-linear map on each fiber. In this way we get a category
Vec(X) of K-vector bundles on X. If we restrict only to rank n vector bundles and
morphisms between them we get a subcategory Vecn(X). A vector bundle E on X
is said to be trivial (or, for emphasis, “globally trivial”) if it is isomorphic to the
trivial rank n vector bundle for some n.

Many of the usual linear algebraic operations on vector spaces extend immediately
to vector bundles. Most importantly of all, if E and E′ are two vector bundles on

29from a previous life, if necessary



114 PETE L. CLARK

X, we can define a direct sum E⊕E′, whose definining property is that its fiber over
each point x ∈ X is isomorphic to Ex ⊕ Ex′ . This not being a topology/geometry
course, we would like to evade the precise construction, but here is the idea: it is
obvious how to define the direct sum of trivial bundles. So in the general case, we
define the direct sum by first restricting to a covering family {Ui}i∈I of simultane-
ous local trivializations of E and E′ and then glue together these vector bundles
over the Ui’s. In a similar way one can define the tensor product E ⊗ E′ and the
dual bundle E∨.

For our purposes though the direct sum construction is the most important. It
gives Vec(X) the structure of an additive category: in addition to the existence
of direct sums, this means that each of the sets Hom(E,E′) of morphisms from E
to E′ form a commutative group. (In fact Hom(E,E′) naturally has the structure
of a K-vector space.) Decategorifying, the set of all isomorphism classes of vector
bundles on X naturally forms a commutative monoid under direct sum (the iden-
tity is the trivial vector bundle X → X where each one point fiber is identified –
uniquely! – with the zero vector space). The Grothendieck group of this monoid is
K(X): this is the beginning of topological K-theory.

6.2. Swan’s Theorem.

But we digress from our digression. A (global) section of a vector bundle π :
E → X is indeed a continuous section σ of the map π, i.e., a continuous map
σ : X → E such that π ◦σ = 1X . The collection of all sections to E will be denoted
Γ(E). Again this is a commutative group and indeed a K-vector space, since we
can add two sections and scale by elements of K.

But in fact more is true. The global sections form a module over the ring
C(X) of continuous K-valued functions, in a very natural way: given a section
σ : X → E and f : X → K, we simply define fσ : X → E by x 7→ f(x)σ(x). Thus
Γ : E → Γ(E) gives a map from vector bundles over X to C(X)-modules.

In fancier language, Γ gives an additive functor from the category of vector
bundles on X to the category of C(X)-modules; let us call it the global section
functor. (Indeed, if we have a section σ : E → X of E and a morphism of vector
bundles f : E → E′, f(σ) = f ◦ σ is a section of E′. No big deal!)

Theorem 6.1. (Swan [Sw62]) Let X be a compact space. Then the global section
functor Γ gives an equivalence of categories from Vec(X) to the category of finitely
generated projective C(X)-modules.

In other words, at least for this very topologically influenced class of rings C(X),
we may entirely identify finitely generated projective bundles with a basic and im-
portant class of geometric objects, namely vector bundles.

There is a special case of this result which is almost immediately evident. Namely,
suppose that E is a trivial vector bundle on X, i.e., up to isomorphism E is simply
X ×Kn with π = π1. Thus a section σ is nothing else than a continuous function
σ : X → Kn, which in turn is nothing else than an n-tuple (f1, . . . , fn) of elements
of C(X). Thus if we define σi ∈ Γ(E) simply to be the section which takes each
point to the ith standard basis vector ei ofK

n, we see immediately that (σ1, . . . , σn)
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is a basis for Γ(E), i.e., Γ(E) is a free C(X)-module of rank n. Moreover, we have

Hom(X ×Kn, X ×Km) ∼= Map(X,HomK(Kn,Km))

∼= C(X)⊗K Hom(Kn,Kw) ∼= HomC(X)(Γ(X ×Kn),Γ(X ×Km)).

Thus we have established that Γ gives an additive equivalence from the category of
trivial vector bundles on X to the category of finitely generated free C(X)-modules.
We wish to promote this to an equivalence from locally trivial vector bundles (i.e.,
all vector bundles) to finitely generated projective modules. Oh, if only we had
some nice “geometric” characterization of finitely generated projective modules!

But we do: namely Proposition 3.11 characterizes finitely generated projective
modules over any commutative ring R as being precisely the images of projection
operators on finitely generated free modules. Thus the essence of what we want
to show is that for any vector bundle E over X (a compact space), there exists a
trivial vector bundle T and a projection P : T → T – i.e., an element of Hom(T, T )
with P 2 = P such that the image of P is a vector bundle isomorphic to E. Indeed,
if we can establish this, then just as in the proof of 3.11 we get an internal direct
sum decomposition T = P (T ) ⊕ (1 − P )(T ) and an isomorphism P (T ) ∼= E, and
applying the additive functor Γ this gives us that Γ(E) is isomorphic to a direct
summand of the finitely generated free C(X)-module Γ(T ). A little thought shows
that in fact this proves the entire result, because we have characterized Vec(X) as
the “projection category” of the additive category trivial vector bundles, so it must
be equivalent to the “projection category” of the equivalent additive category of
finitely generated free C(X)-modules. So from this point on we can forget about
projective modules and concentrate on proving this purely topological statement
about vector bundles on a compact space.30

6.3. Proof of Swan’s Theorem.

Unfortunately the category of vector bundles over X is not an abelian category.
In particular, it can happen that a morphism of vector bundles does not have ei-
ther a kernel or image. Swan gives the following simple example: let X = [0, 1],
E = X×K the trivial bundle, and f : E → E be the map given by f(x, y) = (x, xy).
Then the image of f has rank one at every x ̸= 0 but has rank 0 at x = 0. Since X
is connected, a vector bundle over X should have constant rank function. Exactly
the same considerations show that the kernel of f is not a vector bundle. However,
nothing other than this can go wrong, in the following sense:

Proposition 6.2. For a morphism f : E → E′ of vector bundles over X, TFAE:
(i) The image of f is a subbundle of E′.
(ii) The kernel of f is a subbundle of E.
(iii) The function x 7→ dimK(Im f)x is locally constant.
(iv) The function x 7→ dimK(Ker f)x is locally constant.

30We note that [Sw62] takes a more direct approach, for instance proving by hand that the
global section functor Γ is fully faithful. In our use of projection operators and projection categories
to prove Swan’s theorem we follow Atiyah [At89, §1.4]. Aside from being a bit shorter and slicker,

this approach really brings life to Proposition 3.11 and thus seems thematic in a commutative
algebra course. But it is not really more than a repackaging of Swan’s proof.
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Proof. Step 1: We first wish to prove a special case: namely that if f : E → E′ is
a monomorphism of vector bundles (i.e., it induces an injection on all fibers) then
(Im f) is a subbundle of E′ and f : E → (Im f) is an isomorphism. The issues of
whether Im f is a vector bundle and f is an isomorphism are both local ones, so it
suffices to treat the case where E and E′ are trivial bundles. Suppose E′ = X ×V ,
and let x ∈ X. Choose Wx ⊂ V a subspace complementary to (Im f)x. Then
G := X ×Wx is a sub-bundle of E; let ι : G → E be the inclusion map. Define
θ : E ⊕ G → E′ by θ((a, b)) = f(a) + ι(b). Then θx is an isomorphism, so there
exists an open neighborhood U of x such that θ|U is an isomorphism. Since E is a
subbundle of E ⊕G, θ(E) = f(E) is a subbundle of θ(E ⊕G) = E′ on U .
Step 2: Since the rank function on a vector bundle is locally constant, (i) =⇒
(iii), (ii) =⇒ (iv), and (by simple linear algebra!) (iii) ⇐⇒ (iv).
(iv) =⇒ (i): Again the issue of whether Im f is a vector bundle is a local one,
so we may assume that E = X × V is a trivial bundle. For x ∈ X, let Wx ⊂ V
be a complementary subspace to (Ker f)x. Let G = X ×Wx, so that f induces
a homomorphism ψ : G → E′ whose fiber at x is a monomorphism. Thus ψ is a
monomorphism on some neighborhood U of x, so ψ(G)|U is a subbundle of E′|U .
However Ψ(G) ⊂ f(E), and since f(E) has constant rank, and

dimψ(G)y = dimψ(G)x = dim f(E)x = dim f(E)y

for all y ∈ U , ψ(G)|U = f(E)|U . so f(E) is a subbundle of E′.
(iv) =⇒ (ii): here we exploit dual bundles. The hypothesis implies that the
kernel of f∨ : (E′)∨ → E∨ has constant rank function. Since E∨ → Coker f∨ is
an epimorphism, (Coker f∨)∨ → E∨∨ is a monomorphism: by Step 1, its image is
a subbundle. But the natural map E → E∨∨ is an isomorphism, the restriction of
which to Ker f gives an isomorphism to the vector bundle (Coker f∨)∨. So Ker f
is a vector bundle. �

The proof yields the following additional information.

Corollary 6.3. For any morphism of vector bundles, the rank function of the image
is upper semi-continuous: that is, for any x ∈ X, there exists a neighborhood U of
x such that for all y ∈ U , dimK(Im f)y ≥ dimK(Im f)x.

Exercise 6.1: Prove Corollary 6.3.

Proposition 6.4. Let E be a vector bundle over X, and let P ∈ End(E) =
Hom(E,E) be a projection, i.e., P 2 = P . Then:
a) We have Ker(P ) = Im(1− P ).
b) ImP and Im(1− P ) are both subbundles of E.
c) There is an internal direct sum decomposition E = ImP ⊕ Im(1− P ).

Proof. a) For all x ∈ X linear algebra gives us an equality of fibers Ker(P )x =
Im(1− P )x. This suffices!
b) From part a) we deduce an equality of rank functions

rImP + rIm(1−P ) = rE .

By Corollary 6.3, for all x ∈ X, there is a neighborhood U of x on which rImP is
at least as large as rImP (x), rIm(1−P ) is at least as large as rIm(1−P )(x) and rE is
constantly equal to rE(x). On this neighborhood the ranks of ImP and Im(1−P )
must be constant, and therefore by Proposition 6.2 ImP and Im(1 − P ) are both
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subbundles.
c) Again it is enough to check this fiber by fiber, which is simple linear algebra. �

An inner product on a finite-dimensional R-vector space V is, as usual, a symmetric
R-bilinear form ⟨, ⟩ : V × V → R which is positive definite in the sense that for
all x ∈ V \ {0}, ⟨x, x⟩ = 0. An inner product on a finite-dimensional C-vector
space V is a positive definite sesquilinear form: i.e., it is C-linear in the first vari-
able, conjugate-linear in the second variable and again we have ⟨x, x⟩ > 0 for all
x ∈ V \ {0}.

Now let E be a K-vector bundle on X. An inner product on E is a collection of
inner products ⟨, ⟩x : Ex×Ex → K on each of the fibers which vary continuously in
x. Formally this means the following: let E×X E be the subset of (e1, e2) ∈ E×E
such that π(e1) = π(e2); then such a fiberwise family of inner products defines a
function from E ×X E to K, and this function is required to be continuous.

Let us say that a metrized vector bundle E on X is a vector bundle together
with an inner product. (Again, this is an abuse of terminology: we do not speak of
the inner product by name.)

Proposition 6.5. Let E be a metrized line bundle on X.
a) If E′ is a subbundle of E, fiberwise orthogonal projection onto E′ defines a
projection operator P ∈ End(E) with image E′.
b) All short exact sequences 0 → E′ → E → E′′ → 0 of vector bundles are split.
c) If M is another vector bundle on X and there exists an epimorphism of bundles
q : E →M , then M is isomorphic to the image of a projection operator on E.

Proof. a) This is mostly a matter of understanding and unwinding the definitions,
and we leave it to the reader.
b) Let P be orthogonal projection onto E′. The restriction of the map E → E′′ to
KerP is an isomorphism of vector bundles. The inverse of this isomorphism gives
a splitting of the sequence.
c) By Proposition 6.2, since Im q = M is a vector bundle, so is Ker q, whence a
short exact sequence

0 → Ker q → E →M → 0.

By part b), there exists a splitting σ : M → E of this sequence. Then, as usual,

P = σ ◦ q is a projection operator on E and q|ImP : ImP
∼→M . �

Proposition 6.6. If X is a paracompact topological space, then every vector bundle
over X admits an inner product.

Proof. This is a rather standard topological argument which we just sketch here.
Let M be a vector bundle on X, and let {Ui}i∈I be an open covering of X such
that the restriction of M to each Ui is a trivial bundle. On a trivial bundle there
is an obvious inner product, say ⟨, ⟩x. Now, since X is paracompact, there exists a
partition of unity {φi}i∈I subordinate to the open covering {Ux}: that is,
• each φi : X → [0, 1] is continuous,
• for all x ∈ X we have supp(φi) ⊂ Ui
• for all x ∈ X there exists an open neighborhood V of x on which all but finitely
many φi’s vanish identically, and
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• for all x ∈ X,
∑
i∈I φi(x) = 1.31

Then, for x ∈ X and e1, e2 ∈Mx, define

⟨e1, e2⟩x :=
∑
i

φi(x)⟨e1, e2⟩i;

the sum extends over all i ∈ I such that x ∈ Ui. This is an inner product onM . �
To complete the proof of Swan’s Theorem, it suffices to show that if X is com-
pact, every vector bundle M on X is the epimorphic image of a trivial bundle. In
particular, Proposition X.X then shows that M is a direct summand of a trivial
vector bundle T and thus Γ(M) is a direct summand of the finitely generated free
C(X)-module Γ(T ), hence is finitely generated projective.

Proposition 6.7. Let X be a compact space and M a vector bundle on X. Then
there exists an epimorphism of bundles from a trivial vector bundle X × V to M .

Proof. Step 1: We claim that for each x ∈ X, there exists a neighborhood Ux of x
and finite set of global sections Sx = {sx,1, . . . , sx,kx} of M such that for all y ∈ U ,
sx,1(y), . . . , sx,kx(y) is a K-basis for My.
proof of claim: Let U be an open neighborhood of x on which M is a trivial
bundle. Certainly then there exist finitely many sections s1, . . . , sn of M over U
which when evaluated at any y ∈ U give a basis ofMy. We need to show that there
exists an open set W with x ∈ W ⊂ U and global sections s′1, . . . , s

′
n such that

for all i, s′i|W = si|W . For this it suffices to work one section at a time: let s be
a section of M over U . Since X is paracompact, it is normal, so there exist open
neighborhoods W and V of x with W ⊂ V , V ⊂ U . By Urysohn’s Lemma, there is
a continuous function ω : X → [0, 1] such that ω|W ≡ 1 and ω|X\V ≡ 0. If we then
define s′ : X →M by s′(y) = ω(y)s(y) for y ∈ U and s′(y) = 0 for y ∈ X \U , then
this s does the job.
Step 2: By compactness of X, there exists a finite subset I of X such that {Ux}x∈I
covers X. So S =

∪
i∈I Sx is a finite set of global sections of M which when

evaluated at any x ∈ X, span the fiberMx. So the K-subspace V of Γ(M) spanned
by S is finite-dimensional. We define a map q : X × V → M by q(x, s) = s(x).
This is a surjective bundle map from a trivial vector bundle to M ! �
Remark: In the above proof the paracompactness of X seems to have been fully
exploited, but the need for compactness is less clear. In fact, at the end of [Sw62],
Swan remarks that if you replace the last step of the proof by an argument from
Milnor’s 1958 lecture notes Differential Topology, one gets a categorical equivalence
between vector bundles with bounded rank function on a paracompact space X and
finitely generated projective C(X)-modules.

Remark: A more straightforward variant of Swan’s theorem concerns the case where
X is a compact differentiable manifold (say of class C∞). In this case the equiva-
lence is between differentiable K-vector bundles on X and modules over the ring of
K-valued C∞-functions. Looking over the proof, one sees that the only part that
needs additional attention is the existence of differentiable partitions of unity. Such
things indeed exist and are constructed in many of the standard texts on geometry
and analysis on manifolds. We recommend [Wel80], which has a particularly clear
and complete discussion.

31See e.g. Exercise 5 in §4.5 of Munkres’ Topology: a first course for a proof of this fact.
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6.4. Applications of Swan’s Theorem.

6.4.1. Vector bundles and homotopy.

Vector bundles on a space are of interest not only to differential topologists and
geometers but also to algebraic geometers. This is because pullback of vector bun-
dles behaves well under homotopy.

First, suppose that f : X → Y is a continuous map of topological spaces and
π : E → Y is a vector bundle on Y . We may pullback π to a vector bundle
πX : E ×Y X → X just by taking E ×Y X to be the fiber product of the maps
f and π, namely the subspace of X × E consisting of all pairs (x, v) such that
f(x) = π(v) ∈ Y . The map πX : E ×Y X → X is just restriction of the projection
map: (x, v) 7→ x.

Exercise 6.2: Show that πX : E ×Y X → X is indeed a vector bundle on X.
We abbreviate it by either f∗π or (more abusively) f∗E.

Exercise 6.3: Show that the pullback of any trivial bundle is a trivial bundle.

Theorem 6.8. (Covering Homotopy Theorem) Let X and Y be topological spaces
with X paracompact. Let π : E → Y be a vector bundle on Y , and let f, g : X → Y
be homotopic maps. Then the pullbacks f∗π and g∗π are isomorphic vector bundles
on X.

Proof. See for instance [Hus66, Thm. 4.7]. �
For our applications, it is enough to know that compact spaces are paracompact.
But for culture we also remark that any regular σ-compact space is paracompact,
e.g. any CW-complex with only finitely many cells of any given dimension.

Corollary 6.9. If X is a contractible paracompact space, then every vector bundle
on X is trivial.

Proof. Choose any point x0 ∈ X, let f : X → X be the map which sends every
point of X to x0,and let g : X → X be the identity map. If π : E → X is any
vector bundle on X, then by Theorem 6.8 we have f∗π = g∗π. Since g is the
identity map, g∗π = π. On the other hand, tracking through the definitions shows
f∗π = X × π−1(x0), a trivial bundle. So π is trivial. �
6.5. Stably Free Modules.

Recall that an R-module M is stably free if there is a finitely generated free
module F such that M ⊕ F is free. This definition is natural from the perspective

of K-theory: the class [P ] in K̃0(R) of a finitely generated projective module P is
trivial iff P is stably free.

Exercise: Let 0 → A → B → P → 0 be a short exact sequence of R-modules,
with P stably free. Show: A is stably free ⇐⇒ B is stably free.

Certainly we have

projective =⇒ stably free =⇒ free.
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Asking to what extent these implications can be reversed brings us quickly to some
deep and beautiful mathematics.

6.5.1. Finite Generation.

We begin by addressing finite generation conditions.

Exercise (Eilenberg Swindle): Let us say that a projective module P is weakly
stably free if there exists a not necessarily finitely generated free module F such
that P ⊕ F is free. Show that every projective module is weakly stably free.
(Hint: if P ⊕Q is free, take F = P ⊕Q⊕ P ⊕Q⊕ . . ..)

Exercise: Show that for a finitely generated projective module P , TFAE:
(i) P is stably free.
(ii) P admits a finite free resolution: for some n ∈ N there is an exact sequence

0 → Fn → . . .→ F0 → P → 0,

with each Fi a finitely generated free module.

This explains why the free module we take the direct sum with in the definition of
stably free is required to be finitely generated. What happens if we take the module
P to be infinitely generated? Here let us be sure that by an infinitely generated
R-module, we mean an R-module which is not finitely generated.32

Theorem 6.10. (Gabel) Each infinitely generated stably free module is free.

Proof. Let M be infinitely generated and stably free. Choose a ∈ N such that
F =M⊕Ra is free. Let {ai}i∈I be a basis for F . Since F has an infinitely generated
homomorphic image, I is infinite. Let p : F → Ra be the natural projection map
(x, y) 7→ y. For each standard basis element ek of Ra lift it to ẽk in F and let Jk
be the “support” of ẽk, i.e., the set of indices i such that the coefficient of ai in ẽk
is nonzero. Then J =

∪a
k=1 Jk is finite. Let F ′ = ⟨ai⟩i∈J , so that F ′ is free of finite

rank and F/F ′ is free of infinite rank. By construction q(F ′) = Ra; it follows that

F = F ′ +M.

Put N =M ∩ F ′, so
F ′/N ∼= Ra.

Since Ra is projective, the sequence

0 → N → F ′ → Ra → 0

splits, giving
F ′ ∼= N ⊕Ra.

Further
F/F ′ ∼=M/N,

so M/N is infinitely generated free: M/N ∼= Ra ⊕ F ′′ for a free module F ′′. In
particular M/N is projective, so the sequence

0 → N →M →M/N → 0

32A priori it would be reasonable to take “infinitely generated R-module” to mean a module

which possesses an infinite generating set, but a moment’s thought shows that an R-module has
this property iff it is infinite, so it is more useful to define “infinitely generated” as we have.
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splits. Putting all this together we get

M ∼= N ⊕M/N ∼= N ⊕Ra ⊕ F ′′ ∼= F ′ ⊕ F ′′.

�

The following result – which we will not prove here – shows that for a large class of
“reasonable rings” infinitely generated projective modules are much less interesting
objects than finitely generated projectives, and thus gives further motivation to our
restriction to the finitely generated case.

Theorem 6.11. (Bass [Bas63]) Let R be connected (i.e., without nontrivial idem-
potents) Noetherian ring. Then any infinitely generated projective R-module is free.

However, we can use Swan’s Theorem to exhibit a nonfree infinitely generated pro-
jective module. Let [0, 1] be the closed unit interval with its topology: a compact,
contractible space. By Corollary 6.9, every vector bundle over [0, 1] is trivial. By
Swan’s Theorem, this implies that every finitely generated projective module over
the ring R = C([0, 1]) of continuous functions f : [0, 1] → R is free.

But now – as in §3.9 – consider the ideal I of all functions f ∈ R which van-
ish near zero, i.e., for which there exists ϵ(f) > 0 such that f |[0,ϵ(f)] ≡ 0. By
Exercise X.X, I is a projective R-module. Moreover, I is not a free R-module:
indeed, any f ∈ I is annihilated by any continuous function with support lying in
[0, ϵ(f)], and nonzero such functions clearly exist. On the other hand, any nonzero
free module has elements with zero annihilator: take any basis element.

Thus C([0, 1]) is a connected ring over which every finitely generated projective
module is free, but the infinitely generated projective module I is not free. (Re-
call that Theorem 6.11 says that no such modules exist over connected Noetherian
rings.) Moreover I is therefore clearly not a direct sum of finitely generated mod-
ules, since by what we have established any such module over C([0, 1]) would be free!

Exercise 6.4: Use Corollary 3.47 to give a purely algebraic proof that I is not
a direct sum of finitely generated submodules.

Exercise 6.5*: Find necessary and sufficient conditions on a compact, contractible
space X for there to exist a nonfree projective module.

6.5.2. Ranks.

Later we will attach to a finitely generated projective module over any ring R
a rank function (on SpecR). However, for a stably free module we can – as for free
modules – simply assign a rank. Namely, if we put rankP = b− a.

Exercise: Show that the rank of a finitely generated stably free module is well-
defined.

Exercise: Show that for an R-module M , the following are equivalent:
(i) M is stably free of rank zero.
(ii) M = 0.
Comment: This will be quite routine once we have the theory of localization. If you
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have trouble with the general case now, just show that M ⊕ R ∼= R =⇒ M = 0,
which is easier: every cyclic module is isomorphic to R/I for some ideal I of R;
now consider annihilators.

6.5.3. Digression: the least number of generators.

For a finitely generated R-module M we denote by mgM the minimal number
of generators of M , i.e., the least n such that Rn �M .

From a naive perspective this is perhaps the most natural numerical invariant as-
sociated to a finitely generated R-module. But in fact it behaves badly. Essentially
its only good property is the obvious one: if M1 � M2, then mg(M2) ≤ mg(M1).
However, if M1 ↪→ M2, then we certainly need not have mg(M1) ≤ mg(M2): let I
be a finitely generated but nonprincipal ideal, and let M1 = I, M2 = R.

One may momentarily hope that for finitely generated R-modules M1 and M2

we at least have mg(M1 ⊕M2) = mg(M1) + mg(M2) but in fact this is false even
over the simplest rings: take R = Z, M1 = Z/2Z, M2 = Z/3Z. But it gets even
worse:

Exercise: Let R be a ring and M1, M2 be finitely generated R-modules.
a) Suppose R is local. Show: mg(M1 ⊕M2) = mg(M1) + mg(M2). In fact, show
that if 0 → M ′ → M → M ′′ → 0 is a short exact sequence of finitely generated
R-modules then mg(M) = mg(M ′) + mg(M ′′).
b) Suppose R is a PID. Show: mg(M1 ⊕M1) = 2mg(M1).
c) Suppose R is a Dedekind domain,33 and l I is a nonzero proper ideal of R. Show:
(i) • If I is principal, mg(I) = 1.
• If I is not principal, mg(I) = 2.
(ii) • If I2 is principal, mg(I ⊕ I) = 2.
(iii) • If I2 is not principal, mg(I ⊕ I) = 3.
d) Deduce: For a nonprincipal ideal I in a Dedekind domain R, mg(I⊕I) < 2mg(I).

Later we will see “better” invariants for certain subclasses of finitely generated R-
modules, namely the rank for projective modules and the length for...finite length
modules. Over a Dedekind domain every finitely generated module can be decom-
posed into the direct sum of a projective module and a finite length module. This
does not hold over more general rings, e.g. the C[x, y]-module C[x] is a torsion
module of infinite length so cannot be so expressed.

Proposition 6.12. A rank one stably free module is free.

We will come back to prove this later once we have developed localization.

6.5.4. Around Hermite’s Lemma.

In number theory and related branches of mathematics one studies sublattices Λ of
the standard integral lattice Zn, i.e., rank n Z-submodules of Zn. Their structure
is surprisingly rich – for instance, the function Ln(k) which counts the number of

33This exercise is stated now for continuity purposes, but to solve it you will probably want
to use the theory of finitely generated modules over a Dedekind domain detailed in § 20.6.
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index k sublattices of Zn is arithmetically interesting and nontrivial. In particular,
one question that comes up in the study of integer lattices is: which vectors v ∈ Zn
can be part of a Z-basis of Zn? Unlike the answer for modules over a field (all
nonzero vectors), there is an obvious obstruction: for instance there is no basis
(v1, v2) of Z2 with v1 = (2, 0). For if so, the linear transformation T : Z2 → Z2

given by T ((1, 0)) = (2, 0), T ((0, 1)) = v2 = (a, b) has determinant 2b. Since this
is not a unit in Z, T is not invertible, which is a contradiction (make sure you see
why, e.g. by using the universal property of free modules).

This observation can be vastly generalized, as follows: for a domain R and n ∈ Z+,
we say v = (x1, . . . , xn) ∈ Rn is a primitive vector if v ̸= 0 and ⟨x1, . . . , xn⟩ = R.

Exercise: Let K be the fraction field of R. Show that v ∈ (Rn)• is primitive
iff Kv ∩Rn = Rv.

Exercise: Let R be a domain, and let (b1, . . . , bn) be a basis for Rn. Show that each
bi is a primitive vector.

In 1850 Hermite proved that for integer lattices this is the only obstruction.

Proposition 6.13. (Classical Hermite Lemma) For a vector v ∈ Zn, TFAE:
(i) There is M ∈ GLn(Z) with M(e1) = v, i.e., the first column of M is v.
(ii) There is a basis for Zn containing v.
(iii) v is a primitive vector.

For a proof of Proposition 6.13 in the classical style, see [?, § 1.3.3]. In fact the
methods of module theory allow for a much slicker proof of a more general result.

Proposition 6.14. Let R be a PID. For a vector v ∈ Rn, TFAE:
(i) There is M ∈ GLn(R) with M(e1) = v, i.e., the first column of M is v.
(ii) There is a basis for Rn containing v.
(iii) v is a primitive vector.

Proof. Any two bases of Rn are equivalent under GLn(R). So (i) ⇐⇒ (ii).
(ii) =⇒ (iii): If v, v2, . . . , vn is a basis for Rn and v were not primitive, then
we would have v = αw for some α ∈ R• \ R×. Then w = 1

αv expresses w as a
K-linear combination of the basis vectors with a nonintegral coefficient. This is a
contadiction.
(iii) =⇒ (ii): Step 1: For a domain R and v ∈ (Rn)•, we claim that v is a primitive
vector iff Rn/⟨v⟩ is torsionfree.
Proof: Suppose v is not primitive: v = αv′ for some α ∈ R• \ R×. Then v′ is
a torsion element of Rn/⟨v∠. Conversely, suppose v is primitive. Ifn = 1 then
⟨v⟩ = R and the result holds trivially, so assume n ≥ 2. Suppose there is w ∈ Rn

and α ∈ R• such that αw = βv for some β ∈ R. Thus w = β
αv. Since v is primitive,

α | β and the image of w in Rn/⟨v⟩ is zero.
Step 2: Consider the short exact sequence

0 → ⟨v⟩ → Rn →M → 0,

with M = Rn/⟨v⟩. By Step 1, M is a finitely generated torsionfree module over a
PID, so it is free: indeed, tensoring to K and applying linear algebra we see that
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M ∼= Rn−1. Thus the sequence splits: Rn = ⟨v⟩ ⊕M ′, with M ′ ∼= Rn−1. Thus if
v2, . . . , vn is an R-basis for M ′, v, v2, . . . , vn is an R-basis for Rn. �

Proposition 6.15. Let R be a commutative ring, and let n ∈ Z+. TFAE:
(i) If for an R-module M we have M ⊕R ∼= Rn then M is free.
(ii) Every primitive vector v ∈ Rn is part of a basis for Rn.

Proof. We follow a treatment of K. Conrad [Cd-SF]. First we observe that when
n = 1 both (i) and (ii) hold for all R-modules M : indeed, by Exercise X.X, if
M ⊕R ∼= R then M = 0, whereas (ii) is completely vacuous in this case.
(i) =⇒ (ii): Assume (i). For v = (v1, . . . , vn), w = (w1, . . . , wn) ∈ Rn, let
v ·w =

∑n
i=1 viwi. Let a = (a1, . . . , an) ∈ Rn be a primitive vector. Observe that

this is equivalent to the existence of b = (b1, . . . , bn) ∈ Rn with a · b = 1 and fix
such a b. Consider the R-linear functional f : Rn → R given by v 7→ v · b. Since
f(a) = 1 it is nonzero and thus there is a short exact sequence

0 → Ker f → Rn
f→ R→ 0.

Since R is projective, this sequence splits, giving Rn ∼= Ker f ⊕R. More concretely
a splitting is given by a section σ : R → Rn of f which is determined by mapping
1 ∈ R to any v ∈ Rn with f(v) = 1. Thus 1 7→ a gives an internal direct sum
decomposition

Rn = Ker f ⊕ ⟨a⟩ ∼= Ker f ⊕R.

By our hypothesis (i), Ker f is free, and if b2, . . . , bn is a basis for Ker f then
a, b2, . . . , bn is a basis for Rn containing a.
(ii) =⇒ (i): Let g : M ⊕ R

∼→ Rn be an R-module isomorphism. Put a =
(a1, . . . , an) = g(0, 1). We claim that a is a primitive vector. If not, there is a
maximal ideal m such that ⟨a1, . . . , an⟩ ⊂ m. But

g|m(M⊕Rn) : mM ⊕m
∼→ (mR)n,

and g(0, 1) = a ∈ (mR)n, so (0, 1) ∈ mM ⊕ (mR)n, a contradiction. Thus by
(ii) there is a basis a, b2, . . . , bn of Rn, so that g−1(a), g−1(b2), . . . , g

−1(bn) is a
basis of M ⊕ R. For 2 ≤ i ≤ n we write g−1(bi) = (xi, ci). Subtracting off from
each of these vectors a suitable scalar multiple of g−1(a) = (0, 1) we get a new basis
(0, 1), (x2, 0), . . . , (xn, 0) ofM⊕R. A moment’s thought shows that then x2, . . . , xn
is a basis for M . �

Theorem 6.16. For a commutative ring R, the following are equivalent:
(i) For all R-modules M , if M ⊕R is free, then M is free.
(ii) For all n ∈ Z+, every primitive vector v ∈ Rn is part of a basis of Rn.
(iii) Every stably free R-module M is free.

Proof. In view of Gabel’s Theorem (Theorem 6.10), conditions (i) and (iii) neces-
sarily hold if M is finitely generated, so we may assume this throughout. Then:
(i) ⇐⇒ (ii) is immediate from Proposition 6.15.
(i) =⇒ (iii): It suffices to show that for all finitely generated modules M and all
a ∈ N, if M ⊕ Ra is free then M is free. We go by induction on n, the case n = 0
being trivial. Suppose the result holds for a ∈ N. Then M ⊕Ra+1 ∼= (M ⊕Ra)⊕R
is free, so by (i) M ⊕Ra is free, and then by induction M is free.
(iii) =⇒ (i) is immediate. �
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6.5.5. Swan’s Construction.

For n ∈ N, let
Rn = R[t0, . . . , tn]/⟨t20 + . . .+ t2n − 1⟩.

Exercise: Show that Rn is a domain iff n ≥ 1.

Consider the map H : Rn+1
n → Rn obtained by taking the dot product of v =

(v1, . . . , vn+1) with t = (t0, . . . , tn). For 0 ≤ i ≤ n, let ei be the ith standard basis
vector of Rn+1

n ; then H(ei) = ti, so the image of H contains ⟨t0, . . . , tn⟩ = Rn: H
is surjective. Let Pn = KerH, so we have a short exact sequence

0 → Pn → Rn+1
n

H→ Rn → 0.

As above, this sequence splits and since t · t = 1, a canonical section is given by
mapping 1 ∈ Rn to t. In particular

Pn ⊕Rn ∼= Rn+1
n

so Pn is stably free. When is it free?

Theorem 6.17. (Swan) The stably free Rn-module Pn is free iff n = 0, 1, 3 or 7.

Proof. Step 0: Since P0 = 0, it is free. Moreover P1 has rank 1 so is free by general
principles (Proposition 6.12). But this is overkill: in fact one sees that −t1e0+ t0e1
is a basis for P1. Similarly one can simply write down bases for P3 and P7 in a
concrete manner: we leave this as an exercise for the reader.
Step 1: Suppose n /∈ {0, 1, 3, 7}, so we wish to show that Pn is not free. The key ob-
servation is that it is enough to show this after any base change: that is, if Rn → S
is a ring map and M is an R-module such that M ⊗Rn S is not a free S-module,
then M is not a free R-module. What is the natural base change to make?

Notice that Rn is nothing else than the ring of polynomial functions on the
unit sphere Sn ⊂ Rn+1. For those unitiated in the above jargon we spell it out
more explicitly: every f ∈ R[t0, . . . , tn+1] induces a function from Rn+1 → R and
thus by restriction a function Sn → R. We wish to identify polynomials which
define the same function on Sn, and to do so we should at least impose the rela-
tion t20 + . . . + t2n − 1 = 0 since this function vanishes identically on Sn. As we
will see later when we study the Nullstellensatz, since by Exericse X.X the ideal
I = ⟨t20 + . . .+ t2n − 1⟩ is prime, it is radical and thus the relation I(V (I)) = I tells
us that the only polynomials which vanish identically on Sn are those in I.

Since every polynomial function is a continuous function for the Euclidean topol-
ogy on Sn, we get an extension of rings Rn → C(Sn). So our bright idea is to show
insteaad that the finitely generated projective C(Sn)-module

Tn = Pn ⊗Rn
C(Sn)

is not free. By Swan’s Theorem, Tn corresponds to a vector bundle on Sn and it is
equivalent to show that this vector bundle is nontrivial. 34

Step 3: We claim that in fact Tn is nothing else but the tangent bundle of Sn.
Indeed, we have Sn ⊂ Rn+1. The tangent bundle to Rn+1 is trivial, hence so is its
pullback to Sn, say Fn+1. Further, there is a surjective bundle map from Fn+1 to

34Thus in summary we have just accomplished the following exciting maneuver: using ba-

sic affine algebraic geometry, we have completely transferred our problem from the domain of
commutative algebra to that of differential topology!
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the rank one trivial bundle F 1: at every point of Sn we orthogonally project to the
outward normal vector. The kernel of this bundle map is T (Sn). Thus we have a
short exact sequence of vector bundles

0 → TSn → Fn+1 → F → 0.

We claim that under the Swan’s Theorem equivalence of categories, this split exact
sequence corresponds to the split exact sequence

0 → Tn → C(Sn)n+1 H→→ C(Sn) → 0

which is the base change to C(Sn) of the defining short exact sequence of Sn. We
leave it to the interested reader to piece this together from our consruction of Pn.
Step 4: By a classical theorem of Bott and Milnor [BM58], the tangent bundle of
Sn is trivial iff n ∈ {0, 1, 3, 7}. �

Exercise: Show that Pn is free for n = 3 and n = 7.

Exercise*: Find stably free but not free modules of ranks 3 and 7 over some ring.

The Bott-Milnor Theorem is a deep and celebrated result. Their original proof used
the recently developed tools of midcentury differential topology: Stiefel-Whitney
and Pontrjagin classes, cohomology operations, and so forth. In 1962 J.F. Adams
determined for each n the largest rank of a trivial subbundle of T (Sn) [Ad62]. The
K-theory developed in the 1960’s gave more graceful proofs: we recommend that
the interested reader consult, for instance, [Ka, § V.2].

If one merely wants some values of n for which Pn is not free, one can use much
lower technology. for instance, the Poincaré-Hopf Theorem [Mi, p. 35] implies that
a closed n-manifold which admits a nowhere vanishing vector field (equivalently
a trivial rank one subbundle of its tangent bundle; this is much weaker than the
tangent bundle being trivial) must have zero Euler characteristic. The Euler char-
acteristic of Sn is 1 + (−1)n, so it is nonzero forall even n.

Further, a purely algebraic proof of Theorem 6.17 when n = 2. But to the best of
my knowledge the full result still requires these topological techniques.

6.6. The Theorem of Bkouche and Finney-Rotman.

Let X be a Hausdorff topological space. One says that a function f ∈ C(X)
has compact support if {x ∈ X | f(x) ̸= 0} has compact closure.

Exercise: Let J be the set of functions in C(X) with compact support. Show
that J is an ideal of C(X).

Theorem 6.18. (Bkouche [Bk70], Finney-Rotman [FR70]) For a locally compact
space X, the following are equivalent:
(i) J is a projective C(X)-module.
(ii) X is paracompact.

Exercise: Let X be a connected topological manifold.
a) Show that J is a projective C(X)-module iff X is second countable.
b) Exhibit a connected manifold for which J is not a projective C(X)-module.
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7. Localization

7.1. Definition and first properties.

As we have seen, one way to “simplify” the study of ideals in a ring R is to pass to
a quotient ring R/I: as we have seen, this has the (often useful) effect of “cutting
off the bottom” of the ideal lattice by keeping only ideals J ⊃ I. There is another
procedure, localization, which effects the opposite kind of simplification: given a
prime ideal P of R, there is a ring RP together with a canonical map ι : R→ RP
such that ι∗ : I(RP ) → I(R) is an injection whose image is precisely the ideals
J ⊂ P . As usual, ι∗ carries prime ideals to prime ideals. In particular, assuming
only that P is prime, we get a corresponding ideal – rather inelegantly but stan-
dardly denoted PRP – which is the unique maximal ideal of RP . If we can take
P = (0) – i.e., if R is a domain – this means that PRP is the only ideal of RP ,
which is therefore a field. In fact it is nothing else than the quotient field of the
integral domain R, and – with one exception – all the secrets of localization are
already present in this very familiar special case.

In fact the localization construction is a bit more general than this: given an arbi-
trary ring R (of course commutative with unity!) and an arbitrary multiplicative
subset S of R – this just means that 1 ∈ S and SS ⊂ S – we will define a new ring
RS together with a canonical homomorphism ι : R→ RS (for which ι∗ will still be
an injection with explicitly given image). In fact, just as in the case of quotients,
ι satisfies a certain universal mapping property, but let us sacrifice some elegance
for intelligibility by working our way up to this crisp definition.

Indeed, first consider the special case in which R is a domain, with fraction field
F . Then RS will be an extension ring of R, still with fraction field F , which is
obtained by adjoining to R all elements 1

s for s ∈ S.

Example: Suppose R = Z, S = {2n}n∈N. Then RS = Z[12 ]. Indeed we see that for
any nonzero element f , we can take S to be the multiplicative set consisting of the
powers of f , and then the localization is just R[ 1f ].

What if in the example above, instead of taking the multiplicative subset gen-
erated by 2, we took the multiplicative subset generated by 22, or 2127? Clearly it

wouldn’t matter: if we have 1
2k

for any k in our subring of Q, we also have 2k−1

2k
= 1

2 .
To generalize this idea, define the saturation S of a multiplicatively closed subset
S of a domain R to be the set {a ∈ R | ∃b ∈ R | ab ∈ S}, i.e., the set of all divisors
of elements of S. The same observation as above shows that RS = RS, so if we like
we can restrict to consideration of saturated multiplicatively closed subsets.

Example, continued: The saturated, multiplicatively closed subsets of Z corre-
spond to (arbitary) subsets P of the prime numbers (exercise!). In particular Z
itself corresponds to P = ∅, Z[ 1p ] corresponds to P = {p}, Q corresponds to the set

of all primes. Most interestingly, fix any prime p and let P be the set of all primes
except p: then the corresponding ring, which is confusingly denoted Z(p) is the
set of all rational numbers of the form x

y where p does not divide y. Notice that

such rings are the maximal subrings of Q which are not fields. Moreover, the units
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of Z(p) are precisely the elements of the form x
y with (p, x) = 1. The nonunits a

are all of the form pa′ for a′ ∈ Z(p), so therefore the unique maximal ideal is the
principal ideal (p) = pZ(p).

Exercise 7.1: Show that the only ideals in Z(p) are those of the form (p)k for
some k ∈ N. Notice that this set happens to be identifiable with the set of all ideals
I of Z which are disjoint from the multiplicative set S(P).

Now let R be any ring and S a multiplicatively closed subset of R. We would
still like to define a ring S−1R which is, roughly speaking, obtained by adjoining
to R all inverses of elements of S. We can still define S−1R in terms of formal
quotients, i.e., as equivalence classes of elements (a, b) with a ∈ R, b ∈ S. However,
if we define (a, b) ∼ (c, d) to be ad = bc, then unfortunately we find that this need
not be an equivalence relation! Therefore we need to enlarge the relation a bit: we
put (a, b) ∼ (c, d) iff there exists s ∈ S such that sad = sbc. We then define

a

s
+
b

t
:=

at+ bs

st
,

a

s
· b
t
:=

ab

st
.

We must check that these operations are well-defined on equivalence classes; this is
left as a (perhaps somewhat tedious, but not difficult) exercise for the reader.

Exercise 7.2: Indeed, check that S−1R is a ring and that x 7→ x
1 defines a ho-

momorphism of rings R → S−1R. Thus S−1R is an R-algebra, and in particular
an R-module.

Exercise 7.3: Let R be a domain and S = R• = R \ {0}. Show that S−1R is
indeed the fraction field of R.

When f ∈ R, we denote the localization of R at the multiplicative subset gen-
erated by f as Rf .

Example: Suppose f ∈ R is a nilpotent element: fn = 0 for some n ∈ Z+. Then

1 = fn−1

fn−1 whereas 0 = 0
f . Since (fn−1 · f − fn−1 · 0) = 0, we have that 1 = 0, i.e.,

Rf is the zero ring. Conversely, if f is not nilpotent, then if it is a unit, Rf = R.
Otherwise, all the powers of f are distinct, and then 1

f ̸= 1
1 , since for any n ∈ N,

fn(1 − f) ̸= 0, so that Rf is not the zero ring. In general, S−1R is the zero ring
iff S contains 0. This is to be regarded as a trivial case, and may safely be tacitly
excluded in the sequel.

Exercise 7.4: a) Show that the kernel of the natural map R → S−1(R) is the
set of all r ∈ R such that for some s ∈ S, sr = 0.
b) The map R→ S−1(R) is injective iff S has no zerodivisors.
c) Show that the subset Q of all nonzerodivisors of a ring R is multiplicatively
closed. The localization Q−1R is called the total fraction ring of R. Show that
Q−1(R) is a field iff R is an integral domain.
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Exercise 7.5: Show that the homomorphism R → S−1R is universal for homo-
morphisms R→ T with f(S) ⊂ T×.

7.2. Pushing and pulling via a localization map.

Let R be a ring and S a multiplicatively closed subset. Let ι : R → S−1R be
the natural map. As for any homomorphism of rings, ι induces maps between the
sets of ideals of R and the set of ideals of S−1R, in both directions:

ι∗ : IR → IS−1R, I 7→ IS−1R,

ι∗ : IS−1R → IR, J 7→ ι−1(J).

Lemma 7.1. Let ι : R→ S−1R be a localization map. Then for any ideal I of R,

ι∗(I) = {x
s
∈ S−1R | x ∈ I, s ∈ S}.

Proof. Let us temporarily write

I = {x
s
∈ S−1R | x ∈ I, s ∈ S}.

We want to show that I = ι∗(I) = ⟨ι(I)⟩S−1R. It is clear that ι(I) ⊂ I ⊂ ι∗(I), so
it is enough to show that I is itself an ideal of S−1R. No problem: if x1

s1
, x2

s2
∈ I,

x1
s1

+
x2
s2

=
x1s2 + x2s1

s1s2
∈ I,

and if ys ∈ S−1R, then
y

s

x1
s1

=
x1y

ss1
∈ I.

�

Like quotient maps, any localization map has the pull-push property.

Proposition 7.2. Let ι : R→ S−1R be a localization. For any ideal J of S−1R,

J = ι∗ι
∗J.

Proof. We have seen before that for any homomorphism ι : R → R′ of rings and
any ideal J of R′ we have

J := ι∗ι
∗J ⊂ J.

Thus it is enough to show the reverse containment. For this, consider an arbitrary
element x

s ∈ J . Then x = sxs ∈ J hence also x ∈ ι∗(J), so ι(x) ∈ J . But since J is

an ideal and s is a unit in S−1R, we then also have 1
sx = x

s ∈ J . �

Lemma 7.3. Let ι : R→ S−1R be a localization map and I an ideal of R. TFAE:
(i) I ∩ S ̸= ∅.
(ii) ι∗(I) = S−1R.

Proof. (i) =⇒ (ii): If s ∈ S ∩ I, then s ∈ IS−1R, so 1 = s
s ∈ ι∗(I).

(ii) =⇒ (i): Suppose 1 ∈ ι∗(I). By Lemma 7.1, 1
1 = x

s for some x ∈ I and s ∈ S.
Clearing denominators, there is s′ ∈ S such that ss′ = s′x and thus ss′ ∈ I ∩S. �
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Proposition 7.4. Let ι : R→ S−1R be a localization homomorphism.
a) For a prime ideal p of R, TFAE:
(i) The pushforward ι∗p is prime in S−1R.
(ii) The pushforward ι∗p is proper in S−1R.
(iii) We have p ∩ S = ∅.
b) If p is prime and disjoint from S, then ι∗(ι∗p) = p.

Proof. a) (i) =⇒ (ii) since prime ideals are proper.
(ii) ⇐⇒ (iii) for all ideals of R by Lemma 7.3.
(iii) =⇒ (i): Suppose p is a prime ideal of R, and suppose we have a1

s1
, a2s2 ∈ S−1R

with a1
s1
a2
s2

= x
s ∈ ι∗(p). Clearing denominators, there is s′ ∈ S such that

ss′a1a2 = s′s1s2x ∈ p.

Since S ∩ p = ∅, (ss′) /∈ p, and since p is prime, we conclude that a1a2 ∈ p and
then that ai ∈ p for some i, hence ai

si
∈ ι∗p for some i and ι∗(p) is prime. This

completes the proof of part a).
b) Recall: for any homomorphism ι : R→ R′ and any ideal I of R we have

ι∗(ι∗(I)) ⊃ I,

so taking I = p to be prime it suffices to show the inverse inclusion. Suppose
x ∈ ι∗ι∗p, i.e., there exist a ∈ p, s ∈ S such that ι(x) = x

1 = a
s . By definition, this

means that there exists some s′ ∈ S such that s′sx = s′a ∈ p. Therefore either
s′s ∈ p or x ∈ p, but since s′s ∈ S and S is disjoint from p, we must have x ∈ p. �
Corollary 7.5. The maps ι∗ and ι∗ give mutually inverse bijections from the set
of prime ideals of S−1R to the set of prime ideals of R which are disjoint from S.

Therefore we may – and shall – view SpecS−1R as a subset of SpecR.

Exercise 7.6:
a) Show that the results of Proposition 7.4 extend to all primary ideals of R.35

b) Let I be any ideal of R. Show that

ι∗ι∗I = {x ∈ R | ∃s ∈ S such that sx ∈ I}.
Comment: in class I remarked that there is no nice push-pull formula for an arbi-
trary ideal in a localization map. Whether this exercise contradicts that assertion
depends upon how nice you find this formula to be! Try it out on the following:
c) Exhibit a map ι : R→ S−1R and a (nonprimary) ideal I of R such that ι∗ι∗I ) I.

7.3. The fibers of a morphism.

Let f : R → S be a homomorphism of rings, and let p ∈ SpecR. Consider the
“fiber of f∗ : SpecS → SpecR over p”, i.e.,

fp = (f∗)−1(p) = {P ∈ SpecS | f∗(P) = p}.
We claim that fp is canonically isomorphic to the spectrum of a certain ring.
Namely, let k(p) be the fraction field of the domain R/p. Then we wish to identify
fp with Spec(S ⊗R k(p)).

35Recall p is primary if for a, b ∈ R such that ab ∈ p, either a ∈ p or bn ∈ p for some n ∈ Z+.

We have not yet done much with this concept, and will not really address it squarely until the
section on primary decomposition.
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Let ι1 : S → S ⊗R k(p) and ι2 : k(p) → S ⊗R k(p) be the canonical maps. The ten-
sor product of R-algebras fits into a commutative square (INSERT) and is indeed
the categorical pushout: in other words, given any ring A and homomorphisms
φ1 : A→ S φ2 : A→ k(p) such that the composite homomorphisms ι1◦φ1 = ι2◦φ2

are equal, there exists a unique homomorphism Φ : A → R such that f ◦ Φ = φ1

and q ◦ Φ = φ2, where q : R→ R/p is the quotient map.

On the spectral side, all the arrows reverse, and the corresponding diagram is
(INSERT), which expresses Spec(S ⊗R k(p)) as the fiber product of SpecS and
Spec k(p) over SpecR.

Observe that the map ι1 : S → S ⊗R k(p) is the composite of the surjective map
q1 : S → S⊗RR/p with the map ℓ2 : S⊗RR/p → (S⊗RR/p)⊗R/p k(p), the latter
map being localization with respect to the multiplicatively closed subset q1(R \ p).
Both q∗1 and ℓ∗2 are injections, and therefore ι1∗ = q∗1 ◦ ℓ∗2 is injective. Similarly
Spec k(p) ↪→ SpecR (this is just the special case of the above with R = S). It
follows that the above diagram identifies SpecS ⊗R k(p) with the prime ideals P
of SpecS such that f∗P = p.

7.4. Commutativity of localization and passage to a quotient.

Lemma 7.6. Let R be a ring, S ⊂ R a multiplicatively closed subset, and I an
ideal of A. Write q : R→ R/I for the quotient map and put S := q(S). Then there
is a canonical isomorphism

S−1R/IS−1R ∼= S
−1

(R/I).

Proof. Explicitly, we send a
s (mod I)S−1R to a

s , where a = a+ I, s = s+ I. It is
straightforward to check that this an isomorphism. �

Remark: Matsumura makes the following nice comment: both sides satisfy the
universal property for homomorphisms f : R → R′ such that f(S) ⊂ (R′)× and
f(I) = 0. Therefore they must be canonically isomorphic.

7.5. Localization at a prime ideal.

An extremely important example of a multiplicative subset of R is the complement
R \ p of a prime ideal p. As a matter of notation, we write Rp for (R \ p)−1R.36

Proposition 7.7. If p is a prime ideal of R, then the localization Rp is a local ring
with unique maximal ideal pRp.

Proof. We know that the primes of the localized ring are precisely the pushforwards
of the prime ideals of R which are disjoint from the muliplicatively closed set. Here
S = R \ p, so being disjoint from S is equivalent to being contained in p. Thus the
unique maximal such element is indeed pRp. �

36This is inevitably a bit confusing at first, but our choice of notation for a loacalization is
designed to make this less confusing. The other common notation for the localization, RS , creates

a notational nightmare. As a mnemonic, remember that we gain nothing by localizing at a subset
S containing 0, since the corresponding localization is the trivial ring.
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Remark: We will simply write p for the maximal ideal pRp of Rp.

Proposition 7.7, simple though it is, is of inestimable importance. It shows that
the effect of localization at a prime ideal on the lattice of ideals is dual to that of
passage to the quotient: if we mod out by a prime p, we get a ring R/p whose ideals
are precisely the ideals of R containing p. However, if we localize at R \ p, we get
a ring whose ideals are precisely the ideals of R contained in p. In particular, this
construction motivates us to develop an especially detailed theory of local rings, by
assuring us that such a theory could be put to good use in the general case.

7.6. Localization of modules. If S is any multiplicative subset and M is any R-
module, we can also construct a localized R-module S−1M . One the one hand, we
can construct this exactly as we did S−1R, by considering the appropriate equiv-
alence relation on pairs (m, s) ∈ M × S. On the other hand, we can just take the
base extension S−1R ⊗M . We are left with the task of showing that these two
constructions are “the same”.

Exercise 7.7: Formulate a universal mapping property for the localization mor-
phism M → S−1M . Check that both of the above constructions satisfy this uni-
versal mapping property, and deduce that they are canonically isomorphic.

Exercise 7.8: a) Show that the kernel of M → S−1M is the set of m ∈M such that
ann(m) ∩ S ̸= ∅.
b) Let R be a domain with fraction field K. Let M be an R-module. Show:

Ker(M →M ⊗K) =M [tors].

c) Use part b) to give a new proof of Proposition 3.8b).

Exercise 7.9: Let N be any S−1R-module. Show that there exists an R-module M
such that N ∼= S−1R⊗RM .

Generally speaking, thinking of S−1M as S−1R⊗RM is more convenient for prov-
ing results, because it allows us to employ the theory of tensor products of modules
that we developed in §X.X above. For example:

Proposition 7.8. For any ring R and multiplicatively closed subset S of R, S−1R
is a flat R-module. Equivalently, if

0 →M ′ →M →M ′′ → 0

is a short exact sequence of R-modules, then

0 → S−1M ′ → S−1M → S−1M ′′ → 0

is a short exact sequence of R-modules (or equivalently, of S−1R-modules).

Proof. Tensor products are always right exact, so we need only show S−1M ′ ↪→
S−1M . Suppose not: then there exists m′ ∈M ′ and s ∈ S such that m′

s = 0 ∈M .

Thus there is g ∈ S such that gm′ = 0, but if so, then m′

s = 0 in M ′.37 �

37Note also that the exactness of a sequence of R-modules does not depend on the R-module
structure but only on the underlying abelian group structure. Thus if we have a sequence of abelian

groups which can be viewed as a sequence of R-modules and also as a sequence of R′-modules,
then exactness as R-modules is equivalent to exactness as R′-modules.
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Corollary 7.9. Let N and P be submodules of an R-module M . Then:
a) S−1(N + P ) = S−1N + S−1P .
b) S−1(N ∩ P ) = S−1N ∩ S−1P .
c) S−1(M/N) ∼=S−1R S

−1M/S−1N .

Exercise 7.10: Prove Corollary 7.9.

Proposition 7.10. Let M and N be R-modules and S a multiplicatively closed
subset of R. Then the mapping

m

s
⊗ n

t
7→ m⊗ n

st

induces an isomorphism of S−1(R)-modules

S−1M ⊗S−1R S
−1N

∼→ S−1(M ⊗R N).

In particular, for any prime ideal p of R, we have

Mp ⊗Rp
Np

∼→ (M ⊗R N)p.

Exercise 7.11: Prove Proposition 7.10.

Exercise 7.12: Let R be a ring, S ⊂ R multiplicative, and M an R-module.
a) If M is finitely generated, then S−1M is a finitely generated S−1R-module.
b) If M is finitely presented, then S−1M is a finitely presented S−1R-module.38

7.7. Local properties.

We say that a property P of a ring R is localizable if whenever R satisfies prop-
erty P , so does Rp for every prime ideal p of R. We say that a property P is
local-to-global if whenever Rp has property P for all prime ideals p of R, then R
has that property. Finally, we say a property is local if it is both localizable and
local-to-global. There are similar definitions for properties of R-modules.

One of the most important themes in commutative algebra is the recognition of
the importance of local properties for rings and modules.

Remark: Very often it is true that if P is a local property, then R has prop-
erty P iff Rm has property P for all maximal ideals m of R. We will not introduce
terminology for this, but watch for it in the upcoming results.

First of all, for an R-module, being trivial is a local property.

Proposition 7.11. For an R-module M , TFAE:
(i) M = 0.
(ii) Mp = 0 for all primes p of R.
(iii) Mm = 0 for all maximal ideals m of R.

Proof. Clearly (i) =⇒ (ii) =⇒ (iii), so asume thatMm = 0 for all maximal ideals
m of R. Suppose there exists 0 ̸= x ∈M , and let I be the annihilator of x, so that
I is a proper ideal of R and thus contained in some maximal ideal m. Then x is

38Actually both parts hold for any base change R → R′! We record it in this form since it will
be used later.
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not killed by any element of the multiplicative subset R \m and therefore maps to
a nonzero element of Mm: contradiction. �
Proposition 7.12. Let f :M → N be an R-module homomorphism.
a) TFAE:
(i) f is injective.
(ii) For all prime ideals p of R, fp :Mp → Np is injective.
(iii) For all maximal ideals m of R, fm :Mm → Nm is injective.
b) Part a) holds with “injective” replaced everywhere by “surjective”, and thus also
if “injective” is replaced everywhere by “is an isomorphism.”

Proof. a) (i) =⇒ (ii) by the exactness of localization, and obviously (ii) =⇒ (iii).
Assume (iii), and let M ′ = Ker(f). Then 0 → M ′ → M → N is exact, hence for
all m we have 0 →M ′

m →Mm → Nm is exact. So, by our assumption, M ′
m = 0 for

all maximal ideals m, and thus by Proposition 7.11 we have M ′ = 0. The proof of
part b) is virtually identical and left to the reader. �
Warning: Note that Proposition 7.12 does not say the following: if M and N
are R-modules such that Mp

∼= Np as Rp modules for all p ∈ SpecR, then M ∼= N .
This is being asserted only when there is a map f : M → N inducing all the iso-
morphisms between localized modules.

Exercise 7.13: Exhibit finitely generated R-modules M and N which are “locally
isomorphic” – i.e., Mp

∼= Np for all p ∈ SpecR – but are not isomorphic.39

Corollary 7.13. Let R be an integral domain with fraction field K. Then as m
ranges over all maximal ideals of R,

∩
mRm = R.

Proof. Consider the injection f : R ↪→ S :=
∩

mRm. Let p and q be distinct
maximal ideals. Then Rq ⊗R Rp = K, so for any maximal ideal m, Sm = Rm

and the localized map fm : Rm → Rm is an isomorphism. Therefore f itself is an
isomorphism, i.e., surjective. �
We give an application in the theory of stably free modules.

Proposition 7.14. A stably free module of rank one is free.

Proof. The natural proof uses exterior products of modules, which we have unfor-
tunately not defined in these notes. For the basics here see BOURBAKI or [Eis,
Appendix A2]. Especially, all the properties of exterior powers that we use appear
in [Eis, Prop. A2.2].

Now suppose that P is such that P ⊕ Rn−1 ∼= Rn. Taking top exterior powers
we get

R ∼=
n∧
Rn ∼=

n∧
(P ⊕Rn−1) ∼=

⊕
i+j=n

i∧
P ⊗

j∧
Rn−1

∼=M ⊕

(
2∧
M ⊗

n−2∧
Rn−1

)
⊕ . . . .

For any prime ideal p of M , Mp is free of rank one over Rp. Thus
∧i

Mp =

(
∧i

M)p = 0 for all i ≥ 2. By Proposition 7.11,
∧i

M = 0 for all i ≥ 2, so
R ∼=M . �

39In mantra form: “being isomorphic” is not a local property, but “being an isomorphism” is.



COMMUTATIVE ALGEBRA 135

7.7.1. Local nature of flatness.

Proposition 7.15. For an R-module M , TFAE:
(i) M is flat.
(ii) For all prime ideals p of R, Mp is flat.
(iii) For all maximal ideals m of R, Mm is flat.

Proof. (i) =⇒ (ii) is a special case of Proposition 7.8; (ii) =⇒ (iii) is immediate.
So assume (iii), and let N ↪→ P be any injective R-module homomorphism. Then,
by exactness of localization, for all maximal ideals m we have Nm ↪→ Pm. Since
Mm is assumed to be flat, we have (N ⊗RM)m = Nm ⊗Rm

Mm ↪→ Pm ⊗Rm
Mm =

(P ⊗R M)m. Applying Proposition 7.12 we conclude that N ⊗R M → P ⊗R P is
injective, and therefore M is flat over R. �

Corollary 7.16. Let R be a ring, S ⊂ R a multiplicative subset. If M is a flat
R-module, then S−1M is a flat S−1R-module.

Proof. If M is flat, so is Mp for each prime ideal p of M , but since the primes of
S−1R are a subset of the primes of R, this implies that S−1M is flat. �

When a property P of rings or modules is not local, it is often of interest to study
also its “localized version”: we say that an R-module M is locally P if for all
prime ideals p of R, Mp has property p (and similarly for rings).

7.7.2. Absolute flatness revisited.

Lemma 7.17. Suppose an absolutely flat ring R is either local or a domain. Then
R is a field.

Proof. The idea is that an absolutely flat ring must have many idempotent ideals,
whereas a local ring or a domain has no nontrivial idempotents. More precisely,
suppose R is not a field, and let x ∈ R be a nonzero, nonunit. Then I = (x) is a
proper ideal, and by Proposition X.X we would have R ∼= I ⊕ J , contradiction. �

Lemma 7.18. Let R be a ring.
a) If R is absolutely flat and S ⊂ R is any multiplicative subset, then S−1R is
absolutely flat.
b) R is absolutely flat iff for every maximal ideal m of R, Rm is a field.

Proof. a) By Exercise X.X, every S−1R-module is of the form S−1R⊗RM for some
R-module M . By hypothesis M is flat, so by Corollary 7.16, so is S−1M .
b) If R is absolutely flat, and m is a maximal ideal of R, then by part a) Rm is
absolutely flat. On the other hand it is a local ring, so by Lemma 7.17, Rm is a
field. Conversely, assume that each Rm is a field, and letM be an R-module. Then
for all m ∈ MaxSpecR, Mm is a flat Rm-module, so M is a flat R-module. �

Theorem 7.19. For a ring R, the following are equivalent:
(i) R/ nilR is absolutely flat, i.e., every R/ nilR-module is flat.
(ii) Every prime ideal of R is maximal.

Proof. Since the prime ideals of R are the same as those of R/ nilR, it is equivalent
to prove the following simpler assertion: if R is reduced, it is absolutely flat if
and only if every prime ideal of R is maximal. Suppose R is absolutely flat and
p ∈ SpecR. Then R/p is an absolutely flat domain, hence a field by Lemma 7.17,
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hence p is maximal. Let m be a maximal ideal of R. Then Rm is a reduced local
ring, hence a field. By Lemma 7.18, R is absolutely flat. �

Of course it is natural to ask about whether freeness and projectivity are local
properties. We devote the following section to an analysis of this question.

7.8. Local characterization of finitely generated projective modules.

7.8.1. Z-local properties.

Let us call a family of {fi}i∈I of elements of R a Z-family if ⟨fi⟩ = 1. Clearly for
every Z-family there is a finite subset J ⊂ I such that {fi}i∈J is also a Z-family.
(Later on, this trivial observation will be dressed up in rather fancy attire: this
gives the quasi-compactness of the Zariski topology on SpecR.)

A property P of rings or modules will be said to be Z-local if it holds over R
iff it holds over all Rfi for some Z-family {fi} of R.

Proposition 7.20.
Let u :M → N be a homomorphism of R-modules, and let p ∈ SpecR.
a) If N is finitely generated and up is surjective, there exists f ∈ R \ p such that
uf :Mf → Nf is surjective.
b) The surjectivity of u is a Z-local property.
c) If M is finitely generated, N is finitely presented and up is an isomorphism, then
there exists f ∈ R \ p such that uf :Mf → Nf is an isomorphism.
d) If M is finitely generated and N is finitely presented, then the bijectivity of u is
a Z-local property.

Proof. Write out the exact sequence

0 → keru→M
u→ N → cokeru→ 0.

By the flatness of localization, this sequence remains exact upon being tensored
with Rf for any f ∈ R or with Rp for any p ∈ R. It follows that passage to the
kernel and cokernel commutes with localization.
a) We’re assuming 0 = coker(up) = (cokeru)p, i.e., for each x ∈ cokeru there exists
fx ∈ R \ p such that fxx = 0. Since cokeru is a quotient of the finitely generated
module N , it is finitely generated, say by x1, . . . , xn. Then f = fx1 · · · fxn ∈ R \ p
is such that f cokeru = 0, so 0 = (cokeru)f = coker(uf ) and uf is surjective.
b) It is clear that if u is surjective, then for any f ∈ R, uf is surjective. Conversely,
let {fi}i∈I be a Z-family such that ufi is surjective for all i. Then for any p ∈ SpecR
there exists i ∈ I such that fi ∈ R \p, so that up is a further localization of ufi and
thus the surjectivity of ufi implies that of up. By Proposition 7.12, u is surjective.
c) By part a), there exists f1 ∈ R \ p such that cokeruf1 = 0, and thus we have an
exact sequence

0 → (keru)f1 →Mf1 → Nf1 → 0.

Since N is finitely presented over R, Nf1 is finitely presented over Rf1 and thus
(keru)f1 is finitely generated. Arguing as in part b), we get f2 ∈ R \ p such that

f1f2 keru = 0. Taking f = f1f2 we get uf :Mf
∼→ Nf .

d) This is proved analogously to part b) and is left to the reader. �
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Corollary 7.21. For a finitely presented R-module M , TFAE:
(i) There is a Z-family {fi}i∈I of R such that for all i ∈ I, Mfi is a free Rfi-module.
(ii) For every prime ideal p of R, Mp is a free Rp-module.
(iii) For every maximal ideal m of R, Mm is a free Rm-module.

Proof. (i) =⇒ (ii): For each prime ideal p there exists at least one i such that
fi /∈ p; equivalently, the multiplicative subset generated by fi is contained in R \ p.
Thus Mp =Mfi ⊗Rfi

Rp and since Mfi is free, so is Mp.

(ii) =⇒ (i): It is enough to find for each prime ideal p an element fp ∈ R \ p such
that Mfp is free: for if so, then {fp}p∈SpecR is a Z-family. Choose x1, . . . , xn ∈ M
whose images in Mp give an Rp-basis, and define u : Rn → M via ei 7→ xi. Then
up is an isomorphism, so by Proposition 7.20c) we may choose fp ∈ R \ p such that
ufp is an isomorphism and thus Mfp is free.
(ii) ⇐⇒ (iii): this follows from Proposition 7.12. �

Exercise 7.14: Let R1, . . . , Rn be rings and for 1 ≤ i ≤ n, Mi a finitely generated
projective Ri-module. Show that M =

∏n
i=1Mi is a finitely generated projective

R =
∏n
i=1Ri-module.

We can now prove one of the major results of this text.

Theorem 7.22. Let R be a ring andM an R-module. The following are equivalent:
(i) M is finitely generated and projective.
(ii) M is finitely presented and for all m ∈ MaxSpecR, Mm is a free Rm-module.
(iii) For every maximal ideal m of R, there exists f ∈ R \ m such that Mf is a
locally free Rf -module of finite rank.
(iv) There exists a finite Z-family {f1, . . . , fn} of R such that ⟨f1, . . . , fn⟩ = R and
for all i, Mfi is a finitely generated free Rfi-module.

Proof. (i) =⇒ (ii): Let M be finitely generated and projective. There exists
a finitely generated free module F and a surjection q : F → M . Since M is
projective, q splits and Ker(q) is not just a submodule of F but also a quotient and
thus finitely generated. So M is finitely presented. Since projectivity is preserved
by base change and any finitely generated projective module over a local ring is
free (Theorem 3.16), for all maximal ideals m of R, Mm is free.
(ii) =⇒ (iii): this follows immediately from Corollary 7.21.
(iii) =⇒ (iv): For each m ∈ MaxSpecR, choose fm ∈ R \ m such that Mfm is a
finitely generated free Rfm-module. Then {fm}m∈MaxSpecR is a Z-family of R, and
as remarked above, every Z-family contains a finite subfamily.
(iv) =⇒ (i): Put S =

∏n
i=1Rfi and let f : R→ S be the natural map.

Step 1: First note that

ker f =
n∩
i=1

ker(R→ Rfi) =
n∩
i=1

ann(fi) = ann⟨f1, . . . , fn⟩ = annR = 0,

so f is injective, and thus S is an extension ring of R.
Step 2: We claim f : R ↪→ S is a faithfully flat extension. Since localizations
are flat and direct sums of flat algebras are flat, S/R is a flat extension. So by
Theorem 3.101, it is enough to show that f∗ : SpecS → SpecR is surjective. But
SpecS =

⨿n
i=1 SpecRfi and f∗(SpecRfi) is the subset of p ∈ SpecR such that

fi /∈ p. Since {f1, . . . , fn} forms a Z-family, no proper ideal can contain all the fi’s,
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and therefore p lies in at least one f∗(SpecRfi).
Step 3: We have a faithfully flat ring extension f : R ↪→ S and an R-module
M such that M ⊗R S =

∏n
i=1Mfi is finitely generated and projective as an S =∏n

i=1Rfi-module (Exercise X.X). By Theorem 3.104, M is finitely generated and
projective! �
Corollary 7.23. Every finitely presented flat R-module is projective.

Proof. Let M be a finitely presented, flat R-module. For each maximal ideal m of
R, Mm is a finitely presented flat module over the local ring Rm, hence is free by
Theorem 3.49. Therefore by criterion (iii) of Theorem 7.22, M is projective. �
Corollary 7.24. Let M be finitely generated over the Noetherian ring R. TFAE:
(i) M is projective.
(ii) M is locally free.
(iii) M is flat.

Exercise 7.15: Prove Corollary 7.24. Corollary 7.24 is the last word on finitely
generated projective modules over Noetherian rings. In the non-Noetherian case,
Corollary 7.23 leaves a little room for improvement: could it be true that every
finitely generated flat module is projective? This is not true in general but it is
true for some important classes of non-Noetherian rings, e.g. any connected ring.
To see this we need to make a topological study of the rank function on a finitely
generated projective module. This is taken up later on in §X.X.

Theorem 7.25. For an R-module A, TFAE:
(i) A is finitely generated projective.
(ii) For all R-modules B, the natural map

Φ : A∨ ⊗R B → HomR(A,B)

induced by (f, b) 7→ (a 7→ f(a)b) is an isomorphism.
(iii) The map Φ : A∨ ⊗R A→ HomR(A,A) is an isomorphism.

Proof. (i) =⇒ (ii): It is enough to show that for all p ∈ SpecR, Φp is an iso-
morphism. Since A is finitely generated projective, it is finitely presented; more-
over Rp is a flat R-module, so by Theorem 3.96 we have a canonical isomorphism
HomR(A,N) ⊗R Rp = HomRp

(Ap, Np). Also tensor products commute with base
change, so it is enough to show

Φp : A∨
p ⊗Rp

Bp → HomRp
(Ap, Bp)

is an isomorphism. Since A is finitely generated projective, Ap is finitely generated
and free. We are thus essentially reduced to a familiar fact from linear algebra,
namely the canonical isomorphism V ∨ ⊗W

∼→ Hom(V,W ) for vector spaces over a
field, with V finite-dimensional. We leave the details to the reader as an exercise.
(ii) =⇒ (iii): This is immediate.
(iii) =⇒ (i): Let Φ−1(1A) =

∑m
i=1 fi ⊗ ai. Then we have that for all a ∈ A,

a =
∑m
i=1 fi(a)ai. By the Dual Basis Lemma, A is finitely generated projective. �

7.8.2. Infinitely generated locally free modules.

Let M be an R-module which is not necessarily finitely generated. Since pro-
jectivity is preserved by base change and by Theorem X.X every projective module
over a local ring is free, it follows that if M is projective it is locally free. What
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about the converse?

It need not hold: for infinitely generated modules, being locally free can be a
much weaker property. Consider:

Proposition 7.26. For a ring R, the following are equivalent:
(i) R is absolutely flat.
(ii) Every R-module is locally free.

Proof. (i) =⇒ (ii): By Lemma 7.18, for m ∈ MaxSpecR, Rm is a field, so every
Rm-module is free. By Theorem 7.19 every prime ideal of R is maximal, so every
R-module is locally free.
(ii) =⇒ (i): Applying Lemma 7.18 again, if R is not absolutely flat, there is
m ∈ MaxSpecR such that Rm is not a field, and thus there exists a nonfree Rm-
module Mm. By Exercise X.X, there is an R-module M such that M ⊗R Rm

∼= Rm

and thus M is not locally free. �

As we have seen, there are plenty of rings which are absolutely flat but not abso-
lutely projective. For instance an absolutely projective ring is Noetherian, so an
infinite product of fields or an infinite Boolean ring will carry locally free, non-
projective modules.

8. Noetherian rings

We have already encountered the notion of a Noetherian ring, i.e., a ring in which
each ideal is finitely generated; or equivalently, a ring which satisfies the ascending
chain condition (ACC) on ideals. Our results so far have given little clue as to the
importance of this notion. But in fact, as Emmy Noether showed, consideration of
rings satisfying (ACC) is a major unifying force in commutative algebra.

In this section we begin to see why this is the case. After giving an introduc-
tory examination of chain conditions on rings and modules, we are able to make
the key definitions of height of a prime ideal and dimension of a ring, which we
will slowly but surely work towards understanding throughout the rest of these
notes. Indeed we begin by giving a reasonably complete analysis of the structure
theory of Artinian rings, which, as we will show, really is our first order of busi-
ness in attempting the systematic study of Noetherian rings, since according to the
Akizuki-Hopkins theorem the Artinian rings are precisely the Noetherian rings of
dimension zero. We are then able to state and prove three of the most important
and useful theorems in the entire subject. Whereas the first theorem, the Hilbert
basis theorem, gives us a large supply of Noetherian rings, the latter two theorems,
Krull’s intersection theorem and Krull’s principal ideal theorem, are basic results
about the structure theory of Noetherian rings.

8.1. Chain conditions on partially ordered sets.

Proposition 8.1. For a partially ordered set (S,≤), the following are equivalent:
(i) S satisfies the Ascending Chain Condition (ACC): there is no infinite se-
quence {xi}∞n=1 of elements of S with xn < xn+1 for all n ∈ Z+.
(ii) Every nonempty subset T ⊂ S has a maximal element.
A partially ordered set satisfying these equivalent conditions is called Noetherian.
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Proof. (i) =⇒ (ii): Let T be a nonempty subset of S without a maximal element.
Since T is nonempty, choose x1 ∈ T . Since T has no maximal elements, choose
x2 > x1. Since T has no maximal elements, choose x3 > x2. And so on: we get an
infinite strictly ascending chain in S.
(ii) =⇒ (i): Indeed, an infinite strictly ascending chain is a nonempty subset
without a maximal element. �

Similarly, we say that a partially ordered set satisfies the Descending Chain
Condition (DCC) –if there is no infinite sequence {yj}∞j=1 of elements of S such

that yj > yj+1 for all j ∈ Z+. As above, this holds iff every nonempty subset of
S has a minimal element, and a partially ordered set satisfying these equivalent
conditions is called Artinian.

Every partially ordered set (S,≤) has an order dual S∨: the underlying set is
S, and we put x ≤∨ y ⇐⇒ y ≤ x. Clearly S is Noetherian (resp. Artinian) iff
S∨ is Artinian (resp. Noetherian). Thus at this level of abstraction we really have
one notion here, not two. Nevertheless in our applications to rings and modules
the two conditions remain quite distinct.

Examples: If S is finite it satisfies both ACC and DCC. With the usual order-
ings, the positive integers Z+ satisfy DCC but not ACC, the negative integers Z−

(or equivalently, Z+ with the opposite ordering) satisfy ACC but not DCC, and
the integers Z satisfy neither.

Exercise 8.1: Let S be a poset.
a) Show that S satisfies (ACC) (resp. (DCC)) iff there is no order embedding
Z+ ↪→ S (resp. Z− ↪→ S).
b) Suppose S is totally ordered. Show that S satisfies (DCC) iff it is well-ordered:
i.e., every nonempty subset has a minimal element.

8.2. Chain conditions on modules.

Let R be a ring, and M a (left) R-module. It makes sense to speak of the (ACC)
and (DCC) for R-submodules ofM . Indeed, we will callM a Noetherian module
if it satisfies (ACC) and an Artinian module if it satisfies (DCC).

Exercise 8.2: Show that an R-module M is Noetherian iff every R-submodule M ′

of M is finitely generated.

Example: As a Z-module, the integers Z are Noetherian but not Artinian.

Example: As a Z-module, the group of all p-power roots of unity in the com-
plex numbers – in other words, limn→∞ µpn – is Artinian but not Noetherian.

Every ring R is naturally an R-module, and the R-submodules of R are precisely the
ideals. Thus it makes sense to say whether R is a Noetherian or Artinian R-module,
and – thank goodness – this is visibly consistent with the previous terminology.

Exercise 8.3: Let M ′ ⊂ M be R-modules, and φ : M → M/M ′ be the quotient
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map. If N1 and N2 are submodules of M such that N1 ⊂ N2, N1 ∩M ′ = N2 ∩M ′

and φ(N1) = φ(N2), show that N1 = N2.

Theorem 8.2. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of
R-modules. Then M is Noetherian (resp. Artinian) iff both M ′ and M ′′ are Noe-
therian (resp. Artinian).

Proof. We do the Noetherian case, leaving the similar Artinian case as an exercise
for the reader. First, since an infinite ascending chain in a submodule or quotient
module of M gives rise to an infinite ascending chain in M , if M is Noetherian,
both M ′ and M ′′ are. Conversely, suppose N1 ( N2 ( . . . is an infinite ascending
chain of submodules of M . Consider the chain (Ni +M ′)/M ′ in M ′′ = M/M ′.
By hypothesis, this chain eventually stabilizes, i.e., for sufficiently large i and j,
Ni +M ′ = Nj +M ′. Similarly, by intersecting with M ′ we get that for sufficiently
large i and j Ni ∩M ′ = Nj ∩M ′. Applying Exercise 8.3 we conclude Ni = Nj for
all sufficiently large i, j. �
A ring R is Noetherian if R is a Noetherian R-module. A ring R is Artinian if
R is an Artinian R-module.

Exercise 8.4: Let R be a ring.
a) Show that R is Noetherian iff every finitely generated R-module is Noetherian.
b) Show that R is Artinian iff every finitely generated R-module is Artinian.
c) Exhibit a ring R which is Noetherian but not Artinian.
d) Can you find a ring R which is Artinian but not Noetherian?40

8.3. Semisimple modules and rings.

In this section we allow not necessarily commutative rings R. By a “module over
R” we mean a left R-module unless otherwise indicated.

A module M is simple if it is nonzero and has no proper, nonzero submodules.

This definition is of course made in analogy to that of a simple group, namely
a nontrivial group possessing no nontrivial proper normal subgroups. And indeed
many of the results in this and subsequent sections were first proved in the context
of groups. It is even possible to work in a single context that simultaneously gen-
eralizes the case of groups and modules (over a not necessarily commutative ring),
the key concept being that of groups with operators. For more on this perspec-
tive we invite the reader to consult any sufficiently thick all-purpose graduate level
algebra text, the gold standard here being [J1], [J2].

Exercise 8.5 (Schur’s Lemma): LetM be a simpleR-module. Show that EndR(M)
is a division ring.

Theorem 8.3. For an R-module M , TFAE:
(i) M is a direct sum of simple submodules.
(ii) Every submodule of M is a direct summand.
(iii) M is a sum of simple submodules.
A modules satisfying these equivalent conditions is called semisimple.

40More on this later!
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Proof. (i) =⇒ (ii): Suppose M =
⊕

i∈I Si, with each Si a simple submodule. For
each J ⊂ I, put MJ =

⊕
i∈J Si. Now let N be an R-submodule of M . An easy

Zorn’s Lemma argument gives us a maximal subset J ⊂ I such that N ∩MJ = 0.
For i /∈ J we have (MJ ⊕ Si) ∩ N ̸= 0, so choose 0 ̸= x = y + z, x ∈ N , y ∈ MJ ,
z ∈ Si. Then z = x− y ∈ (Mj +N) ∩ Si, and if z = 0, then x = y ∈ N ∩Mj = 0,
contradiction. So (MJ ⊕N) ∩ Si ̸= 0. Since Si is simple, this forces Si ⊂MJ ⊕N .
It follows that M =MJ ⊕N .
(ii) =⇒ (i): First observe that the hypothesis on M necessarily passes to all
submodules of M . Next we claim that every nonzero submodule C ⊂M contains
a simple module.

proof of claim: Choose 0 ̸= c ∈ C, and let D be a submodule of C which
is maximal with respect to not containing c. By the observation of the previous
paragraph, we may write C = D ⊕ E. Then E is simple. Indeed, suppose not and
let 0 ( F ( E. Then E = F ⊕ G so C = D ⊕ F ⊕ G. If both D ⊕ F and D ⊕ G
contained c, then c ∈ (D ⊕ F ) ∩ (D ⊕ G) = D, contradiction. So either D ⊕ F
or D ⊕ G is a strictly larger submodule of C than D which does not contain c,
contradiction. So E is simple, establishing our claim.

Now let N ⊂ M be maximal with respect to being a direct sum of simple
submodules, and write M = N ⊕ C. If C ̸= 0, then by the claim C contains a
nonzero simple submodule, contradicting the maximality of N . Thus C = 0 and
M is a direct sum of simple submodules.
(i) =⇒ (iii) is immediate.
(iii) =⇒ (i): as above, by Zorn’s Lemma there exists a submodule N ofM which is
maximal with respect to being a direct sum of simple submodules. We must show
N = M . If not, since M is assumed to be generated by its simple submodules,
there exists a simple submodule S ⊂ M which is not contained in N . But since S
is simple, it follows that S ∩N = 0 and thus N ⊕ S is a strictly larger direct sum
of simple submodules: contradiction. �
Corollary 8.4. An R-module M has a unique maximal semisimple submodule,
called the socle of M and written SocM . Thus M is semisimple iff M = SocM .

Exercise 8.6: Prove Corollary 8.4.

Exercise 8.7: Let N ∈ Z+. Compute the socle of the Z-module Z/NZ. Show
in particular that Z/NZ is semisimple iff N is squarefree.

A not necessarily commutative ring R is left semisimple if R is semisimple as
a left R-module.

Theorem 8.5. For a nonzero not necessarily commutative ring R, TFAE:
(i) R is left semisimple.
(ii) Every left ideal of R is a direct summand.
(iii) Every left ideal of R is an injective module.
(iv) All left R-modules are semisimple.
(v) All short exact sequences of left R-modules split.
(vi) All left R-modules are projective.
(vii) All left R-modules are injective.

Proof. We will show (i) ⇐⇒ (ii), (iv) ⇐⇒ (v) ⇐⇒ (vi) ⇐⇒ (vii) and (ii)
=⇒ (vii) =⇒ (iii) =⇒ (ii), which suffices.
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(i) =⇒ (ii) follows immediately from Theorem 8.3.
(iv) ⇐⇒ (v) follows immediately from Theorem 8.3.
(v) ⇐⇒ (vi) and (v) ⇐⇒ (vii) are immediate from the definitions of projective
and injective modules.
(ii) =⇒ (vii): Let I be a left ideal of R and f : I → M an R-module map. By

hypothesis, there exists J such that I ⊕ J = R, so f extends to F : R = I ⊕ J
π1→

I →M . By Baer’s Criterion, M is injective.
(vii) =⇒ (iii) is immediate.
(iii) =⇒ (ii) is immediate from the definition of injective modules. �
Lemma 8.6. Let R be a ring and {Mj}j∈J be an indexed family of nonzero R-
modules. The following are equivalent:
(i) I is finite and each Mj is finitely generated.
(ii) M =

⊕
j∈JMj is finitely generated.

Proof. (i) =⇒ (ii) is left to the reader as an easy exercise.
(ii) =⇒ (i): EachMj is isomorphic to a quotient ofM , so ifM is finitely generated,
so is Mj . Now let X = {x1, . . . , xn} be a finite generating set for M , and for each
1 ≤ 1 ≤ n, let xij be the j-component of xi, so xi =

∑
j∈J xij . This sum is of

course finite, and therefore the set J ′ ⊂ J of indices j such that xij ̸= 0 for some
1 ≤ i ≤ n is finite. It follows that ⟨X⟩ ⊂

⊕
j∈J ′ Mj (M , contradiction. �

Lemma 8.7. Let R1, . . . , Rn be finitely many not necessarily commutative rings,
and put R =

∏n
i=1Ri. Then R is semisimple iff Riis semisimple for all 1 ≤ i ≤ n.

Exercise 8.8: Prove Lemma 8.7.

We now quote the following basic result from noncommutative algebra.

Theorem 8.8. (Wedderburn-Artin) For a ring R, TFAE:
(i) R is semisimple as a left R-module (left semisimple).
(ii) R is semisimple as a right R-module (right semisimple).
(iii) There are N,n1, . . . , nN ∈ Z+ and division rings D1, . . . , DN such that

R ∼=
N∏
i=1

Mni(Di).

Combining Theorems 8.5 and 8.8 gives us a tremendous amount of information.
First of all, a ring is left semisimple iff it is right semisimple, so we may as well
speak of semisimple rings. A ring is semisimple iff it is absolutely projective
iff it is absolutely injective.

Coming back to the commutative case, the Wedderburn-Artin theorem tells us
that the class of semisimple / absolutely projective / absolutely injective rings is
extremely restricted.

Corollary 8.9. A commutative ring is semisimple iff it is a finite product of fields.

However it is significantly easier to give a proof of Wedderburn-Artin in the com-
mutative case, so we will give a direct proof of Corollary 8.9

Proof. Step -1: Officially speaking the theorem holds for the zero ring because it is
an empty product of fields. In any event, we may and shall assume henceforth that
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our semisimple ring is nonzero.
Step 0: A field is a semisimple ring: e.g. every module over a field is free, hence
projective. By Lemma 8.7, a finite direct product of fields is therefore semisimple.
Step 1: Let R be a semisimple ring, and let R =

⊕
i∈IMi be a direct sum decompo-

sition into simple R-modules. R is a finitely generated R-module, by Lemma 8.6 I is
finite, and we may identify it with {1, . . . , n} for some n ∈ Z+: R =M1⊕ . . .⊕Mn.
Step 2: We may uniquely write 1 = e1 + . . .+ en with ei ∈Mi. Then for all i ̸= j,
eiej = 0, and this together with the identity 1 · 1 = 1 implies that e2i = ei for all
i. As usual for idempotent decompositions, this expresses R as a direct product of
the subrings Ri =Mi = eiR. Moreover, since Mi is a simple R-module, Ri has no
proper nonzero ideals, and thus it is a field, say ki. �
Exercise 8.9: Exhibit an absolutely flat commutative ring which is not semisimple.

8.4. Normal Series.

If M is an R-module a normal series is a finite ascending chain of R-submodules
0 = M0 ( M1 ( . . . ( Mn = M . We say that n is the length of the series. (The
terminology is borrowed from group theory, in which one wants a finite ascending
chain of subgroups with each normal in the next. Of course there is no notion of
“normal submodule”, but we keep the group-theoretic terminology.)

There is an evident partial ordering on the set of normal series of a fixed R-module
M : one normal series {Mi}ni=0 is less than another normal series {M ′

j}n
′

j=0 if for all
1 ≤ i ≤ n, Mi is equal to M

′
j for some (necessarily unique) j. Rather than saying

that {Mi} ≤ {M ′
j}, it is traditional to say that the larger series {M ′

j} refines the
smaller series {Mi}.

Given any normal series {Mi} we may form the associated factor sequence

M1/M0 =M1,M2/M1, . . . ,Mn/Mn−1 =M/Mn−1. Two normal series {Mi}ni=0, {M ′
j}n

′

j=0

are equivalent if n = n′ and there is a permutation σ of {1, . . . , n} such that for all
1 ≤ i ≤ n, the factorsMi/Mi−1 andM ′

σ(i)/M
′
σ(i)−1 are isomorphic. In other words,

if we think of the factor sequence of a normal series as a multiset of isomorphism
classes of modules, then two normal series are equivalent if the associated multisets
of factors are equal.

Exercise 8.10: Show that refinement descends to a partial ordering on equivalence
classes of normal series of a fixed R-module M .

The following theorem is the basic result in this area.

Theorem 8.10. (Schreier Refinement) For any R-module M , the partially ordered
set of equivalence classes of normal series of submodules of M is directed: that is,
any two normal series admit equivalent refinements.

Proof. For a proof in a context which simultaneously generalizes that of modules
and groups, see e.g. [J2, p. 106]. �
For an R-module M , a composition series is a maximal element in the poset of
normal series: that is, a composition series which admits no proper refinement.
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Exercise 8.11: Show that a normal series {Mi}ni=0 for an R-module M is a compo-
sition series iff for all 1 ≤ i ≤ n, the factor module Mi/Mi−1 is simple.

Theorem 8.11. (Jordan-Hölder) Let M be an R-module. Then any two com-
position series for M are equivalent: up to a permutation, their associated factor
series are term-by-term isomorphic.

Proof. This is an immediate consequence of Schreier Refinement: any two normal
series admit equivalent refinements, but no composition series admits a proper
refinement, so any two composition series must already be equivalent. �

Thus for a moduleM which admits a composition series, we may define the length
ℓ(M) of M to be the length of any composition series. One also speaks of the
Jordan-Hölder factors of M or the composition factors of M, i.e., the unique
multiset of isomorphism classes of simple R-modules which must appear as the suc-
cessive quotients of any composition series for M .

If a module does not admit a composition series, we say that it has infinite length.

And now a basic question: which R-modules admit a composition series?

Exercise 8.12: a) Show that any finite41 module admits a composition series.
b) Show that if a module M admits a composition series, it is finitely generated.
c) Show that a Z-module M admits a composition series iff it is finite.
d) Let k be a field. Show that a k-module admits a composition series iff it is
finitely generated (i.e., iff it is finite-dimensional).

Exercise 8.13: An R-module M admits a composition series iff there exists L ∈ Z+

such that every normal series in M has length at most L.

Theorem 8.12. For an R-module M , TFAE:
(i) M is both Noetherian and Artinian.
(ii) M admits a composition series.

Proof. Assume (i). Since M satisfies (DCC), there must exist a minimal nonzero
submodule, say M1. If M1 is a maximal proper submodule, we have a composition
series. Otherwise among all proper R-submodules strictly containingM1, by (DCC)
we can choose a minimal one M2. We continue in this way: since M also satisfies
(ACC) the process must eventually terminate, yielding a composition series.

(ii) =⇒ (i): This follows easily from Exercise 8.13. �

Exercise 8.14: Exercise 8.13 makes use of Schreier Refinement. Give a proof that (ii)
=⇒ (i) in Theorem 8.12 which is independent of Schreier Refinement. (Suggestion:
try induction on the length of a composition series.)

Proposition 8.13. Let 0 → M ′ → M → M ′′ → 0 be a short exact sequence of
R-modules. Then:
a) M admits a composition series iff both M ′ and M ′′ admit composition series.
b) If M admits a composition series, then

ℓ(M) = ℓ(M ′) + ℓ(M ′′).

41Recall that by a “finite module” we mean a module whose underlying set is finite!
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Exercise 8.15: Prove Proposition 8.13.

Remark: Although it will not play a prominent role in our course, the length of an
R-moduleM is an extremely important invariant, especially in algebraic geometry:
it is is used, among other things, to keep track of intersection multiplicities and to
quantitatively measure the degree of singularity of a point.

8.5. The Krull-Schmidt Theorem.

The material in this section follows [J2, §3.4] very closely. In particular, very
exceptionally for us – but as in loc. cit. – in this section we work with left modules
over a possibly noncommutative ring R. The reason: not only does the desired
result carry over verbatim to the noncommutative case (this is not in itself a good
enough reason, as the same holds for a positive proportion of the results in these
notes) but the proof requires us to consider noncommutative rings!

A module M is decomposable if there are nonzero submodules M1,M2 ⊂ M
such that M =M1 ⊕M2; otherwise M is indecomposable.

Theorem 8.14. (Krull-Schmidt) Let M be an R-module of finite length. Then:
a) There are indecomposable submodules M1, . . . ,Mm such that M =

⊕m
i=1Mi.

b) If there are indecomposable submodules N1, . . . , Nn such thatM =
⊕n

i=1Ni, then
m = n and there exists a bijection σ of {1, . . . , n} such that for all i, Mi

∼= Nσ(i).

The Proof of Theorem 8.14a) is easy, and we give it now. If M is a finite length
module and we write M = M1 ⊕M2 then 0 < ℓ(M1), ℓ(M2) < ℓ(M). Thus an
evident induction argument shows that any sequence of moves, each one of which
splits a direct summand of M into two nontrivial direct subsummands of M , must
terminate after finitely many steps, leaving us with a decomposition of M into a
finite direct sum of indecomposable submodules. �

As one might suspect, the second part of Theorem 8.14 concerning the unique-
ness of the indecomposable decomposition is more subtle. Indeed, before giving the
proof we need some preparatory considerations on endomorphism rings of modules.

Proposition 8.15. For an R-module M , TFAE:
(i) M is decomposable.
(ii) The (possibly noncommutative, even if R is commutative) ring EndR(M) =
HomR(M,M) has a nontrivial idempotent, i.e., an element e ̸= 0, 1 with e2 = e.

Exercise 8.16: Prove Proposition 8.15.

A (not necessarily commutative) ring R is local if the set of nonunits R \ R×

forms a two-sided ideal of R.

Exercise 8.17: Let R be a local, not necessarily commutative ring.
a) Show that R ̸= 0.
b) Show that R has no nontrivial idempotents.

An R-module M is strongly indecomposable if EndR(M) is local. Thus it
follows from Proposition 8.15 and Exercise 8.17 that a strongly indecomposable



COMMUTATIVE ALGEBRA 147

module is indecomposable.

Example: The Z-module Z is indecomposable: any two nonzero submodules (a)
and (b) have a nontrivial intersection (ab). On the other hand EndZ(Z) = Z is not
a local ring, so Z is not strongly indecomposable.

Thus “strongly indecomposable” is, in general, a stronger concept than merely
“indecomposable”. Notice though that the Krull-Schmidt theorem applies only to
finite length modules – equivalently to modules which are both Noetherian and
Artinian – and Z is not an Artinian Z-module. In fact, it shall turn out that any
finite length indecomposable module is strongly indecomposable, and this will be a
major step towards the proof of the Krull-Schmidt Theorem.

But we are not quite ready to prove this either! First some Fitting theory.

For an R-module M and f ∈ EndR(M), we put

f∞(M) =
∞∩
n=1

fn(M).

The set f∞(M) is the intersection of a descending chain

M ⊃ f(M) ⊃ f2(M) ⊃ . . . ⊃ fn(M) ⊃ . . .

of submodules of M , and is thus an f -stable submodule of M . The restriction of f
to f∞(M) is surjective. Moreover, if M is an Artinian module, there exists s ∈ Z+

such that fs(M) = fs+1(M) = . . ..

Exercise 8.18: Find a commutative ring R, an R-module M and f ∈ EndR(M)
such that for no n ∈ Z+ is the submodule fn(M) f -stable.

Similarly, for M and f as above, we put

f−∞(0) =

∞∪
n=1

ker fn.

Here each ker fn is an f -stable submodule of M on which f is nilpotent. The set
f−∞(0) is the union of an ascending chain of submodules

0 ⊂ ker f ⊂ ker f2 ⊂ . . . ⊂ ker fn ⊂ . . .

of M and is thus an f -stable submodule of M on which f acts as a nil endomor-
phism: i.e., every element of M is killed by some power of f . Moreover, if M is a
Noetherian module, there exists t ∈ Z+ such that ker f t = ker f t+1 = . . . and thus
f is a nilpotent endomorphism of f−∞(0).

Exercise 8.19: Find a commutative ring R, an R-module M and f ∈ EndR(M)
such that f is not a nilpotent endomorphism of f−∞(0).

Theorem 8.16. (Fitting’s Lemma) Let M be a finite length module over the not
necessarily commutative ring R, and let f ∈ EndR(M).
a) There exists a Fitting Decomposition

(17) M = f∞(M)⊕ f−∞(0).

b) f |f∞(M) is an isomorphism and f |f−∞(0) is nilpotent.
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Proof. Since M has finite length it is both Noetherian and Artinian. Thus there
exists r ∈ Z+ such that

fr(M) = fr+1(M) = . . . = f∞(M)

and
ker fr = ker fr+1 = . . . = f−∞(0).

Let x ∈ f∞(M)∩ f−∞(0). Then there exists y ∈M such that x = fr(y); moreover
0 = fr(x) = f2r(y). But f2r(y) = 0 implies x = fr(y) = 0, so f∞(M)∩f−∞(0) = 0.

Let x ∈ M . Then fr(x) ∈ fr(M) = f2r(M), so there exists y ∈ M with
fr(x) = f2r(y) and thus fr(x− fr(y)) = 0. so

x = fr(y) + (x− fr(y)) ∈ f∞(M) + f−∞(0),

completing the proof of part a). As for part b), we saw above that the restriction of
f to f∞(M) is surjective. It must also be injective since every element of the kernel
lies in f−∞(0). Thus f |f∞(M) is an isomorphism. Finally, as observed above, since
f−∞(0) = ker fr, f |f−∞(0) is nilpotent. �
Lemma 8.17. Let x and y be nilpotent elements in a not necessarily commutative
ring (which is not the zero ring). Then x+ y is not a unit of R.

Proof. Assume to the contrary that x + y = u ∈ R×. Dividing through by u we
reduce to showing that we cannot have two nilpotent elements x, y ∈ R such that
x+ y = 1. But if x is nilpotent, the “infinite geometric series”

∑∞
n=0 1 + x+ . . .+

xn+ . . . is in fact finite, hence perfectly legal in our abstract algebraic context, and
it is immediate to check that the familiar calculus identity

(1− x)(

∞∑
n=0

xn) = 1

holds here. Thus y = 1−x is both a unit ofR and a nilpotent element, contradiction.
�

Corollary 8.18. Let M be a finite length indecomposable R-module. Then every
f ∈ EndR(M) is either an automorphism or nilpotent. Moreover M is is strongly
indecomposable.

Proof. SinceM is indecomposable, Fitting’s Lemma implies that for f ∈ EndR(M)
we must have either M = f∞(M) – in which case f is an automorphism – or
M = f−∞(0) – in which case f is nilpotent. We must show that I = EndR(M) \
EndR(M)× is a two-sided ideal of EndR(M). Note that I is precisely the set of
endomorphisms of M which are not automorphisms, hence every element of I is
nilpotent. By Lemma 8.17, I is a subgroup of (R,+). Moreover, for f ∈ I, g ∈
EndR(M), since f is neither injective nor surjective, gf is not injective and fg is
not surjective, so neither is an automorphism and both lie in I. �
Lemma 8.19. Let M be a nonzero R-module and N an indecomposable R-module.
Suppose we have homomorphisms f : M → N, g : N → M such that gf is an
automorphism of M . Then both f and g are isomorphisms.

Proof. Let h = (gf)−1, l = hg : N → M and e = fl : N → N . Then lf = hgf =
1M and e2 = flfl = f1M l = fl = e. Since M is indecomposable, either e = 1
or e = 0, and the latter implies 1M = 12M = lf lf = lef = 0, i.e., M = 0. So
fl = e = 1N , so f is an isomorphism and thus so too is (f(gf)−1)−1 = g. �
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Theorem 8.20. Let M ∼= N be isomorphic modules, and let M =
⊕m

i=1Mi and
N =

⊕n
i=1N

′
i with each Mi strongly indecomposable and each Ni indecomposable.

Then m = n and there is a bijection σ of {1, . . . ,m} such that for all i, Mi
∼= Nσ(i).

Proof. By induction on m: m = 1 is clear. Suppose the result holds for all direct
sums of fewer than m strongly indecomposable submodules.
Step 1: Let e1, . . . , em ∈ EndR(M) and f1, . . . , fn ∈ EndR(N) be the idempotent
elements corresponding to the given direct sum decompositions (i.e., projection

onto the corresponding factor). Let g :M
∼→ N , and put

hj := fjge1 ∈ HomR(M,N), kj = e1g
−1fj ∈ HomR(N,M), 1 ≤ j ≤ n.

Then
n∑
j=1

kjhj =
∑
j

e1g
−1fjge1 = e1g

−1
∑
j

fjge1 = e1g
−11Nge1 = e1.

The restrictions of e1 and kjhj to M1 stabilize M1 so may be regarded as endomor-
phisms of M1, say e

′
1 and (kjhj)

′, and we have

n∑
j=1

(kjhj)
′ = e′1 = 1M1 .

By assumption EndRM1 is local, so for at least one j, (kjhj)
′ is a unit, i.e., an

automorphism of M1. By reordering the Nj ’s we may assume that j = 1, so
(k1h1)

′ ∈ AutRM1. We may regard the restriction h′1 of h1 to M1 as a homomor-
phism fromM1 toN1 and similarly the restriction k′1 of k1 toN1 as a homomorphism
from N1 to M1, and then k′1h

′
1 = (k1h1)

′ is an automorphism. By Lemma 8.19,

h′1 = (f1ge
′
1) :M1

∼→ N1 and k′1 = (e1g
−1f1)

′ : N1
∼→M1.

Step 2: We claim that

(18) M = g−1(N1)⊕
m⊕
i=2

Mi.

To see this, let x ∈ g−1N1 ∩ (
⊕m

i=2Mi), so x = g−1y for some y ∈ N1. Because
x ∈

⊕m
i=2Mi, e1x = 0. Thus

0 = e1x = e1g
−1y = e1g

−1f1y = k1y = k′1y.

Since k′1 is an isomorphism, y = 0 and thus x = 0, so the sum in (18) is direct.
Now put M ′ = g−1(N1)⊕

⊕m
i=2Mi, so we wish to show M ′ =M . Let x ∈ g−1N1.

Then x, e2x, . . . , emx ∈M ′, so e1x = (1− e2 − . . .− em)x ∈M ′. So

M ′ ⊃ e1g
−1N1 = e1g

−1f1N1 = k1N1 = k′1N1 =M1

and thus M ′ ⊃
⊕m

i=1Mi =M .

Step 3: The isomorphism g : M
∼→ N carries g−1N1 onto N1 hence induces an

isomorphism M
g−1N1

sim→ N/N1. Using Step 2, we have

n⊕
j=2

Ni =
N

N1

∼=
M

g−1N1

∼=
m⊕
i=2

Mi.

We are done by induction. �
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Exercise 8.20: Please confirm that we have proved the Krull-Schmidt Theorem!

Exercise 8.21: Let M and N be R-modules such that M ×M ∼= N ×N .
a) If M and N are both of finite length, show that M ∼= N .
b) Must we have M ∼= N in general?

Remark: Part b) is far from easy! If you give up, see [Cor64].

Exercise 8.22: a) Let R be a PID and M an R-module. a) Show that M has
finite length iff it is a finitely generated torsion module.
b) Show that a finitely generated torsion module is indecomposable iff it is isomor-
phic to R/(pa) for some prime element p of R and some a ∈ Z+.
c) Did you use the structure theorem for finitely generated modules over a PID to
prove parts a) and b)? If so, try to prove these results without it.
d) Take as given parts a) and b) of this exercise, and use the Krull-Schmidt Theo-
rem to deduce the structure theorem for finitely generated modules over a PID.

Remark: Later we will use these ideas to give an independent proof of the structure
theorem for finitely generated modules over a PID, using one extra idea: reduction
to the case of a local PID, in which case there is only one nonzero prime ideal and
the module theory becomes especially simple.

8.6. Some important terminology.

All we aspire to do in this section is to introduce some terminology, but it is so
important that we have isolated it for future reference.

Let R be a ring and p a prime ideal of R. The height of p is the supremum
of all lengths of finite chains of prime ideals of the form p0 ( p1 ( . . . ( pn = p
(the length of the indicated chain being n; i.e., it is the number of (’s appear-
ing, which is one less than the number of elements). Thus the height is either a
non-negative integer or ∞; the latter transpires iff there exist arbitrarily long finite
chains of prime ideals descending from p (and of course, this need not imply the
existence of an infinite chain of prime ideals descending from p).

A prime ideal of height 0 is called a minimal prime. In an integral domain
R, the unique minimal prime is (0), so the concept is of interest only for rings
which are not domains. If I is a proper ideal of R, we also speak of a minimal
prime over I, which means a prime p ⊃ I such that there is no prime ideal q with
I ( q ( p. Note that p is a minimal prime over I iff p is a minimal prime in the
quotient ring R/I. This remark simultaneously explains the terminology “minimal
over” and gives a hint why it is useful to study minimal prime ideals even if one is
ultimately most interested in integral domains.

The dimension of a ring R is the supremum of all the heights of its prime ideals.
The full proper name here is Krull dimension of R, which is of course useful
when one has other notions of dimension at hand. Such things certainly do exist
but will not be considered here. Moreover, as will shortly become apparent, the
need to include Krull’s name here so as to ensure that he gets proper recognition
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for his seminal work in this area is less than pressing. Therefore we use the full
name “Krull dimension” only rarely as a sort of rhetorical flourish.

One also often speaks of the codimension of a prime ideal p of R, which is the
dimension of R minus the height of p. This is especially natural in applications
to algebraic geometry, of which the present notes allude to only in passing. Note
that this is not necessarily equal to the Krull dimension of R/p – or what is the
same as that, the maximal length of a finite chain of prime ideals ascending from p
– although in reasonable applications, and especially in geometry, one is certainly
entitled to hope (and often, to prove) that this is the case.

Remark: All of these definitions would make perfect sense for arbitrary partially
ordered sets and their elements, but the terminology is not completely consistent
with order theory. Namely, the height of an element in an arbitrary poset is de-
fined as the supremum of lengths of chains descending from that element, but the
order theorists would cringe to hear the supremum of all heights of elements called
the “dimension” of the poset. They would call that quantity the height of the
poset, and would reserve dimension for any of several more interesting invariants.
(Roughly, the idea is that a chain of any finite length is one-dimensional, whereas
a product of d chains should have dimension d.)

8.7. Introducing Noetherian rings.

The following is arguably the most important single definition in all of ring theory.

A ring R is said to be Noetherian if the poset I(R) of all ideals of R satisfies
the ascending chain condition.

Exercise 8.23: FIX ME!.

Theorem 8.21. A finitely generated module over a Noetherian ring is Noetherian.

Proof. If M is a finitely generated module over R, then we may represent it as
Rn/K for some submodule K of Rn. An immediate corollary of the preceding
theorem is that finite direct sums of Noetherian modules are Noetherian, and by
assumption R itself is a Noetherian R-module, hence so is Rn and hence so is the
quotient Rn/K =M . �
Thus so long as we restrict to Noetherian rings, submodules of finitely generated
modules remain finitely generated. This is extremely useful even in the case of
R = Z: a subgroup of a finitely generated abelian group remains finitely generated.
Needless(?) to say, this does not hold for all nonabelian groups, e.g. not for a
finitely generated free group of rank greater than 1.

Theorem 8.22. (Characterization of Noetherian rings) For a ring R, TFAE:
(i) Every nonempty set of ideals of R has a maximal element.
(ii) There are no infinite ascending chains

I1 ( I2 ( . . . ( In ( . . .

of ideals of R.
(iii) Every ideal of R is finitely generated.
(iv) Every prime ideal of R is finitely generated.
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Proof. (i) ⇐⇒ (ii) is a special case of Proposition 8.1.
(ii) ⇐⇒ (iii) is a special case of Exercise 8.2.
(iii) ⇐⇒ (iv) is Cohen’s Theorem (Theorem 4.26). �
Exercise 8.24: Suppose a ring R satisfies the ascending chain condition on prime
ideals. Must R be Noetherian?

Proposition 8.23. Let R be a Noetherian ring.
a) If I is any ideal of R, the quotient R/I is Noetherian.
b) If S ⊂ R is any multiplicative subset, the localization S−1R is Noetherian.

Proof. Any ideal of R/I is of the form J/I for some ideal J ⊃ I of R. By assumption
J is finitely generated, hence J/I is finitely generated, so R/I is Noetherian. A
similar argument holds for the localization; details are left to the reader. �
Exercise 8.25: Let k be a field, let S be an infinite set, and put R =

∏
s∈S k, i.e.,

the infinite product of #S copies of k. Show that R is not Noetherian, but the
localization Rp at each prime ideal is Noetherian.

Thus Noetherianity is a localizable property but not a local property.

8.8. Theorems of Eakin-Nagata, Formanek and Jothilingam.

In 1968, P.M. Eakin, Jr. [Ea68] and M. Nagata [Nag68] independently showed
that if a ring R admits an extension ring S which is Noetherian and finitely gener-
ated as an R-module, then R is Noetherian.

Several years later, E. Formanek [For73] gave a stronger result. His improve-
ment is a nice instance of the philosophy of “modulization”: where possible one
should replace theorems about rings with theorems about modules over rings. He
writes: “The object of this paper is to present a simple and elementary proof of
the Eakin-Nagata theorem which generalizes the original version in a new direction.
The proof is essentially a contraction of Eakin’s proof as presented by Kaplansky in
[K, Exc. 14-15, p. 54] based on the observation that much of the proof disappears
if one is not ‘handicapped’ by the hypothesis that T is a ring.”

More recently, P. Jothilingam [Jo00] gave a result which simultaneously general-
izes Formanek’s Theorem and Cohen’s Theorem that a ring in which all prime ideals
are finitely generated is Noetherian. Finally(?), several years ago A. Naghipour
[Nag05] found a significantly shorter, simpler proof of Jothilingam’s Theorem, which
we will present here. All in all, this provides a nice case study of how even very
basic results get improved and simplified as time passes.

Having told the story in correct chronological order, we now reverse it: we will
prove Jothilingam’s Theorem and swiftly deduce the earlier results as corollaries.
First a couple of easy preliminaries.

Lemma 8.24 (Kaplansky). For a ring R, the following are equivalent:
(i) R is Noetherian.
(ii) R admits a faithful Noetherian module.

Proof. (i) =⇒ (ii): If R is Noetherian, then R is a faithful Noetherian R-module.
(ii) =⇒ (i): Let M be a faithful Noetherian R-module. In particular M is finitely
generated, say by x1, . . . , xn. Let φ : R → Mn by r 7→ (rx1, . . . , rxn). Since
M is Noetherian, so is Mn, and since M is faithful, φ is injective, and thus R is
isomorphic to a submodule of a Noetherian module, hence Noetherian. �
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Exercise 8.26:
a) Show that any ring R admits a Noetherian module.
b) Show that if M is a Noetherian R-module, R/ annM is Noetherian.

Let M be an R-module. An R-submodule of M is extended if it is of the form
IM for some ideal I of R. This is a generalization of a previous use of the term:
if ι : R → T is a map of rings, then the extended ideals of T are those of the form
ι∗I = IT for an ideal I of R.

Proposition 8.25. For a finitely generated R-module M , let EM be the family of
extended submodules of M , partially ordered under inclusion. TFAE:
(i) EM is Noetherian: i.e., extended submodules satisfy (ACC).
(ii) Every extended submodule of M is finitely generated.

Proof. ¬ (ii) =⇒ ¬ (i): Let I be an ideal of R such that IM is not finitely
generated. Let a1 ∈ I. Then, since M is finitely generated, a1M is a finitely
generated submodule of IM , hence proper: there exists a2 ∈ I such that a1M (
⟨a1, a2⟩M . Again, ⟨a1, a2⟩M is finitely generated, so is proper in IM . Continuing
in this way we get a sequence {an}∞n=1 in I such that

a1M ( ⟨a1, a2⟩M ( . . . ( ⟨a1, . . . , an⟩M ( . . . ,

so EM is not Noetherian.
(ii) =⇒ (i): Let I1M ⊆ I2M ⊆ . . . ⊆ InM ⊆ . . . be an ascending chain in EM .
Let N =

∑
n InM and I =

∑
n In, so N = IM ∈ EM . By assumption, N is finite

generated, so there is n ∈ Z+ with N = I1M + . . .+ InM . Since IkM ⊂ Ik+1M for
all k, N = InM and thus InM = In+kM for k ∈ N: the chain stabilizes at n. �
Theorem 8.26 (Jothilingam). For a finitely generated R-module M , TFAE:
(i) M is Noetherian.
(ii) For every prime ideal p of R, the submodule pM is finitely generated.

Proof. We follow [Nag05].
(i) =⇒ (ii): If M is Noetherian, then every submodule of M is finitely generated.
¬ (i) =⇒ ¬ (ii): Suppose M is not Noetherian: we will find a prime ideal p of R
such that pM is infinitely generated.
Step 0: Since the union of a chain of infinitely generated submodules of M is
an infinitely generated submodule of M , by Zorn’s Lemma there is a submodule
N ⊂M maximal with respect to being infinitely generated.
Step 1: Let p = ann(M/N) = {x ∈ R | xM ⊂ N}. We will show that p is a
prime ideal: indeed, seeking a contradiction suppose there are a, b ∈ R \ p such
that ab ∈ p. Then N + aM,B + bM ) N so are both finitely generated: write
N + aM = ⟨n1 + am1, . . . , nℓ + amℓ⟩ with ni ∈ N , mi ∈M . Put

L = {m ∈M : am ∈ N};
then L is an R-submodule ofM containing N and bM and hence also N+bM ) N ,
so L is finitely generated. We claim

N =
ℓ∑
i=1

Rni + aL.

If so, then N is finitely generated, a contradiction, and thus p is prime. Since

abM ⊂ N , we have
∑ℓ
i=1Rni+aL ⊂ N . Conversely, let y ∈ N . Since y ∈ N+aM ,



154 PETE L. CLARK

there are b1, . . . , bℓ ∈ R such that

y =

ℓ∑
i=1

bi(ni + ami) =

ℓ∑
i=1

bini + a

ℓ∑
i=1

bimi.

Thus

a
ℓ∑
i=1

bimi = y −
ℓ∑
i=1

bini ∈ N,

so
∑ℓ
i=1 bimi ∈ L and y ∈

∑ℓ
i=1Rni + aL.

Step 2: For x ∈ M , write x for the canonical image of x in M/N . Now we use
that M is finitely generated: write M = ⟨x1, . . . , xn⟩R, so M/N = ⟨x1, . . . , xn⟩R,
so p =

∩n
i=1 annRxi. Because p is prime, we must have p = annRxj for some j.

Since N +Rxi ) N , N +Rxi is finitely generated, say by y1 + r1xj , . . . , yk + rkxj ,
with yi ∈ N , ri ∈ R. Arguing as in Step 1 we get

N =
k∑
i=1

Ryi + pxj .

Since pM ⊂ N , we have

N =

k∑
i=1

Ryi + pxj ⊂
k∑
i=1

Ryi + pM ⊂
k∑
i=1

Ryi +N ⊂ N,

and thus

(19) N =

k∑
i=1

Ryi + pM.

Since N is infinitely generated, (19) implies pM is infinitely generated. �

Corollary 8.27. (Formanek’s Theorem) Let R be a ring, and letM = ⟨a1, . . . , an⟩
be a faithful finitely generated R-module. Suppose M satisfies (ACC) on “extended
submodules” – i.e., submodules of the form IM for I an ideal of R. Then M is
Noetherian, hence so is R.

Proof. By Proposition 8.25, all extended submodules are finitely generated, hence
a fortiori all submodules of the form pM for p ∈ SpecR are finitely generated. By
Theorem 8.26, M is Noetherian, and then by Lemma 8.24, R is Noetherian. �

Corollary 8.28. (Eakin-Nagata Theorem) Let R ⊂ S be an ring extension, with
S finitely generated as an R-module. Then R is Noetherian iff S is Noetherian.

Proof. =⇒ If R is Noetherian, then S is a finitely generated module over a
Noetherian ring so S is a Noetherian R-module. That is, (ACC) holds on R-
submodules of S, hence a fortiori it holds on S-submodules of S.
⇐ Apply Formanek’s Theorem with M = S. �

Exercise 8.28: Investigate the possibility of proving Jothilingam’s Theorem using
the Prime Ideal Principle of §4.5.
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8.9. The Bass-Papp Theorem.

We now present a beautiful characterization of Noetherian rings in terms of proper-
ties of injective modules, due independently to Z. Papp [Pa59] and H. Bass [Bas59].

Theorem 8.29. (Bass-Papp Theorem) For a ring R, TFAE:
(i) A direct limit of injective modules is injective.
(ii) A direct sum of injective modules is injective.
(iii) A countable direct sum of injective modules is injective.
(iv) R is Noetherian.

Proof.
(i) =⇒ (ii): A direct sum is a kind of direct limit.
(ii) =⇒ (iii) is immediate.
(iii) =⇒ (iv): Let I1 ⊂ I2 ⊂ . . . ⊂ In ⊂ . . . be an infinite ascending chain of ideals
of R, and let I =

∪
n In. We define

E =

∞⊕
n=1

E(R/In).

For n ∈ Z+, let fn : I → E(R/In) be the composite map I → R → R/In →
E(R/In). There is then a unique map

∏
f : I →

∏∞
n=1E(R/In). But indeed, for

each fixed x ∈ I, x lies in In for sufficiently large n and thus fn(x) = 0. It follows
that

∏
f actually lands in the direct sum, and we have thus defined a map

f : I → E.

By hypothesis, E is a countable direct sum of injective modules and therefore
injective, so f extends to an R-module map with domain all of R and is thus of the
form f(x) = xf(1) = xe for some fixed e ∈ E. Let N be sufficiently large so that
for n ≥ N , the nth component en of e is zero. Then for all x ∈ I,

0 = xen = fn(x) = x+ In ∈ R/In,

and thus x ∈ In. That is, for all n ≥ N , In = I.
(iv) =⇒ (i): let {Eα} be a directed system of injective modules with direct limit
E. For α ≤ β we denote the transition map from Eα to Eβ by ιαβ and the natural
map from Eα to E by ια. We will show E is injective by Baer’s Criterion (Theorem
3.20), so let I be any ideal of R and consider an R-module map f : I → E. Since
R is Noetherian, I is finitely generated, and it follows that there exists an index
α such that f(I) ⊂ ια(Eα). Let M be a finitely generated submodule of Eα such
that f(I) ⊂ ια(M). Consider the short exact sequence

0 → K →M
ια→ f(I) → 0.

SinceM is finitely generated and R is Noetherian, K is finitely generated. Moreover
K maps to 0 in the direct limit, so there exists β ≥ α such that ιαβK = 0. Let
M ′ = ιαβM , so by construction

ιβ :M ′ ∼→ f(I).

Taking g = ιβ |−1
M ′ ◦ f we get a map g : I → Eβ such that f = ιβ ◦ g. Since Eβ is

injective, g extends to a map G : R→ Eβ and thus F = ιβ ◦G extends f to R. �
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8.10. Artinian rings: structure theory.

A ring R which satisfies the descending chain condition (DCC) on ideals is called
Artinian (or sometimes, “an Artin ring”).

Exercise 8.29:
a) Show that a ring with only finitely many ideals is Artinian.
b) Show that the ring of integers Z is not Artinian.
c) Show that a quotient of an Artinian ring is Artinian.
d) Show that a localization of an Artinian ring is Artinian.

Obviously any finite ring has only finitely many ideals and is Artinian. It is not
difficult to give examples of infinite rings with finitely many ideals. For instance,
let k be a field and let 0 ̸= f ∈ k[t]. Then R = k[t]/(f) has only finitely many
ideals. Indeed, if we factor f = fa11 · · · farr into irreducible factors, then the Chinese
Remainder Theorem gives

k[t]/(f) ∼= k[t]/(fa11 )× . . .× k[t]/(farr ).

Each factor ring k[t]/(faii ) is a local ring with maximal ideal (f1), and the ideals
are precisely

(0) ( (fi)
ai−1 ( . . . ( fi.

Since every ideal in a product is a direct sum of ideals of the factors, there are then
precisely

∏r
i=1(ai + 1) ideals of R.

A bit of reflection reveals that – notwithstanding their very similar definitions –
requiring (DCC) on ideals of a ring is considerably more restrictive than the (ACC)
condition. For instance:

Proposition 8.30. A domain R is Artinian iff it is a field.

Proof. Obviously a field satisfies (DCC) on ideals. Conversely, if R is a domain
and not a field, there exists a nonzero nonunit element a, and then we have (a) )
(a2) ) (a3) ) . . .. Indeed, if (ak) = (al), suppose k ≤ l and write l = k + n, and
then we have uak = akan for some u ∈ A×, and then by cancellation we get an = u,
so an is unit and thus a is a unit, contradiction. �

The result collects several simple but important properties of Artinian rings.

Theorem 8.31. Let R be an Artinian ring.
a) R has dimension zero: prime ideals are maximal.
b) Therefore the Jacobson radical of R coincides with its nilradical.
c) R has only finitely many maximal ideals, say m1, . . . ,mn.
d) Let N =

∩n
i=1 mi be the nilradical. Then it is a nilpotent ideal: there exists

k ∈ Z+ such that N k = 0.

Proof. a) If p is a prime ideal of A, then A/p is an Artinian domain, which by
Proposition 8.30 is a field, so p is maximal.

b) By definition, the Jacobson radical is the intersection of all maximal ideals and
the nilradical is the intersection of all prime ideals. Thus the result is immediate
from part a).
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c) Suppose mi is an infinite sequence of maximal ideals. Then

R ) m1 ) m1 ∩m2 · · ·
is an infinite descending chain. Indeed, equality at any step would mean mN+1 ⊃∩N
i=1 mi =

∏N
i=1 mi, and then since mN+1 is prime it contains mi for some 1 ≤ i ≤

N , contradiction.
d) Applying DCC on the powers of N , it must be the case that there exists some

k with N k = N k+n for all n ∈ Z+. Put I = N k. Suppose I ̸= 0, and let Σ be
the set of ideals J such that IJ ̸= 0. Evidently Σ ̸= ∅, for I ∈ Σ. By DCC we are
entitled to a minimal element J of Σ. There exists 0 ̸= x ∈ J such that xI ̸= 0.
For such an x, we have (x) ∈ Σ and by minimality we must have J = (x). But
(xI)I = xI ̸= 0, so xI ⊂ (x) and thus xI = (x) by minimality. So there exists
y ∈ I with xy = x and thus we have

x = xy = xy2 = . . . = xyk = . . . .

But y ∈ I ⊂ N , hence y is nilpotent and the above equations give x = 0, a
contradiction. �
Lemma 8.32. Suppose that in a ring R there exists a finite sequence m1, . . . ,mn
of maximal ideals such that 0 =

∏
imi. Then R is Noetherian iff it is Artinian.

Proof. Consider the chain of ideals

R ⊃ m1 ⊃ m1m2 ⊃ . . . ⊃
∏
i

mi = 0.

Each quotient Qi := m1 · · ·mi−1/m1 · · ·mi is an R/mi-vector space. Now R satisfies
(ACC) (resp. (DCC)) for ideals iff each Qi satisfies (ACC) (resp. (DCC)). But since
each Qi is a vector space, (ACC) holds iff (DCC) holds. �
Theorem 8.33. (Akizuki-Hopkins) For a ring R, TFAE:
(i) R is Artinian.
(ii) R is Noetherian, and prime ideals are maximal.

Proof. (i) =⇒ (ii): Suppose R is Artinian. By Theorem 8.31, prime ideals in R are
maximal, so it suffices to show that R is Noetherian. Let m1, . . . ,mn be the distinct

maximal ideals of R. For any k ∈ Z+ we have
∏n
i=1 m

k
i ⊂ (

∩n
i=1 mi)

k
. Applying

Theorem 8.31d), this shows that for sufficiently large k we have
∏n
i=1 m

k
i = 0. We

can now apply Lemma 8.32 to conclude that R is Artinian.
(ii) =⇒ (i): Suppose R is Noetherian and zero-dimensional. A bit later on (sorry!)
we will see that any Noetherian ring has only finitely many minimal prime ideals
(Corollary ??), so R has only finitely many minimal prime ideals, each of which
is maximal by zero-dimensionality. Therefore N =

∩n
i=1 mi is the nilradical of a

Noetherian ring, hence a nilpotent ideal. As above, we deduce that for sufficiently
large k we have

∏n
i=1 m

k
i = 0. By Lemma 8.32, R is Artinian. �

Exercise 8.30: Consider the ring R = C[x, y]/(x2, xy, y2) = C[x, y]/I.
a) Show that dimCR = 3 and that a C-basis is given by 1 + I, x+ I, y + I.
b) Deduce that R is Artinian.
c) Show that the proper ideals of R are precisely the C-subspaces of ⟨x+ I, y+ I⟩C.
d) Deduce that R has infinitely many ideals.

Exercise 8.31: Let k be a field and A = k[{xi}∞i=1] a polynomial ring over k in
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a countable infinite number of indeterminates. Let m = ({xi}) be the ideal of all
polynomials with zero constant term, and put R = A/m2. Show that R is a ring
with a unique prime ideal which is not Noetherian (so also not Artinian).

Exercise 8.32: Let n ∈ Z+. Suppose R is a Noetherian domain with exactly n
prime ideals. Must R be Artinian?

Proposition 8.34. Let (R,m) be a Noetherian local ring.
a) Either:
(i) mk ̸= mk+1 for all k ∈ Z+, or
(ii) mk = 0 for some k.
b) Moreover, condition (ii) holds iff R is Artinian.

Proof. a) Suppose there exists k such that mk = mk+1. By Nakayama’s Lemma,
we have mk = 0. If p is any prime ideal of R, then mk ⊂ p, and taking radicals we
have m ⊂ p, so p = m and R is a Noetherian ring with a unique prime ideal, hence
an Artinian local ring. b) If R is Artinian, then (i) cannot hold, so (ii) must hold.
Conversely, if (ii) holds then m is a nil ideal, hence contained in the intersection of
all prime ideals of R, which implies that m is the only prime ideal of R, and R is
Artinian by the Akizuki-Hopkins theorem. �

Theorem 8.35. (Structure theorem for Artinian rings) Let R be an Artinian ring.
a) There exist finitely many local Artinian rings Ri such that R ∼=

∏n
i=1Ri.

b) Moreover, the decomposition is unique in the sense that if R ∼=
∏m
j=1 Sj is

another decomposition, then n = m and there exists a permutation σ of {1, . . . , n}
such that Ri ∼= Sσ(i) for all i.

Proof. a) Let (mi)
n
i=1 be the distinct maximal ideals of R. We have seen that there

exists k ∈ Z+ such that
∏n
i=1 m

k
i = 0. By Proposition 4.16, the ideals mki are

pairwise comaximal, so so
∩
im

k
i =

∏
im

k
i . Therefore by CRT the natural mapping

R→
n∏
i=1

R

mki

is an isomorphism. Each R
mk

i

is local Artinian, so this gives part a).

b) The proof requires primary decomposition, so must be deferred to §10.5. �

Exercise 8.33: Let R be an Artinian ring.
a) Show that every element of R is either a unit or a zero divisor.
b) Show that R is its own total fraction ring.

Exercise 8.34:42 For a ring R, TFAE:
(i) R is semilocal, i.e., MaxSpecR is finite.
(ii) R/ radR is Artinian.

8.11. The Hilbert Basis Theorem.

The following result shows in one fell swoop that the majority of the rings that
one encounters in classical algebraic geometry and number theory are Noetherian.

42This exercise should be compared to Exercise 4.14, which gives a criterion for semilocality
in terms of the quotient by the Jacobson radical.
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Theorem 8.36. (Hilbert Basis Theorem) If R is Noetherian, so is R[t].

Proof. Seeking a contradiction, suppose J is an ideal of R[t] which is not finitely
generated. We inductively construct a sequence f0, f1, . . . , fn, . . . of elements of J
and a sequence of ideals Jn = ⟨f0, . . . , fn⟩ of R[t] as follows: f0 = 0, and for all
i ∈ N, fi+1 is an element of minimal degree in J \ Ji. Moreover, for all i ∈ Z+ let
ai be the leading coefficient of fi, and let I be the ideal ⟨a1, a2, . . . , aN , . . .⟩ of R.
However, R is Noetherian, so there exists N ∈ Z+ such that I = ⟨a1, . . . , aN ⟩. In
particular, there are u1, . . . , uN ∈ R such that aN+1 = u1a1 + . . .+ uNaN . Define

g =
N∑
i=1

uifit
deg fN+1−deg fi .

Since g ∈ JN and fN+1 ∈ J \JN , fN+1−g ∈ J \JN . Moreover, g and fN+1 have the
same degree and the same leading term, so deg fN+1 − g < deg fN+1, hence fN+1

does not have minimal degree among polynomials in J \ JN , contradiction. �

Exercise 8.35: Prove the converse of the Hilbert Basis Theorem: if R is a ring such
that either R[t] or R[[t]] is Noetherian, then R is Noetherian.

Corollary 8.37. A finitely generated algebra over a Noetherian ring is Noetherian.

Proof. Let R be Noetherian and S a finitely generated R-algebra, so that S ∼=
R[t1, . . . , tn]/I for some n ∈ Z+ and some ideal I. By the Hilbert Basis Theorem
(and induction), R[t1, . . . , tn] is Noetherian, hence so is its quotient ring S. �

Theorem 8.38. Let R be a ring, let P be a prime ideal of R[[t]], and let p be the
set of constant coefficients of elements of P.
a) Suppose that for some k ∈ N, p can be generated by k elements. Then P can be
generated by k+1 elements. Moreover, if t /∈ P, P can be generated by k elements.
b) If R is Noetherian, then so is R[[t]].

Proof. Let ι : R→ R[[t]] be the inclusion map, so p = ι∗P.
a) Suppose p = ⟨a1, . . . , ak⟩, and let I be the ideal ⟨a1, . . . , ak, t⟩ of R[[t]].
Case 1: If t ∈ P, we claim I = P, which suffices. That I ⊂ P is clear; conversely,
writing f =

∑∞
n=0 ant

n ∈ P as a0 + t(a1 + a2t+ . . .) shows f ∈ I.
Case 2: Suppose t /∈ P. Let f1, . . . , fk ∈ P with constant terms a1, . . . , ak, respec-
tively. We claim P = ⟨f1, . . . , fk⟩. To see this, let g1 =

∑∞
n=0 bnt

n ∈ P. Since
b0 ∈ p, there are r1,1, . . . , rk,1 ∈ R with

b0 = r1,1a1 + . . .+ rk,1ak,

and thus

g1 − (r1,1f1 + . . .+ rk,1fk) = tg2

for some g2 ∈ R[[t]]. Since P is prime, tg2 ∈ P and t /∈ P, we must have g2 ∈ P.
Applying the above argument to g2 we find r1,2, . . . , rk,2 ∈ R and g3 ∈ P such that
g2−(r1,2f1+ . . .+r1,kfk) = tg3. Continuing in this way, we generate, for 1 ≤ i ≤ k,
a power series hi =

∑∞
n=0 ri,nt

n, such that

g = h1f1 + . . .+ hkfk,

establishing the claim.
b) If R is Noetherian, then by part a) every prime ideal of R[[t]] is finitely generated.
By Cohen’s Theorem (Theorem 4.26), R[[t]] is Noetherian. �
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Exercise 8.36: Show that for a ring R, TFAE:
(i) R is Noetherian.
(ii) For all n ≥ 1, R[t1, . . . , tn] is Noetherian.
(iii) For all n ≥ 1, R[[t1, . . . , tn]] is Noetherian.

Exercise 8.37: Let k be a field, and consider the subring R = k[y, xy, x2y, . . .]
of k[x, y]. Show that R is not Noetherian.

Therefore, a subring of a Noetherian ring need not be Noetherian. Thinking that
this ought to be the case is one of the classic “rookie mistakes” in commutative
algebra. In general though, it is the exception rather than the rule that a nice
property of a ring R is inherited by all subrings of R, and one gets used to this.

8.12. The Krull Intersection Theorem.

8.12.1. Preliminaries on Graded Rings.

In the proof of the theorem of this section we will need a little fact about homoge-
neous polynomials. So here we discuss some rudiments of this theory by embedding
it into its natural context: graded rings. The notion of graded ring is of the utmost
importance in various applications of algebra, from algebraic geometry to algebraic
topology and beyond. It would certainly be nice to give a comprehensive exposition
of graded algebra but at the moment this is beyond the ambition of these notes, so
we content ourselves with the bare minimum needed for our work in the next section.

Let R be a ring, n ∈ Z+, and denote by R[t] = R[t1, . . . , tn] the polynomial ring
in n indeterminates over R. For a polynomial P = P (t) in several variables, we
have the notion of the degree of P with respect to the variable ti: thinking of P
as an element of R[t1, . . . , ti−1, ti+1, . . . , tn][ti] it is just the largest m such that the

coefficient of tmi is nonzero, as usual. For any monomial term cIt
i1
1 · · · tinn we define

the total degree to be d = i1 + . . .+ in.

A nonzero polynomial P =
∑
I cIt

i1
1 · · · tinn is homogeneous if all of its monomial

terms have the same total degree, and this common number is called the degree
of the homogeneous polynomial P . By convention the zero polynomial is re-
garded as being homogeneous total degree d for all d ∈ N.

A general polynomial P ∈ R[t] can be written as a sum of homogeneous poly-
nomials P =

∑∞
d=0 Pd(t) with each Pd homogeneous of degree d (and of course

Pd = 0 for all sufficiently large d). This sum is unique. One way to see this is
to establish the following more structural fact: for any d ∈ N, let P [t]d be the
set of all polynomials which are homogeneous of degree d. Then each P [t]d is an
R-submodule of P [t] and we have a direct sum decomposition

(20) P [t] =
∞⊕
d=0

P [t]d.

Moreover, for all d1, d2 ∈ N we have

(21) P [t]d1 · P [t]d2 ⊂ P [t]d1+d2 .
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In general, if R is a ring and S is an algebra admitting an R-module direct sum
decomposition S =

⊕∞
d=0 Sd satisfying Sd1 ·Sd2 ⊂ Sd1+d2 , then we say that S is an

(N)-graded R-algebra. Taking R = Z we get the notion of a graded ring.

Exercise 8.38: Let S =
⊕∞

d=0 Sd be a graded R-algebra. Show that the R-
submodule S0 is in fact an R-algebra.

Let S =
⊕∞

d=0 Sd be a graded ring. We say that x ∈ S is homogeneous of
degree d if x ∈ Sd. An ideal I of S is homogeneous if it has a generating set
I = ⟨xi⟩ with each xi a homogeneous element.

Exercise 8.39: Let S be a graded R-algebra and let I be a homogeneous ideal
of S. Show that

S/I =
∞⊕
d=0

(Sd + I)/I

and thus S/I is a graded R-algebra.

Now back to the case of polynomial rings.

Lemma 8.39. Let S be a graded ring, let f1, . . . , fn be homogeneous elements of S,
and put I = ⟨f1, . . . , fn⟩. Let f ∈ I be homogeneous. Then there are homogeneous
elements g1, . . . , gn ∈ R such that

f =
n∑
i=1

gifi

and for all 1 ≤ i ≤ n,

deg gi = deg f − deg fi.

Proof. Since f ∈ I, there exist X1, . . . , Xn ∈ S such that

f = X1f1 + . . .+Xnfn.

For each 1 ≤ i ≤ n, let Xi =
∑
j xi,j with deg xi,j = j be the canonical decomposi-

tion of Xi into a sum of homogeneous elements: i.e., deg xi,j = j. Then

(22) f =
∞∑
d=0

n∑
i=1

xi,d−deg fifi.

Since f is homogeneous of degree deg(f), only the d = deg(f) in the right hand
side of (22) is nonzero, so

f =
n∑
i=1

xi,deg f−deg fifi.

�

8.12.2. The Krull Intersection Theorem.

Theorem 8.40. Let R be a Noetherian ring, and I an ideal of R. Suppose there
is an element x of R such that x ∈

∩∞
n=1 I

n. Then x ∈ xI.
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Proof. The following miraculously short and simple proof is due to H. Perdry [Pe04].
Suppose I = ⟨a1, . . . , ar⟩. For each n ≥ 1, since x ∈ In there is a homogeneous
degree n polynomial Pn(t1, . . . , tr) ∈ R[t1, . . . , tr] such that

x = Pn(a1, . . . , an).

By the Hilbert Basis Theorem (Theorem 8.36), R[t1, . . . , tr] is Noetherian. There-
fore, definining Jn = ⟨P1, . . . , Pn⟩, there exists N such that JN = JN+1. By Lemma
8.39 we may write

PN+1 = QNP1 + . . .+Q1PN ,

with Qi homogeneous of degree i > 0. Plugging in ti = ai for 1 ≤ i ≤ n, we get

x = PN+1(a1, . . . , an) = x (Q1(a1, . . . , an) + . . .+QN (a1, . . . , aN )) .

Since each Qi is homogeneous of positive degree, we have Qi(a1, . . . , an) ∈ I. �

Corollary 8.41. Let I be an ideal in a Noetherian ring R. Suppose either
(i) R is a domain and I is a proper ideal; or
(ii) I is contained in the Jacobson radical J(R) of R.
Then

∩∞
n=1 I

n = 0.

Proof. Either way, let x ∈
∩∞
n=1 I

n and apply Theorem 8.40 to obtain an element
a ∈ I such that x = xa. Thus (a−1)x = 0. Under assumption (i), we obtain either
a = 1 – so I = R, contradicting the properness of I – or x = 0. Under assumption
(ii), a ∈ J(R) implies a− 1 ∈ R×, so that we may multiply through by (a− 1)−1,
again getting x = 0. �

Exercise 8.40 (Suárez-Alvarez): Exhibit an ideal I in a Noetherian ring such that∩∞
n=1 I

n ) {0}. (Hint: idempotents!)

Exercise 8.41: Let R be the ring of all C∞ functions f : R → R.
Let m = {f ∈ R | f(0) = 0}.
a) Show that m = xR is a maximal ideal of R.
b) Show that for all n ∈ Z+, mn = {f ∈ R | f(0) = f ′(0) = . . . = f (n)(0)}.
c) Deduce that

∩∞
n=1 m

n is the ideal of all smooth functions with identically zero
Taylor series expansion at x = 0. Conclude that

∩∞
n=1 m

n ̸= 0.

d) Let f(x) = e
−1

x2 for x ̸= 0 and 0 for x = 0. Show that f /∈ fm.
e) Deduce that R is not Noetherian.

Exercise 8.42: Let R =
∪∞
n=1 C[[t

1
n ]] be the Puiseux series ring. Show that R

is a domain with a unique maximal ideal m and that for all n ∈ Z+, mn = m.
Deduce from the Krull Intersection Theorem that R is not Noetherian.

Remark: The preceding exercise will become much more routine when we study
valuation rings in §17. In that language, one can show that if R is a valuation ring
with divisible value group, then (R,m) is a local domain and

∩∞
n=1 m

n = m.

8.13. Krull’s Principal Ideal Theorem.

Theorem 8.42. (The Principal Ideal Theorem, a.k.a. Krull’s Hauptidealsatz) Let
x be a nonunit in a Noetherian ring R, and let p be minimal among prime ideals
containing x. Then p has height at most one.
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Remark: A prime p which is minimal among primes containing x will be called a
minimal prime over x. Note that an equivalent condition is that p is a minimal
prime in the quotient ring R/(x). Note also that if x is nilpotent, every prime of p
contains x so the height of any minimal prime is 0.

Our strategy of proof follows Kaplansky, who follows D. Rees. We need a pre-
liminary result:

Lemma 8.43. Let u and y be nonzero elements in a domain R. Then:
a) The R-modules ⟨u, y⟩/(u) and ⟨u2, uy⟩/(u2) are isomorphic.
b) If we assume further that for all t ∈ R, tu2 ∈ (y) implies tu ∈ (y), then the
R-modules (u)/(u2) and ⟨u2, y⟩/⟨u2, uy⟩ are isomorphic.

Proof. a) The isomorphism is simply induced by multiplication by u.
b) The module (u)/(u2) is cyclic with annihilator (u), and conversely any such
module is isomorphic to R/(u). Moreover M := ⟨u2, y⟩/⟨u2, uy⟩ is also cyclic,
being generated simply by y. Certainly u annihilates M , so it suffices to show that
the annihilator is exactly (u). More concretely, given ky = au2 + buy, we must
deduce that k ∈ (u). But we certainly have au2 ∈ (y), so by hypothesis au ∈ (y),
say au = cy. Then ky = cuy+ buy. Since 0 ̸= y in our domain R, we may cancel y
to get k = (c+ b)u ∈ (u). �

Proof of Krull’s Hauptidealsatz : Under the given hypotheses, assume for a contra-
diction that we have

p2 ( p1 ( p.

Note first that we can safely pass to the quotient R/p2 and thus assume that R is
a domain. Dually, it does not hurt any to localize at p. Therefore we may assume
that we have a Noetherian local domain R with maximal ideal m, an element x ∈ m,
and a nonzero prime ideal, say p, with x ∈ p ( m, and our task is now to show
that this setup is impossible. Now for the clever part: let 0 ̸= y be any element of
p, and for k ∈ Z+, let Ik denote the ideal of all elements t with txk ∈ (y). Then
{Ik}∞k=1 is an ascending chain of ideals in the Noetherian ring R so must stabilize,
say at k = n. In particular, tx2n ∈ (y) implies txn ∈ (y). Putting u = xn, we have
tu2 ∈ (y) implies (tu) ∈ (y).

Since m is a minimal prime over (x), the quotient ring T = R/(u2) has exactly
one prime ideal, m, and is therefore, by the Akizuki-Hopkins Theorem, an Artinian
ring, so that any finitely generated T -module has finite length. In particular, M :=
⟨u, y⟩/(u2), which can naturally be viewed as a T -module, has finite length, and
hence so does its T -submodule M ′ := ⟨u2, y⟩/(u2). Put N = ⟨u2, y⟩⟨u2, uy⟩. Then

ℓ(M ′) = ℓ(N) + ℓ(⟨u2, uy/(u2)) = ℓ((u)/(u2)) + ℓ(⟨u, y⟩/(u)) = ℓ(M);

in the second equality we have used Lemma 8.43. The only way that M could have
the same length as its submoduleM ′ is if ⟨u, y⟩ = ⟨u2, y⟩, i.e., if there exist c, d ∈ R
such that u = cu2 + dy, or u(1 − cu) = −dy. Since u lies in the maximal ideal of
the local ring R, 1− cu ∈ R×, and thus u ∈ (y) ⊂ p. But m is minimal over x and
hence, being prime, also minimal over u = xn, contradiction! �

Corollary 8.44. With hypotheses as in Theorem 8.42, suppose that x is not a
zero-divisor. Then any prime p which is minimal over x has height one.
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Exercise 8.43: Use the Akizuki-Hopkins theorem and Proposition 8.34 to give a
proof of Corollary 8.44.

Again we need a small preliminary result.

Lemma 8.45. (Prime Avoidance) Let R be a ring, and I1, . . . , In, J be ideals of R.
Suppose that all but at most two of the Ii’s are prime and that J ⊂

∪n
i=1 Ii. Then

J ⊂ Ii for some i.

Proof. We go by induction on n, the case n = 1 being trivial.
n = 2: Seeking a contradiction, suppose there is x1 ∈ J \ I2 and x2 ∈ J \ I1. Since
J ⊂ I1 ∪ I2 we must have x1 ∈ I1 and x2 ∈ I2. Then x1 + x2 ∈ J ⊂ I1 ∪ I2.
If x1 + x2 ∈ I1, then since x1 + x2, x1 ∈ I1, so is x2, contradiction; whereas if
x1 + x2 ∈ I2, then since x1 + x2, x2 ∈ I1, so is x1.

43

n ≥ 3: We may suppose that In is prime and also that for all proper subsets
S ⊂ {1, . . . , n}, J ̸⊂

∪
i∈S Ii; otherwise we would be done by induction. So for

1 ≤ i ≤ n, there is xi ∈ J \
∪
j ̸=i Ij , and then xi ∈ Ii. Consider x = x1 · · ·xn−1+xn.

Then x ∈ J , so x ∈ Ii for some i.
Case 1: x ∈ In. Then since xn ∈ In, x1 · xn−1 ∈ In, and since In is prime xi ∈ In
for some 1 ≤ i ≤ n− 1, contradiction.
Case 2: x ∈ Ij for some 1 ≤ j ≤ n − 1. Then x1 · · ·xn−1 ∈ Ij , so xn ∈ Ij ,
contradiction. �

Exercise 8.44 ([CDVM13, Prop. 2.2]) Let R be a UFD and not a field. Suppose
R× is finite. Show that R has infinitely many principal prime ideals.

(hint: Suppose R has finitely many principal nonzero principal prime ideals, say
(π1), . . . , (πn). Let m ∈ MaxSpecR. By choosing x ∈ m• and applying unique
factorization, show m ⊂

∪n
i=1. Apply Prime Avoidance and then Theorem 4.20.)

We can now give a striking structural result about primes in a Noetherian ring.
First a piece of notation: for any elements x, y in a poset S we define the “interval”
(x, y) to be the set of all z ∈ S such that x < z < y. For prime ideals p and q, we
denote by (p, q) the set of all prime ideals P with p ⊂ P ⊂ q.

Corollary 8.46. Let p ⊂ q be prime ideals in a Noetherian ring R. Then the
interval (p, q) is either empty or infinite.

Proof. Proof of Corollary 8.46: As usual, by correspondence we may pass to R/p
and therefore assume WLOG that p = 0. Suppose that for some n ≥ 1, [0, q] =
{p1, . . . , pn}. According to Lemma 8.45 we cannot then have q ⊂

∪n
i=1 pi, so choose

x ∈ q \
∪n
i=1 pi. Then q is a prime of R, of height at least 2, which is minimal over

(x), contradicting Theorem 8.42. �

In particular, if R is Noetherian and SpecR is finite, then dimR ≤ 1.

Theorem 8.47. (Generalized Principal Ideal Theorem) Let R be a Noetherian ring,
and let I = ⟨a1, . . . , an⟩ be a proper ideal of R. Let p be a minimal element of the
set of all prime ideals containing I. Then p has height at most n.

43In fact this works for any subgroups I1, I2, J of a group G with J ⊂ I1 ∪ I2.
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Proof. As usual, we may localize at p and suppose that R is local with p as its
maximal ideal. Suppose to the contrary that there exists a chain p = p0 ) p1 )
. . . ) pn+1. Because R is Noetherian, we may arrange for (p1, p) = ∅. Because p
is minimal over I, I cannot be contained in p1; without loss of generality we may
suppose that a1 is not in p1. Put J := ⟨p1, a1⟩; then J strictly contains p1 so p is
the unique prime of R containing J . So the ring R/J is an Artin local ring, and
then by Proposition 8.34 for sufficiently large k we have pk ⊂ J . Then by taking t
to be sufficiently large we can write, for 2 ≤ i ≤ n,

ati = cia1 + bi, ci ∈ R, bi ∈ p1.

Put K = ⟨b2, . . . , bn⟩ ⊂ p1. Since the height of p1 exceeds n− 1, by induction on n
we may assume that p1 properly contains a prime ideal Q which contains J . The
ideal Q′ := ⟨a1, Q⟩ contains some power of each ai and therefore p is the unique
prime ideal containing Q′. So in the quotient R/Q, the prime p/Q is minimal over
the principal ideal Q′/Q. By Krull’s Hauptidealsatz (Theorem 8.42) p/Q has height
1. On the other hand, we have p/Q ) p1/Q ) 0, a contradiction. �

8.14. The Dimension Theorem, following [BMRH].

The following is a very basic theorem about Noetherian rings:

Theorem 8.48. (Dimension Theorem) Let R be a Noetherian ring.
a) We have dimR[t] = dimR+ 1.
b) We have dimR[[t]] = dimR+ 1.

Remark: For a non-Noetherian ring R, one has the inequalities

dimR+ 1 ≤ dimR[t] ≤ 2 dimR[t] + 1,

and indeed there are rings for which dimR[t] = 2 dimR+ 1.

Of course, an immediate induction argument gives:

Corollary 8.49. Let k be a field. Then

dim k[t1, . . . , tn] = dim k[[t1, . . . , tn]] = n.

Traditional proofs of the Dimension Theorem require significant development of the
dimension theory of commutative rings, a topic which is not covered here. Hap-
pily, a striking alternate approach to the Dimension Theorem was given by Brewer,
Heinzer, Montgomery and Rutter in [BMRH]. We follow their treatment here.

COMPLETE ME! ♣

8.15. The Artin-Tate Lemma.

Theorem 8.50. (Artin-Tate [AT51]) Let R ⊂ T ⊂ S be a tower of rings such that:
(i) R is Noetherian,
(ii) S is finitely generated as an R-algebra, and
(iii) S is finitely generated as a T -module.
Then T is finitely generated as an R-algebra.
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Proof. Let x1, . . . , xn be a set of generators for S as an R-algebra, and let ω1, . . . , ωm
be a set of generators for S as a T -module. For all 1 ≤ i ≤ n, we may write

(23) xi =
∑
j

aijωj , aij ∈ T.

Similarly, for all 1 ≤ i, j ≤ m, we may write

(24) ωiωj =
∑
i,j,k

bijkωk, bijk ∈ T.

Let T0 be the R-subalgebra of T generated by the aij and bijk. Since T0 is a finitely
generated algebra over the Noetherian ring R, it is itself a Noetherian ring by the
Hilbert Basis Theorem. Each element of S may be expressed as a polynomial in
the xi’s with R-coefficients. Making substitutions using (23) and then (24), we see
S is generated as a T0-module by ω1, . . . , ωm, and in particular that S is a finitely
generated T0-module. Since T0 is Noetherian, the submodule T is also finitely
generated as a T0-module. This immediately implies that T is finitely generated as
a T0-algebra and then in turn that T is finitely generated as an R-algebra. �

9. Boolean rings

9.1. First Properties.

Let R be a ring, not necessarily commutative, but with a multiplicative identity 1,
with the property that x2 = x for all x ∈ R. Then (1+1) = (1+1)2 = 1+1+1+1,
so 1 + 1 = 0. It follows that −x = x for all x ∈ R. Moreover for any x, y ∈ R,
(x+y) = (x+y)2 = x2+xy+yx+y2 = x+y+xy+yx, so xy+yx = 0 or xy = yx.
Therefore such a ring is necessarily commutative.

With this remark in mind, define a Boolean ring to be a commutative ring with
identity such that x2 = x for all elements x.

Exercise 9.1: Show that the group of units of a Boolean ring is trivial.

Exercise 9.2: a) Show that any quotient ring of a Boolean ring is Boolean.
b) Show that any subring of a Boolean ring is Boolean.

Exercise 9.3: Show that a Boolean ring is absolutely flat.

9.2. Boolean Algebras.

A Boolean ring is an object of commutative algebra. It turns out that there is a com-
pletely equivalent class of structures of an order-theoretic nature, called Boolean
algebras. In some ways the concept of a Boolean algebra is more intuitive and
transparent – e.g., starting directly from the definition, it is perhaps easier to give
examples of Boolean algebras. Moreover it is not at all difficult to see how to pass
from a Boolean ring to a Boolean algebra and conversely.

A Boolean algebra is a certain very nice partially ordered set (B,≤). Recall
that for any partially orderet set B and any subset S, we have the notion of the



COMMUTATIVE ALGEBRA 167

supremum supS and the infimum inf S. To define these it is convenient to extend
the inequality notation as follows: if S, T are subsets of B, we write

S < T

to mean that for all s ∈ S and t ∈ T , s < t, and similarly

S ≤ T

to mean that for all s ∈ S and t ∈ T , s ≤ t.
Then we say that z = supS if S ≤ z and if w is any element of B with S ≤ w,
then z ≤ w. Similarly z = inf S if z ≤ S and if w is any element of B with w ≤ S
then w ≤ Z. For a given subset S, neither supS nor inf S need exist, but if either
exists it it is plainly unique. In particular if sup∅ exists, it is necessarily a bottom
element, called 0, and if inf ∅ exists, it is necessarily a top element called 0.
A partially ordered set (L,≤) is called a lattice if for all x, y ∈ L, sup{x, y} and
inf{x, y} both exist. We give new notation for this: we write

x ∨ y := sup{x, y},

the join of x and y and

x ∧ y := inf{x, y},

the meet of x and y.
A lattice is said to be bounded if it contains a bottom element 0 and a top element
1: equivalently, supS and inf S exist for every finite subset S.

Exercise 9.4: Let L be a lattice containing 0 and 1, and let x ∈ L. Then:
a) x ∨ 1 = 1,
b) x ∧ 1 = x,
c) x ∨ 0 = x,
d) x ∧ 0 = 0.

A lattice L is complemented if it has a bottom element 0, a top element 1,
and for each x ∈ L there exists y ∈ L such that x ∨ y = 1, x ∧ y = 0.

A lattice is distributive if ∀x, y, z ∈ L,

(x ∨ y) ∧ z = (x ∧ z) ∨ (y ∧ z),

(x ∧ y) ∨ z = (x ∨ z) ∧ (y ∨ z).

Proposition 9.1. Let L be a distributive complemented lattice. Then for all x ∈ L,
the complement of x is unique.

Proof. Suppose that y1 and y2 are both complements to x, so

x ∨ y1 = x ∨ y2 = 1, x ∧ y1 = x ∧ y2 = 0.

Then

y2 = 1 ∧ y2 = (x ∨ y1) ∧ y2 = (x ∧ y2) ∨ (y1 ∧ y2) = 0 ∨ (y1 ∧ y2) = y1 ∧ y2,

so y2 ≤ y1. Reasoning similarly, we get y1 ≤ y2, so y1 = y2. �
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By virtue of Proposition 9.1 we denote the complement of an element x in a dis-
tributive complemented lattice as x∗.

Exercise 9.5: Show that for every element x of a distributive complemented lattice
we have (x∗)∗ = x.

A Boolean algebra is a complemented distributive lattice with 0 ̸= 1.

Exercise 9.6: Show that DeMorgan’s Laws hold in any Boolean algebra B: for
all x, y ∈ B, we have
a) (x ∧ y)∗ = x∗ ∨ y∗ and
b) (x ∨ y)∗ = x∗ ∧ y∗.

The shining example of a Boolean algebra is the powerset algebra 2S for a nonempty
set S. In the special case in which |S| = 1, we denote the corresponding Boolean
algebra (the unique totally ordered set on two elements) simply as 2.

Not every Boolean algebra is isomorphic to a power set Boolean algebra.

Example: Let S be a set, and let Z(S) ⊂ 2S be the collection of all finite and
cofinite subsets of S. It is easily checked that (Z(S),⊂) ⊂ (2S ,⊂) is a sub-Boolean
algebra. However, |Z(S)| = |S|, so if |S| = ℵ0, then Z(S) is not isomorphic to any
power set Boolean algebra.

Boolean algebras form a full subcategory of the category of partially ordered sets.
In other words, we define a morphism f : B → B′ of Boolean algebras simply to be
an isotone (or order-preserving) map: ∀x, y ∈ B, x ≤ y =⇒ f(x) ≤ f(y). One can
(and sometimes does, e.g. for model-theoretic purposes) also axiomatize Boolean
algebras as a structure (B,∨,∧, ∗, 0, 1), the point being that x ≤ y iff x ∨ y = y iff
x ∧ y = x, so the partial ordering can be recovered from the wedge or the join.

Proposition 9.2. The category of Boolean rings is equivalent to the category of
Boolean algebras.

In other words, we can define a functor F from Boolean rings to Boolean algebras
and a functor G from Boolean algebras to Boolean rings such that for every Boolean
ring R, R is naturally isomorphic to G(F (R)) and for every Boolean algebra B, B
is naturally isomorphic to F (G(B)).

Let us sketch the basic construction, leaving the details to the reader. Suppose
first that R is a Boolean ring. Then we associate a Boolean algebra F (R) with the
same underlying set as R, endowed with the following operations: ∀x, y ∈ R,

x ∧ y = xy,

x∗ = 1− x.

We should also of course define the join operation, but the point is that it is forced
on us be DeMorgan’s Laws:

x ∨ y = (x∗ ∧ y∗)∗ = x+ y − xy.
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Exercise 9.7: Check that (F (R),∧,∨, ∗) is indeed a Boolean algebra, and that the
bottom element 0 in F (R) (resp. the top element 1) is indeed the additive identity
0 (resp. the multiplicative identity 1).

Conversely, suppose that we have a Boolean algebra (B,∧,∨, ∗). Then we define a
Boolean ring G(B) on the same underlying set B, by taking

x+ y := (x ∧ y∗) ∨ (y ∧ x∗)

xy := x ∧ y.

Note that the addition operation corresponds to the Boolean operation “exclusive
or” or, in more set-theoretic language, symmetric difference x∆y.

Exercise 9.8: check that (G(B),+, ·) is indeed a Boolean ring with additive identity
the bottom element 0 of B and multiplicative identity the top element 1 of B.

Exercise 9.9:
a) Let R be a Boolean ring. Show that the identity map 1R on R is an isomorphism
of Boolean rings R→ G(F (R)).
b) Let B be a Boolean algebra. Show that the identity map 1B on B is an isomor-
phism of Boolean algebras B → G(F (B)).

Exercise 9.10: Let X be a nonempty set, let BX be the Boolean algebra of subsets
of X, partially ordered by inclusion. Show that the corresponding Boolean ring
may be identified with the ring 2X of all functions from X to F2 under pointwise
addition and multiplication.

Exercise 9.11: Show that every finite Boolean algebra is isomorphic to a power-
set algebra. Conclude that every finite Boolean ring R is isomorphic to the ring
of binary functions on a finite set of cardinality log2(#R). In fact, try to show
this both on the Boolean algebra side and on the Boolean ring side. (Hint for
the Boolean ring side: use the decomposition into a direct product afforded by an
idempotent element.)

Exercise 9.12: Show that an arbitrary direct product of Boolean algebras (or, equiv-
alently, Boolean rings) is a Boolean algebra (or...).

As we saw above, cardinality considerations already show that not every Boolean
algebra is the power set Boolean algebra, and hence not every Boolean ring is the
full ring of binary functions on some set X. However, in view of results like Cayley’s
theorem in basic group theory, it is a reasonable guess that every Boolean algebra is
an algebra of sets, i.e., is a sub-Boolean algebra of a power set algebra. We proceed
to prove this important result on the Boolean ring side.

9.3. Ideal Theory in Boolean Rings.

Proposition 9.3. Let R be a Boolean ring.
a) For all x ∈ N and all n ≥ 2, xn = x.
b) A Boolean ring is reduced, i.e., has no nonzeronilpotent elements.
c) Every ideal in a Boolean ring is a radical ideal.
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Proof. a) The case n = 2 is the definition of a Boolean ring, so we may assume
n ≥ 3. Assume the result holds for all x ∈ R and all 2 ≤ k < n. Then xn =
xn−1x = x · x = x.

b) If x ∈ R is such that xn = 0 for some positive integer n, then either n = 1 or
n ≥ 2 and xn = x; either way x = 0.
c) Let I be an ideal in the Boolean ring R. Then I = rad(I) iff R/I is reduced, but
R/I is again a Boolean ring and part b) applies. �
The ring Z/2Z is of course a Boolean ring. It is also a field, hence certainly a local
ring and an integral domain. We will shortly see that it is unique among Boolean
rings in possessing either of the latter two properties.

Proposition 9.4. a) The only Boolean domain is Z/2Z.
b) Every prime ideal in a Boolean ring is maximal.

Proof. a) Let R be a Boolean domain, and let x be an element of R. Then x(x−1) =
0, so in a domain R this implies x = 0 or x = 1, so that R ∼= Z/2Z.

b) If p is a prime ideal in the Boolean ring R, then R/p is a Boolean domain,
hence – by part a) – is simply Z/2Z. But this ring is a field, so p is maximal. �
Proposition 9.5. Let R be a local Boolean ring. Then R ∼= Z/2Z.

Proof. Let m be the unique maximal ideal of R. By Proposition 9.4, m is moreover
the unique prime ideal of R. It follows from Proposition 4.12d) that m = nilR is
the set of all nilpotent elements, so by Proposition 9.3b) m = 0. Thus R is a field
and thus, by Proposition 9.4 must be Z/2Z. �
Exercise 9.13: Let R be a Boolean ring, let I be an ideal of R.
a) Show that x, y ∈ I =⇒ x ∨ y ∈ I.
b) Show in fact that ⟨x, y⟩ = ⟨x ∨ y⟩.
c) Deduce that any finitely generated ideal of R is principal.

Thus, for a Boolean ring R, all ideals of R are principal iff R is Noetherian. But
in fact very few Boolean rings are Noetherian: we have already seen them all in
Exercise X.X.

Proposition 9.6. For a Boolean ring R, the following conditions are equivalent:
(i) R is finite.
(ii) R is Noetherian.
(iii) R has finitely many maximal ideals.
If these equivalent conditions hold, then R ∼= (Z/2Z)n, with n = log2 #R.

Proof. That (i) =⇒ (ii) is clear.
(ii) =⇒ (iii): Since R is Noetherian and prime ideals are maximal, by the Akizuki-
Hopkins Theorem (Theorem 8.33) R is Artinian. Thus by Theorem 8.35 R is a finite
product of local Boolean rings, and thus finally by Proposition 9.5 R ∼=

⊕n
i=1 Z/2Z.

(iii) =⇒ (i): Suppose thatR has preciselyN <∞maximal ideals and suppose for a
contradiction that R is infinite. Then we may choose x ∈ R\{0, 1}, i.e., a nontrivial
idempotent. This leads to a direct product decomposition R = xR×(1−x)R. Here
xR and (1−x)R are subrings of R, hence at least one of them is an infinite Boolean
ring. It follows that this decomposition process can be continued indefinitely, or

more precisely until we get to the point of writing R =
⊕N+1

i=1 Ri as a product of
N + 1 Boolean rings. For i = 1, . . . , N + 1, let mi be a maximal ideal of Ri. Then
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for i = 1, . . . , N + 1, Mi =
∏
j ̸=iRj × mi are distinct maximal ideals of R, which

thus has at least N + 1 maximal ideals, contradiction. �
Lemma 9.7. Let m be an ideal in the Boolean ring R. TFAE:
(i) m is maximal.
(ii) For all x ∈ R, either x ∈ R or 1− x ∈ R (and not both!).

Proof. (i) =⇒ (ii): Of course no proper ideal in any ring can contain both x
and 1− x for then it would contain 1. To see that at least one must lie in m, it is
certainly no loss to assume that x is neither 0 nor 1, hence R = xR × (1 − x)R.
Recall that in a product R1 ×R2 of rings, every ideal I is itself a product I1 × I2,
where Ii is an ideal of Ri. Then R/I ∼= R1/I1 × R2/I2. So I is prime iff R/I is a
domain iff either (i) I1 is prime in R1 and I2 = R2 or (ii) I1 = R1 and I2 is prime in
R2. In particular, every maximal ideal of R1 ×R2 contains either R1 or R2: done.
(i) =⇒ (ii):44 We prove the contrapositive: if m is not maximal, there exists a
maximal ideal M properly containing m. Let x ∈ M\m. Since M is proper, it does
not also contain 1− x, hence neither does the smaller ideal m. �
Exercise 9.14 (Kernel of a homomorphism): Let f : R → F2 be a homomorphism
of Boolean rings.
a) Show that Ker f is ∨-closed: if x, y ∈ Ker f , then x ∨ y ∈ Ker f .
b) Show that Ker f is downward-closed: if x ∈ Ker f and y ≤ x, then y ∈ Ker f .
c) Explain why parts a) and b) are equivalent to showing that Ker f is an ideal of
the Boolean ring R.
d) Show that Ker f is in fact a maximal ideal of R.
e) Conversely, for every maximal ideal m of R, show that R/m = F2 and thus the
quotient map q : R→ R/m is a homomorphism from R to F2.

Exercise 9.15 (Shell of a homomorphism): Let f : R → F2 be a homomorphism of
Boolean rings. Define the shell Sh f to be f−1(1).
a) Show that Sh f is wedge-closed: if x, y ∈ Sh f , so is x ∧ y.
b) Show that Sh f is upward-closed: if x ∈ Sh f and x ≤ y, then y ∈ Sh f .
c) A nonempty, proper subset of a Boolean algebra which is wedge-closed and
upward-closed is called a filter, so by parts a) and b) Sh f is a filter on B. Show
that in fact it is an ultrafilter on B, i.e., that it is not properly contained in any
other filter. (Suggestion: use Lemma 9.7.)
d) Show that every ultrafilter on B is the shell of a unique homomorphism of
Boolean algebras f : B → F2.

9.4. The Stone Representation Theorem.

Let R be a Boolean ring. We would like to find an embedding of R into a Boolean
ring of the form 2X . The key point of course, is to conjure up a suitable set X.
Can we find any clues in our prior work on Boolean rings?
indent Well, finite Boolean rings we understand: the proof of Proposition 9.6 gives
us that every finite Boolean ring is of the form

⊕
i∈X Z/2Z, where the elements

of X correspond to the maximal ideals of R. The isomorphism
⊕

i∈X Z/2Z ∼= 2X

amounts to taking each element x of R and recording which of the maximal ideals
it lies in: namely, x lies in the ith maximal ideal mi of all elements having a zero

44Note that this direction holds in any ring.
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in the ith coordinate iff its image in the quotient R/mi = Z/2Z is equal to 0.

This motivates the following construction. For any Boolean ring, let M(R) be
the set of all maximal ideals of R, and define a map E : R→M(R) by letting E(x)
be the set of maximal ideals of R which do not contain x. This turns out to be
very fruitful:

Theorem 9.8. (Stone Representation Theorem) Let R be a Boolean ring andM(R)
the set of maximal ideals. The map E : R→ 2M(R) which sends an element x of R
to the collection of all maximal ideals of R which do not contain x is an injective
homomorphism of Boolean rings. Therefore R is isomorphic to the Boolean ring
associated to the algebra of sets E(R) ⊂ 2M(R).

In particular this shows that every Boolean algebra is an algebra of sets.

Proof. Step 1: We check that the map E is a homomorphism of Boolean algebras.
Above we saw E(0) = ∅; also E(1) =M(R). Also, for x, y ∈ R, E(xy) is the set of
maximal ideals which do not contain xy; since maximal ideals are prime this is the
set of maximal ideals which contain neither x nor y, i.e., E(x)∩E(y) = E(x) ·E(y).
Finally, E(x) + E(y) = E(x) ∆ E(y) is the set of maximal ideals which contain
exactly one of x and y, whereas E(x+y) is the set of maximal ideals not containing
x+ y. For m ∈M(R), consider the following cases:
(i) x, y ∈ m. Then m is not in E(x) ∆ E(y). On the other hand x+ y ∈ m, so m is
not in E(x+ y).
(ii) Neither x nor y is in m. Certainly then m is not in E(x) ∆ E(y). On the other
hand, remembering that R/m ∼= Z/2Z, both x and y map to 1 in the quotient, so
x+ y maps to 1 + 1 = 0, i.e., x+ y ∈ m, so m is not in E(x+ y).
(iii) Exactly one of x and y lies in m. Then m ∈ E(x) ∆E(y) and as above, x+ y
maps to 1 in R/m, so x+ y is not in m and m ∈ E(x+ y).
Step 2: We show that the map E is injective. In other words, suppose we have two
elements x and y of R such that a maximal ideal m of R contains x iff it contains
y. Then

(x) = rad(x) =
∩

m∈M(R) | x∈ m

m =
∩

m∈M(R) | y∈ m

m = rad(y) = (y).

So there exist a, b ∈ R with y = ax, x = by, and then

x = by = by2 = xy = ax2 = ax = y.

�

Let us comment a bit on the proof. Although Step 1 is longer, it is clearly rather
routine. They key is of course that E gives an embedding, which as we saw is equiv-
alent to the much gutsier statement that an element of a Boolean ring is entirely
determined by the family of maximal ideals containing it. From the standpoint
of the more “conventional” rings one encounters in number theory and algebraic
geometry, this is a very strange phenomenon. First of all, it can only be true in
a ring R which has trivial unit group, since if u is a nontrivial unit of course we
will not be able to distinguish 1 and u using ideals! Moreover it implies that ev-
ery prinicpal ideal is radical, which is impossible in any integral domain. Finally
it implies that every radical ideal is the intersection of the maximal ideals which



COMMUTATIVE ALGEBRA 173

contain it, a property which we will meet later on the course: such rings are called
Jacobson rings.

9.5. Boolean Spaces.

We will now digress a bit to talk (not for the first or last time!) about topological
spaces. Following Bourbaki, for us compact means quasi-compact and Hausdorff.
Further a locally compact space is a Hausdorff space in which each point admits
a local base of compact neighborhoods. A subset of a topological space is clopen
if it is both closed and open.

A topological space X is totally disconnected if the only connected subsets of
X are the singleton sets {x}.45 Note that a totally disconnected space is necessarily
separated (older terminology that I am not fond of: T1): i.e., singleton sets are
closed. Indeed, the closure of every connected set is connected, so the closure of a
non-closed point would give a connected set which is larger than a point. On the
other hand a space X is zero-dimensional if it admits a base of clopen sets.

Proposition 9.9. Let X be a locally compact space. Then X is totally disconnected
iff it is zero-dimensional.

Proof. Exercise! (This is not used in the sequel.) �

A space X is called Boolean46 if it is compact and zero-dimensional; in particular
a Boolean space admits a base for the topology consisting of compact open sets.

Exercise 9.16: a) A finite space is Boolean iff it is discrete.
b) A Boolean space is discrete iff it is finite.
c) An arbitrary direct product of Boolean spaces is Boolean.
d) The usual Cantor space is homeomorphic to a countably infinite direct product
of copes of a discrete, two-point space and thus is a Boolean space.

Exercise 9.17: Show that a topological space is Boolean iff it is homeomorphic
to an inverse limit of finite, discrete spaces.

To every topological space X we may associate a Boolean algebra: namely, the
subalgebra of 2X consisting of compact open subsets. Thus in particular we may
associate a Boolean ring, say C(X), the characteristic ring of X. (We also our-
selves to pass between C(X) and the associated Boolean algebra on the same set
and call the latter the characteristic algebra.)

Exercise 9.18: Show that the assignment X 7→ C extends to a contravariant functor
from the category of topological spaces to the category of Boolean rings. (In other
words, show that a continuous map f : X → Y of topological spaces induces a
“pullback” homomorphism C(f) : C(Y ) → C(x) of Boolean rings.)

If X is itself a Boolean space, then the characteristic algebra C(X) is indeed char-
acteristic of X in the following sense.

45Following Qiaochu Yuan, we take the convention that the empty space is not connected: it

has zero connected components, not one!
46There are many synonyms: e.g. Stone space, profinite space.
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Proposition 9.10. Let X be a Boolean space, and let A be a Boolean algebra of
subsets of X which is also a base for the topology of X. Then A = C(X).

Proof. By hypothesis the elements of A are open sets in X. Moreover, since A is
closed under complementation, the elements are also closed. Thus A ⊂ C(X).

Conversely, suppose Y ∈ C(X). Since Y is open and A is a base for the topology
on X, for each y ∈ Y there is Ay ∈ A with y ∈ Ay ⊂ Y . Thus {Ay}y∈Y is an
open cover for Y . But Y is also closed in a compact space hence itself compact, so
we may extract a finite subcover, say Y =

∪n
i=1Ayi . Since A is a subalgebra, it is

closed under finite unions, so Y ∈ A. Thus C(X) ⊂ A. �

To every Boolean ring R we may associate a Boolean space: namely there is a
natural topology on M(R), the set of maximal ideals of R, with respect to which
M(R) is a Boolean space. This topology can be described in many ways.

First Approach: by the Stone Representation Theorem we have an embedding
R ↪→ 2M(R) and thus every element x ∈ R determines a function x : M(R) → F2.
We may endow F2 with the discrete topology (what else?) and then give M(R) the
initial topology for the family of maps {x : M(R) → F2}x∈R, that is the finest
topology which makes each of these maps continuous.

Here is a more concrete description of this initial topology: for each x ∈ R, put

Ux = {m ∈M(R) | x /∈ m}
Vx = {m ∈M(R) | x ∈ m}.

Then the topology in question is the one generated by {Ux, Vx}x∈X .

Second Approach: for any Boolean ring R, to give a maximal ideal m of R is
equivalent to giving a homomorphism of Boolean rings f : R → F2. Namely, to a
maximal ideal m we associate the quotient map, and to f : R→ F2 we associate the
kernel f−1(0). In this way we get an embedding ι : M(R) ↪→ 2R. Now we endow
each copy of F2 with the discrete topology and 2R with the product topology: this
makes it into a Boolean space.

Lemma 9.11. The image ι(M(R)) of ι is a closed subspace of 2R.

Exercise 9.19: Prove Lemma 9.11.

Thus if we endow M(R) with the topology it inherits via the embedding ι, it
is itself a Boolean space.

Exercise 9.20: Show that the topology on M(R) defined via Lemma 9.11 coin-
cides with the initial topology on M(R) defined above.

It turns out to be important to consider a distinguished base for the topology
on M(R), which we now define. Since for a prime ideal m we have xy /∈ m ⇐⇒
x /∈ m andy /∈ m, we have for all x, y ∈ R that

Ux ∩ Uy = Uxy.

Moreover, by Lemma 9.7, M(R) \ Vx = Ux. It follows that the {Ux}x∈X form a
base of clopen sets for the topology on M(R).
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To show the utility of this base, let us use it to show directly that M(R) is a
Boolean space.

Hausdorff: Let m1 and m2 be distinct maximal ideals of R. Choose x ∈ m2 \m1, so
by Lemma 9.7 1− x ∈ m1 \m2. Thus m1 ∈ Ux m2 ∈ U1−x and

Ux ∩ U1−x = Ux(1−x) = U0 = ∅,
so we have separated m1 and m2 by open sets.

Quasi-compact: As is well-known, it is enough to check quasi-compactness of a
space using covers by elements of any fixed base. We certainly have a preferred
base here, namely {Ux}x∈X , so let’s use it: suppose that we have a collection
{xi}i∈I such that

∪
i∈I Uxi =M(R). Now again (and not for the last...) we exploit

the power of DeMorgan:

M(R) =
∪
i

Uxi =
∪
i

(M(R) \ Vxi) =M(R) \
∩
i

Vxi ,

so that
∩
i Vxi = ∅. This means that there is no maximal ideal containing every

xi. But that means that the ideal generated by the xi’s contains 1: there exists a
finite subset J ⊂ I and aj ∈ R such that

∑
j ajxj = 1, and thus

∩
j∈J Vxj = ∅:

equivalently
∪
j∈J Uxj =M(R).

Thus we have shown that the correspondence R 7→ M(R) associates to every
Boolean ring a Boolean topological space, its Stone space.

Exercise 9.21: Show that the assignment R 7→ M(R) extends to a functor from
the category of Boolean rings to the category of Boolean spaces.

9.6. Stone Duality.

Theorem 9.12. (Stone Duality): The functors C and M give a duality between the
category of Boolean spaces and the category of Boolean algebras. More concretely:
a) For every Boolean algebra B, the map B → C(M(B)) given by x ∈ B 7→ Ux is
an isomorphism of Boolean algebras.
b) For every Boolean space X, the map m : X → M(C(X)) given by x ∈ X 7→
mx := {U ∈ C(X) | x /∈ U} is a homeomorphism of Boolean spaces.

Proof. a) The map e : x ∈ B 7→ Ux ∈ 2M(B) is nothing else than the embedding e
of the Stone Representation Theorem. In particular it is an embedding of Boolean
algebras. Its image e(B) is a subalgebra of the characteristic algebra of the Boolean
space M(B) which is, by definition, a base for the topology of M(B). By Proposi-
tion 9.10 we have e(B) = C(M(B)) so e is an isomorphism of Boolean algebras.
b) First we need to show that mx is a maximal ideal in the characteristic ring C(X).
It seems more natural to show this on the Boolean algebra side, i.e., to show that mx
is downward closed and union-closed. Indeed, U ∈ mx means x /∈ U , so if V ⊂ X
then certainly x /∈ V , i.e., V ∈ mx; moreover, U, V ∈ mx ⇐⇒ x /∈ U and x /∈
V ⇐⇒ x /∈ U ∪ V ⇐⇒ U ∪ V ∈ mx. Thus mx is an ideal of C(X). Applying
Lemma 9.7, one easily sees that is maximal, so the map m is well-defined.
indent The injectivity of m follows immediately from the Hausdorff property of X.

Surjectivity: Let m ∈ M(C(X)). By Exercise X.X, we may identify m with a
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homomorphism of Boolean algebras fm : C(X) → F2. Let F = f−1
m (1) be the

shell of fm, an ultrafilter on the Boolean algebra of sets C(X). In particular F is
wedge-closed, i.e., it is a family of clopen subsets of the compact space X satisfy-
ing the finite intersection property. Therefore there exists x ∈

∩
U∈F U . On the

other hand, the collection Fx of all clopen sets in X containing x is also a filter on
C(X) with F ⊂ Fx. But since F is an ultrafilter – i.e., a maximal filter – we have
F = Fx. Thus m and Fx are respectively the kernel and shell of the homomorphism
f : C(X) → F2, so

m = C(X) \ Fx = {U ∈ C(X) | x /∈ U} = m(x).

Finally, since m is surjective, we have that for each A ∈ C(X),

{U ∈M(C(X)) | A ∈ U} = {m(x) | x ∈ A},
so thatmmaps the base C(X) for the topology onX onto the base C(M(C(X))). �

Exercise 9.22: Let X be a topological space, and let C(X, 2) be the ring of all
continuous functions f : X → F2 (F2 being given the discrete topology).
a) Show that C(X, 2) is a Boolean ring.
b) Suppose that X = M(R) is the maximal ideal space of the Boolean ring R.
Show that C(X, 2) is canonically isomorphic to R itself. Thus every Boolean ring
is the ring of continuous Boolean-valued functions on its Stone space of maximal
ideals.

9.7. Topology of Boolean Rings.

Proposition 9.13. Let R be a Boolean ring and m a maximal ideal of R. TFAE:
(i) m is an isolated point in the Stone space M(R).
(ii) m = Rx is a principal ideal.

Exercise 9.23: Prove Proposition 9.13.

A Boolean ring R is atomic if for every x ̸= 1 there exists a principal maxi-
mal ideal m with x ∈ m.

Exercise 9.24: For any nonempty set S, show that 2S =
∏
s∈S Z/2Z is atomic.

A Boolean ring is called atomless if it contains no maximal principal ideals.

Exercise 9.25: Show that a Boolean algebra B is atomless if for all x ∈ B, if
x < 1, there exists y ∈ B with x < y < 1.

Proposition 9.14. A Boolean ring R is atomless iff its Stone space M(R) is
perfect, i.e., without isolated points.,

Exercise 9.26: Prove Proposition 9.14.

Corollary 9.15. Any two countably infinite atomless Boolean rings are isomorphic.

Exercise 9.27: Prove Corollary 9.15. (Suggestion: show that the Stone space of any
countably infinite atomless Boolean ring is isomorphic to the Cantor set.)

Exercise 9.28 (for those who know some model theory):
a) Show that there is a first order theory in the language (∨,∧, ∗, 0, 1) whose models
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are precisely the atomless Boolean algebras.
b) Use Vaught’s Test to show that this theory is complete.

Exercise 9.29: Let S be a nonempty set and consider R = 2S =
∏
s∈S Z/2Z.

a) Show that there is a natural bijective correspondence between elements of S and
principal maximal ideals of R.
b) Deduce that there is an embedding ι : S ↪→M(R) such that the induced topol-
ogy on S is discrete.
c) Show that ι(S) is dense in M(R). (Hint: R is atomic.)
d) Show that ι is a homeomorphism iff S is finite.
e)* Show that ι is the Stone-Cech compactification of the discrete space S.

10. Associated Primes and Primary Decomposition

10.1. Associated Primes.

Let M be an R-module. A prime ideal p of R is an associated prime of M
if there is m ∈ M with p = annm = {x ∈ R | xm = 0}. The set of associated
primes of M is denoted (unfortunately) by AssM .

Thus when R is a domain and M is torsionfree, (0) is the only associated prime
of M . In particular this holds for ideals of R. We hope this motivates the following
definition: for an ideal I of a ring R, the associated primes of the ideal I are the
associated primes of the module R/I.

Proposition 10.1. Let M be an R-module and p a prime ideal of R. TFAE:
(i) p ∈ AssM .
(ii) There is an injection of R-modules R/p ↪→M .

Proof. (i) =⇒ (ii): Let p ∈ AssM , and let m ∈M be such that p = annm. Define
ι : R→M by x 7→ xm. Then Ker ι = p, so ι gives an injection from R/p to M .
(ii) =⇒ (i): If ι : R/p ↪→M , let m = ι(1 + p). Then p = annm. �
We immediately deduce:

Corollary 10.2. If N ⊂M are R-modules, then AssN ⊂ AssM .

Proposition 10.3. For a prime ideal p of R, AssR/p = {p}.

Proof. Proposition 10.1 gives p ∈ AssR/p. Conversely, suppose there is x ∈ R with
ann(x+ p) = q a prime ideal. Since p is prime y ∈ q ⇐⇒ yx ∈ p ⇐⇒ y ∈ p. �
For an R-module M , a zero divisor of M is an element x ∈ R such that xm = 0
for some m ∈M•. We write ZD(M) for the set of all zero divisors of M .

Proposition 10.4. For a nonzero R-module M , let F = {annm | m ∈M•}.
a) Every maximal element of F is a prime ideal.
b) If R is Noetherian, then AssM ̸= ∅.

Proof. a) Let I be an ideal of R of the form annm for some x ∈ M• and not
properly contained in annx′ for any x′ ∈ M•. Let a, b ∈ R be such that ab ∈ I
but b /∈ I. Then bx ∈ M•. Since 0 = abx = a(bx), a ∈ ann(bx). But clearly
I = annx ⊂ ann(bx), so by maximality of I we have I = ann(bx) and thus a ∈ I.
b) If M ̸= 0, then F is a nonempty family of ideals in a Noetherian ring so has a
maximal element. Apply part a). �
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Exercise: a) Let X ⊂ M be a nonempty subset such that RX ⊂ X. Show that
the proof of Proposition 10.4 immediately adapts to show that a maximal element
among annihilators of nonzero elements of X is prime.
b) Deduce part a) from the Lam-Reyes Prime Ideal Principle.

Proposition 10.5. Let M be an R-module.
a) We have

∪
p∈AssM p ⊂ ZD(M).

b) If R is Noetherian, then
∪

p∈AssM p = ZD(M).

Proof. a) If p = annm, then xm = 0 for all x ∈ p, so p ⊂ ZD(M).
b) Let x ∈ ZD(M), so that there is m ∈ M• with xm = 0. By Proposition 10.4
applied to N = ⟨m⟩, there is p ∈ AssN , i.e., there is y ∈ R such that ym ̸= 0 and
p = ann ym. Since xm = 0, xym = 0 and x ∈ p. By Proposition 10.2 p ∈ AssM
and thus x ∈

∪
p∈AssM p. �

Proposition 10.6. Let N ⊂M be R-modules. Then:
a) AssM ⊂ AssN ∪AssM/N .
b) Ass

(⊕
i∈IMi

)
=
∪
i∈I AssMi.

Proof. a) For p ∈ AssM , let ι : R/p ⊂ M be an R-module monomorphism. Put
H = ι(R/p) and L = H ∩N .
Case 1: Suppose L = 0. Then the natural map α : H →M/N is a monomorphism,
so α ◦ ι : R/p →M/N is a monomorphism and p ∈ AssM/N .
Case 2: Let x ∈ L•. Then x ∈ H• ∼= (R/p)•, so annx = p. Since x ∈ N , p ∈ AssN .
b) Put M =

⊕
i∈IMi. Since each Mi is a submodule of

⊕
i∈IMi,

∪
i∈I AssMi ⊂

AssM follows from Proposition 10.2. The containment AssM ⊂
∪
i∈I AssMi fol-

lows from part a) when I is finite. In the general case, let p ∈ AssM . Then there is
an R-module monomorphism ι : R/p ↪→ M =

⊕
i∈IMi. The image ι(R/p) lies in

the submodule generated by ι(1 + p), hence lies in
⊕

i∈JMi for some finite subset
J ⊂ I. This reduces us to the finite case. �

Theorem 10.7. Let R be a Noetherian ring and M a nonzero, finitely generated
R-module. a) There is a chain of submodules

0 =M0 (M1 ( . . . (Mn =M

such that for all 0 ≤ i ≤ n− 1 there is a prime ideal pi of R with Mi+1/Mi
∼= pi.

b) For any such chain, AssM ⊂ {p1, . . . , pn−1}.
c) In particular, AssM is finite.

Proof. a) By Proposition 10.5 M has an associated prime p1 = annm1. Put M0 =
{0} and M1 = ⟨m1⟩; note M1/M0 = M1

∼= R/p1. If M1 = M we’re done; if
not, M/M1 is finitely generated and nonzero so has an associated prime p2 =
ann(m2 +M1). Put M2 = ⟨m1,m2⟩, so that M2/M1

∼= R/p2. We continue in this
way, getting an increasing chain of submodules Mi in M . Since M is Noetherian,
we must have Mn =M for some m.
b) By Proposition 10.3, for all 0 ≤ i ≤ n − 1 we have AssMi+1/Mi = AssR/pi =
{pi}. By Proposition 10.6 we have for all 0 ≤ i ≤ n−1, AssMi+1 ⊂ AssMi∪{pi+1},
and from this AssM = AssMn ⊂ {p1, . . . , pn} follows.
c) This follows immediately. �

Corollary 10.8. Let (R,m) be a Noetherian local ring. If m \m2 consists entirely
of zero-divisors, then there is x ∈ R• with xm = 0.
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Proof. If m = 0 we may take x = 1. Henceforth we assume m ̸= 0, so by Nakayama’s
Lemma there is a ∈ m \ m2. By Theorem 10.7 and Proposition 10.5, AssR =
{p1, . . . , pn} is finite and ZD(R) =

∪n
i=1 pi. Thus by hypothesis

m \m2 ⊂
n∪
i=1

pi.

For y ∈ m2 and p ∈ Z+, a+ yp ∈ m \m2, so by the Pigeonhole Principle there are
1 ≤ p < q ∈ Z+ such that a + yp, a + yq ∈ pi for some i. Then yp(1 − yq−p) ∈ pi;
since yq−p ∈ m and R is local, 1− yq−p ∈ R×; thus yp ∈ pi and, since pi is prime,
y ∈ pi. This shows

m ⊂
n∪
i=1

pi.

By Prime Avoidance (Lemma 8.45), there is at least one i such that m ⊂ pi. By
definition pi = annx for some x ∈ R•: we’re done. �

Proposition 10.9. Let S ⊂ R be multiplicative.
a) If M is an S−1R-module, then AssRM = AssS−1RM .
b) If M is an R-module, then

AssRM ∩ SpecS−1R ⊂ AssS−1R S
−1M.

c) If R is Noetherian and M is an R-module, then

AssRM ∩ SpecS−1R = AssS−1R S
−1M.

Let M be an R-module. A weakly associated prime of M is a prime ideal p of
R such that there is x ∈M with p = r(annx). Thus the definition differs from the
usual one in that we are permitted to pass from annx to its radical. We denote by
weakAssM the set of weakly associated primes of M .

Exercise: Show that for an R-module M and p ∈ SpecR, TFAE:
(i) p is weakly associated to M .
(ii) There is an ideal I of R with r(I) = p and an R-module injection R/I ↪→M .

Exercise: Show that parts a) and b) of Proposition 10.9b) hold if we replace Ass
by weakAss throughout.

Proposition 10.10. Let M be an R-module.
a) We have AssM ⊂ weakAssM .
b) If R is Noetherian, then AssM = weakAssM .

Proof. a) As the terminology suggests, this is immediate: if p = annx, then annx
is prime, hence radical, so p = r(annx).
b) By Proposition 10.9 it is enough to show that p ∈ AssRp

Mp: replacing R by Rp

we may assume R is Noetherian local with maximal ideal p. Since p ∈ weakAssM ,
there is x ∈M with r(annx) = p. Since R is Noetherian, by Proposition 4.13g) we
have that pn ⊂ annx for some n ∈ Z+. Again using the Noetherian hypothesis, the
set {ann y | y ∈ R is such that ann y ⊃ annx} has a maximal element ann y, and
by Proposition 10.4, q = ann y is prime. Then we have pn ⊂ annx ⊂ q, and since
q is prime and p is maximal, we have q = p and thus p ∈ AssM . �
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Exercise: Let k be a field and R = k[t1, t2, . . .] be the polynomial ring in a countably
infinite set of indeterminates over k. Let I = ⟨t21, t22, . . .⟩, and let p = r(I) =
⟨t1, t2, . . .⟩. Show that p ∈ weakAssR/I \AssR/I.

10.2. The support of a module.

For a module M over a ring R, we define its support

suppM = {p ∈ SpecR | Mp ̸= 0}.

Proposition 10.11. For a finitely generated R-module M ,

suppM = {p ∈ SpecR | p ⊃ annM}.

Proof. Write M = ⟨ω1, . . . , ωn⟩R. For p ∈ SpecR, we have p ∈ suppM iff Mp ̸= 0
iff there exists i such that the image of ωi in Mp is not zero iff there exists i such
that ann(ωi) ⊂ p iff

annM =
n∩
i=1

ann(ωi) ⊂ p.

�

Theorem 10.12. Let M be an R-module.
a) We have weakAssM ⊂ suppM .
b) If R is Noetherian, the minimal elements of AssM are precisely the minimal
elements of suppM .
c) The minimal associated primes of R are precisely the minimal primes of R.

Proof. a) Let p ∈ weakAssM . By Exercise X.X, there is an ideal I of R with
r(I) = p and an R-module embedding R/I ↪→ M . Tensoring with the flat R-
module Rp gives an injection Rp/IRp ↪→ Mp. Since r(I) = p, I ⊂ p and thus
IRp ⊂ pRp ( Rp and Mp ⊃ Rp/IRp ̸= 0.
b) Recall that under the Noetherian assumption weakAssM = AssM .
Step 1: We claim that every prime in suppM contains an element of AssM . Indeed,
let p ∈ suppM , so Mp ̸= 0. Since Rp is Noetherian, by Proposition 10.4b) and
10.9c) we have

∅ ̸= AssRp
Mp = AssRM ∩ SpecRp,

and an element of the latter set is precisely an associated prime q of M with q ⊂ p.
Step 2: Let p ∈ AssM be minimal, so by part a) p ∈ suppM . If there were
p′ ∈ suppM with p′ ( p then there is no element in AssM which is contained in
p′, contradicting Step 1.
Step 3: Let p ∈ suppM be minimal. By Step 1, p contains an element p′ of AssM ,
but since AssM ⊂ suppM and p is minimal we must have p = p′.
c) Apply part b) to M = R. �

Theorem 10.13. If R is Noetherian, MinSpecR is finite.

Proof. Combine Theorem 10.7c) and Theorem 10.12c). �

Later we will give a second, quite diferent proof of Theorem 10.13: we will use
topological methods!
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10.3. Primary Ideals.

Recall that a proper ideal q of a ring R is primary if for all x, y ∈ R, xy ∈ q
implies x ∈ q or yn ∈ q for some n ∈ Z+.

Exercise 10.1: a) Show that a prime ideal is primary. (Trivial but important!)
b) Show that an ideal q of R is primary iff every zerodivisor in R/q is nilpotent.

Neither the definition or primary ideal nor the characterization given in the above
exercise is particularly enlightening, so one natural question is: which ideals are
primary? (And, of course, another natural question is: what’s the significance of
a primary ideal?) Here are some simple results which give some information on
primary ideals, sufficient to determine all the primary ideals in some simple rings.

Proposition 10.14. Let q be an ideal in a ring R. If r(q) = m is a maximal ideal,
then q is primary. In particular, any power of a maximal ideal is primary.

Proof. Since r(q) is the intersection of all prime ideals containing q, if this inter-
section is a maximal ideal m, then m is the unique prime ideal containing q and
R/q is a local ring with nil(R/q) = J(R/q) = m/q. In such a ring an element is a
zero-divisor iff it is a nonunit iff it is nilpotent, so q is primary. The “in particular”
follows since by Proposition 4.13f), r(mn) = r(m) = m. �

Proposition 10.15. If q is a primary ideal, then its radical r(q) is a prime ideal,
the smallest prime ideal containing q.

Proof. Let xy ∈ r(q), so that (xy)m = xmym ∈ p for some m ∈ Z+. If xm is in q
then x ∈ r(q), so assume that xm is not in q. Then ym is a zero divisor in R/q,
so by definition of primary there exists n ∈ Z+ such that (ym)n ∈ q, and then
y ∈ r(q). The second statement holds for any ideal I whose radical is prime, since
r(I) is the intersection of all prime ideals containing I. �

A primary ideal is said to be p-primary if its radical is the prime ideal p.

Lemma 10.16. If q1, . . . , qn are p-primary ideals, then q =
∩n
i=1 qi is p-primary.

Proof. Let x, y be elements of the ring R such that xy ∈ q and x ∈ R \ q. Then
for all 1 ≤ i ≤ n, there exists ai ∈ Z+ such that yai ∈ Ii, and then y

∏n
i=1 ai ∈ q, so

q is primary. Moreover, by Proposition 4.13b),

r(q) = r(

n∩
i=1

qi) =

n∩
i=1

r(qi) =

n∩
i=1

q = q.

�

Exercise 10.2: Give an example of primary ideals q, q′ such that q∩q′ is not primary.

Proposition 10.17. If q is a primary ideal, the quotient ring R/q is connected.

Proof. Indeed, a ring is disconnected if and only if it has an idempotent element e
different from 0 or 1. Such an element is certainly not nilpotent en = e for all n –
but is a zero-divisor, since e(1− e) = e− e2 = 0. �
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Exercise 10.3: Let k be a field, let R = k[x, y] and put I = (xy). Show that I is
not primary but “nevertheless” R/I is connected.

Example: We will find all primary ideals in the ring Z of integers. Evidently
(0) is prime and hence primary. If q is any nonzero primary ideal, then its radical
p = r(q) is a nonzero prime ideal, hence maximal. So, combining Propositions 10.14
and 10.15 we find that a nonzero ideal in Z is primary iff its radical is maximal.
Moreover, for any prime power (pn), r((pn)) = r((p)) = (p) is maximal – we use
here the elementary and (we hope) familiar fact that if p is a prime number, (p) is
a prime ideal (Euclid’s Lemma); such matters will be studied in more generality in
§X.X on factorization – so (pn) is a primary ideal. Conversely, if n is divisible by
more than one prime power, then applying the Chinese Remainder Theorem, we
get that Z/n is disconnected.

Exercise 10.4: a) Let R be an integral domain for which each nonzero ideal is
a (finite, of course) product of maximal ideals. Use the above argument to show
that an ideal q of R is primary iff it is a prime power.
b) (For those who know something about PIDs) Deduce in particular that primary
= prime power in any principal ideal domain.

Remark: Consider the following property of an integral domain:

(DD) Every ideal can be expressed as a product of prime ideals.

This is a priori weaker than the hypothesis of Exericse X.Xa). Later we will devote
quite a lot of attention to the class of domains satisfying (DD), the Dedekind
domains. Among their many properties is that a Dedekind domain is (either a
field or) a domain in which each nonzero prime ideal is maximal. Thus in fact the
hypothesis of Exercise 10.4a) is equivalent to assuming thatR is a Dedekind domain.

Remark(ably): Another characterization theorem says that any Noetherian domain
in which each primary ideal is a prime power is a Dedekind domain. In particular,
any polynomial ring k[x1, . . . , xn] in 2 ≤ n < ∞ variables over a field admits pri-
mary ideals which are not prime powers.

Exercise 10.5: Let R = Z[t]/(t2 + 3) (or, equivalently, Z[
√
−3]). Let q = (2).

a) Show that there is a unique ideal p2 with R/p2 = Z/2Z. Evidently p2 is maximal.
b) Show that r(q) = p2, and deduce that I is primary.
c) Show that q is not a prime power, and indeed, cannot be expressed as a product
of prime ideals.

The ring R of Exercise 10.5 is a good one to keep in mind: it is simple enough to be
easy to calculate with, but it already displays some interesting general phenomena.
This is a Noetherian domain in which every nonzero prime ideal is maximal. It
is therefore “close” to being a Dedekind domain but it does not satisfy one other
property (“integral closure”) which will be studied later. It will turn out to be an
immediate consequence of the main result of this section that, notwithstanding the
fact that there are ideals which do not factor into a product of primes, nevertheless
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every proper ideal in R = Z[
√
−3] can be written as a product of primary ideals.

This, finally, is some clue that the notion of a primary ideal is a fruitful concept.
The following exercise gives an even simpler (and more explicit) example of a ring
R and a primary ideal q of R which is not a prime power.

Having seen examples of a primary ideals which are not prime powers, what about
the converse? Is it at any rate the case that any prime power is a primary ideal?
We know that this is indeed the case for powers of a maximal ideal. However, the
answer is again negative in general:

Example (Atiyah-MacDonald, p. 51): Let k be a field; put R = k[x, y, z]/(xy−z2).
Denote by x, y, and z the images of x, y, z in R. Put p = ⟨x, z⟩. Since R/p =
k[x, y, z]/(x, z, xy − z2) = k[y] is a domain, p is a prime ideal. Now consider the
ideal p2: we have xy = z2 ∈ p2, but x /∈ p2 and y /∈ p = r(p2), so p2 is not primary.

10.4. Primary Decomposition, Lasker and Noether.

Let R be a ring and I an ideal of R. A primary decomposition of I is an
expression of I as a finite intersection of primary ideals, say I =

∩n
i=1 qi.

An ideal which admits at least one primary decomposition is said to be decom-
posable. This is not a piece of terminology that we will use often, but the reader
should be aware of its existence.

For any ring R, let us either agree that R itself admits the “empty” primary de-
composition or that R has no primary decomposition (i.e., it doesn’t matter either
way) and thereafter restrict our attention to proper ideals.

It may not be too surprising that not every ideal in every ring admits a primary
decomposition. Indeed, we will see later that if R is a ring for which (0) admits a
primary decomposition, then the ring R has finitely many minimal primes.

The first important result in this area was proved by Emanuel Lasker in 1905,
roughly in the middle of his 27 year reign as world chess champion. Here it is.

Theorem 10.18. (Lasker [Las05]) Let R be a polynomial ring in finitely many
variables over a field. Every proper ideal I of R admits a primary decomposition.

Lasker’s proof of this theorem was a long and intricate calculation. As we will
shortly see, a broader perspective yields considerably more for considerably less
effort. In Lasker’s honor a ring R in which every proper ideal admits a primary
decomposition is called a Laskerian ring.

Exercise 10.6: If R is Laskerian and I is an ideal of R, then R/I is Laskerian.

Combining Lasker’s theorem with this Exercise, we get that every finitely generated
algebra over a field admits a primary decomposition. This result is of fundamental
(indeed, foundational) importance in algebraic geometry.

However, in 1921 Lasker’s triumph was undeniably trumped by Emmy Noether.
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To see how, we need one further concept. An ideal I is irreducible if whenever I
is written as an intersection of two ideals – i.e., I = J ∩K – then I = J or I = K.

Exercise 10.7: Let I be a proper ideal in a principal ideal domain R. TFAE:
(i) I is primary.
(ii) I is irreducible.
(iii) I is a prime power: there exists a in R and n ∈ Z+ such that (a) is prime and
I = (a)n = (an).

Proposition 10.19. a) A prime ideal is irreducible.
b) An irreducible ideal in a Noetherian ring is primary.

Proof. a) Let p be a prime ideal, and write p = I ∩ J . Since then p ⊃ IJ , by
Proposition 4.9 we have p ⊃ I or p ⊃ J ; WLOG say p ⊃ I. Then p = I∩J ⊂ I ⊂ p,
so that we must have I = p.

b) By passage to the quotient, we may assume that the 0 ideal is irreducible and
show that it is primary. So suppose xy = 0 and x ̸= 0. Consider the chain of ideals

ann(y) ⊂ ann(y2) ⊂ . . . ⊂ ann(yn) ⊂ . . . .

Since R is Noetherian, this chain stabilizes: there exists n such that ann(yn) =
ann(yn+k) for all k. We claim that (x) ∩ (yn) = 0. Indeed, if a ∈ (x) then
ay = 0, and if a ∈ (yn) then a = byn for some b ∈ R, hence byn+1 = ay = 0, so
b ∈ ann(yn+1) = ann(yn), hence a = byn = 0. Since the (0) ideal is irreducible, we
must then have yn = 0, and this shows that (0) is primary. �

Exercise:47 Let k be a field, R = k[x, y] and I = ⟨x2, xy, y2⟩.
a) Show that I is primary. (Hint: use Proposition 10.14.)
b) Show that I = ⟨x, y2⟩ ∩ ⟨x2, y⟩.
c) Deduce that I is an ideal in a (very nice) Noetherian domain which is primary
but not irreducible.

Theorem 10.20. (Noether) Any proper ideal in a Noetherian ring admits a pri-
mary decomposition.

Proof. Let I be a proper ideal in the Noetherian ring R. We claim I is a finite
intersection of irreducible ideals; in view of Proposition 10.19 this gives the desired
result. To see this: suppose that the set of proper ideals which cannot be written as
a finite intersection of irreducible ideals is nonempty, and choose a maximal element
I. Then I is reducible, so we may write I = J ∩K where each of J and K is strictly
larger than I. But being strictly larger than I each of J and K can be written as
a finite intersection of irreducible ideals, and hence so can I. Contradiction! �

In other words, a Noetherian ring is Laskerian. Therefore Lasker’s Theorem is
an immediate consequence of Noether’s Theorem together with the Hilbert Basis
Theorem, which we recall, was proved in 1888 and whose remarkably short and
simple – but nonconstructive – proof engendered first controversy and later deep
admiration. The same is true for Noether’s theorem: it is from this theorem, and
the ridiculous simplicity of its proof, that Noetherian rings get their name.

47This exercise is taken from a post of E. Merkulova on
http://math.stackexchange.com/questions/28620
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10.5. Irredundant primary decompositions.

If an ideal can be expressed as a product of prime ideals, that product is in fact
unique. We would like to have similar results for primary decomposition. Unfortu-
nately such a uniqueness result is clearly impossible. Indeed, if I = q1 ∩ . . . ∩ qn is
a primary decomposition of I and p is any prime containing I, then q1∩ . . .∩qn∩p
is also a primary decomposition, and clearly a different one if p ̸= qi for any i. A
proper ideal I may well be contained in infinitely many primes – e.g. by X.X this
occurs with I = (0) for any Noetherian domain of dimension at least 2 – so there
may well be infinitely many different primary decompositions.

But of course throwing in extra primes is both frivolous and wasteful. The fol-
lowing definition formalizes the idea of a primary decomposition which is “frugal”
in two reasonable ways.

A primary decomposition is said to be irredundant48 (or minimal, or reduced)
if both of the following properties hold:

(IPD1) For all i ̸= j, r(qi) ̸= r(qj).
(IPD2) For all i, qi does not contain

∩
j ̸=i qj .

If wastefulness succeeds, so does frugality:

Lemma 10.21. An ideal which admits a primary decomposition admits an irre-
dundant primary decomposition.

Proof. By Lemma 10.16, we may replace any collection of primary ideals qi with
a common radical with their intersection and still have a primary ideal, thus satis-
fying (IPD1). Then if (IPD2) is not satisfied, there is some qi which contains the
intersection of all the other qj ’s, hence it can be removed to obtain a primary decom-
position satisfying (IPD1) and with a smaller number of primary ideals. Proceeding
in this way we eventually arrive at an irredundant primary decomposition. �
The question is now to what extent an irredundant primary decomposition is
unique. The situation here is significantly better: although the primary decom-
position is not in all cases unique, it turns out that there are some important
quantities which are defined in terms of a primary decomposition and which can
be shown to be independent of the choice of irredundant decomposition, i.e., are
invariants of the ideal. Such uniqueness results are pursued in the next section.

10.6. Uniqueness properties of primary decomposition.

Recall that for ideals I and J of a ring R, (I : J) = {x ∈ R | xJ ⊂ I}, which
is also an ideal of R. We abbreviate (I : (x)) to (I : x) and ((x) : J) to (x : J).

Exercise 10.8: Show that for ideals I and J , I ⊂ (I : J).

Lemma 10.22. Let q be a p-primary ideal and x ∈ R.
a) If x ∈ q then (q : x) = R.

48It is amusing to note that most dictionaries do not recognize “irredundant” as an English
word, but mathematicians have been using it in this and other contexts for many years.
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b) If x /∈ q then (q : x) is p-primary.
c) If x /∈ p then (q : x) = q.

Proof. a) If x ∈ q then 1(x) = x ⊂ q, so 1 ∈ (q : x).
b) If y ∈ (q : x), then xy ∈ q; by assumption x /∈ q, so yn ∈ q for some n and thus
y ∈ r(q) = p. So q ⊂ (q : x) ⊂ p; taking radicals we get r((q : x)) = p. Moreover, if
yz ∈ (q : x) with y /∈ (q : x), then xyz = y(xz) ∈ q, so (xz)n = xnzn ∈ q for some
n, and xn /∈ q =⇒ (zm)n ∈ q for some n ∈ Z+, thus zmn ∈ q ⊂ (q : x).
c) We have in all cases that q ⊂ (q : x). If x /∈ p = r(q) and y ∈ (q : x), then
xy ∈ q; since no power of x is q, we must have y ∈ q. �

Theorem 10.23. (First Uniqueness Theorem) Let I =
∩n
i=1 qi be any irredundant

primary decomposition of the ideal I. Let pi = r(qi). Then the pi’s are precisely the
prime ideals of the form r((I : x)) as x ranges through elements of R. In particular,
they are independent of the choice of irredundant primary decomposition.

Proof. For x ∈ R we have (I : x) = (
∩
i qi : x) =

∩
i(qi : x), so

r((I : x)) =
∩
i

r((qi : x)) =
∩
x/∈qj

pj

by Lemma 10.22. If r(I : x) is prime, then r(I : x) =
pj for some j. Conversely, for each i, by irredundancy of the decomposition there
exists xi ∈

∩
j ̸=i qj \ qi and then the Lemma implies r(I : xi) = pi. �

Corollary 10.24. Let R be Noetherian, and let I ( R be a proper ideal. Let
p1, . . . , pr be the radicals of the primary ideals in an(y) irredundant primary de-
composition of I. Then

{p1, . . . , pr} = AssR/I.

Proof. By Theorem 10.23 the pi’s are precisely the elements of weakAssR/I. Since
R is Noetherian, so is R/I and thus by Proposition 10.10b) weakAssR/I = AssR/I.

�

Proposition 10.25. Let I =
∩n
i=1 qi be a primary decomposition of an ideal I,

with pi = r(qi). Then any prime ideal p containing I contains pi for some i.

Proof. If p ⊃ I =
∩
i qi, then

p = r(p) ⊃
∩
i

r(qi) =
∩
i

pi.

Since p is prime, p ⊃ pi for some i. �

Exercise 10.9: Show that an infinite Boolean ring is not Laskerian.

Proposition 10.26. Let I ⊂ R be a decomposable ideal, I =
∩n
i=1 qi an irredun-

dant primary decomposition, and pi = r(qi). Then

n∪
i=1

pi = {x ∈ R : (I : x) ̸= I}.

In particular, if the zero ideal is decomposable, then the set of zero divisors of R is
the union of the minimal associated primes of R.
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Proof. By passage to the quotient ring R/I, we may assume that I = 0. Let
0 =

∩r
i=1 qi be a primary decomposition, with pi = r(qi). For x ∈ R, ((0) : x) ̸= (0)

iff x is a zero-divisor, so it suffices to show the last statement of the proposition,
that the union of the minimal primes is the set of all zero-divisors. Let D be the
set of all zero divisors, so from Exercise 3.X and the proof of Theorem 10.23 we
have

D = r(D) =
∪
0 ̸=x

r((0 : x)) =
∪
0 ̸=x

∩
x/∈qj

pj ⊂
∪
j

pj .

Conversely, by Theorem 10.23 each pi is of the form r((0 : x)) for some x ∈ R. �

Theorem 10.27. (Second Uniqueness Theorem) Let I be an ideal of R, and let

n∩
i=1

qi = I =
m∩
j=1

rj

be two irredundant primary decompositions for an ideal I. By Theorem 10.23 we
know that m = n and that there is a reordering r1, . . . , rn of the rj’s such that for
1 ≤ i ≤ n, r(qi) = pi = r(ri). Moreover, if pi is minimal, then qi = rj.

In other words, the primary ideals corresponding to the minimal primes are inde-
pendent of the primary decomposition.

We will use the technique of localization to prove this result, so first we need
some preliminaries on the effect of localization on a primary decomposition.

Proposition 10.28. Let R be a ring, S ⊂ R a multiplicatively closed set, and q be
a p-primary ideal. Write ι : R→ S−1R for the localization map.
a) If S ∩ p ̸= ∅, then ι∗(q) = S−1R.
b) If S ∩ p = ∅, then ι∗(q) is ι∗(p)-primary, and ι∗(ι∗(q)) = q.

Proof. a) If x ∈ S ∩ p, then for some n ∈ Z+, xn ∈ S ∩ q, so ι∗(q) contains a unit
of S−1R and is therefore S−1R. Part b) follows immediately from Proposition 7.2
and Proposition 7.4a). �

Proposition 10.29. Let S ⊂ R be a multiplicatively closed set, and let I =
∩n
i=1 qi

be an irredundant primary decomposition of an ideal I. Put pi = r(qi) and suppose
that the numbering is such that S∩pi = ∅ for i ≤ m and S∩pi ̸= ∅ for i > m. Then:

ι∗(I) =
m∩
i=1

ι∗(qi),

ι∗ι∗(I) =
m∩
i=1

qi,

and both of these are irredundant primary decompositions.

Exercise 10.10: Prove Proposition 10.29.

Proof of Theorem 10.27: let pi be a minimal associated prime, and put S = R \ pi.
Certainly S is a multiplcatively closed set, and moreover by minimality pi is the
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unique associated prime which is disjoint from S. Applying Proposition 10.29 to
both primary decompositions gives

qi = ι∗ι∗(I) = ri.

�

10.7. Applications in dimension zero.

We now give the proof of the uniqueness portion of Theorem 8.35. Let m1, . . . ,mn
be the distinct maximal ideals of the Artinian ring R. As in the proof of Theorem
8.35a) there exists k ∈ Z+ such that

∏n
i=1 m

k
i = ∩ni=1m

k
i = 0. For each i, the radical

r(mki ) is the maximal ideal mi, so by Proposition 10.14 each mki is an mi-primary
ideal. Thus 0 =

∩n
i=1 m

k
i is a primary decomposition of the zero ideal which is

moreover immediately seen to be irredundant. Since all the primes mi are maxi-
mal, the desired uniqueness statement of Theorem 8.35b) follows from the Second
Uniqueness Theorem (Theorem 10.27) for primary decompositions.

10.8. Applications in dimension one.

Let R be a one-dimensional Noetherian domain, and I a nonzero ideal. Then by
Theorem 10.20, I has a primary decomposition: I =

∩n
i=1 qi, where pi = r(qi) ⊃

qi ⊃ I is a nonzero prime ideal. But therefore each pi is maximal, so that the pi’s
are pairwise comaximal. By Proposition 4.16, so too are the qi’s, so the Chinese
Remainder Theorem applies to give

I =

n∩
i=1

qi =

n∏
i=1

qi,

and

R/I ∼=
n∏
i=1

R/qi.

Thus in this case we can decompose any proper ideal as a finite product of primary
ideals and not just a finite intersection. Moreover, for I ̸= 0, all the associated
primes are minimal over I, so the Uniqueness Theorems (Theorems 10.23 and 10.27)
simply assert that the ideals qi are unique. This observation will be very useful in
our later study of ideal theory in one dimensional Noetherian domains.

11. Nullstellensätze

Let k be a field. By an affine algebra over k we simply mean a finitely generated
k-algebra. Of all the various and sundry classes of commutative rings we have met
and will meet later in these notes, affine algebras are probably the most important
and most heavily studied, because of their connection to algebraic geometry.

11.1. Zariski’s Lemma.

In 1947 Oscar Zariski published a short note [Zar47] proving the following result.

Theorem 11.1. (Zariski’s Lemma) Let k be a field, A a finitely generated k-
algebra, and m ∈ MaxSpecA. Then A/m is a finite degree field extension of k.
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Exercise 11.1: Show that the following is an equivalent restatement of Zariski’s
Lemma: let K/k be a field extension such that K is finitely generated as a k-
algebra. Then K/k is an algebraic field extension.

Notwithstanding its innocuous appearance, Zariski’s Lemma is a useful result on
affine algebras over any field. Further, when k is algebraically closed, it carries all
of the content of Hilbert’s Nullstellensatz, the main theorem of this section.

So how do we prove Zariski’s Lemma?

Oh, let us count the ways! The literature contains many interesting proofs, employ-
ing an impressively wide range of ideas and prior technology. We will in fact give
several different proofs during the course of these notes. Of course some pride of
place goes to the first proof that we give, so after much thought (and after changing
our mind at least once!) we have decided on the following.

11.1.1. Proof of Zariski’s Lemma via the Artin-Tate Lemma.

As in Exercise 11.1, it suffices to prove the following: let K/k be a field exten-
sion which is finitely generated as a k-algebra. We claim K/k is algebraic.

Indeed, if not, let x1, . . . , xn be a transcendence basis for K/k (n ≥ 1 since K/k
is transcendental), put k(x) = k(x1, . . . , xn) and consider the tower of rings

(25) k ⊂ k(x) ⊂ K.

To be sure, we recall the definition of a transcendence basis: the elements xi are alge-
braically independent over k and K/k(x) is algebraic. But since K is a finitely gen-
erated k-algebra, it is certainly a finitely generated k(x)-algebra and thus K/k(x)
is a finite degree field extension. Thus the Artin-Tate Lemma applies to (25): we
conclude that k(x)/k is a finitely generated k-algebra. But this is absurd. It implies
the much weaker statement that k(x) = k(x1, . . . , xn−1)(xn) is finitely generated
as a k(x1, . . . , xn−1)[xn]-algebra, or weaker yet, that there exists some field F such
that F (t) is finitely generated as an F [t]-algebra: i.e., there exist finitely many ra-

tional functions {ri(t) = pi(t)
qi(t)

}Ni=1 such that every rational function is a polynomial

in the ri’s with k-coefficients. But F [t] is a PID with infinitely many nonassociate
nonzero prime elements q (e.g. adapt Euclid’s argument of the infinitude of the
primes), so we may choose a nonzero prime element q which does not divide qi(t)
for any i. It is then clear that 1

q cannot be a polynomial in the ri(t)’s: for instance,

evaluation at a root of q in F leads to a contradiction. �

Remark: The phenomenon encountered in the endgame of the preceding proof
will be studied in great detail in §12. What we are actually showing is that for any
field F , the polynomial ring F [t] is not a Goldman domain, and indeed this is
closely related to the fact that SpecF [t] is infinite. More on this later.

11.1.2. McCabe’s Proof of Zariski’s Lemma.

We will give one further proof of Zariski’s Lemma now (and more later...), an
extremely elegant and simple one due to J. McCabe [McC76].
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Let K/k be a field extension which is finitely generated as a K-algebra, say by
x1, . . . , xn. Reorder the xi’s so that x1, . . . , xt are algebraically independent over
k and xt+1, . . . , xn are algebraic over k(x1, . . . , xn). We may assume t ≥ 1, for
otherwise K/k is finitely generated algebraic field extension, hence of finite degree.

Let S = k[x1, . . . , xt], so S is a polynomial ring and is not a field. There is
y ∈ S• such that yxt+1, . . . , yxn are all integral over S[ 1y ]. We have k ⊂ S[ 1y ] and

x1, . . . , xt ∈ S[ 1y ], so K = k[x1, . . . , xn] is integral over S[
1
y ]. Since K is a field, by

Proposition 1.6 so is S[ 1y ].

Let m ∈ MaxSpecS. Since t ≥ 1, m ̸= (0), so let f ∈ m•. Then f is invert-
ible in the field S[ 1y ] so there is g ∈ S and N ∈ Z+ such that 1

f = g
yN

and thus

yN = fg. Since f ∈ m and maximal ideals are prime, y ∈ m. It follows that y
lies in every maximal ideal of S, hence 1 + y lies in no maximal ideal and is thus
a unit in S. But S× = k[x1, . . . , xn]

× = k×, so 1 + y ∈ k× and y ∈ k•. Thus
k[x1, . . . , xt] = k[x1, . . . , xt,

1
y ] = S[ 1y ] is a field: contradiction!

11.2. Hilbert’s Nullstellensatz.

Let k be a field, let Rn = k[t1, . . . , tn], and write An for kn. We introduce an
antitone Galois connection (V, I) between subsets of Rn and subsets of An. Namely:

For S ⊂ An, we put

I(S) = {f ∈ Rn | ∀x ∈ S, f(x) = 0}.
In other words, I(S) is the set of polynomials which vanish at every element of S.
Conversely, for J ⊂ Rn, we put

V (J) = {x ∈ An | ∀f ∈ J, f(x) = 0}.
This is nothing else than the Galois relation associated to the relation f(x) = 0 on
the Cartesian product Rn × An.

As usual, we would like to say something about the induced closure operators
on Rn and An. First, for any subset S of An, I(S) is not just a subset but an ideal
of Rn. In fact I(S) is a radical ideal: indeed, if fn ∈ I(S) then fn vanishes on
every point of S, so f vanishes at every point of S.

This little bit of structure pulled from thin air will quicken the heart of any Bour-
bakiste. But beyond the formalism, the key question is: exactly which sets are
closed? Without knowing this, we haven’t proved the Nullstellensatz any more
than the analogous formalities between sets and groups of automorphisms prove
the Galois correspondence for Galois field extensions.

Indeed, an ideal I is radical if fn ∈ I implies f ∈ I. But if fn vanishes iden-
tically on S, then so does f .

The closed subsets of An are closed under arbitrary intersections (including the
“empty intersection”: An = V ((0)) and under finite unions (including the “empty
union”: ∅ = V ({1}) = V (Rn), and therefore form the closed sets for a unique
topology on An, the Zariski topology.
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Exercise 11.2: a) Prove these facts.
b) Show that the Zariski topology on An/k coincides with the topology it inherits as

a subset of An
/k
.

c) Show that the Zariski topology is T1: i.e., singleton subsets are closed.
d) Show that when n = 1, the Zariski topology is the coarsest T1 topology on k:
namely, the topology in which a proper subset is closed iff it is finite.
e) For any n ≥ 1, show that the Zariski topology on kn is discrete iff k is finite.
f) For any infinite field and m,n ≥ 1, show that the Zariski topology on km+n is
strictly finer than the product of the Zariski topologies on km and kn.

Remark: It is often lamented that the Zariski topology (especially when k = C) is
so “coarse”. It is true that it is much coarser than the “analytic topology” on kn

when k is a topological field (i.e., the product topology from the topology on k).
But from an algebraic perspective the Zariski topology is if anything too fine: we
will see why later on when we extend the topology to all prime ideals on an affine
algebra. Moreover, the fact that the Zariski topology on Fnq is discrete creates many
geometric problems.

Exercise 11.3: Let k be a field, n ∈ Z+ as above. Explicitly compute the ideal
I(kn), i.e., the set of all polynomials which vanish at every point of kn. Do we
necessarily have I(kn) = {0}?

Lemma 11.2. For a = (a1, . . . , an) ∈ kn, put ma = ⟨x1 − a1, . . . , xn − an⟩. Then:
a) We have Rn/ma = k. In particular ma is maximal.
b) ma = I({a}) is the ideal of all functions vanishing at a.
c) The assignment a 7→ ma is a bijection from kn to the set of all maximal ideals
m of Rn such that Rn/m = k.

Proof. Part a) is obvious (but important).
b) Certainly each xi − ai vanishes at a, so ma ⊂ I({a}). But by part a) ma is a
maximal ideal, whereas 1 /∈ I({a}), so we must have ma = I({a}).
c) The mapping a 7→ ma is an injection from kn to the set of maximal ideals with
residue field k. Conversely, let m be an ideal of Rn with Rn/m = k. For 1 ≤ i ≤ n
let ai be the image of xi in Rn/m = k. Then m ⊃ ma so we must have equality. �
We now pause for a very important definition. A ring R is a Jacobson ring if it
is “sufficiently many maximal ideals”: more precisely, such that every prime ideal
p of R is the intersection of the maximal ideals that contain it.

Exercise 11.4: a) Show that a ring R is a Jacobson ring iff for every ideal I, the
intersection of all maximal ideals containing I is rad(I).
b) Show that every homomorphic image of a Jacobson ring is Jacobson.

Proposition 11.3. (Rabinowitsch Trick [Ra30]) Let k be any field and n ∈ Z+.
a) The ring R = k[x1, . . . , xn] is a Jacobson ring.
b) It follows that any affine algebra is a Jacobson ring.

Proof. a) It is sufficient to show that for each prime ideal p of R and a ∈ R \ p,
there exists a maximal ideal m containing p and not containing a.

To show this, put Ra := R[ 1a ], and let pa = pRa be the pushed forward ideal.
Since p does not meet the multiplicative set generated by a, pa is still prime in
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Ra. Let ma be any maximal ideal of Ra conaining pa, and let m = ma ∩ R be its
contraction to R: a priori, this is a prime ideal. There is an induced k-algebra
embedding R/m ↪→ Ra/ma. But Ra is still a finitely generated algebra so by
Zariski’s Lemma (Theorem 11.1) Ra/ma is finite dimensional as a k-vector space,
hence so is the subspace R/m. Thus the domain R/m must be a field: let x ∈
(R/m)•, and write out a linear dependence relation of minimal degree among the
powers of x:

xn + cn−1x
n−1 + . . .+ c1x+ c0, ci ∈ k, c0 ̸= 0.

Thus

x
(
xn−1 + cn−1x

n−2 + . . .+ c1
)
=

−1

c0
,

so x is invertible. Thus m is the desired maximal ideal.
b) This follows immediately from Exercise 11.4. �

Remark: It seems that “J.L. Rabinowitsch”, the author of [Ra30], is the same per-
son as George Yuri Rainich, a distinguished Russian-American mathematician of
the early twentieth century.

We prove one last fact before imposing the hypothesis that k is algebraically closed.

Proposition 11.4. Let k be any field and J an ideal of k[x] = k[x1, . . . , xn]. Then:
a) V (J) = V (radJ).
b) For any subset S ⊂ kn, I(S) is a radical ideal.
v) I(V (J)) is a radical ideal containing radJ .

Proof. The underlying mechanism here is the following truly basic observation: for
f ∈ k[x], P ∈ kn and m ∈ Z+, we have

f(P ) = 0 ⇐⇒ fm(P ) = 0.

a) Since J ⊂ radJ we have V (J) ⊃ V (radJ). Conversely, let P ∈ V (J) and
f ∈ radJ . Then there exists m ∈ Z+ such that fm ∈ J , so fm(P ) = 0 and thus
f(P ) = 0. It follows that P ∈ V (radJ).
b) Similarly, for any f ∈ k[x] and m ∈ Z+, if fm ∈ I(S), then for all P ∈ S,
fm(P ) = 0. But this implies f(P ) = 0 for all P ∈ S and thus f ∈ I(S).
c) This follows immediately from parts a) and b) and the tautological fact that for
any ideal J of k[x], I(V (J)) ⊃ J . �

Finally we specialize to the case in which the field k is algebraically closed. We have
done almost all the work necessary to establish the following fundamental result.

Theorem 11.5. (Hilbert’s Nullstellensatz) Let k be an algebraically closed field,
let k[x] = k[x1, . . . , xn]. Then:
a) I induces a bijective correspondence between the singleton sets of kn and the
maximal ideals: a ∈ kn 7→ ma = ⟨x1 − a1, . . . , xn − an⟩.
b) For any Zariski-closed subset S ⊂ kn, V (I(S)) = S.
c) For any ideal J of Rn, I(V (J)) = rad(J).
Thus there is an inclusion-reversing, bijective correspondence between Zariski-closed
subsets of kn and radical ideals of k[x].

Proof. a) Let m be a maximal ideal of k[x]. By Theorem 11.1, the residue field
k[x]/m is a finite degree extension of k. Since k is algebraically closed, this forces
k[x]/m = k, and now Lemma 11.2 applies.
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b) There is no content here: it is part of the formalism of Galois connections.
c) By Proposition 11.4, it is no loss of generality to assume that J is a radical ideal.
Further, by Proposition 11.3, k[x] is a Jacobson ring, so any radical ideal J is the
intersection of the maximal ideals m containing it. This is true over any field k.
But combining with part a), we get that J is an intersection of maximal ideals of
the form ma for certain points a ∈ kn. Since ma = I({a}), J ⊂ ma iff every element
of J vanishes at a, in other words iff a ∈ V (J). Thus J is equal to the set of all
polynomials f ∈ Rn which vanish at every point of V (J): J = I(V (J))! �

Exercise 11.5: Let k be any field. Show that if either part a) or part c) of Theorem
11.5 holds for the rings k[x1, . . . , xn], then k is algebraically closed. (Hint: in fact
both parts fail for each n ∈ Z+, including n = 1.)

Exercise 11.6: Show that Zariski’s Lemma in the case that k is algebraically
closed is equivalent to the following statement: let J = ⟨f1, . . . , fm⟩ be an ideal
in k[x1, . . . , xn]. Then either there exists a simultaneous zero a of f1, . . . , fm or
there exist polynomials g1, . . . , gm such that g1f1 + . . .+ gmfm = 1.

11.2.1. The Semirational Nullstellensatz.

Lemma 11.6. (Lang’s Lemma) Let k be a field, L an algebraically closed field,
φ : k → L a field embedding, and R a finitely generated k-algebra. Then there is a
homomorphism Φ : R→ L extending φ.

Proof. Let m be a maximal ideal of k. By Zariski’s Lemma, R/m is a finite degree
field extension of k, so by basic field theory it embeds as a k-algebra into any
algebraically closed field containing k. �

Remark: In [Lan02, § IX.1], Lang gives a direct proof of Lemma 11.6. It is easy to
see that Lemma 11.6 implies Zariski’s Lemma, so this gives another way to proceed.

Corollary 11.7. Let k be a field, and let R be a domain which is finitely generated
as a k-algebra. For any y1, . . . , yn ∈ R•, there is a homomorphism ψ : R→ k such
that ψ(yi) ̸= 0 for 1 ≤ i ≤ n.

Proof. Apply Lang’s Lemma to the ring R[ 1
y1
, . . . , 1

yn
]. �

Corollary 11.8. Let J be a proper ideal of k[t1, . . . , tn]. Then there is x ∈ k
n
such

that for all f ∈ J , f(x) = 0.

Proof. Let m be a maximal ideal containing J . Zariski’s Lemma gives a k-algebra
embedding ψ : k[t1, . . . , tn]/m ↪→ k. Let (x1, . . . , xn) = (ψ(t1), . . . , ψ(tn)). �

For an ideal J of k[t1, . . . , tn], let V
a(J) be the set of x = (x1, . . . , xn) ∈ k

n
with

g(x) = 0 for all g ∈ J . For S ⊂ k
n
, let I(S) be the set of g ∈ k[t1, . . . , tn] such that

g(x) = 0 for all x ∈ S. (Notice that we are extending to the algebraic closure on
the affine space side but not on the ring side, hence the term “semirational”.)

Theorem 11.9. (Semirational Nullstellensatz) For all ideals J of k[t1, . . . , tn], we
have I(V a(J)) = radJ .

Proof. It is easy to see that I(V a(J)) is a radical ideal containing J and thus
I(V a(J)) ⊃ radJ . Conversely, let f ∈ I(V a(J)). We must show that there is N ∈
Z+ such that fm ∈ J . We may assume f ̸= 0. We introduce a new indeterminate
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tn+1 and let J ′ be the ideal ⟨J, 1− tn+1f⟩ of k[t1, . . . , tn, tn+1]. Let Z ⊂ k
n
be the

zero set of J , so f |Z ≡ 0. Let (x1, . . . , xn, xn+1) ∈ k
n+1

. If (x1, . . . , xn) /∈ Z, then
there is g ∈ J ⊂ J ′ such that g(x1, . . . , xn, xn+1) ̸= 0. If (x1, . . . , xn) ∈ Z, then
1− xn+1f(x1, . . . , xn) = 1 ̸= 0. By Corollary 11.8, J ′ = k[t1, . . . , tn, tn+1], so there
are gi ∈ k[t1, . . . , tn, tn+1] and hi ∈ J such that

1 = g0(1− tn+1f) + g1h1 + . . .+ grhr.

Now substitute tn+1 = f−1 and multiply by an appropriate power fN of f to clear
denominators: we get fN ∈ J . �

Exercise: The argument used in the proof of Theorem 11.9 is also called the Ra-
binowitsch Trick. Explain its relation to the proof of Proposition 11.3.

Exercise: Can you deduce Theorem 11.9 from Hilbert’s Nullstellensatz?

11.3. The Real Nullstellensatz.

Recall that a field k is formally real if it is not possible to express −1 as a
sum of (any finite number of) squares in k.

Exercise 11.7: Let k be a formally real field.
a) Show that k is not algebraically closed.
b) Show that any subfield of k is formally real.

A field k is real closed if it is formally real and admits no proper formally real al-
gebraic extension. So e.g. R is real closed and Q is formally real but not real closed.

As we saw, even the weak Nullstellensatz fails for polynomial rings over any non-
algebraically closed field k. However, when k is formally real one can find coun-
terexamples to the Nullstellensatz of a particular form, and when k is real closed
one can show that these counterexamples are in a certain precise sense the only
ones, leading to an identification of the closure operation J 7→ I(V (J)) in this case.

In any commutative ring R, an ideal I is real if for all n ∈ Z+ and x1, . . . , xn ∈ R,
x21 + . . .+ x2n ∈ I implies x1, . . . , xn ∈ I.

A domain R is real if the zero ideal is real.

Exercise 11.8: a) Show that a domain is real iff its fraction field is formally real.
b) Let R be a ring. Show that p ∈ SpecR is real iff the fraction field of R/p is
formally real.

Exercise 11.9: Show that any real ideal is a radical ideal.

So what? The following result gives the connection to the closure operator on
ideals in k[t1, . . . , tn].

Proposition 11.10. Let k be a formally real field and k[x] = k[x1, . . . , xn]. For
any ideal J of k[x], its closure J = I(V (J)) is a real ideal.
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Proof. Let f1, . . . , fm ∈ k[x] be such that f21 + . . . + f2m ∈ J . Then for any P ∈
V (J), we have f1(P )

2 + . . . + fm(P )2 = 0. Since k is formally real, this implies
f1(P ) = . . . = fm(P ), and thus f1, . . . , fm ∈ I(V (J)) = J . �

Exercise: Find a real prime ideal p ∈ Q[t] which is not closed.

For an ideal I of a ring R, define the real radical

R ad(I) = {x ∈ R |∃n ∈ Z+ ∃b1, . . . , bm ∈ R | x2n + b21 + . . .+ b2m ∈ I}.

Proposition 11.11. [BCR, Prop. 4.1.7] Let I be an ideal in a ring R.
a) A real ideal J contains I iff J ⊃ R ad(I) i.e., R ad(I) is the unique minimal real
ideal containing I.
b) R ad(I) is equal to the intersection of all real prime ideals p ⊃ I.
c) It follows that every real ideal is equal to the intersection of all the real prime
ideals containing it.

Remark: If there are no real prime ideals containing I, then the intersection over
this empty set is taken to be R.

Proof. Step 1: we show that R ad(I) is an ideal. The only nonobvious part of this
is closure under addition. Suppose that

a2n + b21 + . . .+ b2m, A
2N +B2

1 + . . .+B2
M ∈ I.

We may write

(a+A)2(n+N) + (a−A)2(n+N) = a2mc+A2MC,

with c, C sums of squares in R. Then

(a+A)2(n+N) + (a−A)2(n+N) + c(b21 + . . .+ b2m) + C(B2
1 + . . .+B2

M ) ∈ I,

so a+A ∈ R ad(I).
Step 2: R ad(I) is a real ideal. Indeed, if x21 + . . .+ x2k ∈ R ad(I), then there exists
n ∈ Z+ and b1, . . . , bm ∈ R such that

(x21 + . . .+ x2k)
2m + b21 + . . .+ b2m ∈ I;

for each 1 ≤ i ≤ k, we may rewrite this as x4mi +B2
1 + . . .+B2

N , so xi ∈ R ad(I).
Step 3: Since every real ideal is radical, it is clear that any real ideal containing I
also contains R ad(I).
Step 4: Let a ∈ R \ R ad(I). By Zorn’s Lemma, the set of real ideals containing I
but not a has a maximal element, say J . We claim that J is prime. If not, there
exist b, b′ ∈ R \J such that bb′ ∈ J . Then a ∈ R ad(J + bR) and a ∈ R ad(J + b′R),
hence there are j, j′ ∈ J such that

a2m + c21 + . . .+ c2q = j + bd, a2m
′
+ c′21 + . . .+ c′2q = j′ + b′d′.

It follows that

a2(m+m′) + a sum of squares = jj′ + jb′d′ + j′bd+ bb′dd′ ∈ J,

and thus a ∈ R ad(J) = J , contradiction. Thus R ad(I) is the intersection of all
real prime ideals containing I. �
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Theorem 11.12. (Artin-Lang Homomorphism Theorem)
a) Let k ↪→ L be a map of real-closed fields, and let R be a finitely generated k-
algebra. If there is a k-algebra homomorphism φ : R→ L, then there is a k-algebra
homomorphism ψ : R→ k.
b) Let k be a real-closed field, and let R be a domain which is a finitely generated
k-algebra. If R is real, there is a k-algebra homomorphism φ : R→ k.

Proof. a) For a proof using model-theoretic methods, see e.g. [BCR, Thm. 4.1.2].
b) The fraction field K of R is formally real: let L be a real closure of K. Apply
part a) to the composite k-algebra homomorphism φ : R→ K → L. �

Remark: For a direct algebraic proof of Theorem 11.12b), see e.g. [S, § 3.3].

Exercise: Let R = R[x, y]/(x2 + y2).
a) Show that R is a domain.
b) Show that R is not real.
c) Show that there is a (unique!) R-algebra homomorphism φ : R→ R.
(Thus the converse of Theorem 11.12b) does not hold.)

Remark: In [La53], Lang actually proved the following stronger result than The-
orem 11.12b), which we state in more geometric language: the domain R above
corresponds to an integral affine variety V over the real closed field k, and Lang
showed that the function field k(V ) is formally real iff V has a nonsingular k-
rational point.

Theorem 11.13. (The Nullstellensatz for Real-Closed Fields) Let k be a real-closed
field, and J an ideal in k[t] = k[t1, . . . , tn]. Then J = R ad(J).

Proof. Step 1: Suppose J is a real prime ideal. Let R = k[t]/J , and let K be the
fraction field of R; by Exercise 11.8, K is formally real; let L be a real closure of
K. For f ∈ R \ J , let S be the localization R[ 1

q(f) ], so S ⊂ L. By Theorem 11.12a)

there is a k-algebra homomorphism ψ : S → k; let x = (ψ(t1), . . . , ψ(tn)). Then
x ∈ V (J) and f(x) ̸= 0, so f /∈ I(V (J)). It follows that J = I(V (J)) = J .
Step 2: Suppose J is a real ideal, and let XJ be the set of all real prime ideals
containing J . By Proposition 11.11c), J =

∩
p∈XJ

p, and thus

J = I(V (J)) = I(V (
∩

p∈XJ

p)) = I(
∪

p∈XJ

V (p)) =
∩

p∈XJ

I(V (p)) =
∩

p∈XJ

p = J.

Step 3: Now let J be arbitrary. By Proposition 11.10, J is a real ideal containing
J , so by Proposition 11.11a), R ad(J) ⊂ J . On the other hand, part b) gives

J ⊂ R ad(J) = R ad(J),

so J = R ad(J). �

11.4. The Combinatorial Nullstellensatz.

In this section we describe one of the most recent Nullstellensätze, a celebrated
result of Noga Alon that has served as a powerful technical tool and organizing
principle in combinatorics and additive number theory (!).
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Lemma 11.14. (Alon-Tarsi) Let k be a field, n ∈ Z+, and f(t) ∈ k[t] = k[t1, . . . , tn];
for 1 ≤ i ≤ n, let di be the ti-degree of f , let Si be a subset of k with #Si > di, and
let S =

∏n
i=1 Si. If f(x) = 0 for all x ∈ S, then f = 0.

Proof. We go by induction on n. The case n = 1 is truly basic: a nonzero univariate
polynomial over a field has no more roots than its degree. Now suppose n ≥ 2 and
that the result holds for polynomials in n−1 variables. The basic idea is the identity
k[t1, . . . , tn−1, tn] = k[t1, . . . , tn−1][tn]: thus we write

f =

tn∑
i=0

fi(t1, . . . , tn−1)t
i
n

with fi ∈ k[t1, . . . , tn−1]. If (x1, . . . , xn−1) ∈ kn−1, the polynomial f(x1, . . . , xn−1, tn) ∈
k[tn] vanishes for all #Sn > dn elements xn ∈ Sn and thus is identically zero, i.e.,
fi(x1, . . . , xn−1) = 0 for all 0 ≤ i ≤ tn. By induction, each fi(t1, . . . , tn−1) is the
zero polynomial and thus f is the zero polynomial. �

Theorem 11.15. (Combinatorial Nullstellensatz [Al99]) Let k be a field, S1, . . . , Sn
be nonempty finite subsets of k, and put S =

∏n
i=1 Si. For 1 ≤ i ≤ n, put

gi(ti) =
∏
si∈Si

(ti − si) ∈ k[ti] ⊂ k[t] = k[t1, . . . , tn]

and
g = ⟨g1(t1), . . . , gn(tn)⟩.

Then
S = V (g)

and
g = I(V (g)) = g.

Proof. That S = V (g) is immediate, as is g ⊂ g. Conversely, suppose f ∈ g = I(S),
i.e., f(s) = 0 for all s = (s1, . . . , sn) ∈ S. We must show that there are polynomials
h1(t), . . . , hn(t) such that f(t) =

∑n
i=1 hi(t)gi(t).

For 1 ≤ i ≤ n, put di = #Si − 1; we may write

gi(ti) = tdi+1
i −

di∑
j=0

gijt
j
i .

Observe that if si ∈ Si, then gi(xi) = 0, i.e.,

(26) xdi+1
i =

di∑
j=0

gijx
j
i .

Let f be the polynomial obtained from f by writing f as a sum of monomials and
repeatedly substituting each instance of teii with ei > di with a k-linear combination

of smaller powers of ti using (26). Then f has degree at most di in ti and f − f is
of the form

∑n
i=1 higi. Further, for all s = (s1, . . . , sn) ∈ S, f(s) = f(s) = 0. Thus

Lemma 11.14 applies to give f = 0 and thus f =
∑n
i=1 higi. �

Exercise: a) Show that, in the notation of the proof of Theorem 11.13, the polyno-
mials h1, . . . , hn satisfy deg hi ≤ deg f − deg gi for all 1 ≤ i ≤ n.
b) Show that the coefficients of h1, . . . , hn lie in the subring of k generated by the
coefficients of f, g1, . . . , gn.
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Corollary 11.16. (Polynomial Method) Let k be a field, n ∈ Z+, a1, . . . , an ∈ N,
and let f ∈ k[t] = k[t1, . . . , tn]. We suppose:
(i) deg f = a1 + . . .+ an.
(ii) The coefficient of ta11 · · · tann in f is nonzero.
Then, for any subsets S1, . . . , Sn of k with #Si > ai for 1 ≤ i ≤ n, there is
s = (s1, . . . , sn) ∈ S =

∏n
i=1 Si such that f(s) ̸= 0.

Proof. It is no loss of generality to assume that #Si = ai + 1 for all i, and we do
so. We will show that if (i) holds and f |S ≡ 0, then (ii) does not hold, i.e., the
coefficient of ta11 · · · tann in f is 0.

Define, for all 1 ≤ i ≤ n, gi(ti) =
∏
si∈Si

ti − si. By Theorem 11.13 and the
preceding exercise, there are h1, . . . , hn ∈ k[t] such that

f =

n∑
i=1

higi

and

deg hi ≤ (a1 + . . .+ an)− deg gi, ∀1 ≤ i ≤ n,

so

(27) deg higi ≤ deg f.

Thus if higi contains any monomial of degree deg f , such a monomial would be
of maximal degree in higi = hi

∏
si∈Si

(ti − si) and thus be divisible by tai+1
i . It

follows that for all i, the coefficient of ta11 · · · tann in higi is zero, hence the coefficient
of ta11 · · · tann in f is zero. �

11.5. The Finite Field Nullstellensatz.

For a prime power q, let Fq be a finite field of cardinality q. We will charac-

terize the closure operation J 7→ J = I(V (J)) for ideals in Fq[t] = Fq[t1, . . . , tn].

Let I0 = ⟨tq1 − t1, . . . , t
q
n − tn⟩. Then the key observation is that for any ideal J of

Fq[t], J ⊃ I0. Indeed, since x
q = x for all x ∈ Fq, the polynomials tq1−t1, . . . , tqn−tn

each vanish at every point of Fnq , so J = I(V (J)) ⊃ I(Fnq ) ⊃ I0. Since of course

J ⊃ J , it follows that for all ideals J of k[t] we have

(28) J ⊃ J + I0.

Proposition 11.17. (Finite Field Weak Nullstellensatz) Let Fq be a finite field,
and let n ∈ Z+. For 1 ≤ i ≤ n, let gi = tqi − ti ∈ Fq[t1, . . . , tn], and put I0 =
⟨g1, . . . , gn⟩. Then I0 = I(Fnq ) is the ideal of all functions vanishing at every point
of Fnq .

Exercise: Deduce Proposition 11.17 from the Combinatorial Nullstellensatz.

Proposition 11.17 asserts that the containment of (28) is an equality when J = (0).
In fact, this holds in all cases.

Lemma 11.18. Let J be an ideal of Fq[t1, . . . , tn]. If J contains the ideal I0 =
⟨tq1 − t1, . . . , t

q
n − tn⟩, then radJ = J .



COMMUTATIVE ALGEBRA 199

Proof. Suppose that for x ∈ R, there is n ∈ Z+ with xn ∈ J . Then also xq
n

=

(xq
n−1

)q ∈ J . By Corollary 11.17, for all x ∈ R, fq − f ∈ I0 ⊂ J : applying this

with f = xq
n−1

, we find that xq
n − x ∈ I and thus xq

n − (xq
n − x) = x ∈ J . �

Theorem 11.19. (Finite Field Nullstellensatz) For any ideal J of R = Fq[t1, . . . , tn],

J = I(V (J)) = J + I0 = ⟨J, tq1 − t1, . . . , t
q
n − tn⟩.

We will give two proofs: one using the Semirational Nullstellensatz, and one usin
the Finite Field Weak Nullstellensatz.

Proof. By the Semirational Nullstellensatz (Theorem 11.9) and Lemma 11.18,

I(V a(J + I0)) = rad(J + I0) = J + I0.

Since V a(I0) = Fnq , we have

I(V (J)) = I(V a(J) ∩ Fnq ) = I(V a(J) ∩ V a(I0)) = I(V a(J + I0)) = J + I0.

�

Proof. By (28) J ⊃ J + I0, it suffices to show that for all J ⊇ I0, J = J .
By Proposition 11.17, I0 = I(Fnq ). For P = (x1, . . . , xn) ∈ Fnq , let

mP = I({P}) = ⟨t1 − x1, . . . , tn − xn⟩.

Thus {mP }P∈Fn
q
are finitely many pairwise comaximal ideals with I0 =

∩
P∈Fn

q
mP .

By the Chinese Remainder Theorem,

(29) R/I0 = R/
∩
P∈Fn

q

mP ∼=
∏
P∈Fn

q

R/mP ∼= k#Fn
q .

The Correspondence Theorem now gives us canonical bijections between the set of
ideals containing I0 and the set of subsets of Fnq . Since every subset of the finite set

Fnq is Zariski closed, there are precisely 2#Fn
q Zariski-closed subsets and therefore

precisely 2#Fn
q ideals J with J = J . By (29) there are precisely 2#Fn

q ideals J
containing I0, so we must have J = J for all such ideals. �

Remark: It seems that Theorem 11.19 was first stated and proved (as in the first
proof above) in a 1991 technical report of R. Germundsson [Ge91].

11.6. Terjanian’s Homogeneous p-Nullstellensatz.

Theorem 11.20. (Homogeneous Nullstellensatz) Let k be an algebraically closed
field, m,n ∈ Z+, and let f1, . . . , fm ∈ k[t0, . . . , tn] be homogeneous polynomials of
positive degree. If m ≤ n, then there is 0 ̸= x ∈ kn+1 such that

f1(x) = . . . = fn(x) = 0.

Proof. Step 0: It is no loss of generality to assume m = n, and we shall do so.
Step 1: Let J = ⟨f1, . . . , fn⟩ and let

Z = V (J) = {x ∈ kn+1 | f1(x) = . . . = fn(x) = 0}.

Since each fi is homogeneous, Z ⊃ {0}; seeking a contradiction, we suppose Z =
{0}. Then by Hilbert’s Nullstellensatz, radJ = I(V (J)) = I(Z) = I({0}) =
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⟨t0, t1, . . . , tn⟩, i.e., there is k ∈ Z+ such that tk0 , . . . , t
k
n ∈ J , and thus there are

polynomials gij such that for all 0 ≤ i ≤ n,

tki =

n∑
j=1

gijfj

we may assume that each gij is homogeneous of degree k − deg fj < k.
Step 2: Let B = k[t0, . . . , tn], and let m1, . . . ,ms be the monomials in B of degree
less than k(n+ 1). Put A = k[f1, . . . , fn] and M = ⟨m1, . . . ,ms⟩A.
We claim M = k[t0, . . . , tn].
sufficiency of claim: By the claim, B = k[t0, . . . , tn] is a finitely generated
A-module, and thus B/A is an integral extension of domains. Let E and F be the
fraction fields of A and B respectively; then F/E is an algebraic field extension.
But trdegE/k ≤ n and trdegF/k = n+ 1, contradiction.
Step 3: proof of claim: It suffices to show that M contains all monomials
ta00 · · · tann . This is true by definition when δ = a0 + . . .+ an < k(n+ 1); in general,
we go by induction on δ. Suppose δ ≥ k(n+ 1); then ai ≥ k for some i; relabelling
if necessary, we may assume that a0 ≥ k. Since tk0 =

∑
g1jfj , we have

ta00 · · · tann =
n∑
j=1

(g1jt
v0−k
0 tv11 · · · tvnn )fj .

The coefficient of each fj is homogeneous of degree less than δ, hence by induction
is contained in M . Since M is an A-module, it follows that ta00 · · · tann ∈M . �

While Theorem 11.20 is a very classical result – it was used (not necessarily with
proper justification) by 19th century mathematicians studying varieties in projec-
tive space – the following generalization is a 1972 theorem of G. Terjanian.

Let p be a prime number. We say that a field k is a p-field if every every fi-
nite extension l/k has degree a power of p.

Examples: a) Every separably closed field is a p-field.
b) Every real-closed field is a 2-field.
c) A perfect field k is a p-field iff Gal(k/k) is a pro-p-group.

Theorem 11.21. (Terjanian’s Homogeneous p-Nullstellensatz) Let k be a p-field,
and let n ∈ Z+. For 1 ≤ i ≤ n, let fi ∈ k[t0, . . . , tn] be homogeneous of degree di
indivisible by p. Then there is 0 ̸= x = (x1, . . . , xn) ∈ kn such that

f1(x) = . . . = fn(x) = 0.

The proof given in [Te72] was rather involved; a significantly simpler proof is given
in [P], but even this involves more graded algebra than we wish to discuss here.
However, following Arason and Pfister [AP82] we will now deduce some striking
consequences of the Homogeneous 2-Nullstellensatz for real-closed fields.

Exercise 11.10: Let k be a field of characteristic different from 2, and let f ∈
k[t1, . . . , tn]. We say that f is an odd polynomial if f(−t) = −f(t). Show that
an odd polynomial is a sum of monomials each of odd total degree.
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Theorem 11.22. (Algebraic Borsuk-Ulam) Let k be a real closed field, n ∈ Z+,
and for 1 ≤ i ≤ n, let fi ∈ k[t1, . . . , tn+1] be an odd polynomial: fi(−t) = −fi(t).
Then there is x = (x1, . . . , xn+1) ∈ kn+1 such that

x21 + . . .+ x2n+1 = 1, f1(x) = . . . = fn(x) = 0.

Proof. So as to be able to apply Terjanian’s Homogeneous p-Nullstellensatz, we
homogenize: let t0 be an additional indeterminate and let f̃i ∈ k[t0, . . . , tn+1] be

the unique homogeneous polynomial such that f̃i(1, t1, . . . , tn+1) = fi, of degree
di = deg fi. Being an odd polynomial, each fi only contains monomials of odd
degree; thus each di is odd and t0 occurs in f̃i to even powers only. Thus we
may make the change of variables t20 7→ t21 + . . . + t2n+1 in each f̃i, leading to
homogeneous polynomials g1, . . . , gn ∈ k[t1, . . . , tn+1] of odd degrees d1, . . . , dn.
Applying Theorem 11.21 with p = 2, we get 0 ̸= a ∈ kn+1 such that g1(a) = . . . =

gn(a) = 0. Since the gi’s are homogeneous, we may scale by
(
a21 + . . .+ a2n+1)

)−1

to get an a such that a21 + . . . + a2n+1 = 1 and g1(a) = . . . = gn(a) = 0. Thus

fi(a) = f̃i(1, a) = gi(a) = 0 for all i, and we’re done. �

We now revert to the case of k = R. As usual, for x = (x1, . . . , xn) ∈ Rn, we put

||x|| =
√
x21 + . . .+ x2n};

for x, y ∈ Rn, we put

d(x, y) = ||x− y||,
and we define the unit sphere

Sn = {x ∈ Rn | ||x|| = 1}

and the unit disk

Dn = {x ∈ Rn | ||x|| ≤ 1}.
A subset S ⊂ Rn is symmetric if x ∈ S =⇒ −x ∈ S. If S ⊂ Rm and T ⊂ Rn are
symmetric subsets, then f : S → T is odd if for all x ∈ S, f(−x) = −f(x). For
x ∈ Sn, x and −x are antipodal, and {x,−x} is called an antipodal pair.

Corollary 11.23. (Topological Borsuk-Ulam)
Let f : Sn → Rn be a continuous, odd map. Then there is x ∈ Sn with f(x) = 0.

Proof. Write f = (f1, . . . , fn), for fi : S
n → R an odd continuous map. Seeking a

contradiction, we suppose f has no zero. Since Sn is compact, there is δ > 0 such
that for all x ∈ Sn, maxi |fi(x)| ≥ δ. Choose 0 < ϵ < δ and apply the Weierstrass
Approximation Theorem to the continuous functions f1, . . . , fn on the compact
space Sn: there are p1, . . . , pn ∈ R[t1, . . . , tn+1] such that |fi(x)− pi(x)| < ϵ for all
i and all x ∈ Sn. Put qi(t) =

1
2 (pi(t)− pi(−t)); then for x ∈ Sn,

|fi(x)− qi(x)| =
|fi(x)− fi(−x)− pi(x) + pi(−x)|

2

≤ |fi(x)− pi(x)|+ |fi(−x)− pi(−x)|
2

< ϵ.

It follows that for all x ∈ Sn, maxi |qi(x)| ≥ δ − ϵ > 0, so the qi’s have no simulta-
neous zero on Sn, contradicting Theorem 11.22. �
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Corollary 11.24.
The following statements are equivalent – and hence, by Corollary 11.23, all true.
(i) Every continuous, odd map f : Sn → Rn has a zero.
(ii) There is no continuous, odd map g : Sn → Sn−1.
(iii) Every continuous map f : Sn → Rn identifies an antipodal pair.
(iv) (Lusternik-Schnirelmann-Borsuk) Let {F1, . . . , Fn+1} be a covering family of
closed subsets of Sn. Then some member of the family contains an antipodal pair.

Proof. (i) =⇒ (ii): Let ι : Sn−1 ↪→ Rn be the natural inclusion. If g : Sn → Sn−1

is continuous and odd, ι ◦ g : Sn → Rn is continuous and odd with no zero.
(ii) =⇒ (iii): If f identifies no antipodal pair, then g : Sn → Sn−1 by x 7→
f(x)−f(−x)

||f(x)−f(−x)|| is continuous and odd.

(iii) =⇒ (i): Let f : Rn → Sn be odd. By assumption, there is x ∈ Sn such that
f(x) = f(−x), but since also f(x) = −f(−x), we conclude f(x) = 0.

(iii) =⇒ (iv): Let F1, . . . , Fn+1 be closed subsets of Sn such that
∪n+1
i=1 Fi = Sn;

suppose that none of the sets F1, . . . , Fn contains an antipodal pair: equivalently,
putting Ei = −Fi, we have that Ei ∩ Fi = ∅ for 1 ≤ i ≤ n. For a point x and
a subset Y of Sn, put d(x, Y ) = inf{d(x, y) | y ∈ Y }. For 1 ≤ i ≤ n + 1, define
fi : S

n → R by fi(x) = d(x,Ei)− d(x, Fi). Observe that

x ∈ Fi =⇒ fi(−x) < 0 < fi(x),

x ∈ Ei =⇒ fi(x) < 0 < fi(−x).
Applying condition (iii) to f = (f1, . . . , fn) : S

n → Rn, we get x0 ∈ Sn such that
f(−x0) = f(x0). Thus neither x0 nor −x0 lies in any Fi with 1 ≤ i ≤ n, hence
both x0 and −x0 must lie in Fn+1.
(iv) =⇒ (ii): Let f : Sn → Sn−1 be continuous. Observe the following “converse”
to Lusternik-Schnirelmann-Borsuk: there is a covering family {Ei}n+1

i=1 of closed
subsets of Sn−1, each of diameter less than 2. (We leave the verification of this as
an exercise.) For 1 ≤ i ≤ n+1, put Fi = f−1(Ei). Thus {Fi}n+1

i=1 is a covering of Sn

by closed subsets, so by condition (iv) for some 1 ≤ i ≤ n+1 and x0 ∈ Sn we have
x0,−x0 ∈ Fi, i.e., f(x0), f(−x0) ∈ Ei. Since Ei has diameter less than 2, it contains
no antipodal pair, and thus f cannot be odd, for otherwirse f(x0),−f(x0) ∈ Ei. �

Exercise 11.11: Verify that for any n ∈ Z+, Sn can be covered by n + 2 closed
subsets each of diameter less than 2. (Suggestion: take a regular simplex inscribed
in Dn and consider the projections of its faces onto Sn.)

For a function f : Rn → R, let us put

f+ = {x ∈ Rn | f(x) > 0},

f0 = {x ∈ Rn | f(x) = 0},

f− = {x ∈ Rn | f(x) < 0}.
For a Lebesgue measurable subset S ⊂ Rn, we denote its measure by Vol(S).

The following result is due to Stone and Tukey [ST42].

Corollary 11.25. (Polynomial Ham Sandwich Theorem) Let d, n ∈ Z+ and put

N =
(
n+d
d

)
− 1. Let U1, . . . , UN ∈ Rn be measurable, finite volume subsets. There
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is a polynomial P ∈ R[t1, . . . , tn] of degree at most d which bisects each Ui:

∀1 ≤ i ≤ N, Vol(Ui ∩ P+) = Vol(Ui ∩ P−).

Proof. Let Vd ⊂ R[t1, . . . , tn] be the R-subspace of polynomials of total degree at
most d, so dimVd = N + 1. Endow Vd with a norm || · || (all norms on a finite-
dimensional real vector space are equivalent, so we need not be more specific than
this). Let SN be the unit sphere in Vd. We define a function

f = (f1, . . . , fN ) : SN → RN

by

fi(P ) = Vol(Ui ∩ P+)−Vol(Ui ∩ P−).

Step 1: We claim that f is continous.
proof of claim: One easily reduces to the claim that for any measurable, finite
volume subset U ⊂ Rn, the mapping

M : P ∈ V •
d 7→ Vol(U ∩ P+)

is continuous. For this, let {Pn} be a sequence in Vd such that Pn → P with
respect to || · ||. It follows that Pn → P pointwise on (Rn hence in particular on)
U . Since Vol(U) < ∞, we may apply Egorov’s Theorem: for each ϵ > 0, there is
a measurable subset E ⊂ U with Vol(E) < ϵ and such that Pn → P uniformly on
U \ E. Since Vol(P 0) = 0 and Vol(U) <∞, there is δ > 0 such that

Vol({x ∈ U | |P (x)| < δ}) < ϵ.

Take N ∈ Z+ such that for all n ≥ N , |Pn(x)− P (x)| < δ for all x ∈ U \ E. Then

|Vol(U ∩ P+
n )−Vol(U ∩ P+)| < 2ϵ.

Step 2: It is immediate that f is odd. By Corollary 11.23, there is P ∈ SN such
that f(P ) = 0, and such a P bisects each Ui. �

Corollary 11.26. (No Retraction Theorem) There is no retraction from Dn to
Sn−1, i.e., no continuous map r : Dn → Sn−1 such that r|Sn−1 = 1Sn−1 .

Proof. Let π : Rn+1 → Rn, (x1, . . . , xn, xn+1) 7→ (x1, . . . , xn), and let

H+
n = {(x1, . . . , xn+1) ∈ Sn | xn+1 ≥ 0}, H−

n = {(x1, . . . , xn+1) ∈ Sn | xn+1 ≤ 0}.

Suppose r : Dn → Sn−1 is a retraction, and define g : Sn → Sn−1 by

g(x) =

{
r(−π(x)), x ∈ H+

n ,
−r(π(x)), x ∈ H−

n

Then g is well-defined, continuous and odd, contradicting Corollary 11.24b). �

Corollary 11.27. (Brauer Fixed Point Theorem) Each continuous function f :
Dn → Dn has a fixed point.

Proof. Suppose f : Dn → Dn is continuous with f(x) ̸= x for all x ∈ Dn. For
x ∈ Dn, consider the ray rx with initial point f(x) and lying on the line determined
by f(x) and x. Then rx intersects Sn−1 at a unique point, say r(x), and x 7→ r(x)
defines a retraction r : Dn → Sn−1, contradicting Corollary 11.26. �
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12. Goldman domains and Hilbert-Jacobson rings

12.1. Goldman domains.

Lemma 12.1. Let R be a domain with fraction field K. TFAE:
(i) K is finitely generated as an R-algebra.
(ii) There exists f ∈ K such that K = R[f ].

Proof. Of course (ii) =⇒ (i). Conversely, if K = R[f1, . . . , fn], then write fi =
pi
qi
,

and then K = R[ 1
q1···qn ]. �

A ring satisfying the conditions of Lemma 12.1 will be called a Goldman domain.

Exercise 12.1: Show: an overring49 of a Goldman domain is a Goldman domain.

Lemma 12.2. Let R be a domain with fraction field K, and 0 ̸= x ∈ R. TFAE:
(i) Any nonzero prime ideal of R contains x.
(ii) Any nonzero ideal contains a power of x.
(iii) K = R[x−1].

Proof. (i) =⇒ (ii): let I be a nonzero ideal. If I is disjoint from {xn}, then by
Multiplicative Avoidance (4.8), I can be extended to a prime ideal disjoint from
{xn}, contradicting (i).

(ii) =⇒ (iii): Let 0 ̸= y ∈ R. By (ii), we have (y) contains some power of x,
say xk = yz. But this implies that y is a unit in R[x−1].

(iii) =⇒ (i): The prime ideals killed in the localization map R 7→ R[x−1] are
precisely those which meet the multiplicatively closed set {xk}, i.e., contain x. �
Corollary 12.3. For an integral domain R, TFAE:
(i) R is a Goldman domain.
(ii) The intersection of all nonzero prime ideals of R is nonzero.

Exercise 12.2: Prove Corollary 12.3. Easy examples of Goldman domains: a field,
k[[t]], Z(p). In fact we have developed enough technology to give a remarkably clean
characterization of Noetherian Goldman domains.

Theorem 12.4. Let R be an integral domain.
a) If R has only finitely many primes, then R is a Goldman domain.
b) If R is a Noetherian Goldman domain, then R has finitely many primes.
c) A Noetherian Goldman domain is either a field or a one-dimensional domain.

Proof. It is harmless to assume throughout that R is not a field, and we do so.
a) Suppose that R has only finitely many primes, and let p1, . . . , pn be the

nonzero prime ideals of R. For 1 ≤ i ≤ n, let 0 ̸= xi ∈ pi, and put x = x1 · · ·xn.
Then the multiplicative set S generated by x meets every nonzero prime of R, so
that S−1R has only the zero ideal. In other words, R[ 1x ] is the fraction field of R,
so R is a Goldman domain. (Alternately, this follows quickly from Corollary 12.3.)

b) Similarly, for a Goldman domain R we can write K = R[ 1x ] for x ∈ R and
then every nonzero prime of R contains x. Suppose first that (x) itself is prime,
necessarily of height one by the Hauptidealsatz (Theorem 8.42), hence if R has any
primes other than (0) and (x) – especially, if it has infinitely many primes – then it
has a height two prime q. But by Corollary 8.46 a Noetherian ring cannot have a

49An overring of a domain R is a ring intermediate between R and its fraction field K.
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height two prime unless it has infinitely many height one primes, a contradiction.
So we may assume that (x) is not prime, and then the minimal primes of the
Noetherian ring R/(x) are finite in number – say p1, . . . , pn – and correspond to
the primes of R which are minimal over x, so again by the Hauptidealsatz they all
have height one. Similarly, if R has infinitely many primes there would be, for at
least one i (say i = 1), a height two prime q ⊃ p1. But then by Corollary 8.46
the “interval” (0, q) is infinite. Each element of this set is a height one prime ideal
containing (x), i.e., is one of the pi’s, a contradiction. Part c) follows by again
applying Corollary 8.46: a Noetherian ring of dimension at least two must have
infinitely many primes. �

Remark: a non-Noetherian Goldman domain can have infinitely many primes
and/or primes of arbitrarily large height.

Proposition 12.5. Let R be an integral domain. Then the polynomial ring R[t] is
not a Goldman domain.

Proof. Let K be the fraction field of R. If R[t] is a Goldman domain, then by
Exercise 12.1, so is K[t]. But K[t] is a Noetherian domain with infinitely many
primes – e.g., Euclid’s proof of the infinitude of primes in Z carries over verbatim
to K[t] – so Theorem 12.4 applies to show that K[t] is not a Goldman domain. �

Proposition 12.6. Let R be a domain, and T ⊃ R an extension domain which is
algebraic and finitely generated as an R-algebra. Then R is a Goldman domain iff
T is a Goldman domain.

Proof. Let K and L be the fraction fields of R and T , respectively. Suppose first
that R is a Goldman domain: say K = R[ 1u ]. Then T [ 1u ] is algebraic over the

field K, so is a field, hence we have L = T [ 1u ]. Conversely, suppose that T is

a Goldman domain: say L = T [ 1v ]; also write T = R[x1, . . . , xk]. The elements

v−1, x1, . . . , xk are algebraic over R hence satisfy polynomial equations with coeffi-
cients in R. Let a be the leading coefficient of a polynomial equation for v−1 and
b1, . . . , bk be the leading coefficients of polynomial equations for x1, . . . , xk. Let
R1 := R[a−1, b−1

1 , . . . , b−1
k ]. Now L is generated over R1 by x1, . . . , xk, v

−1, all of
which are integral over R1, so L is integral over R1. Since L is a field, it follows that
R1 is a field, necessarily equal to K, and this shows R is a Goldman domain. �

Corollary 12.7. Let R ⊂ S be an inclusion of domains, with R a Goldman domain.
Suppose that u ∈ S is such that R[u] is a Goldman domain. Then u is algebraic
over R, and R is a Goldman domain.

Theorem 12.8. For an integral domain R, TFAE:
(i) R is a Goldman domain.
(ii) There exists a maximal ideal m of R[t] such that m ∩R = (0).

Proof. (i) =⇒ (ii): We may assume WLOG that R is not a field. Write K = R[ 1u ].

Define a homomorphism φ : R[t] → K by sending t 7→ 1
u . Evidently φ is surjective,

so its kernel m is a maximal ideal, and clearly we have m ∩R = 0.
(ii) =⇒ (i): Suppose m is a maximal ideal of R[t] such that m ∩ R = (0). Let

v be the image of t under the natural homomorphism R[t] → R[t]/m. Then R[v] is
a field, so by Corollary 12.7, R is a Goldman domain. �
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We define a prime ideal p of a ring R to be a Goldman ideal if R/p is a Goldman
domain. Write G SpecR for the set of all Goldman ideals. Thus a Goldman ideal
is more general than a maximal ideal but much more special than a prime ideal.

Proposition 12.9. Let R be a ring and I an ideal of R.
a) The nilradical of R is the intersection of all Goldman ideals of R.
b) The radical of I is the intersection of all Goldman ideals containing I.

Proof. a) We know that N =
∩

p∈SpecR p, so certainly N ⊂
∩

p∈G SpecR p. Con-

versely, suppose x ∈ R\N . The ideal (0) is then disjoint from the multiplicative set
S = {xn}. By multiplicative avoidance, we can extend (0) to an ideal p maximal
with respect to disjointness from S. We showed earlier that p is prime; we now
claim that it is a Goldman ideal. Indeed, let x denote the image of x in R = R/p.
By maximality of p, every nonzero prime of R contains x. By Lemma 12.2, this
implies R[x−1] is a field, thus R is a Goldman domain, and therefore p is a Goldman
ideal which does not contain x. Part b) follows by correspondence, as usual. �

The following result may seem completely abstruse at the moment, but soon enough
it will turn out to be the key:

Corollary 12.10. An ideal I in a ring R is a Goldman ideal iff it is the contraction
of a maximal ideal in the polynomial ring R[t].

Proof. This follows from Theorem 12.8 by applying the correspondence principle
to the quotient ring R/I. �

Theorem 12.11. a) Let M be a maximal ideal in R[t], and suppose that its
contraction m = M∩ R is maximal in R. Then M can be generated by m and by
one additional element f , which can be taken to be a monic polynomial which maps
modulo m to an irreducible polynomial in R/m[t].
b) If, moreover, we suppose that R/m is algebraically closed, then M = ⟨m, t − a⟩
for some a ∈ R.

Proof. a) Since M contains m, by correspondence M may be viewed as a maximal
ideal of R[t]/mR[t] ∼= (R/m)[t], a PID, so corresponds to an irreducible polynomial
f ∈ R/m[t]. If f is any lift of f to R[t], then M = ⟨m, f⟩. Part b) follows
immediately from the observation that an irreducible univariate polynomial over
an algebraically closed field is linear. �

The following more elementary result covers the other extreme.

Theorem 12.12. Let R be a domain, with fraction field K. Let ι : R[t] → K[t]
be the natural inclusion. Then ι∗ induces a bijection between the prime ideals P of
R[t] such that P ∩R = {0} and the prime ideals of K[t].

Proof. Let S = R\{0}. The key observation is that S−1R[t] = K[t]. Recall (Propo-
sition 7.4) that in any localization map R 7→ S−1R, the prime ideals which push
forward to the unit ideal are precisely those which meet S, whereas the localization
map restricted to all other prime ideals is a bijection onto the set of prime ideals
of S−1R. Applying that in this case gives the desired result immediately! �
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12.2. Hilbert rings.

To put Theorem 12.11 to good use, we need to have a class of rings for which
the contraction of a maximal ideal from a polynomial ring is again a maximal ideal.
It turns out that the following is the right class of rings:

Definition: A Hilbert ring is a ring in which every Goldman ideal is maximal.

Proposition 12.13. Any quotient ring of a Hilbert ring is a Hilbert ring.

Proof. This follows immediately from the correspondence between ideals of R/I
and ideals of R containing I. �

A direct consequence of the definition and Proposition 12.9 is the following:

Proposition 12.14. Let I be an ideal in a Hilbert ring R. Then the intersection∩
m sup I m of all maximal ideals m containing I is rad(I).

Examples: Any zero dimensional ring is a Hilbert ring. Especially, a field is a
Hilbert ring, as is any Artinian ring or any Boolean ring.

Exercise 12.3: a) Let R be a one-dimensional Noetherian domain. TFAE:
(i) R is a Hilbert ring.
(ii) The Jacobson radical of R is 0.
(iii) R has infinitely many prime ideals.
(iv) R is not a Goldman domain.
b) Deduce that the ring Z of integers is a Hilbert domain.

Theorem 12.15. Let R be a Hilbert ring, and S a finitely generated R-algebra.
Then:
a) S is also a Hilbert ring.
b) For every maximal ideal P of S, p := P ∩R is a maximal ideal of R.
c) The degree [S/P : R/p] is finite.

Proof. a) It suffices to show that R is a Hilbert ring iff R[t] is a Hilbert ring, for
then, if R is a Hilbert ring, by induction any polynomial ring R[t1, . . . , tn] is a
Hilbert ring, and any finitely generated R-algebra is a quotient of R[t1, . . . , tn] and
thus a Hilbert ring. Note also that since R is a homomorphic image of R[t], if R[t]
is a Hilbert domain, then so also is R.

So suppose R is a Hilbert ring, and let q be a Goldman ideal in R[t]; we must
show q is maximal. Put p = q ∩ R. As above, we can reduce to the case p = 0, so
in particular R is a domain. Let a be the image of t in the natural homomorphism
R[t] → R[t]/q. Then R[a] is a Goldman domain. By Corollary 12.7, a is algebraic
over R, and R is a Goldman domain. But since we assumed that R was a Hilbert
ring, this means that R is a field, and thus R[a] = R[t]/q is a field, so q is maximal.

b) We may write S = R[t1, . . . , tn]/I. A maximal ideal m of S is just a maximal
ideal of R[t1, . . . , tn] containing I. By Corollary 12.10, the contraction m′ of m to
R[t1, . . . , tn−1] is a Goldman ideal of the Hilbert ring R[t1, . . . , tn−1], so is therefore
maximal. Moreover, by Theorem 12.11, m is generated by m′ and an irreducible
polynomial in R/m′[t], so that the residual extension R[t1, . . . , tn]/m has finite
degree over R[t1, . . . , tn−1/m

′. Again, induction gives the full result. �
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Applying Theorem 12.15c) in the case R = k is a field, we deduce our second proof
of Zariski’s Lemma (Lemma 11.1).

Theorem 12.16. Let R be a Noetherian Hilbert ring. Then

dim(R[t]) = dimR+ 1.

Proof. Let 0 = p0 ( p1 ( . . . ( pd be a chain of prime ideals in R. Then, with
ι : R ↪→ R[t] the natural inclusion,

ι∗p0 ( . . . ( ι∗pn ( ⟨ι∗(pn), t⟩
is a chain of prime ideals of R[t] of length d + 1, hence for any ring R we have
dimR[t] ≥ dimR+1. Conversely, it suffices to show that the height of any maximal
ideal P of R[t] is at most d + 1. For this, put p = P ∩ R. By Theorem 12.15, p
is maximal in R, so Theorem 12.11 tells us that there exists f ∈ R[t] such that
P = ⟨ι∗p, f⟩. Applying Krull’s Hauptidealsatz (Theorem 8.42) in the quotient ring
R[t]/ι∗p, we get that the height of P is at most one more than the height of p. �

Corollary 12.17. Let k be a field, and put R = k[t1, . . . , tn].
a) Then every maximal ideal of R has height n and can be generated by n elements
(and no fewer, by Theorem 8.47).
b) In particular, dimR = n.

Exercise 12.4: Prove Corollary 12.17.

12.3. Jacobson Rings.

Theorem 12.18. For a ring R, TFAE:
(i) For all I ∈ I(R), r(I) is the intersection of all maximal ideals containing I.
(i′) In every quotient ring of R, the nilradical equals the Jacobson radical.
(ii) Every prime ideal p of R is the intersection of all maximal ideals containing p.
(iii) Every nonmaximal prime ideal p of R is equal to the intersection of all prime
ideals strictly containing p.
If R satisfies these equivalent properties it is called a Jacobson ring.

Proof. (i) ⇐⇒ (i′) is immediate from the Correspondence Theorem.
(i) =⇒ (ii): If (i) holds, then in particular for any radical ideal I, I =

∩
m⊃I m,

and prime ideals are radical.
(ii) =⇒ (i): for any ideal I of R,

rad I =
∩
p⊃I

p =
∩
p⊃I

∩
m⊃p

m =
∩
m⊃I

m.

(ii) =⇒ (iii): If p is prime but not maximal, then p =
∩

m⊃p m and all the maximal
ideals containing p strictly contain p.
¬ (ii) =⇒ ¬ (iii): Let p be a prime which is not the intersection of the maximal
ideals containing it. Replacing R with R/p, we may assume R is a domain with
nonzero Jacobson radical J(R). Let x ∈ J(R) \ {0}, and choose, by Multiplicative
Avoidance, an ideal p which is maximal with respect to the property that x /∈ p.
Since x /∈ J(R) \ p, p is not maximal; since x lies in every ideal properly containing
p, p is not equal to the intersection of prime ideals strictly containing it. �

Corollary 12.19. Every quotient ring of a Jacobson ring is Jacobson.

Proof. This is immediate from condition (i′) of Theorem 12.18. �
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12.4. Hilbert-Jacobson Rings.

Proposition 12.20. Suppose R is both a Goldman domain and a Jacobson ring.
Then R is a field.

Proof. Let K be the fraction field of R, and suppose for a conradiction that R ̸= K.
Then there exists a nonzero nonunit f ∈ R such that K is the localization of R at
the multiplicative subset S = {f, f2, . . .}. Let m be a maximal ideal of R. Since
R is not a field, m is not zero, and thus the pushforward of R to S−1R is the unit
ideal. By Proposition 7.4, m meets S. Since m is prime, we conclude f ∈ m. It
follows that the Jacobson radical of R contains f is accordingly nonzero. On the
other hand R, being a domain, has zero nilradical. Thus R is not Jacobson. �

Finally we are prepared to prove the main result of this section, which shows the
equivalence of four important properties of commutative rings.

Theorem 12.21. For a commutative ring R, TFAE:
(i) R is a Hilbert ring.
(ii) R is a Jacobson ring.
(iii) For all maximal ideals m of R[t], m ∩R is a maximal ideal of R.
(iv) (Zariski’s Lemma) Let K be a field which is finitely generated as an R-algebra.
Then K is finitely generated as a R-module.

Proof. (i) =⇒ (ii) by Proposition 12.14.
(ii) =⇒ (i): Suppose R is Jacobson and p is a Goldman ideal of R. Then R/p
is a Goldman domain (by definition of Goldman ideal) and a Jacobson ring (by
Corollary 12.19), hence a field (by Proposition 12.20), so p is maximal.
(ii) =⇒ (iii) is Theorem 12.15b).
(iii) =⇒ (i): Suppose R is a ring such that every maximal ideal of R[t] contracts
to a maximal ideal of R, and let p be a Goldman ideal of R. By Corollary 12.10, p
is the contraction of a maximal ideal of R[t], hence by assumption p is maximal.
(i) =⇒ (iv) by Theorem 12.15c).
(iv) =⇒ (ii): By Theorem 12.18, it suffices to show that every nonmaximal prime
p is the intersection of the prime ideals strictly containing it. That is, let x ∈ R \ p:
we will find a prime ideal q ) p such that x /∈ q. Let B be the domain R/p, so the
image of x in B (which we continue to denote by x) is nonzero. Then B′ = B[ 1x ]
is a finitely generated R-algebra. If B′ is a field, then by hypothesis B′ is finitely
generated as an R-module and thus, equivalently, finitely generated as a B-module.
But this implies that B is a field, a basic fact about integral extensions which
will be proved later on in the notes (Theorem 14.1, Propostion 14.8a)) and thus
p is maximal, contradiction. So B′ is not a field and thus it contains a nonzero
maximal ideal, whose pullback to B is a prime ideal q not containing x. The ideal
q corresponds to a prime ideal q ) p of R not containing x. �

In the sequel we will use the consolidated terminology Hilbert-Jacobson ring for
a ring satisfying the equivalent conditions of Theorem 12.21.

13. SpecR as a topological space
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13.1. The Zariski spectrum.

For a ring R, we denote the set of all prime ideals of R by SpecR. Moreover,
we refer to SpecR as the Zariski spectrum – or prime spectrum – of R.

It is important to notice that SpecR comes with additional structure. First, it
has a natural partial ordering, in which the maximal elements are the maximal
ideals, and the minimal elements are (by definition) the minimal primes. Also,
as O. Zariski first observed, SpecR can be endowed with a topology. To see this,
for any ideal I of R, put V (I) = {p ∈ SpecR | p ⊃ I}.

Proposition 13.1. For ideals I and J of R, we have V (I) = V (J) iff rad I = radJ .

Proof. For any ideal I and any prime ideal p, p ⊃ I iff p ⊃ rad I, and there-
fore V (I) = V (rad I). Conversely, if V (I) = V (J), then the set of prime ideals
containing I is the same as the set of prime ideals containing J . So

rad I =
∩
p⊃I

p =
∩
p⊃J

p = radJ.

�

Exercise 13.1: Show that I ⊂ J iff V (I) ⊃ V (J).

Now we claim that the family of subsets V (I) of SpecR has the following properties:

(ZT1) ∅ = V (R), SpecR = V ((0)).
(ZT2) If {Ii} is any collection of ideals of R, then

∩
i V (Ii) = V (⟨Ii⟩).

(ZT3) If I1, . . . , In are ideals of R, then
∪n
i=1 V (Ii) = V (I1 · · · In) = V (

∩n
i=1 Ii).

(ZT1) is obvious. As for (ZT2), let p be a prime ideal of R. Then p ∈
∩
i V (Ii) for

all i iff p ⊃ Ii for all i iff p contains the ideal generated by all Ii. As for (ZT3), p
contains a product of ideals iff it contains one of the ideals of the product.

Therefore there is a unique topology on SpecR in which the closed sets are precisely
those of the form V (I). This is called the Zariski topology.

It is of course natural to ask for a characterization of the open sets. Recall that a
base for the open sets of a topology is a collection {Bi} of open sets such that:

(BT1) for any point x ∈ Bi ∩Bj , there exists a k such that x ∈ Bk ⊂ Bi ∩Bj ;
(BT2) every open set is a union of the Bi’s contained in it.

For f ∈ R, we define U(f) := SpecR \ V ((f)). In other words, U(f) is the
collection of all prime ideals which do not contain the element f . For f, g ∈ R,
U(f)∩U(g) is the set of prime ideals p containing neither f nor g; since p is prime,
this is equivalent to p not containing fg, thus

U(f) ∩ U(g) = U(fg),

which is a stronger property than (BT1). Moreover, any open set U is of the form
SpecR\V (I). Each ideal I is the union of all of its elements fi, so V (I) =

∩
i V (fi),
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so that

U = SpecR \ V (I) = SpecR \
∩
i

V (fi) =
∪
i

(SpecR \ V (fi)) =
∪
i

U(fi).

Proposition 13.2. Let R be any ring, and consider the canonical homomorphism
f : R→ Rred = R/ nil(A). Then f−1 : SpecRred → SpecR is a homeomorphism.

Exercise 13.2: Prove Proposition 13.2.

Exercise 13.3: Let R1, . . . , Rn be finitely many rings. Show that Spec(R1×. . .×Rn)
is canonically homeomorphic to the topological space

⨿n
i=1 SpecRi.

Exercise 13.4: Let R be a Boolean ring. Earlier we defined a topology on the
set “M(R)” of all maximal ideals of R. But, as we know, a Boolean ring all prime
ideals are maximal, so as sets M(R) = SpecR. Show that moreover the topology
we defined on M(R) is the Zariski topology on SpecR.

13.2. Properties of the spectrum: quasi-compactness.

More than sixty years ago now, N. Bourbaki introduced the term quasi-compact
for a topological space X for which any open covering has a finite subcovering.
The point of this terminology is to reserve compact for a space which is both
quasi-compact and Hausdorff, and thus emphasize that most of the nice properties
of compact spaces in classical topology do rely on the Hausdorff axiom. Nowhere
is this terminology more appropriate than in the class of spectral spaces, which
as we have seen above, are only Hausdorff in the comparatively trivial case of a
zero-dimensional ring. On the other hand:

Proposition 13.3. For any commutative ring R, SpecR is quasi-compact.

Proof. Let {Ui} be any open covering of SpecR. For each p ∈ SpecR, there
exists an element U of the cover containing p, and thus a principal open set X(f)
containing p and contained in U . Therefore there is a refinement of the cover
consisting of principal open subsets, and if this refinement has a finite cover, then
the original cover certainly does as well. Thus it suffices to assume that the Ui’s
are basic open sets.50 So now suppose that SpecR =

∪
iX(fi). Then we have

SpecR =
∪
i

X(fi) =
∪
i

(SpecR \ V (fi)) = SpecR \
∩
i

V (fi),

so that ∅ =
∩
i V (fi) = V (⟨fi⟩). Therefore the ideal I = ⟨fi⟩ contains 1, and this

means that there is some finite subset f1, . . . , fn of I such that ⟨f1, . . . , fn⟩ = R.
Thus

∩n
i=1 V (fi) = ∅, or equivalently, SpecR =

∪n
i=1X(fi). �

50This is just the familiar, and easy, fact that it suffices to verify quasi-compactness on any

base for the topology. It is also true, but deeper, that one can verify quasi-compactness on any
subbase: Alexander’s Subbase Theorem.
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13.3. Properties of the spectrum: separation and specialization.

For the reader’s convenience we briefly recall the “lower” separation axioms:

A topological space X is Kolmogorov – or T0 – if for any distinct points x, y ∈ X,
the system of neighborhoods Nx and Ny do not coincide. In plainer language,
either there exists an open set U containing x and not containing y, or conversely.

A topological space X is separated – or T1 – if for any distinct points x, y ∈ X,
there exists both an open set U containing x and not y and an open set V contain-
ing y and not x. A space is separated iff all singleton sets {x} are closed iff for all
x ∈ X,

∩
U∈Nx

U = {x}.

A topological space X is Hausdorff – or T2 – if for any distinct points x, y ∈ X,
there exist open neighborhoods U of x and V of y with U ∩ V = ∅. A space is
Hausdorff iff for all x ∈ X, the intersection of all closed neighborhoods of x is {x}.

Easily Hausdorff implies separated implies Kolmogorov. In a general topology
course one learns that neither of the converse implications holds in general. On
the other hand most of the spaces one encounters in analysis and geometry are
Hausdorff, and certainly are if they are Kolmogorov. We are about to see that yet
a third state of affairs transpires when we restrict attention to spectra of rings.

Let X be a topological space. We define a relation 7→ on X by decreeing that
for x, y ∈ X, x 7→ y iff y lies in the closure of the singleton set {x}. This relation
is called specialization, and we read x 7→ y as “x specializes to y”.

The reader who is familiar with topology but has not seen the specialization rela-
tion before will find an explanation in part f) of the following exercise.

Exercise 13.5:
a) Show that x 7→ y iff Nx ⊂ Ny.
b) Show that specialization satisfies the following properties:
(i) reflexivity: x 7→ x; (ii) transitivity x 7→ y, y 7→ z =⇒ x 7→ z.
A relation R with these properties is called a quasi-ordering. Note that a
partial ordering is a quasi-ordering with the additional axiom of anti-symmetry:
xRy, yRx =⇒ x = y.
c) Show that specialization is a partial ordering on X iff X is Kolmogorov.
d) Show that a point y is closed51 iff y 7→ x =⇒ x = y.
e) A point x for which x 7→ y holds for all y ∈ X is called generic. Give an example
of a topological space in which every point is generic.
f) Show that X is separated iff x 7→ y =⇒ x = y.

Exercise 13.6: Let X be any set endowed with a quasi-ordering R. Define a new
relation x ≡ y if x R y and y R x.
a) Show that ≡ is an equivalence relation on X.
b) Write X ′ for the set of ≡ equivalence classes, and let q : X → X ′ be the natural

51Strictly speaking we mean {y} is closed, but this terminology is common and convenient.
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map – i.e., x 7→ {y ∈ X | y ≡ x}. Show that the relation R descends to a relation
≤ on X ′: i.e., for s1, s2 ∈ X ′, then by choosing x1 ∈ s1, x2 ∈ s2 and putting

s1 ≤ s2 ⇐⇒ x1 R x2,

the relation ≤ is well-defined independent of the choices of x1 and x2. Show that
moreover ≤ is a partial ordering on X ′.
c) Let X be a topological space and R be the specialization relation. Endowing
X ′ with the quotient topology via q, show that the induced relation ≤ on X ′ is
the specialization relation on X ′, and accordingly by the previous exercise X ′ is a
Kolmogorov space. If it pleases you, show that q : X → X ′ is universal for maps
from X into a Kolmogorov space Y , hence X ′ (or rather, q : X → X ′) can be
regarded as the Kolmogorov quotient of X.

Exercise 13.7: Let (X,µ) be a measure space, and let L1 be the space of all measur-
able functions f : X → R with

∫
X
|f |dµ <∞. For f ∈ L1, define ||f || :=

∫
X
|f |dµ,

and for ϵ > 0, put B(f, ϵ) = {g ∈ L1 | ||g − f || < ϵ}. Show that the B(f, ϵ)’s form
a base for a topology on L1, but that this topology is, in general, not Kolmogorov.
Show that the Kolmogorov quotient is precisely the usual Lebesgue space L1, whose
elements are not functions but classes of functions modulo µ a.e. equivalence.

Proposition 13.4. For any ring R, the spectrum SpecR is a Kolmogorov space.
Indeed, for prime ideals p, q of R, we have p 7→ q iff q ⊃ p, i.e., the specialization
relation is precisely the opposite relation to the containment of prime ideals.

Proof. For prime ideals p and q we have

p 7→ q ⇐⇒ q ∈ {p} = {f ∈ SpecR | f ⊃ p} ⇐⇒ q ⊃ p.

Thus the specialization relation is just reverse containment of ideals, which certainly
satisfies antisymmetry: q ⊂ p, p ⊂ q =⇒ p = q. Now apply Exercise 13.6c). �

Theorem 13.5. For a commutative ring R, TFAE:
(i) R/ nilR is absolutely flat, i.e., every R/ nilR-module is flat.
(ii) R has Krull dimension zero.
(iii) SpecR is a separated space.
(iv) SpecR is a Hausdorff space.
(v) SpecR is a Boolean space.

Proof. (i) ⇐⇒ (ii) This is Theorem 7.19.
(ii) ⇐⇒ (iii): A space is separated iff all of its singleton sets are closed. But if p
is prime, V (p) consists of all primes containing p, so V (p) = {p} iff p is maximal.
Certainly (v) =⇒ (iv) =⇒ (iii).
(i) =⇒ (v): Since SpecR = Spec(R/ nilR), we may well assume that R itself is
absolutely flat. Let p and q be distinct prime ideals; since both are maximal, there
exists an element f ∈ p \ q. By Proposition 3.93, there is an idempotent e with
(e) = (f), and therefore e ∈ p \ q. Then D(1 − e), D(e) is a separation of SpecR.
More precisely, D(e) ∩D(1 − e) = D(e(1 − e)) = D(e − e2) = D(0) = ∅, whereas
for any prime ideal p, since 0 = e(1− e) ∈ p, we must have e ∈ p or 1− e ∈ p. By
construction, p ∈ D(1 − e), q ∈ D(e). This shows SpecR is Hausdorff, and more:
given points P ̸= Q of X, we found a separation X = U

⨿
V with P ∈ U, Q ∈ V , so

X is zero-dimensional. By Proposition 13.3, every ring has quasi-compact spectrum,
so SpecR is Hausdorff, zero-dimensional and quasi-compact, i.e., Boolean. �
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Exercise 13.8:
a) Let R be an arbitrary product of fields. Show that SpecR is a Boolean space.
b) Let {Ri}i∈I be a family of rings, each of which has Krull dimension 0, and put
R =

∏
iRi. Must SpecR be Boolean?

13.4. Irreducible spaces.

A topological space is irreducible if it is nonempty and if it cannot be expressed
as the union of two proper closed subsets.

Exercise 13.9: Show that for a Hausdorff topological space X, TFAE:
(i) X is irreducible.
(ii) #X = 1.

Proposition 13.6. For a topological space X, TFAE:
(i) X is irreducible.
(ii) Every finite intersection of nonempty open subsets (including the empty inter-
section!) is nonempty.
(iii) Every nonempty open subset of X is dense.
(iv) Every open subset of X is connected.

Exercise 13.10: Prove Proposition 13.6.

Proposition 13.7. Let X be a nonempty topological space.
a) If X is irreducible, every nonempty open subset of X is irreducible.
b) If a subset Y of X is irreducible, so is its closure Y .
c) If {Ui} is an open covering of X such that Ui ∩ Uj ̸= ∅ for all i, j and each Ui
is irreducible, then X is irreducible.
d) If f : X → Y is continuous and X is irreducible, then f(X) is irreducible in Y .

Proof. a) Let U be a nonempty open subset of X. By Proposition 13.6, it suffices
to show that any nonempty open subset V of U is dense. But V is also a nonempty
open subset of the irreducible space X.
b) Suppose Y = A ∪ B where A and B are each proper closed subsets of Y ; since
Y is itself closed, A and B are closed in X, and then Y = (Y ∩ A) ∪ (Y ∩ B). If
Y ∩A = Y then Y ⊂ A and hence Y ⊂ A = A, contradiction. So A is proper in Y
and similarly so is B, thus Y is not irreducible.
c) Let V be a nonempty open subset of X. Since the Ui’s are a covering of X, there
exists at least one i such that V ∩ Ui ̸= ∅, and thus by irreducibility V ∩ Ui is a
dense open subset of Ui. Therefore, for any index j, V ∩Ui intersects the nonempty
open subset Uj ∩Ui, so in particular V intersects every element Uj of the covering.
Thus for all sets Ui in an open covering, V ∩ Ui is dense in Ui, so V is dense in X.
d) If f(X) is not irreducible, there exist closed subsets A and B of Y such that
A∩ f(X) and B ∩ f(X) are both proper subsets of f(X) and f(X) ⊂ A∪B. Then
f−1(A) and f−1(B) are proper closed subsets of X whose union is all of X. �

Let x be a point of a topological space, and consider the set of all irreducible sub-
spaces of X containing x. (Since {x} itself is irreducible, this set is nonempty.) The
union of a chain of irreducible subspaces being irreducible, Zorn’s Lemma says that
there exists at least one maximal irreducible subset containing x. A maximal irre-
ducible subset (which, by the above, is necessarily closed) is called an irreducible
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component of X. Since irreducible subsets are connected, each irreducible com-
ponent lies in a unique connected component, and each connected component is
the union of its irreducible components.

However, unlike connected components, it is possible for a given point to lie in
more than one irreducible component. We will see examples shortly.

In the case of a Zariski topology SpecR, there is an important algebraic inter-
pretation of the irreducible components. Namely, the irreducible components Y of
SpecR correspond to V (p) where p ranges through the minimal primes.

Indeed, we claim that a closed subset V (I) is irreducible iff rad I = p is prime.
First, if rad I = p is prime, then by Proposition 13.1 V (I) = V (p), so it suffices to
show that V (p) is irreducible. If not, there are ideals I and J such that V (I) and
V (J) are both proper subsets of V (p) and V (p) = V (I)∪V (J) = V (IJ). But then
p = rad(IJ) ⊃ IJ and since p is prime this implies p ⊃ I or p ⊃ J . WLOG, suppose
p ⊃ I; then V (p) ⊂ V (I), so that V (I) is not proper in V (p), contradiction.

Next, suppose that V (I) is irreducible, and suppose that ab ∈ rad(I). If neither
a nor b is in rad(I), then V ((a)), V ((b)) do not contain V (I), but V (a) ∪ V (b) =
V (ab) ⊃ V (I). Therefore V (a) ∩ V (I) = V (aI) and V (b) ∩ V (I) = V (bI) are two
proper closed subsets of V (I) whose union is V (I), thus V (I) is reducible.

It follows that the irreducible components – i.e., the maximal irreducible subsets –
are precisely the sets of the form V (p) as p ranges over the distinct minimal prime
ideals. Note that we can now deduce that minimal prime ideals exist in any ring as
a special case of the existence of irreducible components in any topological space,
an example of the use of topological methods to prove purely algebraic results.52

Proposition 13.8. For any commutative ring, the map p 7→ V (p) gives a bijection
from SpecR to the set of irreducible closed subsets of SpecR.

Exercise 13.11: Prove Proposition 13.8.

Exercise 13.12: Explain why Proposition 13.8 is, in some sense, a Nullstellensatz
for an arbitrary commutative ring.

13.5. Noetherian spaces.

We wish to introduce a property of topological spaces which, from the standpoint
of conventional geometry, looks completely bizarre:

Proposition 13.9. For a topological space X, TFAE:
(i) Every ascending chain of open subsets is eventually constant.
(ibis) Every descending chain of closed subsets is eventually constant.
(ii) Every nonempty family of open subsets has a maximal element.
(iibis) Every nonempty family of closed subsets has a minimal element.
(iii) Every open subset is quasi-compact.
(iv) Every subset is quasi-compact.
A space satisfying any (and hence all) of these conditions is called Noetherian.

52In this case, the same Zorn’s Lemma argument establishes the existence of minimal primes,
so the topology is not making anything essentially easier for us...yet.
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Proof. The equivalence of (i) and (ibis), and of (ii) and (iibis) is immediate from
taking complements. The equivalence of (i) and (ii) is a general property of partially
ordered sets discussed in section X.X above.

(i) ⇐⇒ (iii): Assume (i), let U be any open set in X and let {Vj} be an open
covering of U . We assume for a contradiction that there is no finite subcovering.
Choose any j1 and put U1 := Vj1 . Since U1 ̸= U , there exists j2 such that U1 does
not contain Vj2 , and put U2 = U1∪Vj2 . Again our assumpion implies that U2 ) U ,
and continuing in this fashion we will construct an infinite properly ascending chain
of open subsets of X, contradiction. Conversely, assume (iii) and let {Ui}∞i=1 be an
infinite properly ascending chain of subsets. Then U =

∪
i Ui is not quasi-compact.

Obviously (iv) =⇒ (iii), so finally we will show that (iii) =⇒ (iv). Suppose
that Y ⊂ X is not quasi-compact, and let {Vi}i∈I be a covering of Y by relatively
open subsets without a finite subcover. We may write each Vi as Ui∩Y with Ui open
in Y . Put U =

∪
i Ui. Then, since U is quasi-compact, there exists a finite subset

J ⊂ I such that U =
∪
j∈J Uj , and then Y = U ∩ Y =

∪
j∈J Uj ∩ Y =

∪
j∈J Vj . �

Corollary 13.10. A Noetherian Hausdorff space is finite.

Proof. In a Hausdorff space every quasi-compact subset is closed. Therefore, using
the equivalence (i) ⇐⇒ (iv) in Proposition 13.9, in a Noetherian Hausdorff space
every subset is closed, so such a space is discrete. But it is also quasi-compact, so
it is finite. �

Proposition 13.11. For a ring R, TFAE:
(i) R satisfies the ascending chain condition on radical ideals.
(ii) SpecR is a Noetherian space.
In particular if R, or even Rred = R/ nil(R), is a Noetherian ring, SpecR is a
Noetherian space.

Proof. Since I 7→ V (I) gives a bijection between radical ideals and Zariski closed
subsets, (ACC) on radical ideals is equivalent to (DCC) on closed subsets. Evidently
these conditions occur if R is itself Noetherian, or, since SpecR is canonically
homeomorphic to SpecRred, if Rred is Noetherian. �

Proposition 13.12. Let X be a Noetherian topological space.
a) There are finitely many closed irreducible subsets {Ai}ni=1 such that X =

∪n
i=1Ai.

b) Starting with any finite family {Ai}ni=1 as in part a) and eliminating all redun-
dant sets – i.e., all Ai such that Ai ⊂ Aj for some j ̸= i – we arrive at the
set of irreducible components of X. In particular, the irreducible components of a
Noetherian space are finite in number.

Proof. a) Let X be a Noetherian topological space. We first claim that X can
be expressed as a finite union of irreducible closed subsets. Indeed, consider the
collection of closed subsets of X which cannot be expressed as a finite union of
irreducible closed subsets. If this collection is nonempty, then by Proposition 13.9
there exists a minimal element Y . Certainly Y is not itself irreducible, so is the
union of two strictly smaller closed subsets Z1 and Z2. But Z1 and Z2, being
strictly smaller than Y , must therefore be expressible as finite unions of irreducible
closed subsets and therefore so also can Y be so expressed, contradiction.

b) So write

X = A1 ∪ . . . ∪An
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where each Ai is closed and irreducible. If for some i ̸= j we have Ai ⊂ Aj , then
we call Ai redundant and remove it from our list. After a finite number of such
removals, we may assume that the above finite covering ofX by closed irreducibles is
irredundant in the sense that there are no containment relations between distinct
Ai’s. Now let Z be any irreducible closed subset. Since Z =

∪n
i=1(Z ∩Ai) and Z is

irreducible, we must have Z = Z ∩ Ai for some i, i.e., Z ⊂ Ai. It follows that the
“irredundant” Ai’s are precisely the maximal irreducible closed subsets, i.e., the
irreducible components. �

We deduce the following important result, which is not so straightforward to prove
using purely algebraic methods:

Corollary 13.13. Let I be a proper ideal in a Noetherian ring R. The set of prime
ideals p which are minimal over I (i.e., minimal among all prime ideals containing
I) is finite and nonempty.

Exercise 13.13: Prove Corollary 13.13.

13.6. Hochster’s Theorem.

A topological space X is sober if for every irreducible closed subspace Y of X,
there exists a unique point y ∈ Y such that Y = {y}. Equivalently, a sober space
is one for which every irreducible closed subset has a unique generic point.

Exercise 13.14:
a) Show that any Hausdorff space is sober.
b) Show that a sobser space is Kolmogorov.
c) Show that the cofinite topology on an infinite set is separated but not sober.

Exercise 13.15 (Sobrification): For any topological space X, let Xt be the set of

irreducible closed subsets of X. There is a natural map t : X → Xt via x 7→ {x}.
Give Xt the final topology with respect to t, i.e., the finest topology that makes t
continuous. (Explicitly, a subset V of Xt is open iff its preimage in X is open.)
a) Show the map t induces a bijection from the open subsets of X to the open
subsets of Xt.
b) Show that Xt is a sober space.
c) Show that t is universal for continuous maps from X to a sober topological
space: i.e., for every sober space Y and continuous f : X → Y , there exists a
unique continuous F : Xt → Y such that f = F ◦ t. Thus Xt is (unfortunately!)
called the sobrification of X.

A topological space X is spectral if:
(SS1) X is quasi-compact,
(SS2) X is sober, and
(SS3) The family of quasi-compact open subsets of X is closed under finite inter-
sections and is a base for the topology.

Remark: A Bourbakiste would insist that (SS3) =⇒ (SS1) by taking the empty
intersection. But we will not do so.
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Exercise 13.16: Show that a finite space is spectral iff it is T0.

The following result gives an arguably cleaner characterization of spectral spaces.

Proposition 13.14. . For a topological space X, TFAE:
(i) X is homeomorphic to an inverse limit of finite T0 spaces.
(ii) X is spectral.

Exercise 13.17: Prove Proposition 13.14.

Proposition 13.15. For any ring R, SpecR is spectral.

Exercise 13.18: Prove Proposition 13.15. (Hint: you will find the needed results in
the previous subsections. Especially, use Proposition 13.8 to prove sobriety.)

For any ring R we endow the set MaxSpec(R) of maximal ideals of R with the topol-
ogy it inherits as a subset of Spec(R). When necessary, we describe MaxSpecR as
the “maximal spectrum” of R.

Proposition 13.16. For any ring R, MaxSpecR is separated and quasi-compact.

Exercise 13.19: Prove Proposition 13.16.

Theorem 13.17. (Hochster’s Thesis [Ho69])
a) A spectral topological space is homeomorphic to the prime spectrum of some ring.
b) A separated quasi-compact space is homeomorphic to the maximal spectrum of
some ring.

We do not aspire to give a proof of Theorem 13.17 at this time.

Exercise 13.20: Show that every compact spaceX is homeomorphic to MaxSpec(C(X)),
where C(X) is the ring of continuous R-valued functions on X.

Exercise 13.21:
a) Show that the specialization relation gives an equivalence of categories between
the category of T0 finite spaces and the category of finite partially ordered sets.
b)* Formulate a generalization of part a) in which T0 finite spaces are replaced
by T0 Alexandroff spaces. (A topological space is Alexandroff if an arbitrary
intersection of closed subsets is closed.)

Exercise 13.22: Let n ∈ Z+.
a) Use Hochster’s Thesis and the previous exercise to show that there exists a ring
R with exactly n prime ideals p1, . . . , pn such that p1 ⊂ p2 ⊂ . . . ⊂ pn.
b) For n = 1, 2, exhibit Noetherian rings with these properties. For n ≥ 3, show
that there is no such Noetherian ring.

13.7. Rank functions revisited.

Theorem 13.18. Let M be a finitely generated module over a ring R.
a) For each n ∈ N, the set

Ur = {p ∈ SpecR | Mp can be generated over Rp by at most r elements}
is open in SpecR.
b) If M is finitely presented (e.g. if R is Noetherian), then the set

UF = {p ∈ SpecR | Mp is a free Rp-module}
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is open in SpecR.

Proof. (Matsumura) SupposeMp = ⟨ω1, . . . , ωr⟩Rp
. Each ωi is of the form

mi

si
with

mi ∈M and si ∈ R \ p. But since si ∈ R×
p for all i, we also have ⟨m1, . . . ,mr⟩Rp

=
Mp. Thus it is no loss of generality to assume that each ωi is the image in Mp of
an element of M . Let φ : Rr → M be the R-linear map given by (a1, . . . , ar) 7→∑
i aiωi, and put C = cokerφ, whence an exact sequence

Rr →M → C → 0.

Localizing this at a prime q of R gives an exact sequence

Rrq →Mq → Cq → 0.

When q = p we of course have Cq = 0. Moreover, C is a quotient of M hence
a finitely generated R-module, so by Proposition 10.11 its support suppC is a
Zariski-closed set. It follows that there exists an open neighborhood V of p such
that Cq = 0 for all q ∈ V .
b) Suppose that Mp is a free Rp-module with basis ω1, . . . , ωr. As above it is no
loss of generality to assume that each ωi is the image in Mp of an element of M .
Moreover, as we have also just seen, there exists a basic open neighborhood U(f)
such that for all q ∈ U(f), the images of ω1, . . . , ωr in Mq generate Mq as an Rq-
module. Replacing R by Rf and M by Mf we may assume that this occurs for all
q ∈ SpecR. Thus M/⟨ω1, . . . , ωr⟩R is everywhere locally zero, so it is locally zero:
M = ⟨ω1, . . . , ωr⟩. Defining an R-linear map φ : Rr → M as above and setting
K = Kerφ, we have the exact sequence

0 → K → Rr →M → 0.

Since M is finitely presented, according to Proposition 3.6 K is a finitely generated
R-module. Moreover we have Kp = 0 hence as above Kq = 0 for all q on some open
neighborhood V of p. By construction, for each q ∈ V , the images of ω1, . . . , ωr in
Mq give an Rq-basis for Mq. �

Let M be a finitely generated, locally free module over a ring R. Earlier we defined
the rank function r : SpecR → N. Applying Theorem 13.18a) to the locally free
module M says that the rank function is lower-semicontinuous: it can jump up
upon specialization, but not jump down.

We now ask the reader to look back at Theorem 7.22 and see that for a finitely
generated module M over a general ring R, M is projective iff it is locally free and
finitely presented. When R is Noetherian, being finitely presented is equivalent to
being finitely generated, so being projective is the same as being locally free. How-
ever, in the general case we have had little to say about the distinction between
finitely presented and finitely generated modules. Is there some way to rephrase
the subtly stronger property of finite presentation, perhaps a more geometric way?

Indeed there is:

Theorem 13.19. Let M be a finitely generated locally free R-module. TFAE:
(i) The rank function rM : SpecR→ N is locally constant.
(ii) M is a projective module.
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Proof. (i) =⇒ (ii): By Theorem 7.22, it is enough to show that for all m ∈
MaxSpecR, there is f ∈ R \ m such that Mf is a free module. Let n = r(m), and
let x1, . . . , xn be an Rm-basis for Mm. Choose X1, . . . , Xn ∈M such that for all i,
the image of Xi in Mm is of the form uixi for uu ∈ R×

m. Let u : Rn → M be the
map sending the ith standard basis element ei to Xi. SinceM is finitely generated,
by Proposition 7.20 there is f ∈ R \ m such that uf : Rnf → Mf is surjective. It

follows that for all g ∈ R \ m, ufg is surjective. Moreover, by hypothesis there is
some such g such that r(p) = n for all p ∈ X(g). Replacing f by fg we may assume
that r(p) = n for all p ∈ X(f). For all such p, up : Rnp → Mp is therefore a sur-
jective endomorphism from a rank n free module to itself. Since finitely generated
modules are Hopfian, up is an isomorphism. By the local nature of isomorphisms
(Proposition 7.12) we conclude uf is an isomorphism, so Mf is free.
(ii) =⇒ (i): By Theorem 7.22, M is Z-locally free: there exists a finite Z-family
{fi}i∈I such that for all i ∈ I, Mfi is finitely generated and free. Thus the mod-
ule

∏n
i=1Mfi is finitely generated and projective over the faithfully flat R-algebra∏n

i=1Rfi , so by faithfully flat descent (Theorem 3.104) M itself is projective. �
Corollary 13.20. Let R be a ring with SpecR irreducible (e.g. a domain). For a
finitely generated R-module M , TFAE:
(i) R is projective.
(ii) R is Z-locally free.
(iii) R is locally free.
(iv) R is flat.

Exercise 13.24: Prove Corollary 13.20.

14. Integrality in Ring Extensions

14.1. First properties of integral extensions.

If S is a ring extension of R – i.e., R ⊂ S – we will say that an element α of
S is integral over R if there exist a0, . . . , an−1 ∈ R such that

αn + an−1α
n−1 + . . .+ a1α+ a0 = 0.

Note that every element α ∈ R satisfies the monic polynomial t − α = 0, so is
integral over R.

Theorem 14.1. Let R ⊂ T be an inclusion of rings, and α ∈ T . TFAE:
(i) α is integral over R.
(ii) R[α] is finitely generated as an R-module.
(iii) There exists an intermediate ring R ⊂ S ⊂ T such that α ∈ S and S is finitely
generated as an R-module.
(iv) There exists a faithful R[α]-submodule M of T which is finitely generated as
an R-module.

Proof. (i) =⇒ (ii): If α is integral over R, there exist a0, . . . , an−1 ∈ R such that

αn + an−1α
n−1 + . . .+ a1α+ a0 = 0,

or equivalently
αn = −an−1α

n−1 − . . .− a1α− a0.

This relation allows us to rewrite any element of R[α] as a polynomial of degree at
most n− 1, so that 1, α, . . . , αn−1 generates R[α] as an R-module.
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(ii) =⇒ (iii): Take T = R[α].
(iii) =⇒ (iv): Take M = S.
(iv) =⇒ (i): Letm1, . . . ,mn be a finite set of generators forM over R, and express
each of the elements miα in terms of these generators:

αmi =
n∑
j=1

rijmj , rij ∈ R.

Let A be the n× n matrix αIn − (rij); then recall from linear algebra that

AA∗ = det(A) · In,
where A∗ is the “adjugate” matrix (of cofactors). If m = (m1, . . . ,mn) (the row
vector), then the above equation implies 0 = mA = mAA∗ = mdet(A) · In. The
latter matrix equation amounts to mi det(A) = 0 for all i. Thus •det(A) = •0 on
M , and by faithfulness this means det(A) = 0. Since so that α is a root of the
monic polynomial det(T · In − (aij)). �

Exercise 14.1: Let S be a finitely generated R-algebra. Show that TFAE:
(i) S/R is integral.
(ii) S is finite over R (as an R-module!).
In particular, if S/R is an extension and α1, . . . , αn are all integral over R, then
R[α1, . . . , αn] is a finitely generated R-module.

Proposition 14.2. (Integrality is preserved under quotients and localizations)
Let S/R be an integral ring extension.
a) Let J be an ideal of S. Then S/J is an integral extension of R/(J ∩R).
b) Let T be a multiplicatively closed subset of nonzero elements of R. Then ST is
an integral extension of RT .

Proof. a) First note that the kernel of the composite map R ↪→ S → S/J is J ∩R,
so that R/(J ∩R) ↪→ S/J is indeed a ring extension. Any element of S/J is of the
form x + J for x ∈ S, and if P (t)tn + an−1t

n−1 + . . . + a1t + a0 = 0 ∈ R[t] is a
polynomial satisfied by x, then reducing coefficientwise gives a monic polynomial
P (t) ∈ R/(J ∩R) satisfied by x.

b) Let J = {s ∈ S | ∃t ∈ T | ts = 0}, an ideal of S. Let T be the image of T in
R/(J ∩ R). Then ST ∼= (S/J)T and JT ∼= (R/(J ∩ R))T , so we may assume that
the maps R → RT and S → ST are injective. Let x

y ∈ ST with x ∈ S, y ∈ T . Let

P (t) = tn + an−1t
n−1 + . . .+ a0 ∈ R[t] be a monic polynomial satisfied by x. Then(

x

y

)n
+
an−1

y

(
x

y

)n−1

+ . . .+
a0
yn

= 0,

showing that x
y is integral over RT . �

Lemma 14.3. Let R ⊂ S ⊂ T be an inclusion of rings. If α ∈ T is integral over
R, then it is also integral over S.

Proof. If α is integral over R, there exists a monic polynomial P ∈ R[t] such that
P (α) = 0. But P is also a monic polynomial in S[t] such that P (α) = 0, so α is
also integral over S. �

Lemma 14.4. Let R ⊂ S ⊂ T be rings. If S is a finitely generated R-module and
T is a finitely generated S-module, then T is a finitely generated R-module.
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Proof. If α1, . . . , αr generates S as an R-module and β1, . . . , βs generates T as an
S-module, {αiβj}1≤i≤r,1≤j≤s generates T as an R-module: for α ∈ T ,

α =
∑
j

bjβj =
∑
i

∑
j

(aijαi)βj ,

with bj ∈ S and aij ∈ R. �

Corollary 14.5. (Transitivity of integrality) If R ⊂ S ⊂ T are ring extensions
such that S/R and T/S are both integral, then T/R is integral.

Proof. For α ∈ S, let αn + bn−1α
n−1 + . . . + b1α + b0 = 0 be an integral de-

pendence relation, with bi ∈ S. Thus R[b1, . . . , bn−1, α] is finitely generated over
R[b1, . . . , bn−1]. Since S/R is integral, R[b1, . . . , bn−1] is finite over R. By Lemma
14.4, R[b1, . . . , bn−1, α] is a subring of T containing α and finitely generated over
R, so by Theorem 14.1, α is integral over R. �

Corollary 14.6. If S/R is a ring extension, then the set IS(R) of elements of S
which are integral over R is a subring of S, the integral closure of R in S.
Thus R ⊂ IS(R) ⊂ S.

Proof. If α ∈ S is integral over R, R[α1] is a finitely generated R-module. If α2 is
integral over R it is also integral over R[α1], so that R[α1][α2] is finitely generated
as an R[α1]-module. By Lemmma 14.4, this implies that R[α1, α2] is a finitely
generated R-module containing α1±α2 and α1 ·α2. By Theorem 14.1, this implies
that α1 ± α2 and α1α2 are integral over R. �

If R ⊂ S such that IS(R) = R, we say R is integrally closed in S.

Proposition 14.7. Let S be a ring. The operator R 7→ IS(R) on subrings of R is
a closure operator in the abstract sense, namely it satisfies:
(CL1) R ⊂ IS(R),
(CL2) R1 ⊂ R2 =⇒ IS(R1) ⊂ IS(R2).
(CL3) IS(IS(R)) = IS(R).

Proof. (CL1) is the (trivial) Remark 1.1. (CL2) is obvious: evidently if R1 ⊂ R2,
then every element of S which satisfies a monic polynomial with R1-coefficients
also satisfies a monic polynomial with R2-coefficients. Finally, suppose that α ∈ S
is such that αn + an−1α

n−1 + . . . + a1α + a0 = 0 for ai ∈ IS(R). Then each ai
is integral over R, so R[a1, . . . , an] is finitely generated as an R-module, and since
R[a1, . . . , an, α] is finitely generated as an R[a1, . . . , an]-module, applying Lemma
14.4 again, we deduce that α lies in the finitely generated R-module R[a1, . . . , an, α]
and hence by Theorem 14.1 is integral over R. �

14.2. Integral closure of domains.

Until further notice we restrict to the case in which R ⊂ S are integral domains.

Proposition 14.8. Let R ⊂ S be an integral extension of domains.
a) R is a field iff S is a field.
b) An extension of fields is integral iff it is algebraic.

Proof. a) Suppose first that R is a field, and let 0 ̸= α ∈ S. Since α is integral over
R, R[α] is finitely generated as anR-module, and it is well-known in field theory that
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this implies R[α] = R(α). Indeed, taking the polynomial of least degree satisfied
by α, say α(αn−1 + an−1α

n−2 + . . .+ a1) = −a0, then 0 ̸= a0 ∈ R is invertible, so

−(αn−1 + an−1α
n−2 + . . .+ a1)

a0
=

1

α
,

and S is a field. Conversely, if S is a field and a ∈ R, then R[a−1] is finite-
dimensional over R, i.e., there exist ai ∈ R such that

a−n = an−1a
−n+1 + . . .+ a1a

−1 + a0.

Multiplying through by an−1 gives

a−1 = an−1 + an−2a+ . . .+ a1a
n−2 + a0a

n−1 ∈ R,

completing the proof of part a). Over a field every polynomial relation can be
rescaled to give a monic polynomial relation, whence part b). �

Remark: A more sophisticated way of expressing Proposition 14.8 is that if S/R is
an integral extension of domains, then dimR = 0 iff dimS = 0. Later we will see
that in fact dimR = dimS under the same hypotheses.

If R ⊂ S are fields, IS(R) is called the algebraic closure of R in S.

Exercise 14.2:
a) Let S/R be an extension of fields. If S is algebraically closed, then so is IS(R).
b) Deduce that if R = Q, S = C, then IS(R) is an algebraically closed, algebraic
extension of Q, denoted Q and called the field of all algebraic numbers.

Theorem 14.9. Let S/R be an extension of integral domains, and let T ⊂ R be
a multiplicatively closed subset. Then IT−1S(T

−1R) = T−1IS(R). In other words,
localization commutes with integral closure.

Proof. LetK be the fraction field of R and L the fraction field of S. Then T−1IS(R)
is the subring of L generated by T−1 and the elements of S which are integral overR.
Since both of these kinds of elements of T−1S are integral over T−1R and integral
elements form a subring, we must have T−1IS(R) ⊂ IT−1S(T

−1R). Conversely, let
x ∈ T−1S be integral over T−1(R), so there are b0, . . . , bn−1 ∈ T−1(R) such that

xn + bn−1x
n−1 + . . .+ b1x+ b0 = 0.

We may take a common denominator t ∈ T such that x = s
t and for all 0 ≤ i ≤ n−1,

bi =
ai
t . Making this substitution and multiplying through by tn, we get

sn + an−1s
n−1 + tan−2s

n−2 + . . .+ tn−2a1s+ tn−1 = 0.

Thus s is integral ove R and x = s
t ∈ T−1IS(R). �

Proposition 14.10. Let S/R be an extension of domains. Let K be the fraction
field of R and M the fraction field of S. Then the fraction field of IS(R) is IM (K).

Proof. We write L for the fraction field of IS(R). First we show IM (K) ⊂ L: let x ∈
IS(K)•, so there are a0, . . . , an−1 ∈ K such that xn+an−1x

n−1+ . . .+a1x+a0 = 0.
After clearing denominators and relabelling, we get a0, . . . , an ∈ R such that

anx
n + an−1x

n−1 + . . .+ a1x+ a0 = 0.
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Multiplying through by an−1
n , we get

(anx)
n + an−1(anx)

n−1 + . . .+ a1a
n−2
n (anx) + an−1

n a0 = 0,

which shows anx ∈ IS(R), so x ∈ IS(R) · (R \ 0)−1 ⊂ L.
The reverse inclusion L ⊂ IM (K) is quite similar, since an arbitrary nonzero

element x of L is of the form α
β with α, β integral over R. But then certainly α and

β are both integral over K – i.e., algebraic over K, and then so also are β−1 and
x = α

β . So again x satisfies a polynomial ant
n + . . . with coefficients in R and then

anx is integral over R, hence anx and an are algebraic over K and thus x = anx
x is

algebraic over K so lies in IM (K). �
Example: If R = Z, S = C, then IS(R) is called the ring of all algebraic inte-
gers, and often denoted Z. By Proposition 14.10, its fraction field is the field Q of
all algebraic numbers. This turns out to be a very interesting ring, and it will crop
up several times in the sequel as an example or counterexample. For instance:

Exercise 14.3: Show that Z is not finitely generated as a Z-module.53

Corollary 14.11. Let R be a domain with fraction field K and M/K an arbitrary
field extension. Put S = IM (R). Then S is integrally closed.

Proof. By Proposition 14.10, the field of fractions L of S is the algebraic closure of
K in M . If x ∈ L is integral over R, then since L ⊂M it lies in IM (R) = S. �
Remark on terminology: It is unfortunate that the word “integral” in commuta-
tive algebra is used both to describe rings without zero divisors and also – quite
distinctly – to describe an extension satisfying a certain kind of finiteness condi-
tion. The first use of the word “integral” is essentially redundant in the algebraic
setting: if we just said “domain” instead of “integral domain”, the meaning would
be the same. However, in geometric language one has the notion of an “integral
scheme”; in the case of the affine scheme SpecR associated to a commutative ring
R, the meaning of this is precisely that R be a domain, and because of this it is
undesirable to banish the “integral” from “integral domain.” Perhaps it would be
better instead to replace the term “integral extension.” We leave it as an exercise
to the reader to suggest some alternate terminology: this is less silly than it sounds,
because in order to do this one needs to grapple with the question, “What is an
integral extension, really?” It is perhaps telling that there is, so far as I know, no
notion of an “integral scheme extension” in algebraic geometry.

Let R be an integral domain with fraction field K. We say that R is integrally
closed if IK(R) = R, i.e., if any element of the fraction field satisfying a monic in-
tegral polynomial with R-coefficients already belongs to R. It follows immediately
from Proposition 14.7 that in any case IK(R) is integrally closed.

Exercise 14.4: Let R = Z[
√
−3] = Z[t]/(t2 + 3). Show that R is not integrally

closed, and compute its integral closure.

The geometric terminology for an integrally closed domain is normal. The process
of replacing R by its integral closure IK(R) is often called normalization.

53In fact it is not even a Noetherian ring, so not even finitely generated as a Z-algebra.
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14.3. Spectral properties of integral extensions.

Going down (GD): If we have I1 ⊃ I2 of R and J1 ∈ SpecS such that J1 ∩R = I1,
there exists J2 ∈ SpecS such that J2 ⊂ J1 and J2 ∩R = I2.

Lemma 14.12. Let R be a local ring with maximal ideal p and S/R an integral
extension. Then the pushed forward ideal pS is proper.

Proof. Suppose not: then there exist pi ∈ p, si ∈ S such that 1 =
∑
i sipi.

Therefore any counterxample would take place already in the finite R-module
R[s1, . . . , sd]. By induction on d, it is enough to consider the case of n = 1:
S = R[s]. Consider as usual a relation

(30) sn = an−1s
n−1 + . . .+ a1s+ a0, ai ∈ R

of minimal possible degree n. If 1 ∈ pS then we have

(31) 1 = p0 + p1s+ . . .+ pks
k, pi ∈ p.

In view of (30) we may assume k ≤ n− 1. Since 1− p0 is not in the maximal ideal
of the local ring R, it is therefore a unit; we may therefore divide (31) by 1 − p0
and get an equation of the form

1 = p′1s+ . . .+ p′qs
q, p′i ∈ p.

This shows that s ∈ S×. Replacing a0 = a0 · 1 in (30) by a0(p
′
1s + . . .+ p′qs

q), we
get an integral dependence relation which is a polynomial in s with no constant
term. Since s is a unit, we may divide through by it and get an integral dependence
relation of smaller degree, contradiction. �
Theorem 14.13. An integral ring extension S/R satisfies property (LO):54 every
prime ideal p of R is of the form S ∩ P for a prime ideal P of S.

Proof. For p a prime ideal of R, we denote – as usual – by Rp the localization of R
at the multiplicatively closed subset R \ p. Then Rp is local with unique maximal
ideal pRp, and if we can show that there exists a prime ideal Q of Sp lying over
pRp, then the pullback P = Q ∩ S to S is a prime ideal of S lying over p. By
Lemma 14.12, there exists a maximal ideal Q ⊃ pS and then Q ∩ R is a proper
ideal containing the maximal ideal p and therefore equal to it. �
Corollary 14.14. (Going up theorem of Cohen-Seidenberg [CS46]) Let S/R be an
integral extension and p ⊂ q be two prime ideals of R. Let P be a prime ideal of S
lying over p (which necessarily exists by Theorem 14.13). Then there exists a prime
ideal Q of S containing P and lying over q.

Proof. Apply Theorem 14.13 with R = R/p S = S/P and p = q/p. �
Corollary 14.15. (Incomparability) Suppose S/R is integral and P ⊂ Q are two
primes of S. Then P ∩R ̸= Q∩R.

Proof. By passage to S/P, we may assume that P = 0 and S is an integral domain,
and our task is to show that any nonzero prime ideal P of S lies over a nonzero
ideal of R. Indeed, let 0 ̸= x ∈ P, and let P (t) = tn + an−1t

n−1 + . . . + a0 ∈ R[t]
be a monic polynomial satisfied by x; we may assume a0 ̸= 0 (otherwise divide by
t). Then a0 ∈ xS ∩R ⊂ P ∩R. �

54Or, lying over.
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Corollary 14.16. Let S/R be an integral extension, P a prime ideal of S lying
over p. Then P is maximal iff p is maximal.

Proof. First proof: Consider the integral extension S/P/(R/p); the assertion to be
proved is that S/P is a field iff R/p is a field. But this is precisely Proposition 14.8a).

Second proof: If p is not maximal, it is properly contained in some maximal ideal
q. By the Going Up Theorem, there exists a prime Q ⊃ P lying over q, so P
is not maximal. Conversely, suppose that p is maximal but P is not, so there
exists Q ) P. Then Q ∩ R is a proper ideal containing the maximal ideal p, so
Q∩R = p = P ∩R, contradicting the Incomparability Theorem. �

Invoking Going Up and Incomparability to (re)prove the elementary Corollary 14.16
is overkill, but these more sophisticated tools also prove the following

Corollary 14.17. Let S/R be an integral extension of rings. Then the Krull di-
mensions of R and S are equal.

Proof. Recall that the Krull dimension of a ring is the supremum of the length of a
finite chain of prime ideals. Suppose p0 ( p1 ( . . . ( pd are primes in R. Applying
Theorem 14.1, we get a prime P0 of S lying over p0, and then repeated application
of the Going Up Theorem yields a chain of primes P0 ( P1 ( . . . ( Pd, so that
dim(S) ≥ dim(R). Similarly, if we have a chain of prime ideals P0 ( . . . ( Pd of
length d in S, then Theorem 14.15 implies that for all 0 ≤ i < d, Pi∩R ( Pi+1. �

14.4. Integrally closed domains.

Let S/R be an extension of integral domains. Immediately from the definition
of integrality, there is a concrete way to show that x ∈ S is integral over R: it
suffices to exhibit a monic polynomial P ∈ R[t] with P (x) = 0. What if we want
to show that x ∈ S is not integral over R? It would suffice to show that R[x] is not
a finitely generated R-module, but exactly how to do this is not clear.

As an example, it is obvious that α =
√
2 is an algebraic integer, but unfortu-

nately it is not obvious that β =
√
2
2 is not an algebraic integer. (And of course we

need to be careful, because e.g. γ = 1+
√
5

2 is an algebraic integer, since it satisfies

t2+ t− 1 = 0.) One thing to notice is that unlike α and γ, the minimal polynomial
of β, t2 − 1

2 , does not have Z-coefficients. According to the next result, this is
enough to know that β is not integral over Z.

Theorem 14.18. Let R be a domain with fraction field K, S/R an extension ring,
and x ∈ S an integral element over R.
a) Let P (t) ∈ K[t] be the minimal polynomial of x over K. Then P (t) ∈ IK(R)[t].
b) If R is integrally closed, the minimal polynomial of x has R-coefficients.

Proof. a) We may assume without loss of generality that S = R[x]; then, by inte-
grality, S is a finite R-module. Let L be the fraction field of S, d = [L : K], and
let s1, . . . , sd be a K-basis for L consisting of elements of S. Because the minimal
polynomial P (t) is irreducible over K, it is also the characteristic polynomial of
x· viewed as a K-linear automorphism of L. Evidently the matrix Mx of x· with
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respect to the basis s1, . . . , sd has coefficients in S ∩K, hence in IK(R). The coef-
ficients of P (t) are polynomials in the entries of the matrix Mx, hence they also lie
in IK(R). Part b) follows immediately. �

Exercise 14.5: Let R be a domain with fraction field K. Let S/R be an extension
such that for every x ∈ S which is integral over R, the minimal polynomial P (t) ∈
K[t] has R-coefficients. Show that R is integrally closed.

Theorem 14.19. (Local nature of integral closure) For a domain R, TFAE:
(i) R is integrally closed.
(ii) For all prime ideals p of R, Rp is integrally closed.
(iii) For all maximal ideals m of R, Rm is integrally closed.

Proof. Let K be the fraction field of R. Assume (i), and let p ∈ SpecR. By
Theorem 14.9, the integral closure of Rp in K is Rp. Evidently (ii) =⇒ (iii).
Assume (iii), and let x be an element of K which is integral over R. Then for every
maximal ideal m of R, certainly x is integral over Rm, so by assumption x ∈ Rm

and thus x ∈
∩

mRm. By Corollary 7.13 we have
∩

mRm = R. �

Exercise 14.6: Let R be an integrally closed domain with fraction field K, L/K an
algebraic field extension, S the integral closure of R in L and G = Aut(L/K).
a) Show that for every σ ∈ G, σ(S) = S.
b) For P ∈ SpecS and σ ∈ G, show σ(P) = {σ(x) | x ∈ P} is a prime ideal of S.
c) Show that P ∩R = σ(P) ∩R.
In conclusion, for every p ∈ SpecR, there is a well-defined action of G on the
(nonempty!) set of prime ideals P of S lying over p.

Lemma 14.20. Let R be a domain with fraction field K of characteristic p > 0, let
L/K be a purely inseparable algebraic extension of K (possibly of infinite degree),
and let S be the integral closure of R in L. For any p ∈ SpecR, rad(pR) is the
unique prime of S lying over p.

Exercise 14.7: Prove Lemma 14.20. (Suggestions: recall that since L/K is purely
inseparable, for every x ∈ L, there exists a ∈ N such that xp

a ∈ K. First observe
that rad(pR) contains every prime ideal of S which lies over p and then show that
rad(pR) is itself a prime ideal.)

Theorem 14.21. (Going Down Theorem of Cohen-Seidenberg [CS46]) Let R be
an integrally closed domain with fraction field K, and let S be an integral extension
of R. If p1 ⊂ p2 are prime ideals of R and P2 is a prime ideal of S lying over p2,
then there exists a prime ideal P1 of S which is contained in P2 and lies over p1.

Proof. Let L be a normal extension of K containing S, and let T be the integral
closure of R in L. In particular T is integral over S, so we may choose Q2 ∈ SpecT
lying over P2 and also Q1 ∈ SpecT lying over p1. By the Going Up Theorem there
exists Q′ ∈ SpecT containing Q1 and lying over p2. Both Q2 and Q′ lie over p2,
so by Theorem 14.36 there exists σ ∈ Aut(L/K) such that σ(Q′) = Q2. Thus
σ(Q1) ⊂ σ(Q′) = Q2 and σ(Q1) lies over p1, so that setting P1 = σ(Q1) ∩ S we
have P1 ∩R = p1 and P1 ⊂ σ(Q′) ∩ S = Q2 ∩ S = P2. �

Remark: In [AM, Chapter 5] one finds a proof of Theorem 14.21 which avoids all
Galois-theoretic considerations. However it is significantly longer than the given
proofs of Theorems 14.36 and 14.21 combined and – to me at least – rather opaque.



228 PETE L. CLARK

14.5. The Noether Normalization Theorem.

14.5.1. The classic version.

Theorem 14.22. (Noether Normalization) Let k be a field, R = k[x1, . . . , xm] an
integral domain which is a finitely generated k-algebra,55 and let K be the fraction
field of R.
a) There exists d ∈ Z, 0 ≤ d ≤ m, and algebraically independent elements y1, . . . , yd ∈
R such that R is finitely generated as a module over the polynomial ring k[y1, . . . , yd]
– or equivalently, that R/k[y1, . . . , yd] is an integral extension.
b) The integer d is equal to both the Krull dimension of R and the transcendence
degree of K/k.

Proof. a) (Jacobson) The result is trivial if m = d, so we may suppose m > d.
Then the yi are algebraically dependent over k: there exists a nonzero polynomial

f(s1, . . . , sm) =
∑

aJs
j1
1 · · · sjmm , aJ ∈ k[s1, . . . , sm]

with f(x1, . . . , xm) = 0. Let X be the set of monomials sJ = sj11 · · · sjmm occuring
in f with nonzero coefficients. To each such monomial we associate the univariate
polynomial

j1 + j2t+ . . .+ jmt
m−1 ∈ Z[t].

The polynomials obtained in this way from the elements of X are distinct. Since
a univariate polynomial over a field has only finitely many zeroes, it follows that
there exists a ≥ 0 such that the integers j1 + j2a+ . . .+ jma

m−1 obtained from the
monomials in X are distinct. Now consider the polynomial

f(s1, s
a
1 + t1, . . . , s

am−1

1 + tm) ∈ k[s, t].

We have

f(s1, s
a
1 + t1, . . . , s

am−1

1 + tm) =
∑
J

aJs
j1
1 (sd1 + t2)

j2 · · · (sa
m−1

1 + tm)jm

=
∑
J

aJs
j1+j2a+...+jma

m−1

1 + g(s1, t2, . . . , ym),

in which the degree of g in s1 is less than that of
∑
J aJs

j1+j2a+...+j
mam−1

1 . Hence

for suitable β ∈ k×, βf(s1, s
a
1 + t2, . . . , s

am−1

1 + tm) is a monic polynomial in x1
with k[t2, . . . , tm]-coefficients. Putting wi = xi − xa

i−1

1 for 2 ≤ i ≤ m, we get

βf(x1, x
d
1 + w2, . . . , x

am−1

1 + wm) = 0,

so that x1 is integral over R
′ = k[w2, . . . , wm]. By induction on the number of gener-

ators, R′ has a transcendence base {yi}di=1 such that R′ is integral over k[y1, . . . , yd].
Thus R is integral over k[y1, . . . , yd] by transitivity of integrality.
b) Since R/k[y1, . . . , yd] is integral, by Corollary 14.17 the Krull dimension of R is
equal to the Krull dimension of k[y1, . . . , yd], which by Corollary 12.17 is d. Since
R is finitely generated as a k[y1, . . . , yd] algebra, by Proposition 14.10 K is finitely
generated as a k(y1, . . . , yd)-module, so trdegK/k = trdeg k(y1, . . . , yd) = d. �

55Here the xi’s are not assumed to be independent indeterminates.
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14.5.2. Separable Noether Normalization.

Let K be a field and let K an algebraic closure of K. A field extension L/K
is regular if L⊗K K is a field (equivalently, a domain).

For a field extension L/K, we say K is algebraically closed in L if any ele-
ment of L which is algebraic over K lies in K. It is an easy exercise to show that if
L/K is regular, K is algebraically closed in L. The converse is true in characteristic
zero, but in positive characteristic we need a further hypothesis:

Theorem 14.23. Let L/K be a field extension.
a) The following are equivalent:
(i) L/K is regular.
(ii) L/K is separable and K is algebraically closed in L.
b) In particular, if K is perfect and algebraically closed in L, then L/K is regular.

Proof. a) The key result here is Mac Lane’s Theorem [FT, §12]: a field extension

L/K is separable iff L and Kp−∞
are linearly disjoint over K.

(i) =⇒ (ii): If L/K is regular, then as above K is algebraically closed in K.

Further, since L and K are linearly disjoint over K, certainly L and Kp−∞
are

linearly disjoint over K.

(ii) =⇒ (i): LetK ′ = Kp−∞
and L′ = L⊗KK ′. Since L⊗KK = (L⊗KK ′)⊗K′K =

L′⊗K′K, it is enough to show that L′ is a field and L′⊗K′K is a field. Now L′ is a
field by Mac Lane’s Theorem, and since K ′ is perfect, K/K ′ is a Galois extension,
and thus by [FT, §12.3], since L′ ∩K = K ′, L′ and K are linearly disjoint over K ′.
b) If K is perfect, every extension of K is separable. Apply part a). �

Theorem 14.24. (Separable Noether Normalization) Let k be a field, and let R
be a domain which is finitely generated as a k-algebra. Assume moreover that the
fraction field L of R is a regular extension of k.
a) There exists d ∈ Z, 0 ≤ d ≤ m, and algebraically independent elements y1, . . . , yd ∈
R such that R is finitely generated as a k[y1, . . . , yd]-module and L/k(y1, . . . , yd) is
a finite separable field extension.
b) The integer d is equal to both the Krull dimension of R and the transcendence
degree of K/k.

For now we refer the reader to [Eis, Cor. 16.18] for the proof.

14.5.3. Noether normalization over a domain.

Theorem 14.25. (Noether Normalization II) Let R ⊂ S be domains with S finitely
generated as an R-algebra. There exists a ∈ R• and y1, . . . , yd ∈ S algebraically
independent over the fraction field of R such that Sa (the localization of S at the
multiplicative subset generated by a) is finitely generated as a module over T =
Ra[y1, . . . , yd].

Proof. (K.M. Sampath) Let K be the fraction field of R and let x1, . . . , xm be a set
of R-algebra generators for S. Then

S′ := S ⊗R K = K[x1, . . . , xm]

is finitely generated over K (as above, the xi’s need not be algebraically inde-
pendent). Applying Theorem 14.22, we get algebraically independent elements
y1, . . . , yd ∈ S′ such that S′ is a finitely generated T ′ := K[y1, . . . , yd]-module.
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Multiplying by a suitable element of R×, we may assume yi ∈ S for all i.
Since S′ is finitely generated as a T ′-module, it is integral over T ′. For 1 ≤ i ≤ m,

xi satisfies a monic polynomial equation with coefficients in T ′:

yn1 + Pi,1(y1, . . . , yd)y
n−1
i + . . .+ Pi,n = 0.

Let a be the product of the denominators of all coefficients of all the polynomials
Pi,k. It follows that Sa is integral and finitely generated as a T = Ra[y1, . . . , yd]-
algebra, hence it is finitely generated as a T -module. �
Exercise 14.8: In the setting of Theorem 14.25 suppose that S is a graded R-algebra.
Show that we may take all the yi to be homogeneous elements.

14.5.4. Applications.

The Noether Normalization Theorem is one of the foundational results in algebraic
geometry: geometrically, it says that every integral affine variety of dimension d is
a finite covering of affine d-space Ad. Thus it allows us to study arbitrary varieties
in terms of rational varieties via branched covering maps. It is almost as important
as a theorem of pure algebra, as even the “soft” part of the result, that the Krull
dimension of an integral affine k-algebra is equal to the transcendence degree of its
fraction field, is basic and useful.

One of the traditional applications of Noether Normalization is to prove Hilbert’s
Nullstellensatz. As we have seen, it is fruitful to channel proofs of the Nullstellen-
satz through Zariski’s Lemma, and this is no exception.

Proposition 14.26. Noether Normalization implies Zariski’s Lemma.

Exercise 14.9: Prove Proposition 14.26.

Theorem 14.27. Let k be a field, and let R be a domain which is finitely generated
as a k-algebra, with fraction field K. Then:
a) The Krull dimension of R is equal to the transcendence degree of K/k.
b) Every maximal chain of prime ideals in R has length dimR.

Proof. a) By Noether normalization, R is finite over k[t1, . . . , td], so K is finite
over k(t1, . . . , td). Thus the transcendence degree of K/k is d. On the other hand,
R is integral over k[t1, . . . , td] so by Theorem 14.17 dimR = dim k[t1, . . . , td]. By
Corollary 12.17, dim k[t1, . . . , td] = d.
b) See Madapusi-Sampath, p. 119... �
14.6. Some Classical Invariant Theory.

Let R be a commutative ring, let G be a finite group, and suppose G acts on
R by automorphisms, i.e., we have a homomorphism ρ : G→ Aut(R). We define

RG = {x ∈ R |∀g ∈ G, gx = x},
the ring of G-invariants – it is indeed a subring of R.

Remark: As in the case of rings acting on commutative groups, we say that G-
action on R is faithful if the induced homomorphism ρ : G→ Aut(R) is injective.
Any G-action induces a faithful action of G/ ker(ρ), so it is no real loss of general-
ity to restrict to faithful G-actions. We will do so when convenient and in such a
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situation identify G with its isomorphic image in AutR.

The simplest case is that in which R = K is a field. Then KG is again a field
and K/KG is a finite Galois extension. Conversely, for any finite Galois extension
K/F , F = KAut(K/F ). This characterization of Galois extensions was used by
E. Artin as the foundation for an especially elegant development of Galois theory
(which swiftly became the standard one). Note also the analogy to topology: we
have the notion of a finite Galois covering Y → X of topological spaces as one for
which the group G = Aut(Y/X) of deck transformations acts freely and properly
discontinuously on Y such that Y/G = X.

The branch of mathematics that deals with invariant rings under linear group ac-
tions is called classical invariant theory. Historically it was developed along
with basic commutative algebra and basic algebraic geometry in the early 20th
century, particularly by Hilbert. Especially, Hilbert’s work on the finite generation
of invariant rings was tied up with his work on the Basis Theorem.

For a ∈ R, put NG(a) =
∏
σ∈G σ(a). Then NG(a) ∈ RG, so we have a map

NG : R→ RG.

Note that NG is not a homomorphism of additive groups. However, when R is a
domain, there is an induced map

NG : R• → (RG)•

which is a homomorphism of monoids, so induces a homomorphism on unit groups.

Exercise 14.10: Let R[t] be the univariate polynomial ring over R. Show that there
is a unique action of G by automorphisms of G on R[t] extending the G-action on
R and such that gt = t. Show that (R[t])G = RG[t].

Proposition 14.28. For a finite group G acting on R, R/RG is integral.

Proof. For x ∈ R, define

Φx(t) = NG(t− x) =
∏
g∈G

(t− gx),

so Φx(t) ∈ (R[t])G = RG[t]. Thus Φx(t) is a monic polynomial with RG-coefficients
which is satisfied by x. �

Base extension: Suppose that G is a finite group acting faithfully on R. Moreover,
let A be a ring and f : A → R be a ring homomorphism, so R is an A-algebra.
Suppose moreover that f(A) ⊂ RG. In such a situation we say that G acts on R
by A-automorphisms and write G ⊂ Aut(R/A).

Suppose we have another A-algebra A′. We can define an action of G on R ⊗A A′

by putting g(x⊗ y) := gx⊗ y. We say that the G-action is extended to A′.

Proposition 14.29. In the above setup, suppose that A′ is a flat A-algebra. Then
there is a natural isomorphism

RG ⊗A A′ ∼→ (R⊗A A′)G.
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Proof. Madapusi p. 65-66. �
Corollary 14.30. Let G be a finite group acting on the ring R, and let S ⊂ RG

be a multiplicatively closed set. Then (S−1R)G = S−1RG.

Exercise 14.11: Prove Corollary 14.30.

In particular, suppose R is a domain with fraction field K, and let F be the fraction
field of RG. Then the G-action on R extends to a G-action on K, and Corollary
14.30 gives KG = F . Thus the invariant theory of integral domains is compatible
with the Galois theory of the fraction fields.

Proposition 14.31. If R is integrally closed, so is RG.

Proof. Let x ∈ K be integral over RG. Then x is also integral over R, and since R
is integally closed in L we have x ∈ R. Thus x ∈ R ∩K = R ∩ LG = RG. �

Theorem 14.32. (Noether [No26]) Suppose that R is a finitely generated algebra
over some field k with k = kG. Then:
a) R is finitely generated as an RG-module.
b) RG is a finitely generated k-algebra.

Proof. a) Since R is a finitely generated k-algebra and k ⊂ RG, R is a finitely
generated RG-algebra. But by Proposition 14.28 R/RG is integral. So R is finitely
generated as an RG-module.
b) By part a), the Artin-Tate Lemma (Theorem 8.50) applies to the tower of rings
k ⊂ RG ⊂ R. The conclusion is as desired: RG is a finitely generated k-algebra. �
Remark: The title of [No26] mentions “characteristic p”. In fact, when k has char-
acteristic 0 the result had been proven by Hilbert significantly earlier [Hi90], and
moreover for certain actions of infinite linear groups, like SLn(k). But Noether’s
formulation and proof give an excellent illustration of the economy and power of
the commutative algebraic perspective.

Let us make contact with the setup of classical invariant theory : let k be a field,
V a finite-dimensional vector space and ρ : G → Autk(V ) a linear representation
of G on V . Let k[V ] = Sym(V ∨) be the algebra of polynomial functions on V . If
we choose a k-basis e1, . . . , en of V and let x1, . . . , xn be the dual basis of V ∨, then
k[V ] = k[x1, . . . , xn] is a polynomial ring in n independent indeterminates. There
is an induced action of G on k[V ], namely for f ∈ k[V ] we put (gf)(x) = f(g−1x).

All of our above results apply in this situation. Especially, Theorem 14.32 ap-
plies to tell us that the ring k[V ]G is finitely generated as a k-algebra, or a finite
system of invariants. Of course, we did not so much as crease our sleeves, let
alone roll them up, to establish this: for a concretely given finite group G and action
on a k-vector space V , it is of interest to explicitly compute such a finite system.
Moreover, the polynomial ring k[V ] is integrally closed: in the next section we will
see that it is a unique factorization domain and that this is a stronger property.
Therefore Proposition 14.31 applies to show that k[V ]G is integrally closed. This
is actually quite a robust and useful procedure for producing integrally closed rings.

Example: Let k be a field, n ∈ Z+, let V = kn, G = Sn be the symmetric group,
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and let G act on V by permuting the standard basis elements e1, . . . , en. We will
compute k[V ]G. Namely, for 1 ≤ i ≤ n, we define the ith elementary symmetric
function si(t1, . . . , tn) as follows: let X be an independent indeterminate and put

f(X) =
n∏
i=1

(X − ti) = Xn +
n∑
i=1

(−1)isi(t1, . . . , tn)X
n−i.

Theorem 14.33. The invariant ring k[V ]Sn is a polynomial k-algebra on the ele-
mentary symmetric functions s1, . . . , sn.

Proof. Step 1: Explicitly, we have

s1 = t1 + . . .+ tn,

s2 =
∑
i<j

titj ;

each si is the sum of all
(
n
k

)
monomials of degree k. Clearly k[s1, . . . , sn] ⊂ k[V ]Sn .

Step 2: For any finite group G of automorphisms of a field L, L/KG is a Galois
extension with Aut(L/LG) = G. Take L = k(V ) and note that k(V ) is the splitting
field of the separable polynomial f ∈ k(s1, . . . , sn)[x], so k(V )G = k(s1, . . . , sn).
Step 3: Because k(t1, . . . , tn)/k(s1, . . . , sn) is a finite extension, the transcendence
degree of k(s1, . . . , sn)/k is equal to the transcendence degree of k(t1, . . . , tn)/k,
namely n. It follows that the elements s1, . . . , sn are algebraically independent,
i.e., k[s1, . . . , sn] is a polynomial ring.
Step 4: As in the proof of Proposition 14.31,

k[t1, . . . , tn]
Sn = k[t1, . . . , tn] ∩ k(s1, . . . , sn) = k[s1, . . . , sn].

�

The above example is well-known and extremely useful, but gives a misleadingly
simple impression of classical invariant theory. One can ask how often the ring
of invariants of a finite group action on a polynomial ring is again a polynomial
ring, and there is a nice answer to this. But let’s back up a step and go back to
“rational invariant theory”: if G acts on k[x1, . . . , xn], then as above it also acts on
the fraction field k(x1, . . . , xn) and we know that k(x1, . . . , xn)/k(x1, . . . , xn)

G is a
finite Galois extension. But must k(x1, . . . , xn)

G itself be a rational function field,
as it was in the example above? This is known as Noether’s Problem: it was
first posed by E. Noether in 1913. It is natural and important, for an affirmative
answer would allow us to realize every finite group as a Galois group (i.e., the auto-
morphism group of a Galois extension) of Q thanks to a famous theorem of Hilbert.
For more than half of the twentieth century, Noether’s problem remained open.
Finally, in 1969 R.G. Swan (yes, the same Swan as before!) found a representation
of the cyclic group of order 47 on a finite-dimensional Q-vector space for which the
invariant field is not a rational function field [Sw69]. Too bad – this was arguably
the best shot that anyone has ever taken at the Inverse Galois Problem over Q.56

Example: Let k be a field of characteristic different from 2, let V = k2, and
consider the action of the two-element group G = {±1} on V by −1 acting as the

56Actually, Serre’s Topics in Galois Theory describes a conjecture of J.-L. Colliot-Thélène –

roughly a weaker form of Noether’s problem – which would still imply that every finite group is
a Galois group over Q. I am not aware of any progress on this conjecture.
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scalar matrix −1. The induced action on k[V ] = k[x, y] takes x 7→ −x and y 7→ −y.
This is, apparently, a not very interesting representation of a not very ineresting
group. But the invariant theory is very interesting!

Exercise 14.12: a) Show k[V ]G is generated as a k-algebra by x2, y2 and xy.
b) Show k[V ]G is isomorphic to the k-algebra k[A,B,C]/(AB − C2).
c) Show that nevertheless the fraction field of k[V ]G is rational, i.e., is isomorphic
to k(X,Y ) for independent indeterminates X and Y .

Before signing off on our quick glimpse of classical invariant theory, we cannot
resist mentioning one more classic theorem in the subject. It answers the question:
when is the invariant subalgebra k[V ]G isomorphic to a polynomial algebra over k?

Let ρ : G ↪→ GL(V ) be a faithful representation of G on a finite-dimensional
k-vector space V . An element g ∈ GL(V ) is a pseudoreflection if it has finite
order and pointwise fixes a hyperplane W in V . (Equivalently, a pseudoreflection
has characteristic polynomial (t− 1)dimV−1(t− ζ), where ζ is a root of unity in k.)

Exercise 14.13: If k is formally real, any nontrivial pseudoreflection has order 2
– i.e., it really is a hyperplane reflection.

A faithful representation ρ of G is a pseudoreflection representation of G if
ρ(G) is generated by pseudorflections.

Theorem 14.34. (Shephard-Todd-Chevalley-Serre) Let k be a field, and let ρ :
G ↪→ GL(V ) be a faithful finite-dimensional k-linear representation.
a) If k[V ]G is a polynomial algebra, then ρ is a pseudoreflection representation.
b) If ρ is a pseudoreflection representation and char k - #G, then k[V ]G is a poly-
nomial algebra.

Proof. See [Be, §7.2]. �

In the modular case char k | #G, there are pseudoreflection representations for
which k[V ]G is not a polynomial algebra. However, work of Kemper and Malle
[KM99] shows that even in the modular case, if ρ is an irreducible pseudoreflection
representation then the invariant field k(V )G is purely transcendental over k.

Exercise 14.14: It follows from Theorem 14.34 the fundamental theorem on sym-
metric functions that the standard permutation representation of the symmetric
group Sn on kn is a pseudoreflection representation. Show this directly.

14.7. Galois extensions of integrally closed domains.

Proposition 14.35. Let G be a finite group acting by automorphisms on a ring
R, with invariant subring RG. Let ι : RG ↪→ R, and let p ∈ SpecRG.
a) There is a natural action of G on the fiber (ι∗)−1(p) – i.e., on the set of primes
P of R such that ι∗P = p.
b) The G-action on the fiber (ι∗)−1(p) is transitive.

Proof. Let P ∈ SpecR and σ ∈ G. Define

σP = {σx | x ∈ P}.
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It is straightforward to verify that σP is a prime ideal of R (if you like, this follows
from the fact that Spec is a functor). Moreover (σP)∩RG is the set of all elements
σx with x ∈ P such that for all g ∈ G, gσx = σx. As g runs through all elements
of G, so does gσ−1, hence (σP) ∩RG = P ∩RG = p.
b) Let P1,P2 be two primes of R lying over a prime p of RG. Let x ∈ P1. Then
NG(x) ∈ P1 ∩ RG = p ⊂ P2. Since P2 is prime, there exists at least one σ ∈ G
such that σx ∈ P2, and thus P1 ⊂

∪
σ∈G σP2. By Prime Avoidance (Lemma 8.45),

there exists σ ∈ G such that P1 ⊂ σP2. Since R/RG is integral, Incomparability
(Corollary 14.15) yields P1 = σP2. �

Theorem 14.36. Let R be an integrally closed domain with fraction field K, let
L/K be a normal algebraic field extension (possibly of infinite degree), and let S be
the integral closure of R in L. Let p ∈ SpecR, and let Xp be the set of all prime
ideals of S lying over p. Then G = Aut(L/K) acts transitively on Xp.

Proof. Step 1: Suppose [L : K] = n < ∞, and write G = {σ1 = 1, . . . , σr}.57
Seeking a contradiction, suppose there are P1,P2 ∈ Xp such that P2 ̸= σ−1

j P1 for

all j. By Corollary 14.15, P2 is not contained in any σ−1
j P1, so by Prime Avoidance

(Lemma 8.45) there is x ∈ P2 \
∪
j σ

−1
j P1. Let q be the inseparable degree of L/K

and put y =
(∏

j σj(x)
)q

. Thus y = NL/K(x), so y ∈ K. Moreover y is integral

over R, so y ∈ R. Since σ1 = 1, y ∈ P2, so y ∈ P2 ∩ R = p ⊂ P1, and thus, since
P1 is prime, σj(x) ∈ P1 for some j: contradiction!
Step 2: We will reduce to the case in which L/K is a Galois extension. Let G =
Aut(L/K) and K ′ = LG, so that L/K ′ is Galois and K ′/K is purely inseparable.
Let R′ be the integral closure of R in K ′. Then by Lemma 14.20 SpecR′ → SpecR
is a bijection. So we may as well assume that K ′ = K and L/K is Galois.
Step 3: For each finite Galois subextension M of L/K, consider the subset

F (M) := {σ ∈ G | σ(P1 ∩M) = P2 ∩M}.

Observe that F (M) is a union of cosets of Gal(L/M) hence is (open and) closed
in the Krull topology. By Step 1, we have F (M) ̸= ∅. Moreover, the compositum
M =

∏
iMi of any finite number {Mi} of finite Galois subextenions is again a finite

Galois subextension, and we have
∩
i F (Mi) ⊃ F (M) ̸= ∅. Therefore as Mi ranges

through all finite Galois subextensions of L/K, {F (Mi)}i∈I is a family of closed
subsets of the compact space G satisfying the finite intersection condition, and it
follows that there exists σ ∈

∩
i F (Mi) = F (L) i.e., σ ∈ G such that σP1 = P2. �

14.8. Almost Integral Extensions.

We come now to a technical variant of the notion of integrality. This variant
will not be used until §19.4 on divisorial ideals. We honestly recommend that the
reader skip past this section for now and return only when the concept of complete
integral closure is needed and used.

Let R ⊂ S be rings. An element x ∈ S is almost integral over R if there is
a finitely generated R-submodule of S which contains xn for all n ∈ Z+. We say
that S is almost integral over R if every element of S is almost integral over R.

57We are assuming that L/K is normal, so L/K is separable iff L/K is Galois iff r = n.



236 PETE L. CLARK

Proposition 14.37. Let R ⊂ S be rings, and let x ∈ S.
a) If x is integral over R, it is almost integral over R.
b) If R is Noetherian and x is almost integral over R, then x is integral over R.

Proof. Let M = ⟨R, x⟩. By Theorem 14.1, x is integral over R iff M is a finitely
generated R-module.
a) If x is integral over R, thenM is a finitely generated R-submodule of S containing
xn for all n ∈ Z+, so x is almost integral over R.
b) Suppose x is almost integral over R: there is a finitely generated R-submodule
N of S containing xn for all n ∈ Z+. Then M ⊂ N , and since R is Noetherian and
N is finitely generated, M is finitely generated and x is integral over R. �
Remark: As the proof shows, an equivalent – and perhaps more perspicuous – way
of expressing the almost integrality condition is that, while integrality of x means
that M = ⟨R, x⟩R is a finitely generated submodule of S, almost integrality means
that there is some finitely generated R-submodule of S containing M .

For rings R ⊂ S, the complete integral closure of R in S is the set of all
elements of S which are almost integral over R. A domain R is completely inte-
grally closed if its complete integral closure in its fraction field is R itself.

Theorem 14.38. Let R be a domain with fraction field K. The complete integral
closure of R is the set of all x ∈ K such that there is r ∈ R• with rxn ∈ R for all
n ∈ Z+.

Proof. Let x ∈ K be almost integral over R. Then there are h1, . . . , hs ∈ K such
that R[x] ⊂ ⟨h1, . . . , hs⟩R. If r is the product of the denominators of the hi, then
rxn ∈ R for all n ∈ Z+.
Let x ∈ K be such that there is r ∈ R• with rxn ∈ R or all n ∈ Z+. Then
R[x] ⊂ r−1R. �
Tournant dangereux: If R ⊂ S and R′ is the complete integral closure of R in S,
then R′ is integrally closed in S [LM, Prop. 4.18]. However, the complete integral
closure of a domain in its fraction field need not be completely integrally closed
[LM, Exc. IV.14]! In other words, complete integral closure is unfortunately not a
closure operator on the set of subrings of a field in the sense of §2.1.

15. Factorization

Let R be an integral domain, and x a nonzero, nonunit element of R. We say that
x is irreducible if for any y, z ∈ R such that x = yz, one of y or z is a unit.

For any unit u ∈ R×, we get factorizations of the form x = u · (u−1x), so ev-
ery x has at least these factorizations, which we wish to regard as “trivial”. On the
other hand, y and z cannot both be units, for then x would also be a unit. Let us
then define a factorization of a nonzero nonunit a ∈ R as a product

a = x1 · · ·xn,
such that each xi is irreducible. We say that two factorizations

a = x1 · · ·xn = y1 · · · ym
are equivalent if the multisets of associated principal ideals {{(xi)}} = {{(yj)}}
are equal. More concretely, this means that m = n and that there is a bijection
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σ : {1, . . . , n} → {1, . . . ,m} such that (yσ(i)) = (xi) for all 1 ≤ i ≤ n.

If factorizations always exist and any two factorizations of a given element are
equivalent, we say R is a unique factorization domain (UFD).

15.1. Kaplansky’s Theorem (II).

A basic and important result that ought to get covered at the undergraduate level
is that PID implies UFD. In fact this is easy to prove. What is more difficult is to
get a sense of exactly how UFDs are a more general class of rings than PIDs. In
this regard, an elegant theorem of Kaplansky seems enlightening.

Exercise 15.1: Let x be an element of a domain which can be expressed as

x = p1 · · · pn,

such that for 1 ≤ i ≤ n, pi = (pi) is a prime ideal. If then there exist principal
prime ideals q1, . . . , qm such that (x) = q1 · · · qm, then m = n and there exists a
permutation σ of the integers from 1 to n such that qi = pσ(i) for all i.

Exercise 15.2: Let R be a domain, and let S be the set of all nonzero elements
x in R such that (x) can be expressed as a product of principal prime ideals. Show
that S is a saturated multiplicatively closed subset.

Theorem 15.1. (Kaplansky) An integral domain is a UFD iff every nonzero prime
ideal in R contains a prime element.

Proof. Suppose R is a UFD and 0 ̸= p ∈ SpecR. Let x ∈ p•, and write

x = p1 · · · pr
a product of prime elements. Then x ∈ p implies pi ∈ p for some i, so (pi) ⊂ p.

Conversely, assume each nonzero prime ideal of R contains a principal prime.
Let S be the set of all products of prime elements, so that by Exercise 15.2, S is
a saturated multiplicative subset. By Exercise 15.1, it is enough to show that S
contains all nonzero nonunits of R. Suppose for a contradiction that there exists
a nonzero nonunit x ∈ R \ S. The saturation of S implies S ∩ (x) = ∅, and then
by Theorem 4.8 there is a prime ideal p containing x and disjoint from S. But by
hypothesis, p contains a prime element p, contradicting its disjointness from S. �

We deduce immediately:

Corollary 15.2. Let R be a domain.
a) If every ideal of R is principal, R is a UFD.
b) Conversely, if R is a UFD of dimension one, every ideal of R is principal.

Proof. a) Recall that a height one prime is a prime ideal p of R which does not
strictly contain any nonzero prime ideal. Applying Kaplansky’s theorem, we get a
prime element x such that 0 ( (x) ⊂ p, and height one forces equality. For part b),
it clearly suffices to show that a Noetherian domain in which each height one prime
is principal is a UFD. But let p be any nonzero prime ideal; since R is Noetherian,
(DCC) holds on prime ideals, so p contains a prime ideal which has height one,
hence contains a prime element and we are done by Kaplansky’s theorem. �
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15.2. Atomic domains, (ACCP). If every nonzero nonunit admits at least one
factorization, we say R is an atomic domain58.

Exercise 15.3: Show that the ring Z of all algebraic integers is not an atomic
domain. Indeed, since for every algebraic integer x, there exists an algebraic inte-
ger y such that y2 = x, there are no irreducible elements in Z!

The condition of factorization into irreducibles (in at least one way) holds in every
Noetherian domain. In fact, a much weaker condition than Noetherianity suffices:

Proposition 15.3. Let R be a domain in which every ascending chain of principal
ideals stabilizes. Then every nonzero nonunit factors into a product of irreducible
elements. In particular, a Noetherian domain is atomic.

Proof. Let R be a domain satisfying the ascending chain condition for principal
ideals (ACCP for short), and suppose for a contradiction that R is not an atomic
domain. Then the set of principal ideals generated by unfactorable elements is
nonempty, so by our assumption there exists a maximal such element, say I = (a).
Evidently a is not irreducible, so we can begin to factor a: a = xy where x and
y are nonunits. But this means precisely that both principal ideals (x) and (y)
properly contain (a), so that by the assumed maximality of (a), we can factor both
x and y into irreducibles: x = x1 · · ·xm, y = y1 · · · yn. But then

a = x1 · · ·xmy1 · · · yn
is a factorization of a, contradiction. �
This proposition motivates us to consider also the class of domains which satisfy
the ascending chain condition for principal ideals (ACCP).

Exercise 15.4: Suppose that R ↪→ S is an exension of rings such that S×∩R = R×.
(In particular, this holds for integral extensions.) Show that S satisfies (ACCP)
implies R satisfies (ACCP). Does the converse hold?

We have just seen that (ACCP) implies atomicity. The proof shows that under
(ACCP) we can always obtain an expression of a given nonzero nonunit by a finite
sequence of “binary factorizations” i.e., replacing an element x with y1 · y2, where
y1 and y2 are nonunits whose product is x. After a bit of thought, one is inclined to
worry that it may be possible that this factorization procedure fails but nevertheless
irreducible factorizations exist. This worry turns out to be justified:

Theorem 15.4. There exists an atomic domain which does not satisfy (ACCP).

Proof. See [Gr74]. �
However, the following strenghtening of atomicity does imply ACCP:

A domain R is a bounded factorization domain BFD if it is atomic and for
each nonzero nonunit a ∈ R, there exists a positive integer N(a) such that in any
irreducible factorization a = x1 · · ·xr we have r ≤ N(a).

58In the first pass on these notes, I used the sensible name “factorization domain.” But

apparently atomic domain is what is used in the literature, and since we find this terminology
unobjectionable, we might as well use it here.
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Proposition 15.5. A UFD is a BFD.

Proof. An immediate consequence of the definitions. �
Proposition 15.6. A BFD satisfies (ACCP).

Proof. Let R be a BFD. Suppose for a contradiction that (xi)i∈Z+ is a strictly
ascending chain of principal ideals. We therefore have

x0 = y1x1 = y1y2x2 = . . . = y1 · · · ynxn = · · · ,
with each xi, yi a nonunit. Since R is atomic, we can refine each factorization into
an irreducible factorization, but clearly an irreducible refinement of y1 · · · ynxn has
at least n+ 1 irreducible factors, contradicting BFD. �
15.3. EL-domains.

An element x of a domain R is prime if the principal ideal (x) is a prime ideal.
Equivalently, x satisfies Euclid’s Lemma: if x | yz, then x | y or x | z.

Proposition 15.7. A prime element is irreducible.

Proof. If x is reducible, then x = yz with neither y nor z a unit, so that yz ∈ (x)
but y ̸∈ (x), z ̸∈ (x). �
However, it need not be the case that irreducible elements are prime!

Example: Let R = Z[
√
−5]. Then 2, 3 and 1±

√
−5 are all irreducible, but

2 · 3 = (1 +
√
−5)(1−

√
−5)

shows that none of them are prime.

Exercise 15.5: Check all these assertions. Hint: Define N(a + b
√
−5) = a2 + 5b2.

Check that N((a + b
√
−5)(c + d

√
−5)) = N(a + b

√
−5)N(c + d

√
−5). Show that

α | β (in R) =⇒ N(α) | N(β) (in Z), and use this to show that 2, 3, 1±
√
−5 are

irreducible but not prime.

It is tempting to call a domain in which all irreducible elements are prime “Eu-
clidean”, but this terminology is already taken for domains satisfying a generaliza-
tion of the Euclidean algorithm (c.f. §16.3). So we will, provisionally, call a ring in
which irreducible elements are prime an EL-domain. (EL = Euclid’s Lemma).

Theorem 15.8. For an integral domain R, TFAE:
(i) R is a UFD.
(ii) R satisfies (ACCP) and is an EL-domain.
(iii) R is an atomic EL-domain.

Proof. i) =⇒ (ii): In the previous section we saw UFD =⇒ BFD =⇒ (ACCP).
We show UFD implies EL-domain: let x ∈ R be irreducible and suppose x | yz.
Let y = y1 · · · ym and z = z1 · · · zn be irreducible factorizations of y and z. Then
the uniqueness of irreducible factorization means that x must be associate to some
yi or to some zj , and hence x | y or x | z: R is an EL-domain.

(ii) =⇒ (iii) follows immediately from Proposition 15.3.
(iii) =⇒ (i): This is nothing else than the usual deduction of the fundamental

theorem of arithmetic from Euclid’s Lemma: in a factorization domain we have at
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least one irreducible factorization of a given nonzero nonunit x. If we also assume
irreducibles are prime, we may compare any two irreducible factorizations: suppose

x = y1 · · · ym = z1 · · · zn.
Then y1 is a prime element so divides zj for some j. WLOG, relabel to assume
j = 1. Since z1 is irreducible, we have y1 = u1z1 and thus we may cancel to get

y2 · · · ym = (u−1
1 z2)z3 · · · zn.

Continuing in this way we find that each yi is associate to some zj ; when we get
down to 1 =

∏
j zj we must have no factors of zj left, som = n and R is a UFD. �

We can now deduce the following important result, a characterization of Noetherian
UFDs among all Noetherian domains.

Theorem 15.9. For a Noetherian domain R, TFAE:
(i) Every height one prime ideal of R is principal.
(ii) R is a UFD.

Proof. (i) =⇒ (ii): By Theorem 15.8, it is sufficient to prove that R is an EL-
domain, so let x ∈ R be irreducible. Let p be a minimal prime containing x. By
Krull’s Hauptidealsatz (Theorem 8.42), p has height one, so by assumption p = (p)
is principal. Thus x = up for some u ∈ R, and since x and p are both irreducible,
u ∈ R×, (x) = p, and x is a prime element.
(ii) =⇒ (i): This implication is a special case of Kaplansky’s Theorem 15.1 (and
thus holds without the Noetherian assumption on R). �
15.4. GCD-domains.

For elements a and b of a domain R, a greatest common divisor is an ele-
ment d of R such that: d | a, d | b and for e ∈ R with e | a, e | b, e | d.

Exercise 15.6: Show that if d is a gcd of a and b, then an element d′ of R is a
gcd of a and b iff (d) = (d′). In particular, any two gcd’s are associate.

If a and b have a gcd, it would be more logically sound to write gcd(a, b) to mean
the unique principal ideal whose generators are the various gcd’s of a and b. It
is traditional however to use the notation gcd(a, b) to denote an element, with the
understanding that in general it is only well-defined up to multiplication by a unit.59

More generally, for elements a1, . . . , an in a domain R, a greatest common divi-
sor is an element d of R such that d | ai for all i and if e | ai for all i then e | d.
If a GCD of (a1, . . . , an) exists, it is unique up to associates, and we denote it by
gcd(a1, . . . , an). As above, it can be characterized as the unique minimal princi-
pal ideal containing ⟨a1, . . . , an⟩. Moreover, these setwise GCDs can be reduced to
pairwise GCDs.

Exercise 15.7: Let a, b, c be elements of a domain R and assume that all pair-
wise GCD’s exist in R. Then gcd(a, b, c) exists and we have gcd(a, gcd(b, c)) =

59In some rings, principal ideals have canonical generators: e.g. in the integers we may take

the unique positive generator and in k[t] we may take the unique monic generator. Under these
circumstances, a common convention is to let gcd(a, b) stand for this canonical generator.
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gcd(a, b, c) = gcd(gcd(a, b), c).

A domain R is a GCD-domain if for all a, b ∈ R, gcd(a, b) exists. By the above
remarks, it would be equivalent to require that gcd(a1, . . . , an) for all n-tuples of
elements in R.

Proposition 15.10. (GCD Identities) Let R be a GCD-domain. Then:
a) For all a, b, c ∈ R, gcd(ab, ac) = a gcd(b, c).
b) For all a, b ∈ R \ {0}, gcd( a

gcd(a,b) ,
b

gcd(a,b) ) = 1.

c) For all a, b, c ∈ R, gcd(a, b) = gcd(a, c) = 1, then gcd(a, bc) = 1.
d) For all a, b, c ∈ R, gcd(a, b+ ac) = gcd(a, b).
e) For all a, a1, . . . , an, b1, . . . , bn, c ∈ R, gcd(a, b1+ca1, . . . , bn+can) = gcd(a, b1, . . . , bn).

Proof. a) Let x = gcd(ab, ac). Then a | ab and a | ac so a |x: say ay = x. Since
x | ab and x | ac, y | b and y | c, so y | gcd(b, c). If z | b and z | c, then az | ab and
az | ac, so az | x = ay and z | y. Therefore gcd(b, c) = y = 1

a gcd(ab, ac).
b) This follows immediately from part a).
c) Suppose gcd(a, b) = gcd(a, c) = 1, and let t divide a and bc. Then t divides ab
and bc so t | gcd(ab, bc) = b gcd(a, c) = b. So t divides gcd(a, b) = 1.
d) If d divides both a and b, it divides both a and b + ac. If d divides both a and
b+ ac, it divides b+ ac− c(a) = b.
e) We have

gcd(a, b1 + ca1, . . . , bn + can) = gcd(a, gcd(a, b1 + ac1), . . . , gcd(a, bn + acn))

= gcd(a, gcd(a, b1), . . . , gcd(a, bn)) = gcd(a, b1, . . . , bn). �

Proposition 15.11. A GCD-domain is an EL-domain.

Proof. This follows from the fact gcd(x, y) = gcd(x, z) = 1 =⇒ gcd(x, yz) = 1. �

Theorem 15.12. Consider the following conditions on a domain R:
(i) R is a UFD.
(ii) R is a GCD-domain.
(iii) R is an EL-domain: irreducible elements are prime.
a) We have (i) =⇒ (ii) =⇒ (iii).
b) If R is an ACCP-domain, (iii) =⇒ (i).

Proof. a) (i) =⇒ (ii): Let x, y be nonzero elements of R. We may write

x = f1 · · · frg1 · · · gs, y = uf1 · · · frh1 · · ·ht,
where the f ’s, g’s and h’s are prime elements, (gj) ̸= (hk) for all j, k and u ∈ R×.
Then f1 · · · fr is a gcd for x and y.
(ii) =⇒ (iii): This is Proposition 15.11.
b) (iii) + (ACCP) =⇒ (i): This is Theorem 15.8. �

Corollary 15.13. For a Noetherian domain R, TFAE:
(i) R is a UFD.
(ii) R is a GCD-domain.
(iii) R is an EL-domain.

We now present some simple results that are long overdue. An extremely useful
fact in algebra is that any UFD is integrally closed in its fraction field. We give a
slightly stronger result and then recall a classical application.
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Theorem 15.14. A GCD-domain is integrally closed.

Proof. Let R be a GCD-domain with fraction field K. Suppose x ∈ K satisfies

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0, ai ∈ R.

Write x = s
t with s, t ∈ R, t ̸= 0. By Proposition 15.10b), after dividing by the gcd

we may assume gcd(s, t) = 1. Plugging in x = s
t and clearing denominators gives

sn = −
(
an−1ts

n−1 + . . .+ a1t
n−1s+ a0t

n
)
,

so t | sn. But by Proposition 15.10c) gcd(sn, t) = 1, so t ∈ R× and x ∈ R. �

Corollary 15.15. An algebraic integer which is a rational number is an integer:
Z ∩Q = Z.

Exercise 15.8: Prove Corollary 15.15.

Thus e.g. one can derive the irrationality of
√
2: it is a root of the monic polynomial

equation t2 − 2 = 0 but evidently not an integer, so cannot be rational.

Proposition 15.16. (Compatibility of GCD’s with localization) Let R be a GCD-
domain and S a multiplicative subset of R. Then:
a) The localization S−1R is again a GCD-domain.
b) For all x, y ∈ R•, if d is a GCD for x and y in R, then it is also a GCD for x
and y in S−1R.

Exercise 15.9: Prove Proposition 15.16.

15.5. GCDs versus LCMs.

The definition of GCDs in a domain has an evident analogue for least common
multiples. Namely, if a and b are elements of a domain R, a least common mul-
tiple of a and b is an element l such that for all m ∈ R with a | m and b | m then
l | m.

Many of the properties of GCD’s carry over immediately to LCM’s. For instance,
if l is an LCM of a and b, then l′ ∈ R is an LCM of a and b iff l′ is associate to l.

Proposition 15.17. Let a and b be elements in a domain R. Then lcm(a, b) exists
iff the ideal (a) ∩ (b) is principal, in which case the set of all LCM’s of a and b is
the set of all generators of (a) ∩ (b).

Proof. This is straightforward and left to the reader. �

LCM’s exist in any UFD: if

a = xa11 · · ·xarr , b = xb11 · · ·xbrr ,
with ai, bi ∈ N. Then

l = x
max(a1,b1)
1 · · ·xmax(ar,br)

r

is a greatest common divisor of a and b. Now the simple identity

∀a, b ∈ N,min(a, b) + max(a, b) = a+ b

implies that for a, b in any UFD R we have

gcd(a, b) lcm(a, b) ∼ ab.



COMMUTATIVE ALGEBRA 243

This identity further suggests that the existence of either one of gcd(a, b), lcm(a, b)
implies the existence of the other. However, this turns out only to be half correct!

Theorem 15.18. For a, b in a domain R, TFAE:
(i) lcm(a, b) exists.
(ii) For all r ∈ R \ {0}, gcd(ra, rb) exists.

Proof. Step 1: i) =⇒ (ii). Suppose that there exists a least common multiple of a
and b, say l. We claim that d := ab

l is a greatest common divisor of a and b. (Note
that since ab is a common divisor of a and b, l | ab, so indeed d ∈ R.) Indeed,
suppose that e | a and e | b. Then since ab

e is a common multiple of a and b, we

must have l | abe and this implies e | abl . Thus d is a GCD of a and b.
Step 2: Suppose that for r ∈ R \ {0} and a, b ∈ R, gcd(ra, rb) exists. Then we

claim that gcd(a, b) exists and gcd(ra, rb) = r gcd(a, b). Put g := gcd(ra,rb)
r , which

is clearly an element of D. Since gcd(ra, rb) divides ra and rb, g divides a and b.
Conversely, if e | a and e | b, then re | ra and re | rb so er | gcd(ra, rb) and e | g.
Step 3: We claim that if l := lcm(a, b) exists then so does lcm(ra, rb) for all
r ∈ R \ {0}. First note that rl is a common multiple of ra and rb. Now suppose m
is a common multiple of ra and rb, say m = xra = yrb = r(xa − yb). Thus r | m
and a | mr , b |

m
r . So l |

m
r and rl | m. Thus lcm(ra, rb) = r lcm(a, b).

Step 4: (ii) =⇒ (i). We may assume that a and b are nonzero, since the other
cases are trivial. Suppose gcd(ra, rb) exists for all r ∈ R \ {0}. We claim that
l := ab

gcd(a,b) is an LCM of a and b. Clearly l is a common multiple of a and b. Now

suppose that m is a common multiple of a and b. Then ab divides both ma and mb,
so ab | gcd(ma,mb). By Step 2, gcd(ma,mb) = m gcd(a, b). Thus ab

gcd(a,b) | m. �

Theorem 15.19. (Khurana, [Kh03, Thm. 4]) Let d ≥ 3 be an integer such that
d+1 is not prime, and write d+1 = pk for a prime number p and k ≥ 2. Then in
the domain R = Z[

√
−d], the elements p and 1 +

√
−d have a GCD but no LCM.

Proof. Step 1: We claim that p is irreducible as an element of R. Indeed, if it were
reducible, then by the multiplicativity of the norm map N(a + b

√
−d) = a2 + dp2

we could write it as p = αβ, with

p2 = N(p) = N(αβ) = N(α)N(β),

and, since α, β are nonunits, N(α), N(β) > 1. But then N(α) = N(β) = p, i.e.,
there would be a, b ∈ Z such that a2 + db2 = p. But this is not possible: either
ab = 0, in which the left hand side is a perfect square, or a2 + db2 ≥ d+ 1 > p.
Step 2: gcd(p, 1 +

√
−d) = 1. Indeed, since 1

p +
1
p

√
−d ̸∈ R, p - 1 +

√
−d.

Step 3: We claim that kp and k(1 +
√
−d) do not have a GCD. Indeed, by Step

2 of the proof of Theorem 15.18, if any GCD exists then k is a GCD. Then, since
1+

√
−d divides both (1−

√
−d)(1+

√
−d) = 1+d = kp and k(1+

√
−d), 1+

√
−d

divides gcd(kp, k(1 +
√
−d) = k, i.e., there exist a, b ∈ Z such that

k = (1 +
√
−d)(a+ b

√
−d) = (a− db) + (a+ b)

√
−d,

i.e., a = −b and k = a − db = a + da = a(1 + d) and d + 1 | k, contradicting the
fact that 1 < k < d+ 1.
Step 4: It follows from Theorem 15.18 that lcm(p, 1 +

√
−d) does not exist. �
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Khurana produces similar examples even when d + 1 is prime, which implies that
for no d ≥ 3 is Rd = Z[

√
−d] a GCD-domain. (In fact, since (Rd,+) ∼= Z2, Rd

is an abstract number ring and hence Noetherian, so the notions of EL-domain,
GCD-domain and UFD are all equivalent.) Let us give an independent proof:

Theorem 15.20. For no d ≥ 3 is Rd = Z[
√
−d] an EL-domain.

Proof. As in the proof of Theorem 15.19 above, the easy observation that the equa-
tion a2 + db2 = 2 has no integral solutions implies that the element 2 is irreducible
in Rd. Now, since (quite trivially) −d is a square modulo 2, there exists x ∈ Z such
that 2 | x2 + d = (x +

√
−d)(x −

√
−d). But now, if Rd were an EL-domain, the

irreducible element 2 would be prime and hence Euclid’s Lemma would apply to
show that 2 | x ±

√
−d, i.e., that x

2 + 1
2

√
−d ∈ Rd, which is a clear contradiction

( 12 is not an integer!). �
Theorem 15.18 has the following immediate consequence:

Corollary 15.21. (Cohn, [Coh68, Thm. 2.1]) For an integral domain R, TFAE:
(i) Any two elements of R have a greatest common divisor.
(ii) Any two elements of R have a least common multiple.

Thus we need not define an “LCM-domain”: these are precisely the GCD domains.

15.6. Polynomial rings over UFDs.

Our goal in this section to show that if R is a UFD, then a polynomial ring in
any number (possibly infinite) of indeterminates is again a UFD. This result gener-
alizes a familiar fact from undergraduate algebra: if k is a field, k[t] is a UFD. The
corresponding fact that polynomials in k[t1, . . . , tn] factor uniquely into irreducibles
is equally basic and important, and arguably underemphasized at the pre-graduate
level (including high school, where factorizations of polynomials in at least two
variables certainly do arise).

If we can establish that R a UFD implies R[t] a UFD, then an evident induc-
tion argument using R[t1, . . . , tn, tn+1] = R[t1, . . . , tn][tn+1] gives us the result for
polynomials in finitely many indeterminates over a UFD. It is then straightforward
to deduce the case for an arbitrary set of indeterminates.

There are several ways to prove the univariate case. Probably the most famous
is via Gauss’s Lemma. For this we need some preliminary terminology.

Let R be any integral domain, and consider a nonzero polynomial

f = ant
n + . . .+ a1t+ a0 ∈ R[t].

We say f is primitive if x ∈ R, x | ai for all i implies x ∈ R×. In a GCD-
domain, this is equivalent to gcd(a1, . . . , an) = 1. In a PID, this is equivalent
to ⟨a0, . . . , an⟩ = R. For a general domain, this latter condition is considerably
stronger: e.g. the polynomial xt+ y ∈ k[x, y][t] is primitive but the coefficients do
not generate the unit ideal. Let us call this latter – usually too strong condition –
naively primitive.

Proposition 15.22. Let R be a domain, and f, g ∈ R[t] be naively primitive. Then
fg is naively primitive.
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Proof. Suppose f and g are naively primitive but fg is not. Then by definition the
ideal generated by the coeffiicents of f is proper, so lies in some maximal ideal m
of R. For g ∈ R[t], write g for its image in the quotient ring (R/m)[t]. Then our
assumptions give precisely that f, g ̸= 0 but fg = fg = 0. Thus f and g are zero
divisors in the integral domain (R/m)[t], a contradiction. �

If R is a GCD-domain and 0 ̸= f ∈ R[t], we can define the content c(f) of f to be
the gcd of the coefficients of f , well-determined up to a unit. Thus a polynomial is
primitive iff c(f) = 1.

Exercise 15.10: Let R be a GCD-domain and 0 ̸= f ∈ R[t].
a) Show that f factors as c(f)f1, where f1 is primitive.
b) Let 0 ̸= a ∈ R. Show that c(af) = ac(f).

Theorem 15.23. (Gauss’s Lemma) Let R be a GCD-domain. If f, g ∈ R[t] are
nonzero polynomials, we have c(fg) = c(f)c(g).

If we assume the stronger hypothesis that R is a UFD, we can give a very trans-
parent proof along the lines of that of Proposition 15.22 above. Since this special
case may be sufficient for the needs of many readers, we will give this simpler proof
first, followed by the proof in the general case.

Proof. (Classical proof for UFDs) The factorization f = c(f)f1 of Exercise 15.10
reduces us to the following special case: if f and g are primitive, then so is fg.
Suppose that fg is not primitive, i.e., there exists a nonzero nonunit x which divides
all of the coefficients of fg. Since R is a UFD, we may choose a prime element
π | x. Now we may argue exactly as in the proof of Proposition 15.22: (R/(π)[t] is
an integral domain, f and g are nonzero, but fg = fg = 0, a contradiction. �

The proof of the general case uses the GCD identities of Proposition 15.10.

Proof. (Haible) As above, we may assume that f = ant
n + . . . + a1t + a0, g =

bmt
m + . . . + b1t + b0 ∈ R[t] are both primitive, and we wish to show that fg =

cm+nt
m+n+ . . .+ c1t+ c0 is primitive. We go by induction on n. Since a primitive

polynomial of degree 0 is simply a unit in R, the cases m = 0 and n = 0 are both
trivial; therefore the base case m + n = 0 is doubly so. So assume m,n > 0. By
Proposition 15.10, we have

c(fg) = gcd(cn+m, . . . , c0) =

gcd(anbm, gcd(cn+m−1, . . . , c0)) | gcd(an, gcd(cn+m−1, . . . , c0))·gcd(bm, gcd(cn+m−1, . . . , c0)).

Now

gcd(an, gcd(cn+m−1, . . . , c0)) = gcd(an, cn+m−1, . . . , c0)

= gcd(an, cn+m−1 − anbm−1, . . . , cn − anb0, cn−1, . . . , c0)

= gcd(an, c((f − ant
n)g).

Our induction hypothesis gives c((f − ant
n)g) = c(f − ant

n)c(g) = c(f − ant
n), so

gcd(an, cn+m−1−anbm−1, . . . , cn−anb0, cn−1, . . . , c0) = gcd(an, c(f−antn)) = c(f) = 1.

Similarly we have gcd(bm, gcd(cn+m−1, . . . , c0)) = 1, so c(fg) = 1. �
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Corollary 15.24. Let R be a GCD-domain with fraction field K, and let f ∈ R[t]
be a polynomial of positive degree.
a) The following are equivalent:
(i) f is irreducible in R[t].
(ii) f is primitive and irreducible in K[t].
b) The following are equivalent:
(i) f is reducible in K[t].
(ii) There exist g, h ∈ R[t] such that deg(g),deg(h) < deg(f) and f = gh.

Proof. a) Assume (i). Clearly an imprimitive polynomial in R[t] would be reducible
in R[t], so f irreducible implies c(f) = 1. Suppose f factors nontrivially in K[t],
as f = gh, where both g, h ∈ K[t] and have smaller degree than f . By Exercise
15.10, we may write g = c(g)g1, h = c(h)h1, with g1, h1 primitive, and then f =
c(g)c(h)g1h1. But then g1, h1, being primitive, lie in R[t], and c(f) = c(g)c(h) =
c(gh) ∈ R, so the factorization takes place over R[t], contradiction. (ii) =⇒ (i) is
similar but much simpler and left to the reader.
b) That (ii) =⇒ (i) is obvious, so assume (i). Because we can factor out the
content, it is no loss of generality to assume that f is primitive. Let f = g1h1 with
g1, h1 ∈ K[t] and deg(g1),deg(h1) < deg(f). Because R is a GCD-domain, we may

write g = g̃
d1
, h = h̃

d2
with g̃, h̃ ∈ R[t] primitive. Then we have d1d2f = g̃h̃, and

equating contents gives (d1d2) = (1), so d1, d2 ∈ R× and thus the factorization
f = gh has the properties we seek. �

We now give Gauss’s proof that a univariate polynomial ring over a UFD is a UFD.

Theorem 15.25. If R is a UFD, so is R[t].

Proof. Let K be the fraction field of R, and let f ∈ R[t]•. We know that K[t] is a
PID hence a UFD, so we get a factorization

f = cg1 · · · gr,
with c ∈ R and each gi ∈ R[t] is primitive and irreducible. Then factoring c into
irreducibles gives an irreducible factorization of f . If we had another irreducible
factorization f = dh1 · · ·hs, then unique factorization in K[t] gives that we have
r = s and after permuting the factors have gi = uihi for all i, where ui ∈ K×.
Since both gi and hi are primitive, we must have ui ∈ R×, whence the uniqueness
of the factorization. �

This proof relies on knowing that K[t] is a UFD, which of course follows from
the fact that polynomial division gives a Euclidean algorithm, as one learns in an
undergraduate course. This is of course an adaptation of the proof that the ring Z
is a UFD (the Fundamental Theorem of Arithmetic) essentially due to Euclid.

It is interesting to find alternate routes to such basic and important results.

Theorem 15.26. Let R be a domain with fraction field K.
a) If R is an ACCP-domain, so is R[t].
b) If R is a GCD-domain, so is R[t].
c) Thus, once again, if R is a UFD, so is R[t].

Proof. a) In an infinite ascending chain {(Pi)} of principal ideals of R[t], degPi is
a descending chain of non-negative integers, hence eventually constant. Therefore
for sufficiently large n we have Pn = anPn+1 with an ∈ R and (an+1) ⊃ (an). Since
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R is an ACCP domain, we have (an) = (an+1) for sufficiently large n, hence also
(Pn) = (Pn+1) for sufficiently large n.
b) (Haible, [Hai94]) Let f, g ∈ R[t]. We may assume that fg ̸= 0. As usual, write

f = c(f)f̃ and g = c(g)g̃. Since K[t] is a PID, may take the gcd of f̃ and g̃ in

K[t], say d̃. The choice of d̃ is unique only up to an element of K×, so by choosing

the unit appropriately we may assume that d̃ lies in R[t] and is primitive. We put

d = gcd(c(f), c(g)))d̃.

Step 1: We claim that d̃ is a gcd of f̃ and g̃ in R[t]. Since d̃ | f in K[t], we

may write f̃

d̃
= a

b q with a, b ∈ R \ {0} and q ∈ R[t] primitive. Since bf̃ = ad̃, we

have (b) = c(bf̃) = c(ad̃) = (a), i.e., b
a ∈ R× and thus d̃ | f̃ in R[t]. Similarly

d̃ | g̃. Moreover, sice d̃ ∈ f̃K[t] + g̃K[t], there exist u, v ∈ R[t] and c ∈ R \ {0}
with cd̃ = uf̃ + vg̃. Suppose h ∈ R[t] divides both f̃ and g̃. Then h | cd̃, and
c(h) | c(f̃) = (1). Writing cd

h = a
b q with q ∈ R[t] primitive, and equating contents

in bcd̃ = ahq, we get (bc) = (a), hence d̃
h = ab

c q ∈ R[t], so h | d̃.
Step 2: We claim that d is a gcd of f and g in R[t]. Certainly we have

(d) = (gcd(c(f), c(g)d̃) | (c(f)f̃) = (f),

so d | f . Similarly d | g. Conversely, let h ∈ R[t] divide f and g. Write h = c(h)h̃

for h̃ ∈ R[t] primitive. From h | f it follows that c(h) | c(f) and thus h̃ | f̃ .

Similarly h | f so h̃ | g̃. Thus c(h) | gcd(c(f), c(g)), h̃ | d̃ and thus finally h | d.
c) If R is a GCD domain and an ACCP domain, it is also an atomic EL domain,
hence a UFD by Theorem 15.8. �

Lindemann [Li33] and Zermelo [Ze34] (independently) gave (similar) striking proofs
of the Fundamental Theorem of Arithmetic avoiding all lemmas and packaging
the Euclidean division into a single inductive argument. Later several authors
have recorded analogous proofs of Gauss’s Theorem (Theorem 15.25): the earliest
instance we are aware of in the literature is due to S. Borofsky [Bor50]. We give a
third, “lemmaless” proof of Theorem 15.25 here.

Proof. It suffices to show that R[t] is an ACCP domain and an EL-domain. By
Theorem 15.26a), R[t] is an ACCP domain. Now, seeking a contradiction, we
suppose that R is an EL-domain but R[t] is not. Among the set of all elements
in R[t] admitting inequivalent irreducible factorizations, let p be one of minimal
degree. We may assume

p = f1 · · · fr = g1 · · · gs,
where for all i, j, (fi) ̸= (gj) and

m = deg f1 ≥ deg f2 ≥ . . . ≥ deg fr,

n = deg g1 ≥ deg g2 ≥ . . . ≥ deg gs,

with n ≥ m > 0. Suppose the leading coefficient of f1 (resp. g1) is a (resp. b). Put

q = ap−bf1xn−mg2 · · · gs = f1(af2 · · · fr−bxn−mg2 · · · gs) = (ag1−bf1xn−m)g2 · · · gs.
Thus q = 0 implies ag1 = bf1x

n−m. If, however, q ̸= 0, then

deg(ag1 − bf1x
n−m) < deg g1,

hence deg q < deg p and q has a unique factorization into irreducibles, certainly
including g2, · · · , gs and f1. But then f1 must be a factor of ag1 − bf1x

n−m and
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thus also of ag1. Either way ag1 = f1h for some h ∈ R[t]. Since a is constant and f1
is irreducible, this implies h = ah2, so ag1 = f1ah2, or g1 = f1h2, contradiction. �

Corollary 15.27. Let R be a UFD and let {ti}i∈I be any set of indeterminates.
Then S = R[{ti}] is a UFD.

Proof. When I is finite, apply Theorem 15.25 and induction. When I is infinite,
S =

∪
J R[{tj}], as J ranges over all finite subsets of I: any given polynomial

can only involve finitely many indeterminates. For f ∈ S, let J be such that
f ∈ R[{tj}], so f = p1 · · · pr is a factorization into prime elements of R[{tj}]. Any
two factorizations in S would themselves lie in some subalgebra involving finitely
many determinates, so the factorization must be unique. �

So a polynomial ring in infinitely many indeterminates over a field k is a non-
Noetherian UFD. This is an important example to keep in mind: the UFD con-
dition is in many ways a very delicate one, but it can still be satisfied by very “large”

We mention without proof two negative results.

Theorem 15.28.
a) (Roitman [Roi93]) There exists an integrally closed atomic domain R such that
R[t] is not atomic.
b) (Anderson-Quintero-Zafrullah) There exists an EL domain R such that R[t] is
not an EL domain.

15.7. Application: the Schönemann-Eisenstein Criterion.

The most famous criterion for irreducibility of univariate polynomials is named
after Ferdinand Eisenstein [Ei50]. However, the version for polynomials over Z was
proven several years earlier by Theodor Schönemann [Sc45], [Sc46]. For many years
now few anglophone texts have associates Schönemann’s name with this result, and
his contribution might have been in real danger of being forgotten were it not for
the beautiful recent article of D.A. Cox [Cox11] on the early history of this result.

Nowadays it is common to state and prove a version of Eisenstein’s criterion
with respect to a prime ideal in a UFD. We give a slight generalization:

Theorem 15.29. (Schönemann-Eisenstein Criterion) Let R be a domain with frac-
tion field K, and let f(t) = adt

d + . . . + a1t + a0 ∈ R[t]. Suppose that there exists
a prime ideal p of R such that ad ̸∈ p, ai ∈ p for all 0 ≤ i < d and a0 ̸∈ p2.
a) If f is primitive, then f is irreducible over R[t].
b) If R is a GCD-domain, then f is irreducible over K[t].

Proof. a) Suppose to the contrary that f is primitive and reducible over R[t]: i.e.,
there exists a factorization f = gh with g(t) = bmt

m + . . . + b1t + b0, h(t) =
cnt

m+. . .+c1t+c0, deg(g),deg(h) < deg(f) and bmcn ̸= 0. Since a0 = b0c0 ∈ p\p2,
it follows that exactly one of b0, c0 lies in p: say it is c0 and not b0. Moreover, since
ad = bmcn ̸∈ p, cn ̸∈ p. Let k be the least index such that ck ̸∈ p, so 0 < k ≤ n.
Then b0ck = ak− (b1ck−1+ . . .+ bkc0) ∈ p. Since p is prime, it follows that at least
one of b0, ck lies in p, a contradiction.
b) Suppose R is a GCD-domain and (seeking a contradiction) that f is reducible
over K[t]. By Corollary 15.24b), we may write f = gh with g, h ∈ R[t] and
deg(g),deg(h) < deg(f). Then the proof of part a) goes gives a contradiction. �
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Corollary 15.30. Let R be a GCD-domain containing a prime element π (e.g. a
UFD that is not a field). Then the fraction field K of R is not separably closed.

Proof. To say that π is a prime element is to say that the principal ideal p = (π) is
a nonzero prime ideal. Then π ̸∈ p2, so for all n > 1, Pn(t) = tn − π is Eisenstein
with respect to p and hence irreducible in K[t]. Choosing n to be prime to the
characteristic of K yields a degree n separable field extension Ln := K[t]/(Pn). �
15.8. Application: Determination of SpecR[t] for a PID R.

Let R be a PID. We wish to determine all prime ideals of the ring R[t]. Let
us begin with some general structural considerations. First, R is a one-dimensional
Noetherian UFD; so by Theorems 8.36, 15.26 and 8.48, R[t] is a two-dimensional
Noetherian UFD. Being a UFD, its height one ideals are all principal. Since it
has dimension two, every nonprincipal prime ideal is maximal. Therefore it comes
down to finding all the maximal ideals.

However, to avoid assuming the Dimension Theorem, we begin with milder hy-
potheses on a prime ideal P, following [R, pp. 22-23].

Namely, let P be a nonzero prime ideal of R[t]. We assume – only! – that P
is not principal. By Theorem 15.1, we are entitled to a prime element f1 of P.
Since P ̸= (f1), let f2 ∈ P \ (f1). Then gcd(f1, f2) = 1: since gcd(f1, f2) | f1, the
only other possibility is (gcd(f1, f2)) = (f1), so f1 | f2 and f2 ∈ (f1), contradiction.

first claim Let K be the fraction field of R. The elements f1 and f2 are
also relatively prime in the GCD-domain K[t]. Indeed, suppose that f1 = hg1,
f2 = hg2 with h, g1, g2 ∈ K[t] and h a nonunit. By Gauss’ Lemma, we may write
h = ah0, g1 = b1γ1, g2 = b2γ2 with a1, b1, b2 ∈ K and h0, γ1, γ2 primitive el-
ements of R[t]. Again by Gauss’ Lemma, h0γ1 and h0γ2 are also primitive, so
f1 = hg1 = (ab1)(h0γ1) ∈ R[t], which implies that ab1 ∈ R. Similarly, ab2 ∈ R, so
h0 is a nonunit of R[t] which divides both f1 and f2, contradiction.

Let M := ⟨f1, f2⟩, and put m = M∩R. It remains to show that, as the notation
suggests, M is a maximal ideal of R[t] and m is a maximal ideal of R.

second claim m ̸= 0. Since K[t] is a PID and f1, f2 are relatively prime in
K[t], there exist a, b ∈ K[t] such that af1 + bf2 = 1. Let 0 ̸= c ∈ R be an el-
ement which is divisible by the denominator of each coefficient of a and b: then
(ca)f1 + (cb)f2 = c with ca, cb ∈ R, so that c ∈ m.

Now put p = P ∩R, so p = (p) is a prime ideal of the PID R. Moreover,

p = P ∩R ⊃ M∩R = m ) 0,

so p is maximal. Since P ⊃ p, P corresponds to a prime ideal in R[t]/pR[t] =
(R/p)[t], a PID. Therefore P is generated by p ∈ p and an element f ∈ R[t] whose
image in (R/p)[t] is irreducible.

We therefore have proved:

Theorem 15.31. Let R be a PID, and P ∈ SpecR[t]. Then exactly one of the
following holds:
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(0) P has height 0: P = (0).
(i) P has height one: P = (f), for a prime element f ∈ R[t].
(ii) P has height two: P = ⟨p, f⟩, where p is a prime element of R and f ∈ R[t] is
an element whose image in (R/p)[t] is irreducible. Moreover both P and p := P ∩R
are maximal, and [R[t]/P : R/p] <∞.

Exercise 15.11: Suppose R has only finitely prime ideals, so is not a Hilbert-
Jacobson ring. By Theorem 12.21, there m ∈ MaxSpecR[t] such that m ∩R = (0).
Find one, and explain where m fits in to the classification of Theorem 15.31.

15.9. Power series rings over UFDs.

Exercise 15.12: Show that if R is ACCP, so is R[[t]].

In particular, if R is a UFD, R[[t]] is ACCP. But of course the more interest-
ing question is the following: Must R[[t]] be a UFD?

In contrast to Gauss’s Theorem, whether a formal power series ring over a UFD
must be a UFD was a perplexing problem to 20th century algebraists and remained
open for many years. Some special cases were known relatively early on.

Theorem 15.32. (Rückert [Rü33], Krull [Kr37]) Let k be a field, and let n be a
positive integer. Then k[[t1, . . . , tn]] is a UFD.

A significant generalization was proved by Buchsbaum and Samuel, independently,
in 1961. A Noetherian domain R is regular if for every maximal ideal m of R, the
height of m is equal to the dimension of m/m2 as a vector space over the field R/m.

Theorem 15.33. ([Buc61], [Sa61]) If R is a regular UFD, then so is R[[t]].

The paper [Sa61] also exhibits a UFD R for which R[[t]] is not a UFD.

What about formal power series in countably infinitely many indeterminates? Let
k be a field. There is more than one reasonable way to define such a domain. One
the one hand, one could simply take the “union” (formally, direct limit) of finite
formal power series rings k[[t1, . . . , tn]] under the evident inclusion maps. In any
element of this ring, only finitely many indeterminates appear. However, it is useful
also to consider a larger ring, in which the elements are infinite formal k-linear com-
binations of monomials ti1 · · · tin . Let us call this latter domain k[[t1, . . . , tn, . . .]].

In fact, we have seen this domain before: it is isomorphic to the Dirichlet ring
Dk of functions f : Z+ → k with pointwise addition and convolution product. To
see this, we use unique factorization in Z! Namely, write enumerate the prime
numbers {pi}∞i=1 and write n ∈ Z+ as n =

∏∞
i=1 p

ai
i , where ai ∈ Z+ and ai = 0

for all sufficiently large i. Then the map which sends f ∈ Dk to the formal power
series

∑
n∈Z+ f(n)

∏∞
i=1 t

ai
i gives an isomorphism from Dk to k[[t1, . . . , tn, . . .]]. In

1959, E.D. Cashwell and C.J. Everett used Theorem 15.32 to prove the following
result. A key part of their proof was later simplified by C.F. Martin, who pointed
out the applicability of König’s Infinity Lemma.

Theorem 15.34. ([CE59], [Mar71])
a) For any field k, the ring of formal power series k[[t1, . . . , tn, . . .]] is a UFD.
b) In particular, the ring DC = {f : Z+ → C} of arithmetic functions is a UFD.
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In almost any first number theory course one studies unique factorization and also
arithmetic functions, including the Dirichlet ring structure (which e.g. leads to
an immediate proof of the Möbius Inversion Formula). That arithmetic functions
are themselves an example of unique factorization is however a very striking result
that does not seem to be well-known to most students or practitioners of number
theory. I must confess, however, that I (a number theorist) know of no particular
application of Theorem 15.34. I would be interested to learn of one!

15.10. Nagata’s Criterion.

Proposition 15.35. Let R be a domain, S a saturated multiplicative subset, and
f ∈ R \ S. If f is prime as an element of R, it is also prime as an element of RS.

Proof. Since f ∈ R \ S, f is not a unit in RS . Let α, β ∈ RS be such that f | αβ
in RS . So there exists γ ∈ RS such that γf = αβ; putting α = x1

s1
, β = x2

s2
, γ = x3

s3
and clearing denominators, we get s1s2x3f = s3x1x2, so f | r3x1x2. If f | s3, then
since S is saturated, f ∈ S, contradiction. So, being prime, f divides x1 or x2 in
R, hence a fortiori in RS and therefore it also divides either x1

s1
or x2

s2
in RS , since

these are associates to x1 and x2. �
Theorem 15.36. Every localization of a UFD is again a UFD.

Exercise 15.13: Prove Theorem 15.36. (Suggestions: one gets an easy proof by
combining Theorem 15.1 with Proposition 15.35. But the result is also rather
straightforward to prove directly.)

A saturated multiplicative subset S of R is primal60 if it is generated by the
units of R and by the prime elements of S.

Lemma 15.37. An irreducible element of a primal subset is prime.

Proof. Suppose S is primal and f ∈ S is irreducible. By definition, there exists a
unit u and prime elements π1, . . . , πn such that f = uπ1 · · ·πn. Since uπ1 is also
prime, we may as well assume that u = 1. Then, since f is irreducible, we must
have n = 1 and f = π1. �
Theorem 15.38. For an atomic domain R, the following are equivalent:
(i) Every saturated multiplicative subset of R is primal.
(ii) R is a UFD.

Proof. Since the set R× of units is trivially generated by the empty set of prime
elements, both conditions hold if R is a field, so let us now assume otherwise.

Assume (i). Then, since R is a factorization domain which is not a field, there
exists an irreducible element f of R. Let S be the saturated multiplicative subset
generated by S, which consists of all units of R together with all divisors of positive
powers fn of f . Since S is primal and strictly contains R×, there must exist a
prime element π which divides fn for some n. In other words, fn ∈ πR, and since
πR is prime, we must have that f = xπ for some x ∈ R. Since f is irreducible we
must have x ∈ R×, i.e., f ∼ π and is therefore a prime element. So R is an ACCP
domain and an EL-domain and hence a factorization domain by Theorem 3.3.

Assume (ii), let S be a saturated multiplicative subset of R, and suppose that
f ∈ S \ R×. Then f = uπa11 · · ·πann where the πi’s are prime elements. Since each

60This terminology is my invention: do you like it?
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πi | f , πi ∈ S for all i. It follows that indeed S is generated by its prime elements
together with the units of R. �
Because of Theorem 15.38, it is no loss of generality to restate Theorem 15.36 as:
the localization of a UFD at a primal subset is again a UFD. The following elegant
result of Nagata may be viewed as a converse.

Theorem 15.39. (Nagata [Nag57]) Let R be a factorization domain and S ⊂ R a
primal subset. If the localized domain RS is a UFD, then so is R.

Proof. By Theorem 15.8 it suffices to show that if f ∈ R is irreducible, f is prime.
Case 1: f ̸∈ S, so f is not a unit in RS . Since RS is a UFD, it is enough to show
that f is irreducible in RS . So assume not: f = x1

s1
· x2

s2
with x1, x2 ∈ R \ S and

s1, s2 ∈ S. hen s1s2f = x1x2. By assumption, we may write s1 = up1 · · · pm and
s2 = vq1 · · · qn, where u, v ∈ R× and pi, qj are all prime elements of R. So p1 | x1x2;
since p1 is a prime, we must have either x1

p1
∈ R or x2

q2
∈ R. Similarly for all the

other pi’s and qj ’s, so that we can at each stage divide either the first or the second
factor on the right hand side by each prime element on the left hand side, without
leaving the ring R. Therefore we may write f = ( 1

uv )
x1

t1
x2

t2
where t1, t2 are each

products of the primes pi and qj , hence elements of S, and also such that t1 | x1,
t2 | x2, i.e., the factorization takes place in R. Moreover, since xi ∈ R \ S and
ti ∈ S, xi

ti
is not even a unit in RS , hence a fortiori not a unit in R. Therefore we

have exhibited a nontrivial factorization of f in R, contradiction.
Case 2: f ∈ S. Since S is primal, by Lemma 15.37, f is prime. �
Remark: If S is the saturation of a finitely generated multiplicative set, the hy-
pothesis that R is a factorization domain can be omitted.

Application: Let A be a UFD and consider R = A[t]. Put S = A \ {0}. As
for any multiplicative subset of a UFD, S is generated by prime elements. But
moreover, since A[t]/(πA[t]) ∼= (A/πA)[t], every prime element π of A remains
prime in A[t], so viewing S as the multiplicative subset of A[t] consisting of nonzero
constant polynomials, it too is generated by prime elements. But if F is the fraction
field of A, RS = (A[t])S = F [t] which is a PID and hence a UFD. Nagata’s the-
orem applied to R and S now tells us – for the third time! – that R = A[t] is a UFD.

Nagata used Theorem 15.39 to study the coordinate rings of affine quadric cones.
Let k be a field of characteristic different from 2, and let f(x) = f(x1, . . . , xn) ∈

k[x1, . . . , xn] be a quadratic form, i.e., a homogeneous polynomial of degree
2 with k coefficients. We assume that f the associated bilinear form (x, y) 7→
1
2 (f(x+ y)− f(x)− f(y)) is nonsingular. Equivalently, by making an invertible lin-
ear change of variables every quadratic form can be diagonalized, and a quadratic
form is nonsingular iff it admits a diagonalization

(32) f(x) = a1x
2
1 + . . .+ anx

2
nwitha1, . . . , an ∈ k×.

We wish to study the affine quadric cone associated to f , namely Rf = k[x]/(f).
Note that if quadratic forms f and g are isometric – i.e., differ by an invertible
linear change of variables – then Rf ∼= Rg, so we assume if we like that f is in
diagonal form as in (32) above. If n ≥ 3 then every nonsingular diagonal quadratic
polynomial is irreducible, so Rf is a domain. If k is quadratically closed – i.e.,
admits no proper quadatic extension – then conversely any binary (n = 2) quadratic



COMMUTATIVE ALGEBRA 253

form is reducible, so Rf is not a domain. (If f is not quadratically closed, there
exist irreducible binary quadratic forms, but we will not consider them here.)

Theorem 15.40. Let f = f(x1, . . . , xn) ∈ C[x1, . . . , xn] be a nondegenerate qua-
dratic form. Then Rf = k[x]/(f) is a UFD iff n ≥ 5.

Proof. By the remarks above, Rf is a domain iff n ≥ 3, so we may certainly restrict
to this case. Because C is algebraically closed, every quadratic form in n ≥ 2
variables is isotropic, i.e., there exists 0 ̸= a ∈ kn such that f(a) = 0: indeed, the
first n − 1 coordinates of a may be chosen arbitrarily. By an elementary theorem
in the algebraic theory of quadratic forms [Lam06, Thm. I.3.4], we may make a
change of variables to bring f into the form:

f(x) = x1x2 + g(x3, . . . , xn).

Case 1: Suppose n = 3, so that

f(x) = x1x2 − ax23

for some a ∈ k×. In this case, to show that Rf is not a UFD it suffices to
show that the images x1, x2, x3 of x1, x2, x3 in Rf are nonassociate irreducibles,
for then x1x2 = ax3

2 exhibits a non-unique factorization! To establish this, regard
k[x1, x2, x3] as a graded C-algebra in the usual way – with x1, x2, x3 each of degree
1 – so that the quotient Rf by the homogeneous ideal (f) inherits a grading. Since
x1 has degree 1, if it were reducible, it would factor as the product of a degree one
element c1x1 + c2x2 + x3x3 + (f) and a degree zero element r + (f), and thus

(rc1 − 1)x1 + rc2x2 + rc3x3 ∈ (f).

But the left hand side has degree 1, whereas all nonzero elements in (f) have degree
2 or higher, so r ∈ C[x]× and therefore the factorization is trivial. The irreducibility
of x2 and x3 is proved in the same way. If x1 ∼ x3 in Rf , then we may divide both
sides of x1x2 − ax3

2 by x1 and deduce that also x2 ∼ x3. But in the quotient ring
Rf/(x3), x3 maps to 0 and x1 and x2 do not, contradiction. So Rf is not a UFD.
Case 2: Suppose n = 4, so f(x) = x1x2+g(x3, x4), where g(x3, x4) is a nonsingular
binary form. Here for the first time we use the full strength of the quadratic closure
of k: since k× = k×2, any two nonsingular quadratic forms in the same number of
variables are isometric, so we may assume WLOG that

f(x) = x1x2 − x3x4.

Now we argue exactly as in Case 1 above: in Rf , the images x1, x2, x3, x4 are all
non-associate irredcuble elements, so x1x2 = x3x4 is a non-unique factorization.
Case 3: n ≥ 5. Then n− 2 ≥ 3, so g is irreducible in the UFD C[x3, . . . , xn], hence
also in C[x2, x3, . . . , xn]. ThereforeRf/(x1) = C[x1, . . . , xn]/(x1, f) = C[x2, . . . , xn]/(g)
is a domain, i.e., x1 is a prime element. Moreover,

R[x1
−1] = C[x1, . . . , xn, x−1

1 ]/(x1x2 − g)

∼= C[x1, . . . , xn, x−1
1 ]/(x2 −

g

x1
) ∼= C[x1, x3, . . . , xn, x−1

1 ]

is a localization of the UFD C[x1, x3, . . . , xn] hence a UFD. By Nagata’s Criterion
(Theorem 15.39), Rf itself is a UFD. �
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Now let k be a field of characteristic not 2 and f ∈ k[x1, . . . , xn] a nondegenerate
quadratic form. Without changing the isomorphism class of Rq we may diagonalize
f ; moreover without changing the ideal (f) we may scale by any element of k×, so
without loss of generality we need only consider forms x21 + a2x

2
2 + . . .+ anx

2
n.

Theorem 15.41. Let k be a field of characteristic different from 2 and f = x21 +
a2x

2
2 + . . .+ anx

2
n a nonsingular quadratic form over k. Put Rf = k[x]/(f).

a) If n ≤ 2 then Rf is not an integrally closed domain.
b) If n = 3, Rf is a UFD iff f is anistropic: ∀a ∈ kn, f(a) = 0 =⇒ a = 0.
c) (i) Suppose f = x21 − ax22 − bx23 − cx24. If a is a square in k, then Rf is a UFD
iff −bc is not a square in k.
(i) If none of a, b, c, −ab, −ac, −bc is a square in k, then Rf is a UFD iff −abc
is not a square.
d) If n ≥ 5, Rf is a UFD.

Proof. a) If n ≤ 2, Rf is never an integrally closed domain.
b) The proof of Theorem 15.40 goes through to show that if f is isotropic (i.e., not
anisotropic), Rf is not a UFD. The anisotropic case is due to Samuel [Sa64].
Part c) is due to T. Ogoma [O74].
Part d) goes back at least to van der Waerden [vdW39]. In [Nag57], M. Nagata
gives a short proof using Theorem 15.39. �
It is also interesting to consider affine rings of inhomogeneous quadric hypersurfaces.
For instance, we state without proof the following result.

Theorem 15.42. For n ≥ 1, let Rn := R[t1, . . . , tn+1]/(t
2
1 + . . .+ t2n+1 − 1) be the

ring of polynomial functions on the n-sphere Sn.
a) (Bouvier [Bou78]) If n ≥ 2, then Rn is a UFD.
b) (Trotter [Tr88]) R1 is isomorphic to the ring R[cos θ, sin θ] of real trigonometric
polynomials, in which (sin θ)(sin θ) = (1+cos θ)(1−cos θ)) is an explicit non-unique
factorization into irreducible elements. Hence R1 is not a UFD.

16. Principal rings and Bézout domains

A ring R in which every ideal is principal is called a principal ring. If R is
moreover a domain, it is called a principal ideal domain (PID).

16.1. Principal ideal domains.

Proposition 16.1. a) A PID has dimension at most one.
b) A UFD is a PID iff it has dimension at most one.

Proof. a) Any domain has positive Krull dimension. Moreover, if (x) ⊂ (y) are
two nonzero principal prime ideals, then we may write x = cy for some 0 ̸= c ∈ R.
Since x is prime, either x | c or x | y. If dx = c, then dcy = dx = c, and cancellation
gives that y is a unit, contradiction. Therefore y = dx = dcy and cancellation gives
dc = 1, i.e., c, d ∈ R× and (x) = (y).
b) We recall only that by Kaplansky’s Theorem 15.1, any nonzero ideal in a UFD
contains a prime element. �
Exercise 16.1: Let R be a PID and let S ⊂ R\{0} be a multiplicative subset. Show
that the localization S−1R is a PID (which is a field iff S ∩R× ̸= ∅).

Corollary 16.2. A UFD in which each maximal ideal is principal is a PID.
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Proof. Let R be a UFD in which each maximal ideal is principal. Seeking a con-
tradiction, suppose R is not a PID: then, by Theorem 4.25 there is a nonprincipal
prime ideal p. Let m be a maximal ideal containing p, which by assumption is
principal, say m = (x). By Kaplansky’s Theorem 15.1, p contains a prime element
y. Thus x | y, but since both are prime elements we conclude (x) = (y) and thus
p = (x) is principal, contradiction. �
Exercise 16.2: We develop an alternate proof of Corollary 16.2 followingW. Dubuque.
a) Let R be a UFD, and let S ⊂ R• be any subset. Show that gcd(S) exists.
b) Let R be a UFD in which all maximal ideals are principal, let I be a nonzero
ideal in R. Show that we may write I = gcd(I)J for an ideal J which is not con-
tained in any proper principal ideal, and conclude that I = gcd(I) is principal.

We now follow with some very familiar examples.

Proposition 16.3. The integer ring Z is a principal ideal domain.

To be honest, I can hardly imagine a reader without prior knowledge of this result
(a staple of undergraduate mathematics) who has made it this far. Therefore, with
our tongue slightly in cheek, we present a “structural” proof. To make clear the
rules of our little game, let us say in advance that the only “prior knowledge” we
will require about the ring Z is that for any positive integer n, the quotient Z/nZ
has (finite!) order n. To show this, let z be any nonzero integer; note that the
set of integers k such that z − kn ≥ 0 is bounded above so therefore has a largest
element K; and thus 0 ≤ z −Kn < n.

Lemma 16.4. The integer ring Z is a unique factorization domain.

Proof. Concretely, we claim that for every integer n > 1, there exist not necessarily
distinct prime numbers p1, ..., pr such that n = p1 · · · pr and also that if we have
any s prime numbers q1, . . . , qs such that n = q1 · · · qs, then r = s and there exists
a permutation σ of {1, . . . , r} such that for all 1 ≤ i ≤ r we have qi = pσ(i). �
Here are two proofs which the reader may not have seen before:

First proof: Indeed a decomposition n = p1 · · · pr corresponds to a composition
series for the Z-module Z/nZ. Since Z/nZ is finite, it is certainly Noetherian
and Artinian, so composition series exist. Moreover the Jordan-Hölder theorem
implies that any two composition series have the same number of terms – i.e.,
r = s = ℓ(Z/nZ) – and that after a permutation the sequences of isomorphism
classes of composition factors become identical.

Second proof (Lindemann [Li33], Zermelo [Ze34]): We prove both the existence
and uniqueness of the factorization by an inductive argument, specifically by ap-
peal to the well-ordering of the positive integers under ≤.

Existence: let S be the set of integers n > 1 which do not have at least one
prime factorization. We wish to show that S is empty so, seeking a contradiction,
suppose not. Then by well-ordering S has a least element, say N . If N is prime,
then we have found a prime factorization, so suppose it is not prime: that is, we
may write N = N1N2 with 1 < N1, N2 < N . Thus N1 and N2 are too small to lie
in S so each have prime factorizations, say N1 = p1 · · · pr, N2 = q1 · · · qs, and then
N = p1 · · · prq1 · · · qs gives a prime factorization of N , contradiction!
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Uniqueness: we claim that the factorization of a positive integer is unique. As-
sume not; then the set of positive integers which have at least two different standard
form factorizations is nonempty, so has a least element, say N , where:

(33) N = p1 · · · pr = q1 · · · qs.
Here the pi’s and qj ’s are prime numbers, not necessarily distinct from each other.
However, we must have p1 ̸= qj for any j. Indeed, if we had such an equality, then
we could cancel and, by an inductive argument we have already rehearsed, reduce
to a situation in which the factorization must be unique. In particular p1 ̸= q1.
Without loss of generality, assume p1 < q1. Then, if we subtract p1q2 · · · qs from
both sides of (33), we get

(34) M := N − p1q2 · · · qs = p1(p2 · · · pr − q2 · · · qs) = (q1 − p1)(q2 · · · qs).
By the assumed minimality of N , the prime factorization of M must be unique.
However, (34) gives two different factorizations ofM , and we can use these to get a
contradiction. Specifically, M = p1(p2 · · · pr − q2 · · · qs) shows that p1 | M . There-
fore, when we factor M = (q1 − p1)(q2 · · · qs) into primes, at least one of the prime
factors must be p1. But q2, . . . , qj are already primes which are different from p1,
so the only way we could get a p1 factor is if p1 | (q1− p1). But this implies p1 | q1,
and since q1 is also prime this implies p1 = q1. Contradiction!

Now we come to the proof of Proposition 16.3. Applying the lemma together
with Kaplansky’s Theorem (Theorem 15.1), we see that every nonzero prime ideal
p of Z contains a prime element, say p. But the quotient Z/(p) is a finite integral
domain, hence a field, hence (p) is maximal and therefore (p) = p. This shows that
every prime ideal of Z is principal, and now finally we apply Theorem 4.25.

Proposition 16.5. For any field k, the ring R = k[t] is a principal ideal domain.

Proof. By Theorem 15.26, R is a UFD. The remainder of the argument is quite
similar to the case of R = Z. Namely it suffices to show that the ideal generated
by any prime element is maximal. But a prime element of k[t] is, among other
things, a polynomial p(t) of positive degree d, and the quotient R/(p(t)), being
finite dimensional over a field k, is an Artinian integral domain. Thus R/(p(t)) is
a field and (p(t)) is maximal. �
Conversely:

Exercise 16.3: Let R be a ring, and suppose that the univariate polynomial ring
R[t] is a PID. Show that R is a field.

Proposition 16.6. Let R be a Noetherian local ring with a principal maximal ideal
m = (a). Then every nonzero ideal of R is of the form (ai) for some i ∈ N. In
particular, R is a principal ring.

Proof. The key is the Krull intersection theorem:
∩
im

i =
∩
i(a

i) = 0. It follows
that for any nonzero r ∈ R, there exists a largest i ∈ N such that r ∈ (ai), i.e., there
exists s ∈ R such that r = sai. But if s were not a unit then it would lie in m and
thus r would lie in mi+1, contradiction. So s is a unit and (r) = mi. Thus to every
nonzero element r of I we attach a non-negative integer ir. Now if I is any nonzero
ideal of R, choose a nonzero element r of I with ir minimal among elements of I.
Then I ⊃ (r) = mi, and the other containment follows by minimality of ir. �
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Corollary 16.7. For any field k, the formal power series ring k[[t]] is a PID.

Proof. We have seen that a power series ring over a domain is a domain. By
Theorem 8.36b), k[[t]] is Noetherian. Quite generally, for a ring R the units of
R[[t]] are precisely those formal power series f = a0+ a1t+ . . . with a0 ∈ R×; since
k is a field this means that the units are those with nonzero constant term. The
complement of the set of units is the principal ideal (t), so k[[t]] satisfies all the
hypotheses of Proposition 16.6 and is therefore a PID. �

Remark: If we had available the theory of completions, we could deduce Corollary
16.7 directly from Proposition 16.5.

16.2. Some structure theory of principal rings.

Proposition 16.8. Let R be a principal ring.
a) For any multiplicative subset S, the localization RS is principal.
b) For any ideal I of R, the quotient R/I is principal.

Exercise 16.4: Prove Proposition 16.8.

Proposition 16.9. Let R1, . . . , Rn be finitely many rings. TFAE:
(i) Each Ri is a principal ring.
(ii) The direct product

∏n
i=1Ri is a principal ring.

Exercise 16.5: a) Prove Proposition 16.9.
b) Exhibit an infinite direct product of PIDs which is not a principal ring.

Definition: A principal ring (R,m) is special if it is a local Artinian ring, i.e.,
if it is local and the maximal ideal is principal and nilpotent. The complete struc-
ture of ideals in special principal rings can be deduced from Proposition 16.6: if n
is the least positive integer such that mn = 0, then the ideals of R are precisely the
powers mi = (πi) for 0 ≤ i ≤ n.

We can now state a structure theorem for principal rings, which appears in Zariski
and Samuel (so far as I know, for the first time).

Theorem 16.10. (Zariski-Samuel) Every principal ring is the direct product of a
finite number of PIDs and special principal rings.

Much of the work of the proof is contained in the following preparatory result:

Lemma 16.11. Let R be a principal ring.
a) Let p ( q be prime ideals of R. Then q contains no prime ideals other than itself
and p and every primary ideal contained in q contains p.
b) If p is a non-maximal prime ideal and a ⊂ p is a primary ideal, then a = p.
c) Any two incomparable prime ideals of R are comaximal.

Proof. a) Suppose that we have p ( q and also q ) r, where r is a prime ideal.
Write p = (p), q = (q) and r = (r). There exists a ∈ R such that p = aq. Since
p is a prime element and p does not divide q, we must have p | a, so that there
exists b ∈ R with a = pb and thus p = pbq. Now since p(1 − bq) = 0 ∈ r ⊂ q and
1 − bq ∈ R \ q, r does not contain 1 − bq and therefore we must have p ∈ r, i.e.,
p ⊂ r ⊂ q. But now modding out by p we get 0 ⊂ r/p ⊂ q/p in the principal ideal
domain R/p, which is a one-dimensional ring, and therefore r = p or r = q.
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b) . . .
c) Now let p1 and p2 be incomparable prime ideals. If p1 is maximal, then it is
comaximal with any prime ideal which is not contained in it. Similarly, p2 is not
maximal either. So if they are not comaximal, there exists a maximal ideal q strictly
containing both p1 and p2. Applying part a) to p1 ( q gives a contradiction. �
Proof of Theorem 16.10: Let

(0) =
n∩
i=1

ai

be an irredundant primary decomposition of (0), and let pi = rad(ai). Then the
pi’s are pairwise comaximal; otherwise, for any distinct {i, j}, by Lemma 16.11
we would have, say, pi ( pj and then part b) of the lemma gives pi = ai ⊂ aj ,
contradicting irredundancy. Since the radicals of the ai’s are pairwise comaximal, so
are the ai’s (Proposition 4.16). So we may apply the Chinese Remainder Theorem,
getting

R = R/(0) = R/
n∩
i=1

ai =
n∏
i=1

R/ai.

Each factor is, of course, a principal ring. Fix any 1 ≤ i ≤ n.
Case 1: Suppose first that pi is maximal. If ai were contained in any other prime
ideal p, then rad(ai) = pi ⊂ rad(p) = p, contradiction. So R/ai is a special PIR.
Case 2: Otherwise, pi = ai, so that R/ai is a PID. �

We quote without proof the following somewhat stronger result:

Theorem 16.12. (Hungerford structure theorem [Hun68])
For a commutative ring R, TFAE:
(i) R is a principal ring.
(ii) R ∼=

∏n
i=1Ri, and each Ri is a quotient of a PID.

Exercise 16.6: Derive Theorem 16.10 from Theorem 16.12.

Exercise 16.7: Show that for a commutative ring R, TFAE:
(i) R is a special principal ring.
(ii) R is the quotient of a DVR by a nonzero ideal.

Exercise 16.8: Let k be a field. Let R = k[x, y], and m be the maximal ideal
⟨x, y⟩ in R. Show that the quotient ring S = R/m2 is nonprincipal. In particular,
if k is finite, then S is a finite nonprincipal local ring.

Exercise:61 Show that for a ring R the following are equivalent:
(i) The polynomial ring R[t] is principal.
(ii) R is a finite product of fields.

16.3. Euclidean functions and Euclidean rings.

THIS SECTION WILL SOON BE REWRITTEN

IfR is an integral domain, then aEuclidean function is a functionN : R\{0} → N

61Inspired by http://math.stackexchange.com/questions/361258.
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such that: for all a ∈ R and b ∈ R \ {0}, there exists q, r ∈ R such that a = qb+ r
with r = 0 or N(r) < N(b).

Exercise 16.9: For each of the following rings R, we give a function N : R\{0} → N.
Verify that N is a Euclidean function on R.
a) R = Z, N(a) = |a|.
b) R = k[t], N(p(t)) = deg(p(t)).
c) R = k[[t]], N(

∑∞
n=0 ant

n) := the least n such that an ̸= 0.

d) For d ∈ {−2,−1, 2, 3}, R = Z[
√
d] = Z[t]/(t2 − d), N(a+ b

√
d) = |a2 − db2|.

Exercise 16.10: Let R be a local PID. Use Proposition 16.6 to construct a Eu-
clidean function on R.

The virtue of Euclidean functions lies in the following result:

Proposition 16.13. A domain R which admits a Euclidean function is a PID.

Proof. Let I be any nonzero ideal of R, and choose an element x in I such that
N(x) is minimal. For any y ∈ I, by definition of a Euclidean function we may
write y = qx+ r with r = 0 or N(y) < N(x). Our choice of x rules out the second
alternative and thus we have y = qx, i.e., y ∈ (x). �
Remark: It is common to define a Euclidean domain as a domain which admits
some Euclidean function. In my opinion, this definition is somewhat of a false step
in the theory. The merit of the notion of a Euclidean function is that for certain
rings R there is an evident Euclidean function (e.g. for Z and k[t]), and when
this occurs one deduces immediately that R is a PID. Moreover, if the Euclidean
function is (in some sense) computable, the Euclidean algorithm can be used to
find greatest common divisors and, accordingly, generators of ideals.

In contrast, since the specific Euclidean function is not part of the definition of a
Euclidean domain, in order to show that a given ring R is not Euclidean one needs
to argue that no Euclidean function can exist. Evidently if R is not a PID, no such
function can exist. However, there are PIDs which admit no Euclidean function
(more details are given below).

One way to assess the naturality of the notion Euclidean domain is to examine
its stability under small perturbations of the definition. In other words, to what
extent do similar axioms for a “Euclidean function” lead to an equivalent class of
rings?

There are several results to the effect that a certain weakening of the definition
of a Euclidean function captures precisely the class of all PIDs. For example:

Theorem 16.14. (Dedekind-Hasse) For a domain R with fraction field K, TFAE:
(i) There exists a function N : K → Q satisfying:
(QN1) ∀x ∈ K, N(x) ≥ 0; N(x) = 0 ⇐⇒ x = 0.
(QN2) ∀x, y ∈ K, N(xy) = N(x)N(y).
(QN3) ∀x ∈ R, N(x) ∈ Z.
(QN4) ∀x ∈ R,N(x) = 1 ⇐⇒ x ∈ R×.
(QN5) ∀x ∈ K \R, ∃ a, b ∈ R such that 0 < N(ax− b) < 1.
(ii) R is a principal ideal domain.
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Exercise 16.11: Prove Theorem 16.14. (Suggestions: (i) =⇒ (ii) is the usual argu-
ment that an ideal is generated by any element of minimal norm. Conversely, if R is
a PID, define N on R\{0} by, e.g., setting N(x) to be 2r, where r = ℓ(R/xR) is the
number of irreducibles appearing in a factorization of x and extend this map to K.)

In another direction, P. Samuel considered the notion of a W-Euclidean function
on a domain R. Here W is a well-ordered set and N : R → W is a function such
that for all a ∈ R, b ∈ R \ {0} such that b - a, ∃ q, r ∈ R with a = qb + r and
N(r) < N(b). If R admits, for some W , a W -Euclidean function, then R is a PID.

Exercise 16.12: Show that a domain isW -Euclidean for some finiteW iff it is a field.

Say that a domain is Samuel-Euclidean if it isW -Euclidean for some well-ordered
set W . Samuel remarks that the an imaginary quadratic fields Q(

√
−d) has a

Samuel-Euclidean ring of integers Rd iff d = 1, 2, 3, 7, 11. On the other hand, it
goes back at least to Gauss that for each of d = 19, 43, 67, 163 the ring Rd is a PID.
Thus there are PIDs which are not Samuel-Euclidean. Samuel further showed that
any Samuel-Euclidean ring is W -Euclidean for a unique minimal well-ordered set
(up to canonical order isomorphism) WR and asked the question of whether one
hasWR ≤ N for all domains R. This was answered in the negative by Hiblot [Hi75],
[Hi77].

16.4. Bézout domains.

Proposition 16.15. Let a, b be elements of a domain. If the ideal ⟨a, b⟩ is prin-
cipal, then its generator is a greatest common divisor of a and b.

Proof. In other words, we are assuming the existence of some d ∈ R such that
dR = aR + bR. Then a, b ∈ dR, so d is a common divisor of a and b. If e | a and
e | b then e ∈ aR+ bR = dR, so e | d. �

Corollary 16.16. For a domain R, TFAE:
(i) Every finitely generated ideal is principal.
(ii) For any two elements a and b of R, gcd(a, b) exists and is an R-linear combi-
nation of a and b.

Proof. (i) =⇒ (ii) is immediate from Proposition XX: gcd(a, b) will be a generator
of the ideal ⟨a, b⟩. Conversely, if d = gcd(a, b) exists and is of the form d = xa+ yb
for some x, y ∈ R, then clearly (d) = ⟨a, b⟩, so that every ideal with two generators
is principal. By an obvious induction argument, we conclude that any finitely
generated ideal is principal. �

At least according to some, it was Étienne Bézout who first explicitly noted that
for polynomials P,Q ∈ k[t], gcd(a, b) exists and is a linear combination of a and b:
this fact is called Bézout’s identity or Bézout’s Lemma. For this (somewhat
tenuous) reason, a possibly non-Noetherian domain satisfying the equivalent con-
ditions of Corollary 16.16 is called a Bézout domain.

Exercise 16.13: Show: any localization of a Bézout domain is Bézout.

Theorem 16.17. For a Bézout domain R, the following are equivalent:
(i) R is a PID.
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(ii) R is Noetherian.
(iii) R is a UFD.
(iv) R is an ACCP domain.
(v) R is an atomic domain.

Proof. (i) ⇐⇒ (ii) immediately from the definitions.
(i) =⇒ (iii): this is Corollary 15.2.
(iii) =⇒ (iv) =⇒ (v) holds for all domains.
(v) =⇒ (iii): A Bézout domain is a GCD-domain is an EL-domain, so a Bézout
atomic domain is a UFD.
(iv) =⇒ (ii): assume that R is not Noetherian. Then it admits an ideal I which
is not finitely generated, which we can use to build an infinite strictly ascending
chain of finitely generated ideals I1 ( I2 ( . . . ( I. But since R is Bézout, each Ii
is principal, contradicting ACCP. �
Let us say that a domain is properly Bézout if it is Bézout but not a PID.

We have already seen some examples of properly Bézout domains: the ring of
entire functions (Theorem 5.20) and the ring of all algebraic integers (Theorem
5.1). To get further examples we move on to the next topic: valuation rings.

17. Valuation rings

17.1. Basic theory.

Consider the divisibility relation – i.e., a | b – on a domain R. Evidently it is
reflexive and transitive, so is a quasi-ordering.62 Divisibility need not be a par-
tial ordering because a | b and b | a does not imply that a = b but only that a
and b are associates: (a) = (b). However, one of the first ideas of ideal theory is
to view associate elements as being somehow “equivalent.” This motivates us to
consider the equivalence relation on R in which a ∼ b iff (a) = (b). This is easily
seen to be a monoidal equivalence relation. In plainer language, if (a1) = (a2)
and (b1) = (b2), then (a1b1) = (a2b2). We can therefore consider the commutative
monoid of principal ideals of R under multiplication, on which the divisibility rela-
tion is a partial ordering.

Having made a quasi-ordering into a partial ordering, it is natural to ask for
conditions under which the divisibility relation induces a total ordering. Equiv-
alently, for any a, b ∈ R either a | b or b | a.

Proposition 17.1. Let R be a domain with fraction field K. TFAE:
(i) For every a, b ∈ R, a | b or b | a.
(ii) For every 0 ̸= x ∈ K, x ∈ R or x−1 ∈ R.

Exercise 17.1: Prove Proposition 17.1.

A domain R satisfying the conditions of Proposition 17.1 is called a valuation
domain or valuation ring.

Note that any field is a valuation ring. This is a trivial example which is often
implicitly excluded from consideration (we will try our best to be explicit in our

62By definition, a quasi-ordering is a reflexive, transitive binary relation on a set.
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exclusion of trivial cases). Apart from this, in a first algebra course one may not
see examples of valuation rings. But we have: if p is a prime number, then the ring
Z(p) of integers localized at p is such an example. Define x |p y if ordp( yx ) ≥ 0. Then
p-divisibility is immediately seen to be a total quasi-ordering: given two integers,
at least one p-divides the other. The fundamental theorem of arithmetic implies

x | y ⇐⇒ ∀ primes p, x |p y.
However, in Z(p), we have x | y ⇐⇒ x |p y, i.e., we have localized the divisibility
relation to get a total quasi-order: Z(p) is a valuation domain.

This argument generalizes as follows: let R be a PID63 and p = (π) be a prime
ideal of R. We define ordp(x) to be the least n such that (x) ⊃ pn, and extend it
to a map on K× by ordp(

x
y ) = ordp(x) − ordp(y). (One should check that this is

well-defined; this is easy.) Finally, we define x |p y to mean ordp(
y
x ) ≥ 0. Arguing

as above, we see that the localization Rp is a valuation ring.

Note that in showing that Rp was a valuation domain we proceeded by constructing
a map ordp on the nonzero elements of the fraction fieldK. This can be generalized,
as follows: if R is a domain with quotient field K, we can extend the divisibility
relation to K× by saying that x | y iff y

x ∈ R. Clearly x | y and y | x iff y
x is a unit

in R. Therefore the quotient of (K×, ·) on which divisibility (from R!) becomes a
partial ordering is precisely the quotient group K×/R×.

For [x], [y] ∈ K×/R×, let us write [x] ≤ [y] if [ yx ] ∈ R. (Take a second and
check that this is well-defined.)

Exercise 17.2: Show that the divisibility quasi-ordering on R is a total ordering
iff the ordering on K×/R× is a total ordering.

In other words, if R is a valuation ring, then the canonical map v : K× → K×/R×

is a homomorphism onto a totally ordered abelian group. Let us relabel the quo-
tient group by G and denote the group law by addition, so that the homomorphism
property gets recorded as

(VRK1) ∀x, y ∈ K× v(ab) = v(a) + v(b).

We recover R as

R = {x ∈ K× | v(x) ≥ 0} ∪ {0}.
Everything that has been said so far takes into account only the multiplicative
structure on R. So the following additional property is very important:

(VRK2) ∀x, y ∈ K× | x+ y ̸= 0, v(x+ y) ≥ min(v(x), v(y)).

Indeed, suppose WLOG that v(x) ≤ v(y), i.e., yx ∈ R. Then x+y
x = 1 + y

x ∈ R so
v(x) ≤ v(x+ y).

63In fact we can take R to be any Dedekind domain, as soon as we know what such a thing is.
See §18.
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Exercise 17.3: Suppose that v(x) ̸= v(y). Show that v(x+ y) = min(v(x), v(y)).

Let (G,+,≤) be a totally ordered abelian group. We write G+ = {g ∈ G | g ≥ 0},
so G+ is a totally ordered submonoid of G. A (G-valued) valuation on a field
K is a surjective map v : K× → G satisfying (VRK1) and (VRK2) above.

Exercise 17.4: Let v : K× → G be a valuation. Let R be the set of elements
of K× with non-negative valuation, together with 0. Show that R is a valuation
ring with fraction field K.

Exercise 17.5: Let R be a domain, G a totally ordered group and v : R \ {0} → G+

be a map which satisfies all of the following properties:
(VRR1) ∀x, y ∈ R \ {0}, v(ab) = v(a) + v(b).
(VRR2) ∀x, y ∈ R \ {0} | x+ y ̸= 0, v(x+ y) ≥ min(v(x), v(y)).
(VRR3) v(R \ {0}) ⊃ G+.
Show that there is a unique extension of v to a valuation v : K× → G, namely
v(x/y) = v(x)− v(y).

Proposition 17.2. A valuation ring is a local domain, in which the unique maximal
ideal m consists of elements of positive valuation.

Proof. The set of elements of strictly positive valuation form an ideal m of R. Its
complement, the set of elements of zero valuation, is the group of units. �
Proposition 17.3. Let I be a finitely generated ideal in a valuation ring. Then
the set v(I) has a least element, and for any x ∈ I of minimal valuation, I = v(x).

Proof. Write I = ⟨x1, . . . , xn⟩ with v(x1) ≤ . . . ≤ v(xn). Then for any r1, . . . , rn ∈
R, v(r1x1 + . . .+ rnxn) ≥ mini v(rixi) ≥ v(x1), so x1 is an element of I of minimal
valuation. Thus for all i > 1, v( xi

x1
) ≥ 0, so xi

x1
∈ R and x1 | xi. So I = ⟨x1⟩. �

Corollary 17.4. A valuation ring is a Bézout domain. In particular, a Noetherian
valuation ring is a PID.

Conversely:

Proposition 17.5. A local Bézout domain is a valuation domain.

Proof. Let x, y be elements of a local Bézout domain, and suppose d = gcd(x, y).
Then x

d and y
d are coprime. Since in a local ring the nonunits form an ideal, this

implies that at least one of x
d and y

d is a unit. In other words, up to associates,
d = x (so x | y) or d = y (so y | x). �
A valued field is a field together K together with a valuation v : K× → G. An
isomorphism of valued fields (K, v) → (K ′, v′) is an isomorphism f : K → K ′ of
fields such that v = v′ ◦ f . A valued field is trivial if G is the trivial group. Evi-
dently each field carries a unique trivial valuation up to isomorphism: the valuation
ring is K itself. The reader will lose nothing by making the tacit assumption that
all valuations are nontrivial.

Exercise 17.6: A chain ring is a ring R in which the partially ordered set I(R) of
ideals of R is linearly ordered.
a) Show that for a ring R, TFAE:
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(i) R is a chain ring.
(ii) For all x, y ∈ R, either xR ⊂ yR or yR ⊂ xR.
b) Show that a domain R is a chain ring iff it is a valuation ring.

17.2. Ordered abelian groups.

Let (G,+) be an abelian group, written additively. In particular the identity ele-
ment of G will be denoted by 0. As for rings, we write G• for G \ {0}.

By an ordering on G we mean a total (a.k.a. linear) ordering ≤ on G which
is compatible with the addition law in the following sense:

(OAG) For all x1, x2, y1, y2 ∈ G, x1 ≤ x2 and y1 ≤ y2 implies x1 + y1 ≤ x2 + y2.

One has the evident notions of a homomorphism of ordered abelian groups, namely
an isotone group homomorphism.

Exercise 17.7: Let (G,≤) be an ordered abelian group.
a) Let x ∈ G•. Show that either x > 0 or −x > 0 but not both.
b) Show that for all x, y ∈ G, x ≤ y ⇐⇒ −y ≤ −x.

Exercise 17.8: Let (G,≤) be an ordered abelian group, and let H be a subgroup of
G. Show that the induced order on H makes H into an ordered abelian group.

Example: For any ordered field (F,≤), the additive group (F,+) is an ordered
abelian group. In particular, the additive group (R,+) of the real numbers is an
ordered abelian group, as is any subgroup. In particular, (Z,+) and (Q,+) are
ordered abelian groups.

Exercise 17.9: Exhibit an abelian group which admits two nonisomorphic orderings.

Example (Lexicographic ordering): Let {Gi}i∈I be a nonempty indexed family
of ordered abelian groups. Suppose that we are given a well-ordering on the index
set I. We may then endow the direct product G =

∏
i∈I Gi with the structure of

an ordered abelian group, as follows: for (gi), (hi) ∈ G, we decree (gi) < (hi) if for
the least index i such that gi ̸= hi, gi < hi.

Exercise 17.10: Check that the lexicographic ordering on the product
∏
i∈I Gi is

indeed a total ordering on G.

Theorem 17.6. (Levi [Lev43]) For an abelian group G, TFAE:
(i) G admits at least one ordering.
(ii) G is torsionfree.

Proof. (i) =⇒ (ii) Suppose < is an ordering on G and let x ∈ G•. Then exactly
one of x,−x is positive; without loss of generality say it is x. Then for all n ∈ Z+,
nx = x+ . . . x (n times) must be positive, so x has infinite order in G.
(ii) =⇒ (i): Let G be a torsionfree abelian group. By Corollary 3.88, G is a flat
Z-module. Tensoring the injection Z ↪→ Q gives us an injection G ↪→ G⊗Q. Since
Q is a field, the Q-module G⊗Q is free, i.e., it is isomorphic to

⊕
i∈I Q. Choose a
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total ordering on I. Give each copy of Q its standard ordering as a subfield of R and
put the lexicographic ordering on

⊕
i∈Q Q ∼= G⊗Q. Via the injection G ↪→ G⊗Q

this induces an ordering on G. �
Exercise 17.11: a) Show that the abelian group Z admits exactly one ordering (here
when we say “ordering”, we always mean “ordering compatible with the group struc-
ture in the sense of (OAG).
b) Give an example of an abelian group which admits two distinct – even noniso-
morphic – orderings.

An ordered abelian group (G,+) is Archimedean if for all x, y ∈ G with x > 0,
there exists n ∈ Z+ with nx > y.

Exercise 17.12:
a) Suppose H is a subgroup of the Archimedean ordered group (G,+). Show that
the induced ordering on G is Archimedean.
b) Let (G,+) be an ordered abelian group such that there exists an embedding
(G,+) ↪→ (R,+) into the additive group of the real numbers. Deduce that G is
Archimedean.

Conversely:

Theorem 17.7. (Hölder [Hö01]) Let (G,+) be an ordered abelian group. If G is
Archimedean, there exists an embedding (G,+) ↪→ (R,+).

Proof. We may assume G is nontrivial. Fix any positive element x of G. We will
construct an order embedding of G into R mapping x to 1.

Namely, let y ∈ G. Then the set of integers n such that nx ≤ y has a maximal
element n0. Put y1 = y − n0x. Now let n1 be the largest integer n such that
nx ≤ 10y1: observe that 0 ≤ n1 < 10. Continuing in this way we get a set of integers
n1, n2, . . . ∈ {0, . . . , 9}. We define φ(y) to be the real number n0 +

∑∞
k=1

nk

10k
. It is

not hard to show that φ is isotone – y ≤ y′ =⇒ φ(y) ≤ φ(y′) – and also that φ is
injective: we leave these tasks to the reader.

But let us check that φ is a homomorphism of groups. For y ∈ G, and r ∈ Z+,
let n

10r be the rational number obtained by truncating φ(y) at r decimal places.
The numerator n is characterized by nx ≤ 10ry < (n + 1)x. For y′ ∈ G, if
n′x ≤ 10ry′ ≤ (n′ + 1)x, then

(n+ n′)x ≤ 10r(y + y′) < (n+ n′ + 2)x,

so

φ(y + y′)− (n+ n′)10−r <
2

10r

and thus

|φ(y + y′)− φ(y)− φ(y′)| < 4

10r
.

Since r is arbitrary, we conclude φ(y + y′) = φ(y) + φ(y′). �
A nontrivial ordered abelian group which can be embedded in R is said to have
rank one. For many applications this is by far the most important case. Later we
will give the general definition of the rank of an ordered abelian group.

The following result gives another characterization of valuation rings of rank one.
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Lemma 17.8. Let R be a domain, (G,≤) a totally ordered commutative group,
and let G+ = {g ∈ G | g ≥ 0}. Then:
a) G+ is an ordered commutative monoid.
b) The monoid ring R[G+] is an integral domain.
c) The group ring R[G] is naturally isomorphic to the localization of R[G+] at the
multiplicative subset G+. In particular, R[G] is an integral domain.

Exercise 17.13: a) Write out the statements of Lemma 17.8 when G = Z.
b) Prove Lemma 17.8.

Theorem 17.9. (Malcev, Neumann) For any ordered abelian group G, there exists
a valuation domain with value group isomorphic to G.

Proof. It suffices to construct a field K and a surjective map v : K× → G satisfying
(VD1K) and (VD2K). Let k be any field and put A = k[G≥0]. By Lemma 17.8,
A is a domain; let K be its fraction field. Define a map v : A• → G by sending
a nonzero element

∑
g∈G agg to the least g for which ag ̸= 0. Then v satisfies

the three properties of Exercise 17.5 and therefore extends uniquely to a valuation
v : K× → G, where K is the fraction field of R. �

Recall from §5.5 the notion of a “big monoid ring” k[[Γ]], the collection of all
functions f : Γ → k under pointwise addition and convolution product. As we saw
though, in order for the convolution product to be defined “purely algebraically” –
i.e., without recourse to some limiting process – we need to impose the condition of
divisor finiteness on Γ. It follows easily from Proposition 17.18 that for Γ = G≥0

the monoid of non-negative elements in a totally ordered abelian group, divisor
finiteness holds iff G = Z, i.e., iff the valuation is discrete.

However, Malcev [Mal48] and Neumann [Neum49] independently found a way
around this by considering a set in between k[G≥0] and k[[G≥0]]. Namely, define
kMN[G

≥0] to be the set of all functions f : G≥0 → k such that the support of f
– i.e., the set of g ∈ G≥0 such that f(g) ̸= 0 – is well-ordered. It turns out that
on such functions the convolution product can be defined and endows kMN[G

≥0]
with an integral domain. The fraction field kMN(G) is simply the collection of
all functions f : G → k with well-ordered support. Moreover, mapping each such
nonzero function to the least element of G in its support gives a G-valued valuation.
The elements of such rings are called Malcev-Neumann series.

17.2.1. Convex Subgroups.

A subset S of a totally ordered set (X,≤) is convex if for all x < y < z ∈ X,
if x, z ∈ S, then y ∈ S.

Exercise: Let H be a subgroup of an ordered abelian group (G,≤). Show that
H is convex iff for all x, y ∈ G with 0 ≤ x ≤ y, if y ∈ H then also x ∈ H.

Proposition 17.10. Let (G,≤) be an ordered abelian group, and let C(G) be the
family of convex subgroups of G. Then C(G) is totally ordered under inclusion.

Proof. Let H1 and H2 be convex subgroups. Seeking a contradiction, we suppose
there is h1 ∈ H1 \H2 and h2 ∈ H2 \H1. Since subgroups are closed under inversion,
we may assume that h1, h2 ≥ 0 and then, without loss of generality, that 0 ≤ h1 ≤
h2. Since H2 is a convex subgroup, it follows that h1 ∈ H2, contradiction. �
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For an ordered abelian group G, we define r(G) to be the order isomorphism type
of the linearly ordered set C(G)• = C(G) \ {{0}} of nontrivial convex subgroups of
G. When this set is finite we may view r(G) as a natural number. In particular,
r(G) = 1 iff G is nontrivial and has no proper, nontrivial convex subgroups.

Exercise: a) Let G1 and G2 be ordered abelian groups, and let G = G1 × G2

be lexicographically ordered. Show that r(G) = r(G1) + r(G2), where on the right
hand side we have the ordered sum: every element of the first linearly ordered set
is less than every element of the second linearly ordered set.
b) Let n ∈ Z+. Show that r(Zn) = n.

Proposition 17.11. For a nontrivial ordered abelian group G, TFAE:
(i) G is Archimedean.
(ii) r(G) = 1.

Proof. �
In view of Proposition 17.11 it makes sense to call r(G) the rank of the linearly
ordered group G: indeed we have already defined a group to have rank one if
it is nontrivial and can be order embedded in (R,+). By Theorem 17.7, G is
Archimedean iff it can be order embedded in (R,+), so by Proposition 17.11 our
new notion of rank coincides with our old notion of rank one.

Theorem 17.12. Let v : K× → (G,≤) be a valuation on a field K, with valuation
ring R. There is an inclusion reversing bijection Φ : SpecR→ C(G) given by

p 7→ G \ ±v(p).

Proof. Step 1: We claim that for p ∈ SpecR, Φ(p) is a convex subgroup. Clearly
Φ(p) contains 0 and is closed under inversion, so suppose σ1, σ2 ∈ Φ(p). Since Φ(p)
is closed under inversion, we may assume that either σ1, σ2 > 0 or σ1 > 0, σ2 < 0
and σ1 + σ2 > 0.
Case 1: Suppose σ1, σ2 > 0. Choose x1, x2 ∈ R with v(xi) = σi for i = 1, 2. If
σ1+σ2 /∈ Φ(p), then there is x ∈ p with v(x) = σ1+σ2 = v(x1x2). Thus ux = x1x2
for some u ∈ R×, so x1x2 ∈ p. Since p is prime this implies that at least one of x1,
x2 lies in p, hence at least one of σ1, σ2 does not lie in Φ(p), contradiction.
Case 2: Suppose σ1 > 0, σ2 < 0, σ1+σ2 > 0. If σ1 +σ2 /∈ Φ(p), then there is x ∈ p
with v(x) = σ1+σ2. Choose y ∈ R with v(y) = −σ2. Then yx ∈ p and v(yx) = σ1,
so σ1 ∈ v(p), contradiction.

To show convexity: let 0 ≤ σ1 ≤ σ2 ∈ G, and suppose σ2 ∈ Φ(p). If σ1 ∈ v(p),
then there exists x ∈ p with v(x) = σ1. There is y ∈ R such that v(y) = σ2 − σ1,
and thus v(yx) = σ2, so σ2 /∈ Φ(p), contradiction.
Step 2: To a convex subgroup H of G, we associate

Ψ(H) = {x ∈ R• | v(x) /∈ H} ∪ {0}.
By similar – but easier – reasoning to the above, one checks that Ψ(H) ∈ SpecR.
Step 3: One checks that Φ and Ψ are mutually inverse maps, hence Φ is a bijection.

�
Exercise: Supply the details of Steps 2 and 3 in the proof of Theorem 17.12.

Exercise: Show that the maps Φ and Ψ are obtained by restricting the Galois
connection associated to a relation on R×G.
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Corollary 17.13. For a valuation ring R, TFAE:
(i) R has rank one, i.e., the value group is Archimedean.
(ii) R has Krull dimension one.

17.3. Connections with integral closure.

Let (R,mR) and (T,mT ) be local rings with R ⊂ T . We say that T dominates
R, and write R ≤ T , if mT ∩R = mR.

Lemma 17.14. Let R be a subring of a field K, and let p ∈ SpecR. Then there
exists a valuation ring T of K such that R ⊂ T and mT ∩R = p.

Proof. (Matsumura)
Step 0: We may replace R by Rp and thus asume that (R, p) is a local ring. In this
case, what we are trying to show is precisely that there exists a valuation ring of
K dominating R.
Step 1: Let F be the set of all rings R′ with R ⊂ R′ ⊂ K such that pR′ ( R′,
partially ordered by inclusion. We have R ∈ F , so F ̸= ∅. Moreover the union of a
chain in F is again an element of F , so Zorn’s Lemma gives us a maximal element
T of F . Since pT ( T , there exists a maximal ideal m of T containing pT . Since
T ⊂ Tm and Tm ∈ F , by maximality of T we have T = Tm, so (T,m) is a local ring
dominating (Rp, p).
Step 2: We claim that T is a valuation ring.
proof of claim: Let x ∈ K×. We wish to show that at least one of x, x−1 lies in
T . Seeking a contradiction, assume neither is the case. Then T [x] properly contains
T , so by maximality of T we have 1 ∈ pT [x], i.e., we get a relation of the form

1 = a0 + a1x+ . . .+ anx
n, ai ∈ pT.

Since T is local, 1− a0 ∈ T×, and the relation may be rewritten in the form

(35) 1 = b1x+ . . .+ bnx
n, bi ∈ m.

Among all such relations, we may choose one with minimal exponent n. In exactly
the same way, T [x−1] properly contains T and thus there exists a relation

(36) 1 = c1x
−1 + . . .+ cnx

−m, ci ∈ m,

and among all such relations we may choose one with minimal m. Without loss
of generality m ≤ n: otherwise interchange x and x−1. Then multiplying (36) by
bnx

n and subtracting from (35) gives another relation of the form (35) but with
exponent smaller than n, contradiction. �

A subring R of a field K is a maximal subring if R ( K and there is no ring
intermediate between R and K.

Exercise 17.14: a) Show that any field K admits at least one maximal subring.
b) Show that ifK is not finite of prime order, then all maximal subrings are nonzero.
c) Excluding the case in which K is finite of prime order, show that any maximal
subring of K is a valuation ring of K (possibly a field).

Exercise 17.15: Let K be a field, and R a valuation ring of K. Show TFAE:
(i) R is a maximal subring of K.
(ii) R has rank at most one.
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Theorem 17.15. Let K be a field and R ⊂ K a subring. Then the integral closure
R of R in K is equal to the intersection of all valuation rings of K containing R.

Proof. Let R be the intersection of all valuation rings of K containing R. Since
each such ring is integrally closed in K and the intersection of a family of rings
each integrally closed in K is again integrally closed in K, R is integrally closed in
K, whence R ⊂ R.
Conversely, let x ∈ K \R. It suffices to find a valuation ring of K containing R but
not x. Let y = x−1. The ideal yR[y] of R[y] is proper: for if 1 = a1y + . . .+ any

n

with ai ∈ R, then x would be integral over R. Let p be a maximal ideal of R
containing y. By Lemma 17.14, there exists a valuation ring T of K such that
R[y] ⊂ K and mT ∩R[y] = p. Then y = x−1 ∈ mT , so x /∈ T . �

17.4. Another proof of Zariski’s Lemma.

The following result is a close relative of Lemma 17.14.

Lemma 17.16. Let K be a field and Ω an algebraically closed field. Let S be the
set of all pairs (A, f) with A is a subring of K and f : A ↪→ Ω, partially ordered by

(A, f) ≤ (A′, f ′) ⇐⇒ A ⊂ A′ and f ′|A = f.

Then S contains maximal elements, and for any maximal element (B, g), B is a
valuation ring of K.

Proof. An easy Zorn’s Lemma argument shows that S has maximal elements.
Let (B, g) be a maximal element. Put p = Ker(g); since g(B) is a subring of the field
Ω, it is a domain and thus p is a prime ideal of B. By functoriality of localization,
G extends to a homomorphism Bp → Ω. By maximality of (B, g) we have Bp = B,
so that B is a local ring with maximal ideal p. If there existed an element x ∈ K
which is transcendental over the fraction field of B, then B[x] is a polynomial ring
and certainly g extends to B[x]. So K is algebraic over the fraction field of B.

Next let x ∈ K×. We claim that either the ideal pB[x] or pB[x−1] is proper.
Indeed this is proved exactly as in Lemma 17.14 above.

Finally, we show that B is a valuation ring of K. Let x ∈ K•. Without loss of
generality, we may assume that pB[x] is a proper ideal of B (otherwise replace x
by x−1). Put B′ = B[x]. By assumption, pB[x] is contained in a maximal ideal
m of B′ and m ∩ B = p. Hence the embedding of domains B → B′ induces an
embedding of fields k := B/p ↪→ B′/m = k′. Moreover k′ is generated over k by
the image of the algebraic element x, so k′/k is a finite degree field extension. So g
induces an embedding k ↪→ Ω, and since Ω is algebraically closed, this extends to
an embedding k′ = B′/m ↪→ Ω. By maximality of B, this implies x ∈ B. �

Remark: It should be possible to consolidate Lemmas 17.14 and 17.16 into a single
result. Let me know if you see how to do it.

Proposition 17.17. Let A ⊂ B be domains with B finitely generated as an A-
algebra. Let β ∈ B•. There exists α ∈ A• satisfying the following property: any
homomorphism f of A into an algebraically closed field Ω with f(α) ̸= 0 extends to
a homomorphism f : B → Ω with f(β) ̸= 0.

Proof.
Step 0: Induction on the number of generators reduces us to the case B = A[x].
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Step 1: Suppose that x is transcendental over A, i.e., B is a univariate polynomial
ring over A. Write

β = anx
n + . . .+ a1x+ a0, ai ∈ A

and put α = a0. If f : A → Ω is such that f(α) ̸= 0, then since Ω is infinite, there
exists ζ ∈ Ω such that f(an)ζ

n + . . . + f(a1)ζ + f(a0) ̸= 0. Using the universal
polynomial of polynomial rings, we may uniquely extend f to a homomorphism
from B to Ω by putting f(x) = ζ, and then f(β) ̸= 0.
Step 2: Suppose that x is algebraic over the fraction field of A. Then so is β−1.
Hence we have equations of the form

anx
m + . . .+ a1x+ a0, ai ∈ A

a′mβ
−m + . . .+ a′1β

−1 + a′0, a
′
i ∈ A.

Put α = ana
′
m. Suppose f : A → Ω is any homomorphism with f(α) ̸= 0. We

may extend f to a homomorphism from A[α−1] → Ω by mapping α−1 to f(α)−1

and then, by Lemma 17.16, to a homomorphism f : C → Ω for some valuation
ring C containing A[α−1]. By construction x is integral over A[α−1]. Since C is
integrally closed, x ∈ C. Thus C contains B and in particular β ∈ C. Similarly,
β−1 is integral over A[α−1] so β−1 ∈ C. Thus β ∈ C×, so f(β) ̸= 0. Restricting to
B gives the desired homomorphism. �

Proof of Zariski’s Lemma: Let k be a field and B a field which is finitely generated
as a k-algebra. We want to show that B is a finite field extension of B. Equivalently,
it is enough to show that B/k is algebraic. In Proposition 17.17 take A = k, β = 1
and Ω to be an algebraic closure of k. �

17.5. Discrete valuation rings.

17.5.1. Introducing DVRs.

Proposition 17.18. For a valuation ring R with value group G, TFAE:
(i) R is a PID.
(ii) R is Noetherian.
(iii) R is an ACCP-domain.
(iv) G≥0 = {x ∈ G | x ≥ 0} is well-ordered.
(v) G is isomorphic to (Z,≤).

Proof. (i) ⇐⇒ (ii) ⇐⇒ (iii) is a special case of Theorem 16.17.
(iii) ⇐⇒ (iv): a totally ordered set is well-ordered iff there are no infinite strictly
descending chains. But an infinite strictly descending chain in G≥0 gives rise to an
infinite strictly ascending chain of principal ideals in R, and conversely.
(iv) =⇒ (v): First suppose G is Archimedean, so G ↪→ R: this endows G with
a topology. If G is discrete, it is generated by its least positive element hence is
order-isomorphic to Z. If G is not discrete, there exists an infinite strictly decreasing
sequence of positive elements of G converging to 0, so G≥0 is not well-ordered. Next
suppose that G is not Archimedean, and choose x, y > 0 such that for all n ∈ Z+,
nx < y. Then {y − nx}n∈Z+ is an infinite strictly descending sequence in G≥0,
contradicting well-ordering.
(v) =⇒ (iv): famously, the standard ordering on Z≥0 is a well-ordering. �
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Exercise 17.16: Show directly: a local PID is a valuation ring with value group Z.

A valuation ring satisfying the equivalent conditions of Proposition 17.18 is called
a discrete valuation ring (or, sometimes, a DVR).

17.5.2. Further characterizations of DVRs.

In many ways, discrete valuation rings are – excepting only fields – the simplest
class of rings. Nevertheless they have an important role to play in algebra and
arithmetic and algebraic geometry. One reason for this is as follows: every DVR is
a one-dimensional Noetherian local ring. The converse does not hold.

Example: Let k be a field, and let R be the k-subalgebra of k[t] generated by
t2 and t3. This is a one-dimensional Noetherian domain; the ideal m generated by
t2 and t3 is a nonprincipal maximal ideal. Indeed, even in the localization Rm the
ideal mRm is not principal: consider what its order at 0 would be with respect to
the valuation ordt on k(t): it would have to be 1, but there is no such element in Rm.

The question then is to find necessary and sufficient conditions for a one-dimensional
Noetherian local domain to be a DVR. As we have seen, being a PID is enough,
but again, this is not very useful as whether a one-dimensional domain is a PID is
difficult to check in practice. Remarkably, it turns out if a local, one-dimensional
Noetherian domain has any one of a large number of good properties, it will neces-
sarily be a DVR. Here is the theorem.

Theorem 17.19. (Recognition Theorem for DVRs) Let R be a one-dimensional
Noetherian local domain, with maximal ideal m. TFAE:
(i) R is regular: the dimension of m

m2 as an R/m-vector space is 1.
(ii) m is principal.
(iii) R is a PID.
(iv) R is a UFD.
(v) R is integrally closed.
(vi) Every nonzero ideal is of the form mn for some n ∈ N.

Proof. (i) ⇐⇒ (ii): Choose t ∈ π \ π2. By assumption, t generates m/m2, so by
Nakayama’s Lemma t generates m. Conversely, if m is monogenic as an R-module,
certainly m/m2 is monogenic as an R/m-module.
Evidently (iii) =⇒ (ii). Proposition 16.6 gives (ii) =⇒ (iii) and also (ii) =⇒
(vi). Moreover (iii) ⇐⇒ (iv) by Proposition 16.1 and (iv) =⇒ (v) by 15.14.
Next, for all n ∈ N we have (π)n/(π)n+1 ∼= R/m, thus R is regular.

(vi) =⇒ (i): Assume that dimR/m m/m2 > 1. Choose u ∈ m \m2. Then

m ( ⟨u,m2⟩ ( m2.

So we have (i) ⇐⇒ (ii) ⇐⇒ (iii) ⇐⇒ (iv) ⇐⇒ (vi) =⇒ (v).
Finally, we show (v) =⇒ (ii): Let 0 ̸= x ∈ m. Since m is the only prime ideal

containing (x) we must have r((x)) = m. Since R/(x) is Noetherian, its radical,
m/(x), is nilpotent, so there is a unique least n ∈ Z+ such that mn ⊂ (x). Let
y ∈ mn−1 \ (x) and consider the element q = x

y of the fraction field K of R. Since

y /∈ (x), q−1 = y
x /∈ R; since R is integrally closed in K, q−1 is not integral over R.

Then q−1m is not contained in m, for otherwise m would be a faithful R[q−1]-module
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which is finitely generated as an R-module, contradicting Theorem 14.1. But by
construction, q−1m = y

xm ⊂ R, hence q−1m = R and then m = Rx = (x). �

17.5.3. Modules over DVRs.

Lemma 17.20. Let R be a DVR with uniformizing element π, and let a ∈ Z+.
Then the ring Ra = R/(πa) is self-injective – i.e., Ra is an injective Ra-module.

Exercise 17.17: Prove Lemma 17.20. (Hint: Baer’s Criterion!)

Theorem 17.21. Let R be a DVR with uniformizing element π, and let M be a
nonzero finitely generated R-module.
a) There is N ∈ N and positive integers n, a1 ≥ a2 ≥ . . . ≥ an such that

(37) M ∼= RN ⊕
n⊕
i=1

R/(πai).

b) The numbers N,n, a1, . . . , an are invariants of the isomorphism class of the mod-
ule M : i.e., they are the same for any two decompositions of M as in (37) above.

Proof.
Step 0: Consider the canonical short exact sequence

0 →M [tors] →M →M/M [tors] → 0.

Since M is a finitely generated module over a Noetherian ring, M [tors] is finitely
generated. Moreover, M/M [tors] is a finitely generated torsionfree module over
a PID, hence is free (Proposition 3.58). Moreover, we know that the rank of a
free module over any (commutative!) ring is well-defined (when R is a domain
with fraction field K, the proof is especially easy: the rank of a free module M is
dimKM ⊗R K), so the invariant N in the statement of the theorem is precisely
the rank of M/M [tors]. Moreover, since M/M [tors] is free – hence projective – the
sequence splits, so

M = RN ⊕M [tors].

We are reduced to the case of a nonzero finitely generated torsion module M .
Step 1: The annihilator ofM is an ideal of R, of which there aren’t so many: it must
be (πa1) for some a1 ∈ Z+. Thus M may be viewed as a faithful Ra1 = R/(πa1)-
module. Moreover, choosing an element x of M which is not annihilated by πa1−1,
the unique Ra1-module map Ra1 →M which sends 1 to m is an injection. Taking
M ′ =M/Ra1 , we get a short exact sequence

0 → Ra1 →M →M ′ → 0.

By Lemma 17.20, Ra1 is an injective Ra1 -module, so the sequence splits:

M ∼= Ra1 ⊕M ′.

Step 2: Since M is finitely generated over Ra1 , it is a quotient of some Artinian
Ra1-module RMa1 , hence by Theorem 8.2 M is Artinian. Moreover M is a finitely
generated module over the Noetherian ring, so M is also Noetherian. By Theorem
8.12, this means that M has finite length as an R-module. Hence so does its direct
summand M ′ and indeed clearly the length of M ′ is less than the length of M .
This completes the proof of part a) by induction.
Step 3: So far we have that a finitely generated torsion R-module is of the form⊕n

i=1R/(π
ai) with positive integers a1 ≥ a2 ≥ . . . ≥ an, and with ann(M) = (πa1).
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In order to prove the uniqueness statement of part b), it suffices to prove that for
all 0 < b ≤ a, R/(πb) is an indecomposable R/(πa)-module. If so, then

M ∼=
n⊕
i=1

R/(πai)

is simply the decomposition of the finite length module M into indecomposables
described in the Krull-Schmidt Theorem: in particular, since clearly R/(πa) ∼=
R/(πb) implies a = b (consider annihilators), it is unique up to permutation of the
factors. So suppose that R/(πa) = M1 ⊕M2 with M1,M2 nonzero. If πa does
not annihilate M1, then as above we can find a split embedding R/(πa) ↪→ M1,
which contradicts the fact that the length of M1 must be smaller than the length
of R/(πa). So M1 – and similarly M2 – is annihilated by πa−1 and thus R/(πa)
would be annihilated by πa−1, a contradiction. �
Remark: Theorem 17.21 is nothing else than the fundamental structure theorem
for modules over a PID in the special case in which the PID has a unique maximal
ideal. But we have not given a proof of this structure theorem for PIDs in these
notes, whereas later we will want to use it to prove a more general structure theorem
for torsion modules over a Dedekind domain. However, in both cases it is easy to
reduce to the local situation, and thus we will get an independent proof.

18. Normalization theorems

We work in the following situation: R is an integrally closed domain with fraction
field K, L/K is a field extension, and S = IL(R) is the integral closure of R in L.
In more geometric language, S is the normalization of R in the extension L/K.

As above, we may as well assume that L/K is algebraic, since in the general
case, if we let L′ = IK(L) be the algebraic closure of K in L, then S is contained
in L′ anyway. So let us assume this. Then we know that S is integrally closed with
fraction field L. We also know that the Krull dimensions of S and R coincide.

The major questions are the following:

(Q1) Is S finitely generated as an R-module?
(Q2) Is S Noetherian?
(Q3) If not, then can anything nice be said about S?

Note that if R is Noetherian, then an affirmative solution to (Q1) implies an affir-
mative answer to (Q2). Also, the example R = Z, K = Q, L = Q shows that both
(Q1) and (Q2) may have a negative answer if [L : K] is infinite.

18.1. The First Normalization Theorem.

The first, and easiest, result is the following:

Theorem 18.1. (First Normalization Theorem) Let R be an integrally closed do-
main with fraction field K, L/K a finite separable field extension, and S = IL(R).
a) There exists a K-basis x1, . . . , xn of L such that S is contained in the R-
submodule generated by x1, . . . , xn.
b) If R is Noetherian, S is a finitely generated R-module.
c) If R is a PID, then S is a free R-module of rank [L : K].
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Proof. a) By the proof of Proposition 14.10, for any x ∈ L, there exists 0 ̸= r ∈ R
such that rx ∈ S. Therefore there exists a K-basis u1, . . . , un of L such that ui ∈ S
for all i.64 Now take x ∈ S and write x =

∑
i biui with bi ∈ K. Since L/K is

separable there are n = [L : K] distinct K-embeddings of L into K, say σ1, . . . , σn,
and the discriminant ∆ = ∆(u1, . . . , un) = (det(σj(ui)))

2 is nonzero. We may put√
∆) = det(σj(ui)). For all 1 ≤ j ≤ n we have

σj(x) =
∑
i

biσj(ui).

Using Cramer’s rule, we may solve for the bi to get
√
∆bi =

∑
j

dijσj(x), dbi =
∑
j

√
ddijσj(x),

where the dij ’s are polynomials in the σj(ui) with coefficients in Z. Thus ∆bi and√
∆bi are integral over R. Since ∆ ∈ K and R is integrally closed, we have ∆bi ∈ A.

Therefore S is contained in the R-span ⟨u1

∆ , . . . ,
un

∆ ⟩R, establishing part a).
b) By part a), S is a submodule of a finitely generated R-module, hence if R is
Noetherian S is finitely generated.
c) We know that S is a submodule of a free rank n R-module; if R is a PID, then S
is a free R-module of rank at most n. Since S ⊗R K = L, the rank must be n. �

This has the following important result, which is the first of three fundamental
finiteness theorems in algebraic number theory, the existence of a finite integral
basis for the ring of integers of any algebraic number field:

Corollary 18.2. Let R = Z, K = Q, L a number field of degree n. Then the ring
ZL = Z ∩K of all algebraic integers lying in L, is an integrally closed, Noetherian
domain of Krull dimension one which is, as a Z-module, free of rank n.

Proof. Indeed ZL = IL(Z), so by Proposition 14.11, it is integrally closed in its
fraction field L. Since Z is a PID and L/Q is finite separable, Theorem 18.1 applies
to show that ZL ∼= Zn as a Z-module. Being a finitely generated Z-module, still
more is it a finitely generated algebra over the Noetherian ring Z, so it is itself
Noetherian. Since Z, like any PID, has Krull dimension one and ZL is an integral
extension of Z, by Corollary 14.17 ZL also has Krull dimension one. �

A Dedekind domain is a domain which is Noetherian, integrally closed and of
Krull dimension at most one. We will systematically study Dedekind domains in
§20, but for now observe that Corollary 18.2 implies that the ring of integers of an
algebraic number field is a Dedekind domain. In fact, the argument establishes that
the normalization S of any Dedekind domain R in a finite separable field extension
L/K is again a Dedekind domain which is finitely generated as an R-module.

What about the nonseparable case?

Give Kaplansky’s example. COMPLETE ME! ♣

64Note that we have not yet used the separability hypothesis, so this much is true in the case
of an arbitrary finite extension.
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18.2. The Second Normalization Theorem.

Theorem 18.3. (Second Normalization Theorem) Let R be an integral domain
with fraction field K. Suppose that at least one of the following holds:
• R is absolutely finitely generated – i.e., finitely generated as a Z-algebra – or
• R contains a field k and is finitely generated as a k-algebra.
Let L/K a finite field extension. Then S = IL(R) is a finitely generated R-module.

Proof. First suppose that R is a finitely generated algebra over a field k.
Step 0: We may assume that L/K is normal. Indeed, let M be the normal closure
of L/K, so M/K is a finite normal extension. Let T be the integral closure of R in
M . If we can show that T is finitely generated over R, then, since R is Noetherian,
the finitely submodule S is also finitely generated over R.
Step 1: We will make use of the field-theoretic fact that if M/K is normal and L is
the maximal purely inseparable subextension of M/K, then M/L is separable [FT,
§6.3]. Let S be the integral closure of R in L and T the integral closure of R in T .
Then T is module-finite over R iff T is module-finite over S and S is module-finite
over R. Suppose we can show that S is module-finite over R. Then S is a finitely
generated R-algebra so S is a Noetherian integreally closed domain, and the module
finiteness of T over S follows from Theorem 18.1. Thus we are redueced to the case
in which L/K is purely inseparable, say [L : K] = q = pa.
Step 2: By Noether Normalization, R is module-finite over a polynomial ring
k[t1, . . . , td]. If S is module-finite over k[t1, . . . , td], then certainly it is module-
finite over the larger ring R. Thus we may assume without loss of generality that
R = k[t1, . . . , td], K = k(t1, . . . , td). In particular we may assume that R is inte-
grally closed (in K). For all a ∈ L, NL/K(a) = aq ∈ K. Let k′/k be the extension
obtained by adjoining the qth roots of the coefficients of the minimal polynomials of

a finite set of generators of L/K, so k′/k is finite, so L ⊂ k′(t
1/q
1 , . . . , t

1/q
d ). So it is

enough to show that the integral closure of k[t1, . . . , td] in k
′(t

1/q
1 , . . . , t

1/q
d ) is finite

over k[t1, . . . , td]. But in this case the integral closure can be computed exactly: it

is k′[t
1/q
1 , . . . , t

1/q
d ] (indeed it is at least this large, and this ring is a UFD, hence

integrally closed), which is finite over k[t1, . . . , td]. �

18.3. The Krull-Akizuki Theorem.

In this section we come to one of the most beautiul and useful results in the sub-
ject, the Krull-Akizuki Theorem. Its content is essentially that normalization works
magnificiently well in dimension one. Our treatment follows [M, §11].

Lemma 18.4. For a Noetherian domain R, the following are equivalent:
(i) R has dimension at most one.
(ii) For every nonzero ideal I of R, R/I is an Artinian ring.
(iii) For every nonzero ideal I of R, ℓR(R/I) <∞.

Proof. (i) =⇒ (ii): R/I is Noetherian, and prime ideals of R/I correspond to
prime ideals of R containing the nonzero ideal I, so are all maximal. By Theorem
8.34, R/I is Artinian.
(ii) =⇒ (iii): Every finitely generated module over an Artinian ring is also Noe-
therian hence has finite length.
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¬ (i) =⇒ ¬ (iii): If R has dimension greater than one, there is a nonzero, non-
maximal prime ideal p of R. The R-module R/p is a domain which is not a field,
hence not Artinian, hence of infinite length. �

Lemma 18.5. Let R be a one-dimensional Noetherian domain with fraction ield
K. Let M be a torsionfree R-module with = dimKM ⊗R K < ∞. Then for all
x ∈ R•, ℓ(M/xM) ≤ rℓ(R/xR).

Proof. Step 1: First suppose that M is finitely generated. Let η1, . . . , ηr ∈ M be
R-linearly independent and put E = ⟨η1, . . . , ηr⟩M . Since r = dimKM ⊗R K, for
η ∈ M , there is t ∈ R with tη ∈ E. Put C = M/E. Then C is finitely generated,
so there is t ∈ R• such that tC = 0. Applying Theorem 10.6 to C, there is a chain
of submodules

(38) 0 = C0 ( C1 ( . . . ( Cm = C

such that for all 0 ≤ i ≤ m−1, Ci+1/Ci ∼= R/pi for pi ∈ SpecR. Since 0 ̸= t ∈ pi
for all i and dimR = 1, each pi is maximal. It follows that (38) is a composition
series for C, so ℓ(C) = m <∞. For x ∈ R• and n ∈ Z+, the exact sequence

E/xnE −→M/xnM → C/xnC

yields

(39) ℓ(M/xnM) ≤ ℓ(E/xnE) + ℓ(C).

Since E and M are torsionfree, we have xiM/xi+1M ∼= M/xM for all i ∈ N and
similarly xiE/xi+1E ∼= E/xE; it follows that

nℓ(M/xM) ≤ nℓ(E/xE) + ℓ(C) ∀n ∈ Z+,

and thus

ℓ(M/xM) ≤ ℓ(E/xE).

Since E ∼= Rr, E/xE ∼= (R/xR)r, so

ℓ(M/xM) ≤ ℓ((R/xR)r) = rℓ(R/xR).

Step 2: In the general case, put M =M/xM and let N = ⟨ω1, . . . , ωs⟩ be a finitely
generated submodule of M . Lift each ωi to ωi ∈ M and put M1 = ⟨ω1, . . . , ωs⟩.
We get

ℓ(N) ≤ ℓ(M1/M1 ∩ xM) ≤ ℓ(M1/aM1) ≤ rℓ(R/xR),

the last inequality by Step 1. Because the right hand side of this inequality is
independent of N , by Exercise 8.13 ℓ(M) ≤ rℓ(R/xR).
Step 3: We have ℓ(R/xR) <∞ by Lemma 18.4. �

Theorem 18.6. (Krull-Akizuki) Let R be a one-dimensional Noetherian domain
with fraction field K, let L/K be a finite field extension of K, and let S be a ring
with R ⊂ S ⊂ L. Then:
a) S is Noetherian of dimension at most 1.
b) If J is a nonzero ideal of S, then S/J is a finite length R-module.

Proof. b) It is no loss of generality to replace L by the fraction field of S. Let
r = [L : K], so that S is a torsionfree R-module of rank r. By Lemma 18.5, for any
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x ∈ R• we have ℓR(S/aS) <∞. Let J be a nonzero ideal of S and b ∈ J•. Since b
is algebraic over R it satisfies a relation

amb
m + . . .+ a1b+ a0 = 0, ai ∈ R

of minimal degree. Since S is a domain, a0 ∈ (J ∩R)•, so
ℓR(S/J) ≤ ℓR(S/a0S) <∞.

a) Since
ℓS(J/a0S) ≤ ℓR(J/a0S) ≤ ℓR(S/a0S) <∞,

J/a0S is a finitely generated S-module. Being an extension of a finitely generated
S-module by a finitely generated S-module, J is itself a finitely generated: S is
Noetherian. If P is a nonzero prime ideal of S then S/P has finite length so is an
Artinian domain, hence a field: S has dimension at most one. �
We remark that S need not be finitely generated as an R-module. Thus Step 2 in
the proof of Lemma 18.5 is actually used in the proof of the Krull-Akizuki Theorem.

Corollary 18.7. Let R be a one-dimensional Noetherian domain with fraction field
K, let L/K be a finite field extension, and let S be the integral closure of R in L.
Then S is a Dedekind ring, and for every maximal ideal p of R there are only
finitely many prime ideals of S lying over p.

Exercise: Prove Corollary 18.7. (Hint: if a prime P of S lies over p, then pS ⊂ P.)

19. The Picard Group and the Divisor Class Group

19.1. Fractional ideals.

Let R be an integral domain with fraction field K. A fractional ideal of R is
a nonzero R-submodule I of K for which there exists 0 ̸= a ∈ R such that aI ⊂ R
– or equivalently, if I ⊂ 1

aR.

When one is talking about fractional R-ideals, one inevitably wants to compare
them to ideals of R in the usual sense, and for this it is convenient to speak of an
integral R-ideal, i.e., an R-submodule of R.

Exercise 19.1: Show: a finitely generated R-submodule of K is a fractional ideal.

Comment: Some references define a fractional R-ideal to be a finitely generated
R-submodule of K, but this seems wrong because we certainly want every nonzero
integral ideal of R to be a fractional ideal, but if R is not Noetherian then not every
integral ideal will be finitely generated. (It is not such a big deal because most of
these references are interested only in invertible fractional ideals – to be studied
shortly – and one of the first things we will see is that an invertible fractional ideal
is necessarily finitely generated as an R-module.)

We denote the set of all fractional ideals of R by Frac(R).

Theorem 19.1. Let I, J,M be fractional ideals in a domain R.
a) Then

I ∩ J = {x ∈ K | x ∈ I and x ∈ J},
I + J = {x+ y | x ∈ I, y ∈ J,
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IJ = {
n∑
i=1

xiyi, | xi ∈ I, yi ∈ J},

(I : J) = {x ∈ K | xJ ⊂ I}
are all fractional ideals.
b) We may partially order Frac(R) under inclusion. Then the greatest lower bound
of I and J is I ∩ J and the least upper bound of I and J is I + J .
c) If I ⊂ J , then IM ⊂ JM .
d) R itself is a fractional ideal, and R · I = R. Thus the fractional ideals form a
commutative monoid under multiplication.

Proof. a) It is immediate that I ∩ J , I + J , IJ and (I : J) are all R-submodules of
K. It remains to be seen that they are nonzero and can be scaled to lie inside R.
Suppose I ⊂ 1

aR and J ⊂ 1
bR. Then:

0 ( I ⊂ I + J ⊂ 1
abR, so I + J is a fractional ideal.

0 ( IJ ⊂ I ∩ J ⊂ 1
abR, so IJ and I ∩ J are fractional ideals.

Since I ∩ R is a fractional ideal, there exists a nonzero c ∈ R lying in I. Then for
y ∈ J , cby ∈ cR ⊂ I, so c

b ∈ (I : J). Similarly, if 0 ̸= d ∈ J , then 1
ad (I : J) ⊂ R.

Parts b), c) and d) can be easily verified by the reader. �
Proposition 19.2. All the above operations on fractional ideals commute with
localization: that is, if S ⊂ R• is a multiplicatively closed subset, then

S−1(I ∩ J) = S−1I ∩ S−IJ,

S−1(I + J) = S−1I + S−1J,

S−1(IJ) = (S−1I)(S−1J),

S−1(I : J) = (S−1I : S−1J).

Exercise 19.2: Prove Proposition 19.2.

A fractional ideal is principal if it is of the form xR for some x = a
b ∈ K•.

Proposition 19.3. For a fractional ideal I of R, TFAE:
(i) I is principal.
(ii) I is monogenic as an R-module.
(iii) I ∼=R R.

Proof. By definition a monogenic R-module M is one of the form Rx for some
x ∈ M , so the equivalence of (i) and (ii) is immediate. Certainly R is monogenic
as an R-module. Conversely, suppose I = Rx for x ∈ K×. Then multiplication by
x−1 gives an isomorphism to R. (Another way to look at it is that a module M
over a domain R is isomorphic to R itself iff it is monogenic and torsionfree, and a
principal fractional ideal has both of these properties.) �
If xR is a principal fractional ideal, so is x−1R, and we have

(xR)(x−1R) = R.

Thus, in Frac(R), every principal fractional ideal xR is a unit, with inverse x−1R.

Let Prin(R) denote the set of all principal fractional ideals of the domain R.

Exercise 19.3: Show that Prin(R) is a subgroup of Frac(R), and we have a short
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exact sequence 1 → R× → K× → Prin(R) → 1.

Exercise 19.4: Define the ideal class monoid C(R) = Frac(R)/Prin(R).
a) Show that C(R) is well-defined as a commutative monoid.
b) Show that C(R) is trivial iff R is a PID.
c) Show that C(Z[

√
−3]) is a finite commutative monoid which is not a group.

For a general domain, C(R) need only be a commutative monoid. In the next
section we “repair” this by defining the Picard group Pic(R).

19.2. The Ideal Closure.

For I ∈ Frac(R), put

I∗ = (R : I) = {x ∈ K | xI ⊂ R}.

Exercise 19.5: Let R be a domain. Show that for any fractional R-ideal I, I∗ is
a fractional R-ideal. (Hint: if R ⊂ I, then I∗ ⊂ R. Reduce the general case to this.)

The fractional ideal I∗ is called65 the quasi-inverse of I. As we shall see later
in this section, if the ideal I has an inverse in the monoid FracR, then its inverse
must be I∗: i.e. II∗ = R. In general though all we get from the definition of I∗ is
the relation II∗ ⊂ R. This observation motivates the following one.

Proposition 19.4. Let R be a domain, and let R ⊂ K × K given by xRy iff
xy ∈ R. Let (Φ,Ψ) be the induced Galois connection from 2K to itself. Then, for
any fractional ideal I of R, Φ(I) = Ψ(I) = I∗. In other words, I 7→ I∗ is a self-dual
antitone Galois connection on FracR.

Exercise 19.6: Prove Proposition 19.4.

As usual, we denote the associated closure operator by I 7→ I. Now the machinery
of Galois connections gives us many facts for free that we would otherwise have to
spend a little time deriving:

Corollary 19.5. Let R be a domain and let I, J ∈ FracR.
a) If I ⊂ J , then J∗ ⊂ I∗.
b) We have I∗ ⊂ J∗ ⇐⇒ I ⊃ J .

c) We have I = I.
d) We have (I ∩ J)∗ = I∗ + J∗ and I ∩ J = I ∩ J .

Exercise 19.7: Prove Corollary 19.5.

Exercise 19.8: Give an example of I, J ∈ FracR with J∗ ⊂ I∗ but I ̸⊂ J .

Proposition 19.6. For a domain R and I ∈ FracR, we have

I =
∩

d∈K× | I⊂d−1R

d−1R.

65Unfortunately?
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Proof.

I = (I∗)∗ = {x ∈ K |xI∗ ⊂ R} = {x ∈ K | ∀d ∈ K×, dI ⊂ R =⇒ xd ∈ R}

=
∩

d∈K× | I⊂d−1R

d−1R.

�

19.3. Invertible fractional ideals and the Picard group.

Like any monoid, Frac(R) has a group of units, i.e., the subset of invertible ele-
ments. Explicitly, a fractional ideal I is invertible if there exists another fractional
ideal J such that IJ = R. We denote the group Frac(R)× of invertible fractional
ideals by Inv(R).

Exercise 19.9: Let I1, . . . , In be fractional ideals of R. Show that the product
I1 · · · In is invertible iff each Ii is invertible. (Note: this has nothing to do with
fractional ideals, but is rather a fact about the units in a commutative monoid.)

It turns out that to every fractional ideal we can attach another fractional ideal I∗

which will be the inverse of I iff I is invertible.

Lemma 19.7. a) For a fractional ideal I, TFAE:
(i) I is invertible.
(ii) II∗ = R.
b) (To contain is to divide) If I ⊂ J are fractional ideals with J invertible, then

I = J(I : J).

Proof. a) (i) =⇒ (ii): As above, for any fractional ideal I we have II∗ ⊂ R. Now
suppose there exists some fractional ideal J such that IJ = R, then

J ⊂ (R : I) = I∗,

so
R = IJ ⊂ II∗.

(ii) =⇒ (i) is obvious.
b) By definition of (I : K) we have J(I : J) ⊂ I. Conversely, since I ⊂ J , J−1I ⊂ R.
Since (J−1I)J = I, it follows that J−1I ⊂ (I : J) and thus I ⊂ J(I : J). �

Proposition 19.8. Let I be an invertible fractional ideal. Then I is a finitely
generated projective rank one module.

Proof. Step 1: We show that an invertible fractional ideal I is a finitely generated
projective module. Since II∗ = R, we may write 1 =

∑n
i=1 xiyi with xi ∈ I and

yi ∈ I∗. For 1 ≤ i ≤ n, define fi ∈ Hom(I,R) be fi(x) = xyi. Then for all x ∈ I,

x =
∑
i

xxiyi =
∑
i

xifi(x).

By the Dual Basis Lemma, I is a projective R-module generated by x1, . . . , xn.
Step 2: Recall that to show that I has rank one, we must show that for all p ∈
SpecR, Ip is free of rank one over Rp. But since projective implies locally free, we
know that Ip is a free Rp-module of some rank, and it is quite elementary to show
that for any ring R and any ideal I, I cannot be free of rank greater than one over
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R. Indeed, if so I would have two R-linearly independent elements x and y, which
is absurd, since yx+ (−x)y = 0. �

Conversely:

Proposition 19.9. Let I be a nonzero fractional ideal of R which is, as an R-
module, projective. Then I is invertible.

Proof. We have the inclusion ι : II∗ ⊂ R which we wish to show is an equality.
This can be checked locally: i.e., it is enough to show that for all p ∈ SpecR,
ιp : IpI

∗
p → Rp is an isomorphism. By Proposition 19.2, it is equivalent to show

that Ip(Ip)
∗ → Rp is an isomorphism, but since I is projective, by Kaplansky’s

Theorem Ip is free. As above, being a nonzero ideal, it is then necessarily free
of rank one, i.e., a principal fractional ideal xRp. It follows immediately that
(Ip)

∗ = x−1Rp and thus that the map is an isomorphism. �

To sum up:

Theorem 19.10. Let I be a nonzero fractional ideal for a domain R. Then I is
invertible iff it is projective, in which case it is necessarily projective of rank one.

For any R-module M , the R-dual is defined to be M∨ = Hom(M,R). There is a
canonical R-bilinear map T : M∨ ×M → R obtained by mapping (f, x) 7→ f(x).
This induces an R-linear map T : M∨ ⊗R M → R. Let us say that an R-module
M is invertible if D is an isomorphism.

Proposition 19.11. Consider the following conditions on an R-module M .
(i) M is rank one projective.
(ii) M is invertible.
(iii) There exists an R-module N and an isomorphism T :M ⊗R N ∼= R.
Then (i) =⇒ (ii) =⇒ (iii) always, and (iii) =⇒ (i) if M is finitely generated.

Proof. (i) =⇒ (ii): We have a map T : M∨ ⊗M → R so that it suffices to check
locally that is an isomorphism, but M is locally free so this is easy.
(ii) =⇒ (iii) is immediate.
(iii) =⇒ (i): Since M is finitely generated, by Theorem 13.19 to show that M is
projective it is enough to show that for all p ∈ SpecR Mp is free of rank one. Thus
we may as well assume that (R,m) is a local ring with residue field R/m = k. The
base change of the isomorphism T to R/m is an isomorphism (recall that tensor
product commutes with base change)

Tk :M/mM ⊗k N/mN → k.

This shows that dimkM/mM = dimkN/mN = 1, so in particular M/mM is
monogenic as an R/m-module. By Nakayama’s Lemma the lift to R of any generator
x of M/mM is a generator of M , so M is a monogenic R-module and is thus
isomorphic to R/I for some ideal I. But indeed I = ann(M) ⊂ ann(M ⊗R N) =
ann(R) = 0, so M ∼= R/(0) = R is free of rank one. �

Theorem 19.12. (Cohen) Let R be a domain.
a) The set of invertible ideals of R is an Oka family in the sense of § 4.5.
b) If every nonzero prime ideal of R is invertible, then every nonzero fractional
ideal of R is invertible.
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Proof. a) Let I ⊂ J be ideals of R with J and (I : J) invertible (this implies I ̸= 0).
By Lemma 19.7, I = J(I : J) and thus, as the product of two invertible ideals, I
is invertible. Since for any ideals I, J of R we have (I : J) = (I : I + J), by taking
J = ⟨I, x⟩ for any x ∈ R we recover the Oka condition.
b) Seeking a contradiction, suppose I is a nonzero ideal of R which is not invertible.
Consider the partially ordered set S of ideals containing I which are not invertible.
Then the union of any chain in S is a non-invertible ideal: indeed, if it were invertible
then by Proposition 19.8 it would be finitely generated and thus equal to some
element in the chain: contradiction. Thus by Zorn’s Lemma there is a nonzero
ideal J which is maximal element in the family of ideals which are not invertible.
By part a) and the Prime Ideal Principle, J is prime: contradiction. �
Theorem 19.13. Let I and J be invertible fractional ideals. Then there is a
canonical isomorphism of R-modules

I ⊗R J
∼→ IJ.

Proof. The natural multiplication map I ×J → IJ is R-bilinear so factors through
an R-module map m : I ⊗R J → IJ . Again, once we have a globally defined map,
to see that it is an isomorphism it is enough to check it locally: for all p ∈ SpecR,

mp : Ip ⊗Rp
Jp

∼→ IpJp

and we are thus allowed to assume that I and J are principal fractional ideals. This
makes things very easy, and we leave the endgame to the reader. �
Corollary 19.14. Let I and J be invertible fractional R-ideals. TFAE:
(i) There exists x ∈ K× such that xI = J .
(ii) I ∼=R J , i.e., I and J are isomorphic R-modules.

Proof. (i) =⇒ (ii): If J = xI, then multiplication by x gives an R-module
isomorphism from I to J .
(ii) =⇒ (i): Since I ∼=R J we have

I−1J ∼= I−1 ⊗R J ∼= I−1 ⊗R I ∼= II−1 = R.

By Proposition 19.3, I−1J is a principal fractional ideal, i.e., there exists x ∈ K×

such that I−1J = xR. Multiplying through by I, we get xI = J . �
Proposition 19.15. Let M be a rank one projective module over a domain R with
fraction field K. Then there exists a fractional R-ideal I such that M ∼=R I.

Proof. Since M is projective, it is flat, and so tensoring the injection R ↪→ K with
M we get an injection f : M = R ⊗R M ↪→ M ⊗R K ∼= K, the last isomorphism
since M is locally free of rank 1. Thus f : M

∼→ f(M), and f(M) is a finitely
generated R- submodule of K and thus a fractional R-ideal. �
Putting together all the pieces we get the following important result.

Theorem 19.16. Let R be a domain. The following two commutative groups are
canonically isomorphic:
(i) Inv(R)/Prin(R) with [I][J ] := [IJ ].
(ii) Isomorphism classes of rank one projective R-modules under tensor product.
We may therefore define the Picard group PicR to be either the group of invertible
fractional ideals modulo principal fractional ideals under multiplication or the group
of isomorphism classes of rank one projective modules under tensor product.
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Lemma 19.17. In any domain R, let P1, . . . ,Pk be a set of invertible prime ideals
and let Q1, . . . ,Ql be any set of prime ideals. Suppose that

k∏
i=1

Pi =
l∏

j=1

Qj .

Then i = j and there exists some permutation σ of the set {1, . . . , k} such that for
all 1 ≤ i ≤ k we have Pi = Qσ(i).

In other words, prime factorization is unique for products of invertible primes.

Proof. Assume without loss of generality that P1 does not strictly contain any
Pi. Since

∏
j Qj ⊂ P1, some Qj , say Q1, is contained in P1. Similarly, since∏

i Pi ⊂ Q1, there exists i such that Pi ⊂ Q1. Thus Pi ⊂ Q1 ⊂ P1. By our
assumption on the minimality of P1, we have P1 = Pi = Q1. We can thus cancel
P1 = Q1 and obtain the result by induction. �
Lemma 19.18. Let R be an integrally closed Noetherian domain with fraction field
K, and let I be a fractional R-ideal. Then (I : I) := {x ∈ K | xI ⊂ I} = R.

Proof. Clearly R ⊂ (I : I). Conversely, let x ∈ (I : I). Then I is a faithful
R[x]-module which is finitely generated over R, so x is integral over R. �
Lemma 19.19. Let R be a domain with fraction field K, S ⊂ R\{0} a multiplica-
tive subset, and I, J fractional R-ideals.
a) We have (I + J)S = IS + JS.
b) (IJ)S = ISJS.
c) (I ∩ J)S = IS ∩ JS.
d) If I is finitely generated, then (I∗)S = (IS)

∗.

Proof. Parts a) and b) are immediate and are just recorded for future reference.
For part c), we evidently have (I ∩ J)S ⊂ IS ∩ JS . Conversely, let x ∈ IS ∩ JS ,
so x = i

s1
= j

s2
with i ∈ I, j ∈ J , s1, s2 ∈ S. Put b = a1s2 = a2s1 ∈ I ∩ J ; then

x = b
s1s2

∈ (I ∩ J)S , establishing part c). For part d), note first that (I + J)∗ =

I∗∩J∗. Also if 0 ̸= x ∈ K, then (Rx)S = RSx. Hence if I = Rx1+ . . .+Rxn, then
IS = RSx1+. . .+RSxn, so (IS)

∗ =
∩n
i=1

1
xi
RS . On the other hand, I∗ =

∩n
i=1

1
xi
R,

and thus part c) we have

(I∗)S =

n∩
i=1

1

xi
RS = (IS)

∗.

�
Lemma 19.20. A nonzero ideal in a Noetherian domain contains a product of
nonzero prime ideals.

Proof. Assume not: let I be a nonzero ideal which is maximal with respect to the
property of not containing a product of nonzero prime ideals. Then I is not prime:
there exist x1, x2 ∈ R \ I such that x1x2 ∈ I. Now put, for i = 1, 2, Ii := ⟨I, xi⟩,
so that I ( Ii and I ⊃ I1I2. By maximality of I, I1 ⊃ p1 · · · pr and I2 ⊃ q1 · · · qs
(with pi, qj prime for all i, j), and then I ⊃ p1 · · · prq1 ⊃ qs, contradiction. �
Lemma 19.21. (Jacobson) Let R be a Noetherian domain of Krull dimension at
most one. Let I be a proper, nonzero ideal of R. Then (R : I) ) R.
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Proof. Let 0 ̸= a ∈ I, so aR ⊂ I ⊂ R. By Lemma 19.20, there are nonzero prime
ideals p1, . . . , pm such that aR ⊃ p1 · · · pm; we may assume m is minimal. Let m be
a maximal ideal containing I. Then m ⊃ I ⊃ aR ⊃ p1 · · · pm; since nonzero prime
ideals are maximal, this implies m = pi for some i, say for i = 1. If m = 1 then
I = aR so (R : I) = a−1R ) R. Now suppose m > 1; by minimality of m, aR does
not contain p2 · · · pm so we may choose b ∈ p2 · · · pm \ aR. Put c = a−1b. Then
c /∈ R and cI ⊂ cm = a−1bm ⊂ amp2 · · · pm ⊂ a−1(aR) = R, so c ∈ (R : I). �

The following result gives information about when a prime ideal is invertible.

Proposition 19.22. Let R be a Noetherian domain, and p a nonzero prime ideal
of R. If p is invertible, then it has height one and Rp is a DVR.

Proof. Since p is invertible, Rp is a Noetherian local domain with a principal max-
imal ideal pRp. By Theorem 17.19, Rp is a DVR, and thus p has height one. �

19.4. Divisorial ideals and the Divisor Class Group.

For I, J ∈ Frac(R), we write I ≤ J if every principal fractional ideal Ra which
is contained in I is also contained in J . This gives a preordering on Frac(R). Let
R be the associated equivalence relation, i.e., I ∼ J if I ≤ J and J ≤ I.

We write D(R) = Frac(R)/ ∼. Elements of D(R) are called divisors on R. For
a fractional ideal I, we denote its image in D(R) by div(I), and for a principal
fractional ideal aR, we write simply div(a). Such elements are called principal
divisors. A fractional ideal I is divisorial if I = I.

Exercise 19.10: Let R be a domain and I a fractional R-ideal.
a) Show that I is the unique divisorial ideal with div I = div I.
c) Show that I is the smallest divisorial fractional ideal containing I.
c) Show that invertible fractional ideals are divisorial.

Exercise 19.11: If I is a divisorial fractional ideal and x ∈ K•, then Ix is a di-
visorial fractional ideal.

Exercise 19.12: Let {Ii} be a family of divisorial fractional ideals such that I =
∩
i Ii

is nonzero. Then I is a divisorial fractional ideal.

Lemma 19.23. Let I, J ∈ FracR.
a) The following are equivalent:
(i) I ≤ J .
(ii) J∗ ⊂ I∗.
b) The following are equivalent:
(i) I ∼ J .
(ii) I∗ = J∗.
(iii) I = J .
(iv) div I = div J .

Exercise 19.13: Prove Lemma 19.23.

Proposition 19.24. For I, J,M ∈ FracR: div I ≤ div J =⇒ div IM ≤ div JM .
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Proof. By hypothesis J ⊂ I; equivalently (R : I) = I∗ ⊂ J∗ = (R : J). Then

(IM)∗ = (R : IM) = ((R : I) :M) ⊂ ((R : J) :M) = [R : JM) = (JM)∗.

It follows that JM ⊂ IM , so div IM ≤ div JM . �
Proposition 19.25. Let R be a domain.
a) For div I,div J ∈ D(R), the operation div I +div J = div IJ is well-defined and
endows D(R) with the structure of a commutative monid.
b) (D(R),+, <) is a lattice-ordered monoid.

Proof. We have

(R : IJ) = ((R : I) : J) = (R : I) : J) = ((R : J) : I)

= ((R : J) : I) = (R : IJ),

so div I + div J = div I + div J .
b) For I, J,M ∈ FracR with div I ≤ div J , by Proposition 19.24 and part a),

div I + divM = div IM ≤ div JM = div J + divM,

and thus the partial ordering is compatible with the monoid structure. To show
that we have a lattice, for any I, J ∈ FracR, we need to find the supremum and
infimum of div I and div J . We claim that in fact we have

div(I ∩ J) = sup div I,div J

div(I + J) = inf div I,div J.

To see this we may assume I and J are divisorial. By Exercise 19.12, I ∩ J is
divisorial, so it is clear that for any divisorial ideal M ,

(div I ≤M, div J ≤M) ⇐⇒ (M ⊂ I, M ⊂ J)

⇐⇒ (M ⊂ I ∩ J) ⇐⇒ div I ∩ J ≤ divM.

Next, note that since I, J ⊂ I + J , div I + J ≤ div I,div J , i.e., div I + J is a
lower bound for {div I,div J}. Conversely, if M ∈ FracR is such that divM ≤
div I, div J , then I, J ⊂ M so I + J ⊂ M and I + J ⊂ M = M and divM =
divM ≤ div I + J = div I + J . �
Tournant Dangereux One may wonder why we work with divisors at all since
every divisor is represented by a unique divisorial ideal. However, if I and J are
divisorial fractional ideals, the product IJ need not be divisorial.

Proposition 19.26.
a) In D(R) every nonempty set which is bounded above admits a least upper bound.
Explicitly, if (Ii) is a nonempty family of fractional ideals which is bounded above,
then supi(div Ii) = div(

∩
i Ii).

b) In D(R) every nonempty set which is bounded below admits a greatest lower
bound. Explicitly, if (Ji) is a nonempty family of fractional ideals which is bounded
below, then infi(div Ji) = div(

∑
i Ii).

c) D(R) is a lattice.

Proof. Bourbaki, p. 477. COMPLETE ME! ♣ �
Theorem 19.27. For a domain R, the following are equivalent:
(i) D(R) is a group.
(ii) R is completely integrally closed.
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Proof. (i) =⇒ (ii): Let x ∈ K×. Suppose there is d ∈ R• such that dxn ∈ R for
all n ∈ Z+. Then I = ⟨R, a⟩R ∈ FracR and aI ⊂ I. Then

div I ≤ div aI = div a+ div I.

Since D(R) is a group, divR = 0 ≤ div a, and since aR and R are divisorial, a ∈ R.
(ii) =⇒ (i): We’ll show: for all divisorial fractional ideals I, (II∗)∗ = R∗ = R,
hence div I+div I∗ = divR = 0. By Proposition 19.6, it’s enough to show that II∗

and R are contained in the same principal fractional ideals. Since II∗ ⊂ R, any
principal fractional ideal which contains R contains II∗. Thus, let x ∈ K× be such
that II∗ ⊂ xR; we want to show R ⊂ xR, i.e., x−1 ∈ R. Suppose that for y ∈ K×

we have I ⊂ yR, so y−1 ∈ I∗ and thus Iy−1 ⊂ xR; equivalently, x−1I ⊂ yR. Thus
x−1I is contained in every principal fractional ideal containing I, so x−1I ⊂ I = I.
It follows that x−nI ⊂ I for all n ∈ Z+. Let w ∈ R• be such that wI ⊂ R. Then
dx−nI ⊂ R, and if z ∈ I• then (wz)x−n ∈ R for all n ∈ Z+. Since dc ∈ R• and R
is completely integrally closed, by Theorem 14.38 x−1 ∈ R. �

Let P (R) be the image in D(R) of the principal fractional ideals. Then P (R) is a
subgroup of D(R). Thus if R is completely integrally closed (e.g. Noetherian and
integrally closed!) we may form the quotient

ClR = D(R)/P (R),

the divisor class group of R.

Exercise 19.14: Let R be a completely integrally closed domain. Show that there
is a canonical injection

PicR ↪→ ClR.

Theorem 19.28. Let R = C[x, y, z]/(xy − z2). Then R is a Noetherian integrally
closed domain with PicR = 0 and ClR ∼= Z/2Z.

20. Dedekind domains

A Dedekind domain is an integral domain which is Noetherian, integrally closed,
and of dimension at most one. A Dedekind domain has dimension zero iff it is a
field. Although we endeavor for complete precision here (why not?), the reader
should be warned that in many treatments the zero-dimensional case is ignored,
when convenient, in statements of results.

20.1. Characterization in terms of invertibility of ideals.

Theorem 20.1. For an integral domain R with fraction field K, the following are
equivalent:
(i) R is Dedekind: Noetherian, integrally closed of dimension at most one.
(ii) Every fractional R-ideal is invertible.
(iii) Every nonzero prime ideal of R is invertible.

Proof. (i) =⇒ (ii): Let R be a Noetherian, integrally closed domain of dimension
at most one, and let I be a fractional R-ideal. Then II∗ ⊂ R and hence also
II∗(II∗)∗ ⊂ R, so I∗(II)∗ ⊂ I∗. It follows from Lemma 19.18 that (II∗)∗ ⊂ R;
moreover, since II∗ ⊂ R, Lemma 19.21 implies II∗ = R, i.e., I is invertible.
(ii) =⇒ (i): Since invertible ideals are finitely generated, if every nonzero ideal
is invertible, then R is Noetherian. Let p be a nonzero, nonmaximal prime ideal
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of R, so that there exists a maximal ideal m which 0 ( p ( m. By the mantra
“to contain is to divide” for invertible fractional ideals, there exists some invertible
integral ideal I such that p = mI. Suppose that I ⊂ p. Then I = RI ⊃ mI = p, so
we would have p = I and then m = R, contradiction. Then there exists x ∈ m \ p
and y ∈ I \ p such that xy ∈ p, contradicting the primality of p.

Finally, we check that R is integrally closed: let x = b
c be a nonzero element of

K which is integral over R, so there exist a0, . . . , an−1 ∈ R such that

xn + an−1x
n−1 + . . .+ a1x+ a0 = 0.

Let M be the R-submodule of K generated by 1, x, . . . , xn−1; since M is finitely
generated, it is a fractional R-ideal. We have M2 = M , and thus – since M is
invertible – M = R. It follows that x ∈ R.
(ii) =⇒ (iii) is immediate.
(iii) =⇒ (ii) by Theorem 19.12. �
Recall that a ring R is hereditary if every ideal of R is a projective R-module.

Corollary 20.2. A domain R is hereditary iff it is a Dedekind domain.

Proof. By Theorem 20.1 a domain R is a Dedekind domain iff every fractional ideal
of R is invertible, and clearly the latter condition holds iff every nonzero integral
ideal of R is invertible. Moreover, by Theorem 19.10, a nonzero ideal of a ring is
invertible iff it is projective as an R-module. �
20.2. Ideal factorization in Dedekind domains.

Here we will show that in a Dedekind domain every nonzero integral ideal fac-
tors uniquely into a product of primes and derive consequences for the group of
invertible ideals and the Picard group. (The fact that factorization – unique or
otherwise! – into products of primes implies invertibility of all fractional ideals – is
more delicate and will be pursued later.)

Lemma 20.3. Let I be an ideal in a ring R. If there exist J1, J2 ideals of R, each
strictly containing I, such that I = J1J2, then I is not prime.

Proof. Choose, for i = 1, 2, xi ∈ Ji \ I; then x1x2 ∈ I, so I is not prime. �
Theorem 20.4. Every proper integral ideal in a Dedekind domain has a unique
factorization into a product of of prime ideals.

Proof. After Lemma 19.17 it suffices to show that a nonzero proper integral ideal I
in a Dedekind domain R factors into a product of primes. Suppose not, so the set
of ideals which do not so factor is nonempty, and (as usual!) let I be a maximal
element of this set. Then I is not prime, so in particular is not maximal: let p be
a maximal ideal strictly containing I, so I = pJ . Then J = p−1I strictly contains
I so factors into a product of primes, hence I does. �
If I is any nonzero integral ideal of I and p is any nonzero prime ideal of a Dedekind
domain R, then we may define ordp(I) via the prime factorization

I =
∏
p

pordp(I).

The product extends formally over all primes, but as I is divisible by only finitely
many primes, all but finitely many exponents are zero, so it is really a finite product.
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Corollary 20.5. Let R be a Dedekind domain.
a) The monoid M(R) of nonzero integral ideals is a free commutative monoid on
the set of nonzero prime ideals.
b) The fractional ideals form a free commutative group on the set of prime ideals:

Frac(R) =
⊕

0 ̸=p ∈ SpecR

Z.

Proof. Part a) is simply the statement of unique factorization into prime elements in
any commutative monoid. In the group I(R) of all fractional ideals, the subgroup
G generated by the nonzero primes is a free commutative group on the primes:
this just asserts that for primes p1, . . . , pr and integers n1, . . . , nr, the equation
pn1
1 · · · pnr

r = R implies n1 = . . . = nr = 0, which is easily seen – e.g. by localizing.
Since any fractional ideal J is of the form 1

xI with I an integral ideal, decomposing
I and (x) into their prime factorizations expresses J as a Z-linear combination of
prime ideals, so Frac(R) = G. �

Corollary 20.5 allows us to extend the definition of ordp to any fractional R-ideal.

Since for a Dedekind domain there is no distinction between invertible fractional
ideals and all fractional ideals, the Picard group takes an especially simple form:
it is the quotient of the free abelian group Frac(R) of all fractional ideals modulo
the subgroup Prin(R) = K×/R× of principal fractional ideals. We therefore have
a short exact sequence

0 → Prin(R) → Frac(R) → Pic(R) → 0,

and also a slightly longer exact sequence

0 → R× → K× → Frac(R) → Pic(R) → 0.

Theorem 20.6. For a Dedekind domain R, the following are equivalent:
(i) Pic(R) = 0.
(ii) R is a PID.
(iii) R is a UFD.
(iv) The set of nonprincipal prime ideals is finite.

Proof. Evidently each fractional ideal is principal iff each integral ideal is principal:
(i) ≡ (ii). Since R has dimension at most one, (ii) ⇐⇒ (iii) by Proposition
16.1. Evidently (ii) =⇒ (iv), so the interesting implication is that (iv) implies the
other conditions. So assume that the set of (nonzero) nonprincipal prime ideals is
nonempty but finite, and enumerate them: p1, . . . , pn. Let I be an integral ideal,
and suppose that

I = pa11 · · · pann qb11 · · · qbmm .

(As usual, we allow zero exponents.) By the Chinese Remainder Theorem we may
choose an α ∈ R such that ordpi(α) = ai for all i.66 Now consider the fractional
ideal (α−1)I; it factors as

(α−1)I = qb11 · · · qbmm rc11 · · · rcll ,

66Note that we want equality, not just ordPi
(α) ≥ ai, so you should definitely think about

how to get this from CRT if you’ve never seen such an argument before.
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where the ri’s are some other prime ideals, i.e., disjoint from the pi’s. But all of
the (fractional) ideals in the factorization of (α−1)I are principal, so (α−1)I = (β)
for some β ∈ K× and then I = (αβ) is principal! �

Exercise 20.1: a) Consider the ring

R1 = Z[
√
−3] = Z[t]/(t2 + 3).

Show that R1 is a one-dimensional Noetherian domain with exactly one nonprinci-
pal prime ideal, namely p2 = ⟨1 +

√
−3, 1−

√
−3⟩.

b) For any n ∈ Z+, exhibit a ring Rn which is one-dimensional Noetherian and has
exactly n nonprincipal prime ideals.

20.3. Local characterization of Dedekind domains.

Theorem 20.7. Let R be an integral domain.
a) If R is Dedekind and S is a multiplicative subset, then S−1R is Dedekind.
b) If R is a Dedekind domain and 0 ̸= p is a prime ideal of R, then Rp is a DVR.

Proof. The properties of being Noetherian, dimension at most one and integrally
closed are all preserved under localization, so part a) is immediate. Similarly, if
0 ̸= p is a prime ideal, then the localization Rp is a local, one-dimensional integrally
closed Noetherian domain, hence by Theorem 17.19 a DVR, establishing b). �

Exercise 20.2: Let R be Dedekind with fraction field K; let 0 ̸= p ∈ SpecR.
a) Show that the map ordp : K× → Z defined above is nothing else than the discrete
valuation corresponding to the localization Rp.
b) Conversely, let v : K× → Z be a discrete valuation. Show that the valuation
ring Rv = v−1(N) is the localization of R at some maximal ideal p.

20.4. Factorization into primes implies Dedekind.

Theorem 20.8. (Matusita [Ma44]) Let R be a domain with the property that every
nonzero proper integral ideal is a product of prime ideals. Then R is Dedekind.

Proof. Step 1: Let p be an invertible prime of R. We show that p is maximal. Let
a ∈ R \ p, and suppose that ⟨a, p⟩ ( R. Let us then write

I1 := ⟨a, p⟩ = p1 · · · pm,
I2 := ⟨a2, p⟩ = q1 · · · qn,

where the pi and qj are prime ideals. By assumption, I1 ) p, and, since p is prime,
we have also I2 ) p. Therefore each pi and qj strictly contains p. In the quotient

R = R/p we have

(a) = aR = p1 · · · pm
and

(a2) = a2R = q1 · · · qn.
The principal ideals (a) and (a2) are invertible, and the pi and qj remain prime in
the quotient. Therefore, we have

q1 · · · qn = p21 · · · pm
2.

Thus the multisets {{q1, . . . , qn} and {p1, p1, . . . , pm, pm}} coincide, and pulling
back to R the same holds without the bars. Thus

I21 = ⟨a, p⟩2 = p21 · · · p2m = q1 · · · qn = ⟨a2, p⟩,
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so

p ⊂ ⟨a, p⟩2 = a2R+ ap+ p2 ⊂ aR+ p2.

So if p ∈ p, p = ax+ y with x ∈ R, y ∈ p2, so ax ∈ p, and since a ∈ R \ p, x ∈ p.
Thus p ⊂ ap + p2 ⊂ p, so p = ap + p2. Multiplication by p−1 gives R = a + p,
contrary to hypothesis. So p is maximal.

Step 2: Let p be any nonzero prime ideal in R, and 0 ̸= b ∈ p. Then p ⊃ bR and

bR = p1 · · · pm,

with each pi invertible and prime. Thus by Step 1 the pi’s are maximal. Since
p is prime we have p ⊃ pi for some i and then by maximality p = pi, hence p is
invertible. Since by assumption every proper integral ideal is a product of primes,
we conclude that every integral ideal is invertible, which, by Theorem 20.1 implies
that R is Dedekind. �

Let a and b be ideals of a domain R. We say that b divides a if there is an ideal c
such that bc = a.

Exercise 20.3: Suppose a, b are ideals of a domain R such that b divides a.
a) Show that b ⊃ a.
b) Show that c ⊂ (a : b).
c) Can we have c ( (a : b)?

Proposition 20.9. For a Noetherian domain R, the following are equivalent:
(i) R is a Dedekind domain.
(ii) To contain is to divide: For all ideals a, b of R, b ⊃ a ⇐⇒ b divides a.

Proof. (i) =⇒ (ii): The statement is trivial if b = (0). Otherwise, b is invertible
so a = b(a : b) by Lemma 19.7.
(ii) =⇒ (i): We claim that every proper nonzero ideal of R is a product of prime
ideals. Since R is Noetherian, if this is not the case there is an ideal a which is
maximal with respect to not having this property. Let p be a maximal ideal with
a ⊂ p. By hypothesis, there is an ideal c with a = p1c. Then c ⊃ a. Suppose we
had equality; then repeatedly substituting a = p1a gives a = pk1a for all k ∈ Z+,
and then by the Krull Intersection Theorem, a ⊂

∩∞
k=1 p

k
1 = (0), contradiction.

So c properly contains a, so we may write c = p2 · · · pr and thus a = p1p2 · · · pr:
contradiction. �

Theorem 20.10. For a domain R which is not a field, the following are equivalent:
(i) R is Noetherian, integrally closed, and of Krull dimension one.
(ii) Every fractional (equivalently, every integral) R-ideal is invertible.
(iii) R is Noetherian, and the localization at every maximal ideal is a DVR.
(iv) Every nonzero proper integral ideal factors into a product of prime ideals.
(iv′) Every nonzero proper integral ideal factors uniquely into a product of primes.
(v) R is Noetherian, and to contain is to divide for all ideals of R.

20.5. Generation of ideals in Dedekind domains.

Theorem 20.11. Let R be a Dedekind domain and I a nonzero ideal of R. Then
the quotient ring R/I is a principal Artinian ring.
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Proof. Write I =
∏r
i=1 p

ai
i . By the Chinese Remainder Theorem,

R/I ∼=
r∏
i=1

R/paii .

Each factor R/paii is also a quotient of the localized ring Rp/p
ai
i , which shows that

it is Artinian and principal. Finally, a finite product of Artinian (resp. principal
ideal rings) remains Artinian (resp. a principal ideal ring). �

This has the following striking consequence:

Theorem 20.12. (C.-H. Sah) For a domain R, the following are equivalent:
(i) R is a Dedekind domain.
(ii) For any nonzero ideal I of R and any nonzero element a ∈ I, there exists b ∈ I
such that I = ⟨a, b⟩.

Proof. The direction (i) =⇒ (ii) follows immediately from Theorem 20.11. Con-
versely, assume condition (ii) holds. By Theorem 20.10 it suffices to show that R
is Noetherian and that its localization at each nonzero prime ideal p is a DVR.
Certainly condition (ii) implies Noetherianity; moreover it continues to hold for
nonzero ideals in any localization. So let I be a nonzero ideal in the Noetherian
local domain (Rp, p). It follows that there exists b ∈ p such that p = Ip+ bRp. By
Nakayama’s Lemma, I = bRp, so Rp is a local PID, hence a DVR. �

Proposition 20.13. ([J2, Ex. 10.2.11]) Let R be a Dedekind domain, I a frac-
tional ideal of R and J a nonzero integral ideal of R. Then there exists a ∈ I such
that aI−1 + J = R.

Proof. Let p1, . . . , ps be the prime ideals of R dividing J . For each 1 ≤ i ≤ r, choose
ai ∈ Ip1 · · · prp−1

i \ Ip1 · · · pr. Put a = a1 + . . .+ ar. We claim that aI−1 + J = R.
It is enough to check this locally. For every prime q ̸= pi, we have JRq = Rq. On
the other hand, for all 1 ≤ i ≤ r, aI−1 is not contained in pi, so its pushforward to
Rpi is all of Rpi . �

20.6. Finitely generated modules over a Dedekind domain.

The aim of this section is to prove the following important result.

Theorem 20.14. Let M be a finitely generated module over a Dedekind domain.
a) P =M/M [tors] is a finitely generated projective R-module, say of rank r.
b) If r = 0 then of course M =M [tors]. If r ≥ 1 then

M ∼=M [tors]⊕ P ∼=M [tors]⊕Rr−1 ⊕ I,

with I a nonzero ideal of R.
c) The class [I] of I in PicR is an invariant of M .
d) There exists N ∈ Z+, maximal ideals pi and positive integers ni such that

M [tors] ∼=
N⊕
i=1

R/pni
i .

Much of the content of the main theorem of this section lies in the following converse
of Proposition 3.8b) for finitely generated modules over a Dedekind domain.
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Theorem 20.15. For a finitely generated module M over a Dedekind domain, the
following are equivalent:
(i) M is projective.
(ii) M is flat.
(iii) M is torsionfree.

Proof. Of course (i) =⇒ (ii) =⇒ (iii) for modules over any domain, and we have
seen that (i) ≡ (ii) for finitely generated modules over a Noetherian ring. So it
suffices to show (iii) =⇒ (i).

Suppose R is a Dedekind domain and M is a finitely generated nonzero tor-
sionfree R-module. By Proposition 3.8c), we may assume that M ⊂ Rn for some
n ≥ 1. We prove the result by induction on n. If n = 1, then M is nothing else
than a nonzero ideal of R, hence invertible by Theorem 20.10 and thus a rank one
projective module by Theorem 19.10. So we may assume that n > 1 and that every
finitely generated torsionfree submodule of Rn−1 is projective. Let Rn−1 ⊂ Rn be
the span of the first n− 1 standard basis elements. Let πn : Rn → R be projection
onto the nth factor, and consider the restriction of πn to M :

0 →M ∩Rn−1 →M
πn→ πn(M) → 0.

Put I = πn(M). Then I is an ideal of R, hence projective, so the sequence splits:

M → (M ∩Rn−1)⊕ I.

NowM ∩Rn−1 is a torsionfree, finitely generated (sinceM is finitely generated and
R is Noetherian) submodule of Rn−1, hence is projective by induction. Certainly
a direct sum of projective modules is projective, so we’re done. �
The method of proof immediately yields the following important corollary:

Corollary 20.16. Let P be a finitely generated rank r projective module over a
Dedekind domain R. Then we have a direct sum decomposition P ∼=

⊕r
i=1 Ii,

where each Ii is a nonzero rank one projective R-module.

Let M a finitely generated module over the Dedekind domain R. We have:

0 →M [tors] →M →M/M [tors] → 0.

Put P := M/M [tors]. Then P is finitely generated and torsionfree by Proposition
3.8a), hence projective (by Theorem 20.15), and the sequence splits:

M ∼=M [tors]⊕ P.

Lemma 20.17. I1, . . . , In be fractional ideals in the Dedekind domain R. Then
the R-modules

⊕n
i=1 Ii and R

n−1 ⊕ I1 · · · In are isomorphic.

Proof. We will prove the result when n = 2. The general case follows by an easy
induction argument left to the reader.
Choose 0 ̸= a1 ∈ I1. Applying Proposition 20.13 with I = I2 and J = a1I

−1
1 ⊂ R,

that there exists a2 ∈ I2 such that a1I
−1
1 +a2I

−1
2 = R. That is there exist bi ∈ I−1

i

such that a1b1 + a2b2 = 1. The matrix[
b1 −a2
b2 a1

]
is invertible with inverse

A−1 =

[
a1 a2
−b2 b1

]
.
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For (x1, x2) ∈ I1 ⊕ I2, we have

y1 = x1b1 + x2 ∈ R, y2 = −x1a2 + x2a1 ∈ I1I2.

On the other hand, if y1 ∈ R and y2 = c1c2 ∈ I1I2, then

x1 = a1y1 − b2c1c2 ∈ I1, x2 = a2y1 + b1c1c2 ∈ I2.

Thus [x1x2] 7→ [x1x2]A gives an R-module isomorphism from I1⊕I2 to R⊕I1I2. �
Thus we may write

M =M [tors]⊕M/M [tors] ∼=M [tors]⊕
r⊕
i=1

Ii =M [tors]⊕Rr−1 ⊕ (I1 · · · Ir),

which establishes Theorem 20.14a).

As for part b) of the theorem, let T be a finitely generated torsion R-module. Note
that the statement of the classification is identical to that of finitely generated tor-
sion modules over a PID. This is no accident, as we can easily reduce to the case of a
PID – and indeed to that of a DVR, which we have already proven (Theorem 17.21).
Namely, let I be the annihilator of T , and (assuming T ̸= 0, as we certainly may)
write I =

∏r
i=1 p

ai
i . Then T is a module over R/I ∼= R/

∏r
i=1 p

ri
i

∼=
⊕r

i=1R/p
ai
i .

By Exercise X.X in §3.1, T naturally decomposes as T =
⊕r

i=1 Ti, where Ti is a
module over R/paii . This gives the primary decomposition of T . Moreover, each Ti
is a module over the DVR Rp, so Theorem 17.21 applies.

Corollary 20.18. For any Dedekind domain R, the Picard group PicR is canon-

ically isomorphic to the reduced K0-group K̃0(R).

Proof. Let P be a finitely generated projective R-module of rank r ≥ 1. Ac-
cording to Theorem 20.14c) the monoid of isomorphism classes of finitely gen-
erated projective R-modules is cancellative: this means that the canonical map
φ : Pic(R) → K0(R) is injective. It follows easily that the composite map Φ :

Pic(R)
φ→ K0(R) → K̃0(R) is an injection: indeed, for φ(I) to be killed in K̃0(R)

but not K0(R) it would have to be a fractional ideal which has rank zero as an
R-module, and there are no such things. Now an arbitrary nonzero finitely gener-
ated projective R-module is isomorphic to Rr−1 ⊕ I, hence becomes equal to the

class of the rank one module I in K̃0(R), so Φ is surjective. To check that it is a
homomorphism of groups we may look on a set of generators – namely, the classes
of rank one projective modules. Let us use [P ] for the class of the projective module

P in K0(R) and [[P ]] for its image in K̃0(R). Then by Lemma 20.17 we have

Φ([I1 ⊗ I2]) = [[I1 ⊗ I2]] = [[I1I2]] = [[R⊕ I1I2]] = [[I1 ⊕ I2]] = [[I1]] + [[I2]]. �
20.7. Injective Modules.

Theorem 20.19. For a domain R with fraction field K, TFAE:
(i) R is Dedekind.
(ii) Every divisible R-module is injective.

Proof. (i) =⇒ (ii): Let D be a divisible R-module. We will show D is injective
using Baer’s Criterion: let I be an ideal of R and f : I → D a module map. We
may assume that I is nonzero and thus, since R is a Dedekind domain, invertible:
if I = ⟨a1, . . . , an⟩, there are b1, . . . , bn ∈ K such that biI ⊂ R for all i and
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1 =
∑n
i=1 aibi. Since D is divisible, there are d1, . . . , dn ∈ D with f(ai) = aidi for

all i. Then for x ∈ I,

f(x) = f(
∑
i

biaix) =
∑

(bix)f(ai) =
∑
i

(bix)aidi = x
∑
i

(biai)ei.

Put d =
∑n
i=1(biai)di. Thus F : R→ D by x 7→ dx lifts f .

(ii) =⇒ (i): Let I be injective. Then I is divisible and a quotient of a divisible
module is divisible, so every quotient of I is divisible, and thus by assumption every
quotient of I is injective. By Corollaries 3.55 and 20.2, R is Dedekind. �

As an application, we will prove a generalization to Dedekind domains of a non-
trivial result in abelian group theory. Given an abelian group A, it is natural to
ask when its torsion subgroup A[tors] is a direct summand of A, so that A is the
direct sum of a torsion group and a torsionfree group. It is easy to see that this
happens when A is finitely generated, because then A/A[tors] is a finitely generated
torsionfree module over a PID, hence projective. The following exercise shows that
some condition is necessary.

Exercise 20.4: Let A =
∏
p Z/pZ, where the product extends over all prime num-

bers. Show that A[tors] is not a direct summand of A.

These considerations should serve to motivate the following result.

Theorem 20.20. Let M be a module over a Dedekind domain R. If M [tors] =
M [r] for some r ∈ R, then M [tors] is a direct summand of M .

Proof. Step 1: We claim that if A is a torsionfree R-module, then for every R-
module N , Ext1R(M,N) is divisible.
proof of claim Let V = A ⊗R K. Since A is torsionfree, we have an exact
sequence

0 → A→ V → V/A→ 0.

Applying the cofunctor Hom(·, B), a portion of the long exact Ext sequence is

Ext1R(V,B) → Ext1R(A,B) → Ext2R(V/A,B).

Since R is hereditary, by Proposition X.X, Ext2R(A,B) = 0 so Ext1R(A,B) is a quo-
tient of Ext1R(V,B). Since V is a K-module, so is Ext1R(V,B) and thus Ext1R(V,B)
and its quotient Ext1R(A,B) is a divisible module, hence injective by Theorem 20.19.
Step 2: Let T =M [tors] =M [r]. We will show that the sequence

0 → T →M →M/T → 0

splits by computing Ext1R(M/T, T ) = 0. Since M/T is torsionfree, by Step 1
Ext1R(M/T, T ) is divisible. On the other hand, since T = T [r], Ext1R(M/T, T ) =
Ext1R(M/T, T )[r]. Thus multiplication by r on Ext1R(M/T, T ) is on the one hand
surjective and on the other hand identically zero, so Ext1R(M/T, T ) = 0. By Theo-
rem 3.82 the sequence splits. �
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21. Prüfer domains

A Prüfer domain is a domain in which each finitely generated ideal is invertible.67

Exercise 21.1: Show that every Bézout domain is a Prüfer domain.

21.1. Characterizations of Prüfer Domains.

One might be forgiven for thinking the invertibility of finitely generated ideals
is a somewhat abstruse condition on a domain. The following result shows that, on
the contrary, this determines a very natural class of domains.

Theorem 21.1. (Characterization of Prüfer Domains) For a domain R, TFAE:
(i) R is a Prüfer domain: every nonzero finitely generated ideal is invertible.
(i′) Every nonzero ideal of R generated by two elements is invertible.
(ii) Nonzero finitely generated ideals are cancellable: if a, b, c are ideals of R and a
is finitely generated and nonzero, then ab = ac =⇒ b = c.
(iii) For every p ∈ SpecR, Rp is a valuation ring.
(iii′) For every m ∈ MaxSpecR, Rm is a valuation ring.
(v) For all ideals A,B,C of R, A(B ∩ C) = AB ∩AC.
(vi) For all ideals A,B of R, (A+B)(A ∩B) = AB.
(vii) If A and C are ideals of R with C finitely generated and A ⊂ C, then there
exists an ideal B of R such that A = BC.
(viii) For all ideals A,B,C of R with C finitely generated, we have

(A+B : C) = (A : C) + (B : C).

(ix) For all ideals A,B,C of R with C finitely generated, we have

(C : A ∩B) = (C : A) + (C : B).

(x) For all ideals A,B,C of R, A ∩ (B + C) = A ∩B +A ∩ C.

Proof. We will show: (i) ⇐⇒ (i′),
(i) ⇐⇒ (ii), (i) =⇒ (iii) =⇒ (iv) =⇒ (v) =⇒ (vi) =⇒ (ii), (i) =⇒ (vii)

=⇒ (iv), (iv) =⇒ (viiii) =⇒ (ii), (iv) =⇒ (ix) =⇒ (ii), and (iv) ⇐⇒ (x).
This suffices!
(i) =⇒ (i′) is immediate.
(i′) =⇒ (i): We go by induction on the number of generators. A nonzero ideal
with a single generator is principal, hence invertible. By assumption, every nonzero
ideal generated by two elements is invertible. Hence we may assume that n ≥ 3
and that every nonzero ideal of R generated by n− 1 elements is invertible, and let
c = ⟨c1, . . . , cn⟩. We may assume ci ̸= 0 for all i. Put

a = ⟨c1, . . . , cn−1⟩, b = ⟨c2, . . . , cn⟩,

d = ⟨c1, cn⟩, e = c1a
−1d−1 + cnb

−1d−1.

Then

ce = (a+ ⟨cn⟩)c1a−1d−1 + (⟨c1⟩+ b)cnb
−1d−1

= c1d
−1 + c1cna

−1d−1 + c1cnb
−1d−1 + cnd

−1

= c1d
−1(R+ cnb

−1) + cnd
−1(R+ c1a

−1).

67Except for the zero ideal, of course.
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Since cnb
−1, c1a

−1 ⊂ R, we get

ce = c1d
−1 + cnd

−1 = ⟨c1, cn⟩d−1 = R.

(iii) =⇒ (iii′) is immediate. (iii′) =⇒ (iii): if p ∈ SpecR, let m be a maximal
ideal containing p. Then Rp is an overring of Rm, and every overring of a valuation
ring is a valuation ring.
(i) =⇒ (ii) is immediate, since invertible ideals are cancellable.
(ii) =⇒ (iii): First suppose that a is a nonzero finitely generated ideal and b, c are
ideals of R with ab ⊂ ac. Then ac = ab+ ac = a(b+ c); cancelling a gives c = b+ c,
so b ⊂ c. Now let p be a prime ideal of R. By Exercise 17.6, it is enough to show
that for any a

s ,
b
t ∈ Rp, we have either (as ) ⊂ ( bt ) or (

b
t ) ⊂ (as ). Since

1
s ,

1
t ∈ R×, it

is equivalent to show that (a) ⊂ (b) or (b) ⊂ (a): for this we may clearly assume
a, b ̸= 0.

�
Theorem 21.2. Let R be a domain.
a) Suppose R is a GCD-domain. Then R is Prüfer iff it is Bézout.
b) A Prüfer UFD is a PID.

Proof. a) Since principal ideals are invertible, any Bézout domain is a Prüfer do-
main. Conversely, suppose R is a GCD-domain and a Prüfer domain. Let x, y ∈ R•

and let d be a GCD of x, y. Certainly we have (d) ⊃ ⟨x, y⟩. Thus ι : ⟨x, y⟩ ↪→ (d)
is a homomorphism of R-modules which we want to show is an isomorphism. By
the Local-Global Principle for Module Homomorphisms it is enough to show that
for all p ∈ SpecR, ιp is an isomorphism of Rp-modules, i.e., ⟨x, y⟩Rp

= ⟨d⟩Rp
. By

Proposition 15.16, d is again the GCD of x and y in the valuation ring Rp (equiva-
lently, the valuation of d is the minimum of the valuations of x and y) so that the
principal ideal ⟨x, y⟩Rp

is generated by ⟨d⟩Rp
.

b) Suppose R is a Prüfer UFD. By part a) R is Bézout, and by Theorem 16.17 a
Bézout UFD is a PID. �
Proposition 21.3. For a Prüfer domain R, TFAE:
(i) R is a Bézout domain.
(ii) Pic(R) = 0.

Proof. In the Prüfer domain R, an ideal I is invertible iff it is finitely generated.
So (i) and (ii) each assert that every finitely generated ideal is principal. �
Proposition 21.4. A Prüfer domain is integrally closed.

Proof. In Theorem 20.1 we showed that a domain in which all fractional R-ideals are
invertible is integrally closed. In the proof we only used the invertbility of finitely
generated fractional ideals, so the argument works in any Prüfer domain. �
Exercise 21.2: Prove Corollary 21.4 using the local nature of integral closure.

21.1.1. A Chinese Remainder Theorem for Prüfer domains.

Recall that we have a Chinese Remainder Theorem which is valid in any ring:
Theorem 4.18. There is however another useful version of the Chinese Remainder
Theorem which holds in a domain R iff R is a Prüfer domain.

Let R be a ring, let I1, . . . , In be a finite sequence of ideals in R and let x1, . . . , xn
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be a finite sequence of elements in R. We may ask: when is there an element x ∈ R
such that x ≡ xi (mod Ii) for all i?

If we assume the ideals Ii are pairwise comaximal, then this holds in any ring
by CRT (Theorem 4.18). But suppose we drop that condition. Then, if such an x
exists, we have x− xi ∈ Ii for all i, hence for all i and j,

(40) xi − xj = (x− xj)− (x− xi) ∈ Ii + Ij .

Thus we get a necessary condition (which, notice, is vacuous when the ideals are
pairwise comaximal). Let us say that a ring has property ECRT(n) if for all
ideals I1, . . . , In and elements x1, . . . , xn satisfying (40), there exists x ∈ R such
that x ≡ xi (mod Ii) for all i. We say that R satisfies ECRT (Elementwise Chi-
nese Remainder Theorem) if it satisfies ECRT(n) for all n ∈ Z+.

Exercise 21.3: Show that a PID satisfies property ECRT.

Lemma 21.5. Any ring satisfies ECRT(1) and ECRT(2).

Proof. ECRT(1) is trivial. As for ECRT(2): let I, J be ideals of R, let x1, x2 ∈ R,
and suppose x1 − x2 ∈ I + J : there are i ∈ I, j ∈ J such that x1 − x2 = i+ j. Put
x = x1 − i = x2 + j. Then x ≡ x1 (mod I) and x ≡ x2 (mod J). �

Theorem 21.6. For a ring R, the following are equivalent:
(i) ECRT holds in R.
(ii) ECRT(3) holds in R.
(iii) For all ideals A,B,C in R, A+ (B ∩ C) = (A+B) ∩ (A+ C).
(iv) For all ideals A,B,C in R, A ∩ (B + C) = (A ∩B) + (A ∩ C).

Proof. (i) =⇒ (ii) is immediate.
(ii) =⇒ (iii): The inclusion A+ (B ∩ C) ⊂ (A+ B) ∩ (A+ C) holds for ideals in
any ring. Conversely, let t ∈ (A+B) ∩ (A+ C). Then by ECRT(3) there is x ∈ R
satisfying all of the congruences

x ≡ 0 (mod A),

x ≡ t (mod B),

x ≡ t (mod C),

and thus x ∈ A, x− t ∈ B ∩ C, so t = x− (x− t) ∈ A+ (B ∩ C).
(iii) =⇒ (iv): For A,B,C ideals of R, we we have

(A ∩B) + (A ∩ C) = ((A ∩B) +A) ∩ ((A ∩B) + C) = A ∩ ((A ∩B) + C)

and

(A ∩B) + (A ∩ C) = (A+ (A ∩ C)) ∩ ((A ∩ C) +B) = A ∩ ((A ∩ C) +B),

and thus

(A ∩B) + C = (A ∩ C) +B.

It follows that

(A ∩B) + C = (A ∩B) + C + (A ∩ C) +B = B + C

and thus

(A ∩B) + (A ∩ C) = A ∩ ((A ∩B) + C) = A ∩ (B + C).
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(iv) =⇒ (iii): Assume (iv). Then for all ideals A,B,C of R,

(A+B) ∩ (A+C) = (A+B) ∩A + (A+B) ∩C = A ∩ (A+B) + C ∩ (A+B)

= (A∩A)+(A∩B)+(A∩C)+(B∩C) = A+(A∩B)+(A∩C)+(B∩C) = A+(B∩C).
(iii) =⇒ (i): We go by induction on n. Having established that ECRT(1) and
ECRT(2) hold in any ring, we let n ≥ 2, assume ECRT(n) and show ECRT(n+1):
let x1, . . . , xn+1 ∈ R and I1, . . . , In+1 be ideals of R such that xi − xj ∈ Ii + Ij for
all 1 ≤ i, j ≤ n. By ECRT(n), there is y ∈ R with y ≡ xi (mod I)i for 1 ≤ i ≤ n.
We claim that y − xn+1 ∈ In+1 +

∩n
i=1 Ii.

proof of claim: Since we have assumed (iii), we have by induction that

a+

n∩
i=1

bi =

n∩
i=1

(a+ bi),

and in particular

In+1 +
n∩
i=1

Ii =
n∩
i=1

(Ii + In+1).

Also, for all 1 ≤ i ≤ n, we have

y − xn+1 = (y − xi) + (xi − xn+1) ∈ Ii + Ii + In+1 ∈ Ii + In+1

and thus indeed

y − xn+1 ∈
n∩
i=1

(Ii + In+1) = In+1 +

n∩
i=1

Ii.

Because of the claim and ECRT(2), there is t ∈ R satisfying

t ≡ y (mod
n∩
i=1

Ii),

t ≡ xn+1 (mod In+1).

Then for 1 ≤ i ≤ n,

t− xi = (t− y) + (y − xi) ∈ Ii.

�

21.2. Butts’s Criterion for a Dedekind Domain.

One of our first results on Dedekind domains was Theorem 20.4: in a Dedekind
domain –defined as a Noetherian, integrally closed domain of dimension at most
one – every nonzero ideal factors uniquely as a product of prime ideals. It was then
natural to ask about the converse: if in a domain R every nonzero proper ideal is
uniquely a product of prime ideals, must R be Dedekind? We proved a result of
Matusita which is stronger than this: a domain in which every nonzero proper ideal
is a product of prime ideals is necessarily a Dedekind domain: uniqueness of the
product was not required.

In particular if all ideals factor into primes then all ideals factor uniquely into
primes. Let’s try to show this directly: suppose we have nonzero prime ideals
p1, . . . , pr, q1, . . . , qs in a domain such that

p1 · · · pr = q1 · · · qs.
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Then p1 ⊃ q1 · · · qs, so by X.X, p1 ⊃ qj for some j. It is natural to try to deduce
p1 = qj from this. This certainly holds if each qj is maximal, so we get the desired
implication when R has dimension one. In general it seems that we have acquired
nothing more than further respect for Matusita’s Theorem, but the above idea will
be used in the proof of the main result of this section.

The deduction p1 ⊃ qj =⇒ p1 = qj also holds if p1 = (p) and qj = (q) are
both principal: for principal ideals, to contain is to divide, so we get q = xp, and
then because prime elements are irreducible elements we have x ∈ R× so p1 = qj .

Neither of the above steps works in general. By Proposition X.X, a Noetherian
domain in which to contain is to divide is necessarily a Dedekind domain. General-
izing irreducible elements to ideals we get the condition on a nonzero proper ideal
a that a = bc implies b = R or c = R. We cannot call such an a “irreducible” since
that is already taken for a condition involving intersections of ideals, so following
H. Butts we call such an ideal unfactorable. An ideal a is factorable if it is not
unfactorable, i.e., if there are proper ideals b and c such that a = bc.

Example: Let R be a valuation ring with valuation group Q and maximal ideal
m. Then m = m · m. Thus it is possible for a nonzero prime (even maximal) ideal
to be factorable. This also shows that it is possible for an ideal to be a product of
prime ideals in more than one way.

As usual in factorization theory, the ascending chain condition makes things nicer.

Exercise 21.4: Let R be a Noetherian domain.
a) Show that every nonzero ideal of R is a (finite, of course) product of unfactorable
ideals. (Products over sets of cardinality 0 and 1 are allowed.)
b) Show that a nonzero prime ideal of R is unfactorable.

A domain in which each nonzero nonunit factors uniquely into a product of irre-
ducible elements is, by definition, a UFD. So it is natural to ask in which domains
each nonzero proper ideal factors uniquely into a product of unfactorable ideals. A
theorem of H. Butts gives the answer.

Theorem 21.7. (Butts [But64]) Let R be a domain in which each nonzero proper
ideal factors uniquely as a product of unfactorable ideals. Then R is Dedekind.

Proof. Step 1: Unique factorization into unfactorables implies: for ideals a, b, if
ac = bc then a = b. By Theorem 21.1, R is Prüfer.
Step 2: We will show that every nonzero prime ideal of R is invertible and apply
Theorem 20.1. So let p be a nonzero prime ideal, and let p ∈ p•. Let (p) = u1 · · · ur
be the unique factorization of p into unfactorable ideals. Since (p) is invertible, so
is each ui; by Proposition 19.8, each ui is finitely generated. Let x ∈ R \ ui. Then
Ui = ui + ⟨x⟩ is a finitely generated ideal in a Prüfer domain, hence invertible,
so by Lemma 19.7 ui = Ui(ui : Ui). Since ui is unfactorable, either Ui = R or
(ui : Ui) = R. If (ui : Ui) = R then ui = Ui, contradiction. So Ui = R. Thus ui is
maximal. Since p ⊃ u1 · · · ur, we have p = ui for some i, so p is invertible. �

21.3. Modules over a Prüfer domain.
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Recall that a module is semihereditary if every finitely generated submodule is
projective and that a ring R is semihereditary if the module R is semihereditary:
i.e., every finitely generated ideal of R is projective.

Proposition 21.8. A domain R is a semihereditary iff it is a Prüfer domain.

Exercise 21.5: Prove Proposition 21.8.

Lemma 21.9. Let R be a domain, and let M be a finitely generated torsionfree
R-module. Then M is a submodule of a finitely generated free module.

Proof. Since M is torsionfree, M ↪→ M ⊗R K, and ι : M ⊗R K ∼= Kn for some
n ∈ N. Since M is finitely generated, there exists x ∈ R• such that the image of
xM in M ⊗R K is contained in Rn, and thus ι ◦ (x•) :M ↪→ Rn. �
Theorem 21.10. For an integral domain R, TFAE:
(i) Every torsionfree R-module is flat.
(ii) Every finitely generated torsionfree R-module is projective.
(iii) R is a Prüfer domain.

Proof. (i) =⇒ (ii): Let M be a finitely generated torsionfree R-module. By
assumption M is flat, and since R is a domain, by Corollary 13.20 M is projective.
(ii) =⇒ (iii): Finitely generated ideals are assumed projective, hence invertible.
(iii) =⇒ (i): Let R be a Prüfer domain and M a torsionfree R-module. Then
M = lim−→i

Mi is the direct limit of its finitely generated submodules, hence a direct

limit of finitely generated torsionfree modules Mi. By Lemma 21.9, each Mi is a
finitely generated submodule of a free R-module. By Theorems 21.8 and 3.62, each
Mi is projective, hence flat. Thus M is a direct limit of flat modules, hence is itself
a flat module by Corollary 3.85. �

22. One Dimensional Noetherian Domains

22.1. Finite Quotient Domains.

For an ideal I in a ring R, we put |I| = #R/I (a possibly infinite cardinal).

R is a finite quotient ring if or every nonzero ideal I, R/I is finite.

Exercise 22.1: Show that every finite ring and every field is a finite quotient ring.

Exercise 22.2: Let R be a ring such that R/(a) is finite for all a ∈ R•. Show
that R is a finite quotient ring.

Lemma 22.1. Let 0 ≤ I ⊂ J be ideals in a finite quotient ring. Then:
a) |J | | |I|.
b) We have I = J ⇐⇒ |I| = |J |.

Exercise 22.3: Prove it.

Proposition 22.2. Let R be a finite quotient ring which is not a field. Then:
a) R is Noetherian.
b) We have dimR ≤ 1.
c) The following are equivalent:
(i) R is a domain.



COMMUTATIVE ALGEBRA 301

(ii) dimR = 1.
d) The following are equivalent:
(i) R is finite.
(ii) dimR = 0.

Proof. a) Since for any nonzero ideal I, R/I is finite, we can say even more: the
length of a chain of ideals starting with I is at most the number of prime divisors
(counted with multiplicity) of |I|.
b) If p is a nonzero prime ideal of R, then R/p is a finite domain, hence a field, so
p is maximal. Thus dimR ≤ 1.
c) If R is a domain, then – since it is not a field – dimR ≥ 1. Combining with part
b) we get dimR = 1. Inversely, if R is not a domain, then (0) is not prime, so for
every prime ideal p of R, R/p is finite, hence p is maximal: dimR = 0.
d) Clearly if R is finite then it has dimension 0. Conversely, if dimR = 0 then by
part a) R is Artinian. By XXX we may reduce to the case in which R is Artinian
local with nilpotent maximal ideal: suppose e is the least positive integer such that
me = 0. Since R is not a field, e > 1 and thus R/m is a finite field. Then for all
i ∈ N, mi/mi+1 is a finitely generated module over the finite field R/m, so it’s finite.
Thus #R = #R/m#m/m2 · · ·#me−1/me <∞. �

Theorem 22.3. (Samuel [Sa71]) Let R be any Noetherian ring, and n ∈ Z+.
Then the set of ideals I of R with |I| = n is finite.

Proof. Since the number of isomorphism classes of rings of cardinality n is finite, it
is enough to fix any ring S of cardinality n and show that the set {bi}i∈I of ideals
of R such that R/bi ∼= S is finite.

Putting b =
∩
i∈I bi, we have a monomorphism of rings

(41) B := R/b ↪→
∏
i∈I

R/bi ∼= SI .

Let m1, . . . ,mr be the maximal ideals of the (finite, hence Artinian) ring S, and for
each 1 ≤ j ≤ r, let qj be the cardinality of the finite field S/mj . Then m1 · · ·mr =∩r
j=1 mj is the Jacobson radical which coincides with the nilradical, hence there

exists s ∈ Z+ such that (m1 · · ·mr)s = 0. Let P (t) ∈ Z[t] be the polynomial

P (t) =

r∏
j=1

(tqj − t)s.

Then for any x ∈ S and any 1 ≤ j ≤ r, xqj − x ∈ mj , so P (x) = 0. It follows that
for all X = (xi) ∈ SI , P (X) = (P (xi)) = 0. From (41) it follows that P (x) = 0
for all x ∈ B. Since the nonzero polynomial P has only finitely many roots in any
domain, for each prime ideal p of B, we conclude that B/p is finite. Thus B is
Noetherian of Krull dimension 0 hence is Artinian. But by the structure theory for
Artinian rings, any Artinian ring with finite residue fields is actually finite. That is,
R/b is finite, so by the correspondence theorem there are only finitely many ideals
of R containing b. In particular I is finite. �

Proposition 22.4. Let I and J be nonzero ideals of the finite quotient domain R.
a) If I and J are comaximal – i.e., I + J = R – then |IJ | = |I||J |.
b) If I is invertible, then |IJ | = |I||J |.
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Proof. Part a) follows immediately from the Chinese Remainder Theorem. As for
part b), we claim that the norm can be computed locally: for each p ∈ ΣR, let |I|p
be the norm of the ideal IRp in the local finite norm domain Rp. Then

(42) |I| =
∏
p

|I|p.

To see this, let I =
∩n
i=1 qi be a primary decomposition of I, with pi = rad(qi). It

follows that {q1, . . . , qn} is a finite set of pairwise comaximal ideals, so the Chinese
Remainder Theorem applies to give

R/I ∼=
n∏
i=1

R/qi.

Since R/qi is a local ring with maximal ideal corresponding to pi, it follows that
|qi| = |qiRpi |, establishing the claim.
Using the claim reduces us to the local case, so that we may assume the ideal
I = (xR) is principal. In this case the short exact sequence of R-modules

0 → xR

xJ
→ R

xJ
→ R

(x)J
→ 0

together with the isomorphism
R

J

·x→ xR

xJ
does the job. �

Theorem 22.5. (Butts-Wade) For a finite quotient domain R, TFAE:
(i) R is a Dedekind domain.
(ii) For all nonzero ideals a, b of R, |ab| = |a||b|.

Proof. (i) =⇒ (ii): Apply Theorem 20.1 and Proposition 22.4.
(ii) =⇒ (i): Step 1: By 22.2, R is Noetherian. So if we can show that to contain
is to divide, Theorem X.X applies to show that R is Dedekind. Let a ⊂ b be ideals
of R. The divisibility trivially holds if a = (0), so we may assume that a ̸= (0).
Step 2: Suppose that we can show that if b = a+ ⟨b⟩ we have

a = b(a : b).

Then the general case follows: since R is Noetherian we may write b = a +
⟨b1, . . . , bn⟩. For 1 ≤ i ≤ n put bi = a+ ⟨b1, . . . , bi⟩. By Step 3,

a = b1(a : b1), b1 = b2(b1 : b2), . . . , b = bn−1(b : bn−1),

and thus
a = (a : b1)(b1 : b2) · · · (bn−1 : b)b.

Step 3: So suppose b = a + ⟨b⟩. Certainly b(a : b) ⊂ a. Since (a : b) ⊃ a, (a : b)
and hence also b(a : b) is not zero, so the above containment gives

|a| | |b(a : b)| = |b||(a : b)|.

Since a ⊂ b, k = |a|
|b| ∈ Z+ and

|a|
|b|

| |(a : b)|.

So if we can show |(a : b)| ≤ k, then |a| = |b||(a : b)| = |b(a : b)|, and by Lemma
22.1, b(a : b) = a. Let {xi}ki=1 be a set of coset representatives for a in b, and let
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{yj}nj=1 be a set of coset representatives for (a : b) in R. We will define an injection
from the first set to the second, which suffices to complete the proof. For 1 ≤ i ≤ n,
byi ∈ b, so there is a unique 1 ≤ i ≤ k such that byj ∈ a+ xi, and we define

Φ : {yj}nj=1 → {xi}ki=1, yj 7→ xi.

(If y ∈ R is such that y + (a : b) = yj + (a : b), then b(y − yj) ∈ b(a : b) ⊂ a, so
by+ a = byj + a: that is, the mapping is well-defined on cosets, independent of the
chosen representatives. But that is not necessary for the argument to go through.)
We check the injectivity: if 1 ≤ u, v ≤ n are such that byu, byv ∈ a + xj , then
b(yu − yv) ∈ a so yu − yv ∈ ((b) : a) = ((b) + a, a) = (b, a), so u = v. �

Exercise 22.4: Let R be a finite quotient domain. By Theorem 22.3, for all n ∈ Z+,
there are only finitely many ideals I with N(I) ≤ n. We can therefore define a
formal Dirichlet series

ζR(s) =
∑
I){0}

N(I)−s,

the Dedekind zeta function of R.
a) Show that ζZ(s) =

∑
n

1
ns =

∏
p

1
1−p−s =

∏
p ζZ(p)

(s), where the products extend

over all prime numbers p.
b) Let R = Fp[t]. Show that ζR(s) =

1
1−p1−s .

c) Suppose R is a Dedekind domain. Show that

ζR(s) =
∏

p∈MaxSpecR

ζRp
(s).

Exercise 22.5: Let R = Z[t]/(t2 + 3) (or, equivalently, Z[
√
−3]). Let q = (2).

a) Show that there is a unique ideal p2 with R/p2 = Z/2Z. Evidently p2 is maximal.
b) Show that r(q) = p2, and deduce that I is primary.
c) Show that q is not a prime power, and indeed, cannot be expressed as a product
of prime ideals.68

23. Structure of overrings

23.1. Introducing overrings.

Let R be an integral domain with fraction field K. Let ΣR be the set of height one
prime ideals of R. By an overring of R we mean a subring of K containing R,
i.e., a ring T with R ⊂ T ⊂ K. (We allow equality.) This is standard terminology
among commutative algebraists, but we warn that someone who has not heard it
before will probably guess incorrectly at its meaning: one might well think that “T
is an overring of R” would simply mean that “R is a subring of T”.

68Suggestion: show that R is a ring with finite quotients, and use properties of the norm
function ||I|| = #R/I.
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23.2. Overrings of Dedekind domains.

In this section we will carefully study overrings of a Dedekind domain R. In par-
ticular, we will answer the following questions.

Question 5. Let R be a Dedekind domain.
a) Can we (in some sense) classify the overrings of R?
b) Under what conditions is every overring of R a localization?
c) Let T be an overring of R. What is the relationship between PicT and PicR?

(In point of fact we can ask these questions for any domain R. But for a Dedekind
domain we will obtain definitive, useful answers.)

As a warmup, suppose R is a PID. In this case every overring is indeed a localiza-
tion: to see this it is enough to show that for all coprime x, y ∈ R•, 1

y ∈ R[xy ]. But

since x and y are coprime in the PID R, there are a, b ∈ R such that ax+ by = 1,

and then 1
y = ax+by

y = a
(
x
y

)
+ b ∈ R[xy ].

It follows that every overring of a PID is obtained by localizing at a multiplicative
subset S ⊂ R•. Further, by uniqueness of factorization the saturated multiplica-
tively closed subsets of R• are in bijection with subsets of ΣR: in other words,
an overring is entirely determined by the set of prime elements we invert, and in-
verting different sets of prime elements leads to distinct overrings. Further, since a
localization of a PID is a again a PID, in this case we have PicT = 0 for all overrings.

Some of the above analysis generalizes to arbitrary Dedekind domains: we will
show that for any Dedekind domain R the overrings of R correspond bijectively to
subsets of ΣR. More precisely, for any subset W ⊂ ΣR we define

RW =
∩

p∈W

Rp

and also

RW =
∩

p∈ΣR\W

Rp.

(Note that RW = RΣR\W . So it is logically unnecessary to consider both RW and

RW , but it will be notationally convenient to do so.) When W = {p} consists of
a single element, we we write Rp for R{p}. Let Φ : ΣR → PicR be the ideal class
map, i.e., p 7→ [p]. Then we will show that every overring of a Dedekind domain R
is of the form RW for a unique subset W ⊂ ΣR and that PicRW ∼= PicR/⟨Φ(W ).

On the other hand, it is not generally true that an arbitrary overring of R arsies
as a localization. However, O. Goldman gave a beautiful analysis of the situation:
it turns out that a Noetherian domain R has the property that every overring is a
localization iff R is a Dedekind domain and PicR is a torsion group.

23.2.1. Structure of overrings. Let R be a Dedekind domain with fraction field K.

Lemma 23.1. a) For all p ∈ ΣR, there exists fp ∈ Rp \R.
b) The mapping from subsets of ΣR to overrings of R given byW 7→ RW is injective.

Proof. a) Choose x ∈ K \ Rp, and let S be the finite set of maximal ideals q
distinct from p such that ordq(x) < 0. For each q ∈ S, let yq ∈ q \ p. Let
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N = maxq∈S − ordq(x), and put fp = (
∏

q∈S yq)
Nx.

b) Suppose W1 and W2 are distinct subsets of ΣR. After relabelling if necessary,
we may assume that there exists p ∈W2 \W1. By part a), there exists fp ∈ Rp \R
and thus fp ∈ RW1 \RW2 . �
Proposition 23.2. Let R be a Dedekind domain with fraction field K, and let T
be an overring of R. Write ι : R ↪→ T for the inclusion map.
a) For every P ∈ ΣT , T = RP∩R.
b) T is itself a Dedekind domain.
c) ι∗ : ΣT ↪→ ΣR is an injection.
d) For all P ∈ ΣT , ι∗ι

∗P = P.
e) ι∗ identifies ΣT with the subset of p ∈ ΣR such that pT ( T .

Proof. a) Put p = P ∩ R. There exist x, y ∈ R• such that x
y ∈ P. Then 0 ̸= x =

y(xy ) ∈ p, so p is a nonzero prime ideal of R. Thus TP contains the DVR Rp and is

properly contained in its fraction field, so TP = Rp.
b) By the Krull-Akizuki Theorem, T is a Noetherian domain of Krull dimension
one. By part a), the localization of T at every prime is a DVR. So T is integrally
closed and is thus a Dedekind domain.
c) For distinct P1,P2 ∈ ΣT , the localizations TP1 , TP2 are distinct DVRs. But by
part a), putting pi = ι∗(Pi), we have Rpi = TPi for i = 1, 2, so p1 ̸= p2.
d) Suppose p = ι∗(P). Then

(ι∗ι ∗ P)TP = pTP = PTP .
By part c), ι ∗ ι∗P is not divisible by any prime other than P, so ι∗p = P.
e) This follows immediately and is stated separately for later use. �
Theorem 23.3. For any overrring T of the Dedekind domain R, we have

T = Rι∗(ΣT ).

The proof (that I know) of this theorem requires the study overrings of more general
Pr̈ufer domains, to which we turn in the next section.

23.2.2. When overrings are localizations.

Lemma 23.4. Let R be an integrally closed domain with fraction field K, and let
T be an overring of R.
a) The relative unit group T×/R× is torsionfree.
b) Suppose that R is a Dedekind domain, p ∈ ΣR and T = Rp. TFAE:
(i) T×/R× ∼= Z.
(ii) T× ) R×.
(iii) [p] ∈ Pic(R)[tors].
(iv) There exists x ∈ R which is contained in p and in no maximal ideal q ̸= p.

Proof. a) Since R is integrally closed, all finite order elements of K× (i.e., roots of
unity in K) lie in R and a fortiori in T : R×[tors] = T×[tors]. On the other hand,
let x ∈ T× be of infinite order such that xn ∈ R× for some n ∈ Z+. Again integral
closure of R implies x ∈ R, and then xn ∈ R× =⇒ x ∈ R×.
b) (i) =⇒ (ii) is clear.
(ii) =⇒ (iii): Let x ∈ K×. Then x ∈ T× iff Rx = pa for some a ∈ Z, and x ∈ R×

iff a = 0. Therefore (ii) holds iff some power of p is principal, which is to say that
the class of p ∈ PicR is torsion.
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(iii) =⇒ (i): Let a be the least positive integer such that pa is principal. Thus
pa = xR with x uniquely determined modulo R×. It follows that T× is generated
by R× and x, so T×/R× is a nontrivial cyclic group. By part a) it is also torsionfree
so T×/R× ∼= Z.
(iii) =⇒ (iv): If pa = xR, then x lies in p but in no other maximal ideal q.
(iv) =⇒ (iii): If a = vp(x), then a > 0 and xR = pa. �
Remark: Part (iv) of Lemma 23.4 was added following an observation of H. Knaf.

Theorem 23.5. (Goldman [Gol64]) For a Dedekind domain R, TFAE:
(i) PicR is a torsion group.
(ii) Every overring of R is a localization.

Proof. (i) =⇒ (ii): Let p ∈ ΣR. By Lemma 23.1 Rp is a proper overring of R, so
by assumption Rp is a localization of R and thus has a strictly larger unit group.
By Lemma 23.4 this implies that [p] ∈ Pic(R)[tors]. Since Pic(R) is generated by
the classes of the nonzero prime ideals, it follows that PicR is torsion.
(ii) =⇒ (i): Let T be an overring of R, and put S = R∩T×. We want to show that
T = S−1R. That S−1R ⊂ T is clear. Conversely, let x ∈ T , and write xR = ab−1

with a, b coprime integral ideals of R: a + b = R. Thus aT + bT = T whereas
aT = xbT ⊂ bT , so bT = T and hence also bnT = T for all n ∈ Z+. Since PicR is
torsion, there exists n ∈ Z+ with bn = bR. It follows that bT = T and thus b ∈ S.
Now xb = a ⊂ R, so xb ∈ R. Thus x ∈ S−1R, and we conclude T ⊂ S−1R. �
Corollary 23.6. Suppose that W is a finite subset of ΣR and that every p ∈ W
hsa finite order in PicR. Then there is a ∈ R• such that RW = R[ 1a ].

Exercise 23.1: Prove Corollary 23.6.

Exercise 23.2: Let T = RW be an overring of R such that T = R[ 1a ] for some
a ∈ R•.
s) Show that W is finite.
b) Must it be the case that every p ∈W has finite order in PicR?

23.2.3. The Picard group of an overring.

Theorem 23.7. Let R be a Dedekind domain, W ⊂ ΣR, let R
W =

∩
p∈ΣR\W Rp,

and let FracW R =
⊕

p∈W Z denote the subgroup of fractional R-ideals supported
on W . There is a short exact sequence

1 → R× → (RW )×
v−→ FracW R→ PicR

ι∗−→ PicRW → 1.

Proof. The map v : (RW )× → FracW R is obtained by restricting the canonical map
K× → FracR to (RW )×: the fractional ideals so obtained have p-adic valuation 0
for all p ∈ MaxSpecRW = MaxSpecR \W : thus the image lands in FracW R.
It is easy to see most of the exactness claims: certainly R× → (RW )× is injective;
further, for x ∈ (RW )×, v(x) = 0 iff vp(x) = 0 for all p ∈ W ∪ MaxSpecRW =
MaxSpecR iff x ∈ R×. If I ∈ FracW R, then I is principal iff it has a generator
x ∈ K× with vp(x) = 0∀p ∈ MaxSpecR \ W = MaxSpecRW iff I = (x) for
x ∈ (RW )×. Exactness at PicR: Let [I] ∈ PicR be such that ι∗([I]) = 1: thus there
is x ∈ K× with IRW = xRW . Then [I] = [x−1I] and x−1I ∈ FracW R. Conversely,
if I ∈ FracW R, then IRW = RW . Finally, by Proposition 23.2 ι∗ ◦ ι∗ = 1Σ(S), so

every prime ideal of RW is of the form ι∗(p) for a prime ideal of R. This certainly
implies that ι∗ : ι∗ : PicR→ PicRW is surjective. �
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Exercise 23.3: We maintain the setup of Theorem 23.7.
a) Use Theorem 23.7 to give a new proof of Lemma 23.4.
a) Show that the relative unit group (RW )×/R× is free abelian. (This strengthens
Lemma 23.4 when R is a Dedekind domain.)
b) Suppose PicR is torsion. Show:

(RW )× ∼= R× ⊕
⊕
p∈W

Z.

c) Deduce the Hasse-Chevalley S-Unit Theorem from the Dirichlet Unit Theorem.
d) Suppose that K is a number field. Show that K× is isomorphic to the product
of a finite cyclic group with a free abelian group of countable rank.

23.2.4. Repleteness in Dedekind domains.

Let R be a Dedekind domain, and consider the map Φ : ΣR → PicR given by
p 7→ [p]. We say that R is replete if Φ is surjective, i.e., if every element of PicR
is of the form [p] for some prime ideal p.

Example: Let R be an S-integer ring in a global field. It follows immediately
from the Chebotarev Density Theorem that R is replete.

For our coming applications it is useful to consider a variant: we say that a Dedekind
domain R is weakly replete if for every subgroup H ⊂ PicR, there is a subset
WH ⊂ ΣR such that ⟨Φ(WH)⟩ = H. The point of this condition is that it allows a
complete classification of the Picard groups of overrings of R. Indeed:

Proposition 23.8. Let R be a weakly replete Dedekind domain. Then for any
subgroup H of PicR, there is an overring T of R such that PicT ∼= (PicR)/H.

Proof. By definition of weakly replete, there exists a subset W ⊂ ΣR such that
⟨Φ(W )⟩ = H. By Theorem 23.7, PicRW ∼= PicR/⟨Φ(W )⟩ ∼= (PicR)/H. �

Proposition 23.9. Let R be a Dedekind domain and RW an overring of R.
a) If R is replete, so is RW .
b) If R is weakly replete, so is RW .

Exercise 23.4: Prove Proposition 23.9.

A repletion of a Dedekind domain R is a replete Dedekind domain S together
with an injective ring homomorphism ι : R ↪→ S, such that ι∗ : Pic(R)

∼→ Pic(S).

Theorem 23.10. (Claborn) For a Dedekind domain R, let R1 denote the localiza-
tion of R[t] at the multiplicative set generated by all monic polynomials. Then R1

is Dedekind and the composite map ι : R→ R[t] → R1 is a repletion.

Proof. COMPLETE ME! �

Exercise 23.5: Use Proposition 23.8 and Theorem 23.10 to show: if for every cardinal
κ, there is a Dedekind domain R with Picard group a free abelian group of rank κ,
then for every commutative group G there is a Dedekind domain R with PicR ∼= G.
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23.3. Elasticity in Replete Dedekind Domains.

Let R be a domain and x ∈ R• \ R×. If for n ∈ Z+ there are (not necessarily
distinct) irreducible elements α1, . . . , αn of R such that x = α1 · · ·αn, we say that
x admits an irreducible factorization of length n.

A half factorial domain (or HFD) is an atomic domain in which for all x ∈
R• \R×, any two irreducible factorizations of x have the same length.

Exercise 23.6: (Zaks) Show that Z[
√
−3] is a HFD which is not integrally closed.

For R an atomic domain and x ∈ R• \ R×, let L(x) be the supremum of all
lengths of irreducible factorizations of x and let ℓ(x) be the minimum of all lengths
of irreducible factorizations of x. We define the elasticity of x, ρ(x), as the ratio
L(x)
ℓ(x) . We also make the convention that for x ∈ R×, ρ(x) = 1. Finally we define

the elasticity of R as ρ(R) = supx∈R• ρ(x).

An atomic domain is a HFD iff ρ(R) = 1. Thus ρ(R) is a quantitative measure of
how far an atomic domain is from being a HFD.

Let (G, ·) be a commutative group. A finite sequence g1, . . . , gn of elements in
G is irreducible if for all nonempty proper subsets S ⊂ {1, . . . , n},

∏
i∈S gi ̸= 1.

Lemma 23.11. Let (G, ·) be a commutative group, let x1, . . . , xn be an irreducible

sequence in G, and let xn+1 = (
∏n
i=1 xi)

−1
. If xn+1 ̸= 1, then x1, . . . , xn, xn+1 is

an irreducible sequence.

Proof. A nontrivial proper subsequence of x1, . . . , xn+1 with trivial product must be
of the form xi1 , . . . , xik , xn+1 for some nonempty proper subset S = {i1, . . . , ik} of
{1, . . . , n}. Put S′ = {1, . . . , n} \ S. Then

∏
i∈S′ x

−1
i = 1, hence also

∏
i∈S′ xi = 1,

contradicting the irreducibility of x1, . . . , xn. �

Proposition 23.12. Let R be a Dedekind domain, let x ∈ R• \R×, and let

(x) =
r∏
i=1

pi

be the factorization of x into prime ideals.
a) (Carlitz-Valenza) The following are equivalent:
(i) For no nonempty proper subset S ⊂ {1, . . . , r} is

∏
i∈S pi is principal.

(ii) The element x is irreducible.
b) If p is a prime ideal such that pr = (x) and ps is nonprincipal for all 1 ≤ s < r,
then x is irreducible.
c) If no pi is principal, the length of any irreducible factorization of x is at most r2 .

Exercise 23.7: Prove Proposition 23.12.

For a commutative group (G, ·) the Davenport constant D(G) of G is the max-
imum length of an irreducible sequence in G, or ∞ if the lengths of irreducible
sequences in G are unbounded.
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Proposition 23.13. Let R be a Dedekind domain, and let x ∈ R• be irreducible.
Write (x) = p1 · · · pr. Then r ≤ D(PicR).

Proof. By Proposition 23.12a), p1, . . . , pr is an irreducible sequence in PicR. �
Proposition 23.14.
a) If H is a subgroup of a commutative group G, then D(H) ≤ D(G).
b) If H is a quotient of a commutative group G, then D(H) ≤ D(G).
c) D(G) ≥ expG = supx∈G#⟨x⟩.
d) If G is infinite, D(G) = ∞.
e) If G is finite, then D(G) ≤ #G.
f) If G is finite cyclic, then D(G) = #G.
g) We have

(43) D(

r⊕
i=1

Z/niZ) ≥ 1 +

r∑
i=1

(ni − 1).

h) We have D(G) = 1 ⇐⇒ #G = 1 and D(G) = 2 ⇐⇒ #G = 2.

Proof. a) If H is a subgroup of G, then any irreducible sequence in H is an irre-
ducible sequence in G.
b) If q : G → H is a surjective homomorphism and x1, . . . , xn is irreducible in H,
then choosing any lift x̃i of xi to G yields an irreducible sequence x̃1, . . . , x̃n.
c) If x ∈ G and n ∈ Z+ is less than or equal to the order of x, then x, x, . . . , x (n
times) is an irreducible sequence in G of length n.
d) By part c), we may assume G is infinite and of finite exponent. Then for some
prime p, G[p] is infinite, and by part a) it suffices to show that D(G[p]) = ∞.
But G[p] is an infinite-dimensional vector space over the field Fp: let {ei}∞i=1 be an
infinite Fp-linearly independent subset of G[p]. Then for all n ∈ Z+ the sequence
e1, . . . , en is irreducible.
e) Suppose #G = n, and let g1, . . . , gn+1 be a sequence in G. For 1 ≤ i ≤ n, let
Pi = g1 · · · gi. By the Pigeonhole Principle there is 1 ≤ i < j ≤ n + 1 such that
Pi = Pj , and thus gi+1 · · · gj = 1.
f) Since expZ/nZ = #Z/nZ = n, this follows from parts c) and e).

g) Let G =
⊕r

i=1 Z/niZ,
69 and let d(G) = 1 +

∑k
i=1(ni − 1). There is an “obvi-

ous” irreducible sequence x1, . . . , xd(G)−1: for 1 ≤ i ≤ k, let ei be the element of
G with ith coordinate 1 and other coordinates 0. Take e1, . . . , e1 (n1 − 1 times),
e2, . . . , e2 (n2 − 1 times),....,ek, . . . , ek (nk − 1 times). The sum of these elements is

(n1 − 1, . . . , nk − 1) ̸= 0, so by Lemma 23.11 taking xd(G) = −
∑d(G)−1
i=1 xi, we get

an irreducible sequence of length d(G).
h) Left to the reader as an easy exercise in applying some of the above parts. �
Theorem 23.15. Let R be a Dedekind domain.
a) We have ρ(R) ≤ max(D(PicR)

2 , 1).

b) If R is replete, then ρ(R) = max(D(PicR)
2 , 1).

Proof. For x ∈ R• \R×, let P (x) be the number of prime ideals (with multiplicity)
in the factorization of (x).
Step 0: Of course if PicR is trivial then D(PicR) = 1, ρ(R) = 1 and the result
holds in this case. Henceforth we assume PicR is nontrivial and thus D(PicR) ≥ 2,

69Here we are considering G as an additive group.
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and our task is to show that ρ(R) ≤ D(PicR)
2 , with equality if R is replete.

Step 1: Let x ∈ R• \R×. Consider two irreducible factorizations

x = α1 · · ·αm = β1 · · ·βn
of x with m ≥ n. Let k be the number of principal prime ideals in the prime
ideal factorization of (x). Then k = n ⇐⇒ k = m =⇒ ρ(x) = 1. Henceforth
we assume k < min(m,n) (since PicR is nontrivial, there is at least one such
x). We may further assume that α1, . . . , αk (resp. β1, . . . , βk) are prime elements
and αk+1, . . . , αm (resp. βk+1, . . . , βn) are not; dividing through by these prime
elements and correcting by a unit if necessary, we may write

x′ = αk+1 · · ·αm = βk+1 · · ·βn.
Since for k + 1 ≤ i ≤ m, αi is irreducible but not prime, P (αi) ≥ 2 and thus

2(m− k) ≤ P (αk+1 · · ·αm) = P (x′).

On the other hand, by Proposition 23.13 we have

P (x′) = P (βk+1 · · ·βn) ≤ (n− k)D(PicR).

Combining these inequalities gives

m

n
≤ m− k

n− k
≤ D(PicR)

2
.

It follows that ρ(x) ≤ D(PicR)
2 and thus ρ(R) ≤ D(PicR)

2 , establishing part a).
Step 2: Suppose R is replete.
Step 2a: Suppose first that PicR is finite and put D = D(PicR). By repleteness,
choose prime ideals p1, . . . , pD whose classes form an irreducible sequence in PicR.
For 1 ≤ i ≤ D, let qi be a prime ideal with [qi] = [pi]

−1. For 1 ≤ i ≤ D, let
ci be such that (ci) = piqi; using Lemma 23.11 there are d1, d2 ∈ R such that
(d1) = p1 · · · pD and (d2) = q1 · · · qD and

c1 · · · cD = d1d2.

By Proposition 23.12, c1, . . . , cD, d1, d2 are all irreducible, and thus ρ(R) ≥ D
2 .

Step 2b: If PicR is infinite, then D(PicR) = ∞ and from this, repleteness and
Lemma 23.11, for all D ∈ Z+ there are prime ideals p1, . . . , pD whose classes form
an irreducible sequence in PicR and such that p1 · · · pD is principal. The argument
of Step 2a now shows ρ(R) ≥ D

2 . Since this holds for all D ∈ Z+, ρ(R) = ∞. �

Remark: When PicR is finite, Theorem 23.15 is due to W. Narkiewicz [Nar95].

Remark: The condition that R be replete is essential in Theorem 23.15. For in-
stance, A. Zaks has shown that for every finitely generated commutative group G,
there is a half factorial Dedekind domain R with PicR ∼= G [Zak76]. Whether any
commutative group can occur, up to isomorphism, as the Picard group of a half
factorial Dedekind domain is an open problem.

Corollary 23.16. a) A replete Dedekind domain R is a HFD iff #PicR ≤ 2.
b) (Carlitz [Ca60]) Let K be a number field. Then its ring of integers ZK is a HFD
iff the class number of K – i.e., #PicZK – is either 1 or 2.
c) (Valenza [Va90]) Let K be a number field. Then

ρ(ZK) = max

(
D(PicZK)

2
, 1

)
.
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d) A replete Dedekind domain has infinite elasticity iff it has infinite Picard group.

Exercise 23.8: Prove Corollary 23.16.

Remark: Later we will show that every commutative group arises, up to isomor-
phism, as the Picard group of a Dedekind domain. Combining this with Theorems
23.10 and 23.15 we see that the possible elasticities for replete Dedekind domains
are precisely n

2 for any integer n ≥ 2 and ∞.

We end this section by giving a little more information on the Davenport con-
stant: let G be a finite commutative group, so that there is a unique sequence of
positive integers n1, . . . , nr with nr | nr−1 | . . . | n1 > 1 such that G ∼=

⊕r
i=1 Z/niZ.

We put d(G) = 1 +
∑k
i=1(ni − 1), so that (43) reads more succinctly as

(44) D(G) ≥ d(G).

J.E. Olson conjectured that equality holds in (43) for all finite commutative groups
G [Ol69a]. He proved that the conjecture holds for p-groups [Ol69a] and also when
r ≤ 2 [Ol69b]. However, it was shown by P. van Emde Boas and D. Kruyswijk
that (for instance) D(G) > d(G) for G = Z/6Z × Z/3Z × Z/3Z × Z/3Z [EBK69].
Whether D(G) = d(G) for all groups with r = 3 is still an open problem. In
particular the exact value of D(G) is unknown for most finite commutative groups.

23.4. Overrings of Prüfer Domains.

Theorem 23.17. Let R be an integral domain with fraction field K, and let T be
an overring of R. TFAE:
(i) For every prime ideal p of R, either pT = T or T ⊂ Rp.
(ii) For every x, y ∈ K× with x

y ∈ T , ((y) : (x))T = T .

(iii) T is a flat R-algebra.

Proof. COMPLETE ME! �
Proposition 23.18. Let R be an integral domain with fraction field K and consider
rings R ⊂ T ⊂ T ′ ⊂ K.
a) If T ′ is flat over R, then T ′ is flat over T .
b) If T ′ is flat over T and T is flat over R, then T ′ is flat over R.

Proof. a) Suppose T ′ is flat over R. Let a, b ∈ T be such that a
b ∈ T ′. Write a = c

s ,

b = d
s with c, d, s ∈ R. Then c

d ∈ T ′, so by Theorem 23.17, ((d) : (c))T ′ = T ′.
Hence 1 = t1u1 + . . . + tkuk for some ti ∈ T ′ and ui ∈ R with uic ∈ (d) for all i.
Then there is zi ∈ R such that uic = dzi, so uia = zi

d
s = zib ∈ Tb for all i. So

(Tb : Ta)T ′ = T ′. Applying Theorem 23.17 again, we get that T ′ is flat over T .
b) This holds for any R1 ⊂ R2 ⊂ R3, since M ⊗R1 R3

∼= (M ⊗R1 R2)⊗R2 R3. �
Proposition 23.19. For an overring T of an integral domain R, TFAE:
(i) T is flat over R.
(ii) For all p ∈ MaxSpecT , Tp = Rp∩R.
(iii) T =

∩
p∈MaxSpecT Rp.

Proof. COMPLETE ME! �
Proposition 23.20. Let T be an overring of a domain R which is both integral
and flat over R. Then R = T .
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Proof. Let x, y ∈ R be such that x
y ∈ T . Then by Theorem 23.17, ((y) : (x))T = T .

Let p ∈ MaxSpecR. By Theorem 14.13, there exists a prime (in fact maximal
by Corollary 14.16, but this is not needed here) ideal P of T lying over p. Since
pT ⊂ P, we have pT ( T . Therefore ((y) : (x)) is not contained in any maximal
ideal of R, so ((y) : (x)) = R. It follows that x ∈ (y), i.e., x = ay for some a ∈ R,
so that x

y ∈ R. Thus R = T . �

Theorem 23.21. For an integral domain R, TFAE:
(i) R is a Prüfer domain.
(ii) Every overring of R is a flat R-module.

Proof. (i) =⇒ (ii): An overring is a torsionfree R-module, so this follows immedi-
ately from Theorem 21.10.
(ii) =⇒ (i): Let p be a maximal ideal of R. By Proposition 23.18, every overring
of Rp is flat. Let a, b ∈ Rp, and suppose that aRp ̸⊂ bRp. Then (bRp : aRp) ̸= Rp;
since Rp is local, this implies (bRp : aRp) ⊂ pRp. Now consider the ring Rp[

a
b ].

This is an overring of Rp, hence flat. Since a
b ∈ Rp[

a
b ] we have by Theorem 23.17

(bRp : aRp)Rp[
a

b
] = Rp[

a

b
].

Thus there exist elements x1, . . . , xn ∈ (bRp : aRp and b1, . . . , bn ∈ Rp[
a
b ] such that

x1b1 + . . .+ xnbn = 1. . . . COMPLETE ME! �
Corollary 23.22. Every overring of a Prüfer domain is a Prüfer domain.

Proof. Let R be a Prüfer domain and T be an overring of R. Then every overring
T ′ of T is in particular an overring of R, so T ′ is flat over R. By Proposition
23.18a), T ′ is also flat over T . Therefore every overring of T is flat over T , so by
Theorem 23.21, T is a Prüfer domain. �
Corollary 23.23. For a Noetherian domain R, TFAE:
(i) Every overring of R is a localization.
(ii) R is a Dedekind domain and PicR is a torsion group.

Exercise 23.9: Prove Corollary 23.23.

Finally we give a result which generalizes the (as yet unproven) Theorem 23.3.
Namely, for R a domain, let W be a subset of MaxSpecR and put

RW =
∩

p∈W

Rp.

Theorem 23.24. Let R be a Prüfer domain, T an overring of R, and put

W = {p ∈ MaxSpec(R) | pT ( T}.
Then T = RW .

Proof. COMPLETE ME! �
23.5. Kaplansky’s Theorem (III).

Theorem 23.25. (Kaplansky [K]) Let R be a Dedekind domain with fraction field
K, and let K be an algebraic closure of K. Suppose that for every finite extension
L/K, the Picard group of the integral closure RL of R in L is a torsion abelian
group. Then the integral closure S of R in K is a Bézout domain.
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Proof. Let I = ⟨a1, . . . , an⟩ be a finitely generated ideal of S. Then L = K[a1, . . . , an]
is a finite extension of K. Let RL be the integral closure of R in L, and let
IL = ⟨a1, . . . , an⟩RL

. By hypothesis, there exists k ∈ Z+ and b ∈ RL such that
IkL = bRL. Let c be a kth root of b in S and let M = L[c]. Thus in the Dedekind
domain RM we have (ILRM )k = (ck), and from unique factorization of ideals we
deduce ILRM = cRM . Thus I = ILRMS = cRMS = cS is principal. �
Recall the basic fact of algebraic number theory that for any number field K, the
Picard group of ZK is finite. This shows that the ring R = Z satisfies the hy-
potheses of Theorem 23.25. We deduce that the ring of all algebraic integers Z is a
Bézout domain: Theorem 5.1.

Exercise 23.10: Adapt the proof of Theorem 23.25 to show that the Picard group
of the ring of integers of the maximal solvable extension Qsolv of Q is trivial.

Exercise 23.11: State a function field analogue of Theorem 5.1 and deduce it as
a special case of Theorem 23.25.

We quote without proof two more recent results on Picard groups of integer rings
of infinite algebraic extensions of Q.

Theorem 23.26. (Brumer [Bru81]) Let Qcyc =
∪
n∈Z+ Q(ζn) be the field obtained

by adjoining to Q all roots of unity, and let Zcyc be its ring of integers, i.e., the
integral closure of Z in Qcyc. Then

PicZcyc ∼=
∞⊕
i=1

Q/Z.

Theorem 23.27. (Kurihara [Ku99]) Let Qcyc+ =
∪
n∈Z+ Q(ζn+ ζ−1

n ) be the max-
imal real subfield of Qcyc, and let Zcyc+ be its ring of integers, i.e., the integral
closure of Z in Qcyc+. Then

PicZcyc+ = 0.

23.6. Every commutative group is a class group.

To any ring R we attached a commutative group, the Picard group PicR. In
fact the construction is functorial: a homomorphism φ : R → R′ of domains in-
duces a homomorphism φ∗ : PicR → PicS of Picard groups. Explicitly, if M is a
rank one projective R-module, then M ⊗R R′ is a rank one projective R′-module.
In general when one is given a functor it is natural to ask about its image. Here we
are asking the following

Question 6. Which commutative groups occur (up to isomorphism) as the Picard
group of a commutative ring?

We have also defined the divisor class group ClR of a domain, so we may also ask:

Question 7. Which commutative groups occur (up to isomorphism) as the divisor
class group of an integral domain?

It would be interesting to know at what point algebraists began serious consider-
ation of the above questions. I have not discussed the history of PicR and ClR
in part because I am not sufficiently knowledgeable to do so, but their study was
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surely informed by two classical cases: the ideal class group of (the ring of integers
of) a number field, and the Picard group of line bundles on an (affine or projective)
complex algebraic variety. The groups that arise in these classical cases are very
restricted: the class group of a number field is a finite abelian group, and the Picard
group of a complex algebraic variety is an extension of a complex torus by a finitely
generated abelian group. As far as I know the literature contains nothing beyond
this until the dramatic full solution.

Theorem 23.28. (Claborn [Clb66]) For every commutative group G, there is a
Dedekind domain R with PicR = ClR ∼= G.

Even after developing several hundred pages of commutative algebra, Claborn’s
proof still requires some technical tools that we lack. Especially, Claborn first con-
structs a Krull domain R with ClR ∼= G and then by an approximation process
constructs a Dedekind domain with the same class group. But we have not yet
discussed Krull domains in these notes.

A more elementary – but still quite ingenious and intricate – proof was given
later by C.R. Leedham-Green [Lee72]. Leedham-Green constructs the requisite R
as the integral closure of a PID in a separable quadratic field extension.

Several years after that M. Rosen took a more naturally geometric approach,
inspired by the Picard groups of varieties which appear in algebraic geometry. Es-
pecially, his approach uses some elliptic curve theory.

Let k be a field of characteristic zero. Fix elements A,B ∈ K such that 4A3 +
27B2 ̸= 0, and let k[E] = k[x, y]/(y2 − x3 − Ax − B). The ring R is precisely the
affine coordinate ring of the elliptic curve

E : y2 = x3 +Ax+B.

Proposition 23.29. The ring k[E] is a Dedekind domain.

We denote the fraction field of k[E] by k(E), also called the function field of E/k.

The overrings of R are all of the form RW =
∩

p∈ΣR\W Rp for W ⊂ MaxSpecR,

and by the Krull-Akizuki Theorem each RW is a Dedekind domain. By definition,
a Dedekind domain which arises in this way – i.e., as an overring of the standard
affine ring of an elliptic curve over a field of characteristic zero – is called an elliptic
Dedekind domain. We refer to k as the ground field of R.

Exercise 23.12: a) Let k be a countable field, and let R be an elliptic Dedekind
domain with ground field k. Show that PicR is a countable abelian group.
b) More generally, show that if R is an elliptic Dedekind domain with ground field
k, then #PicR ≤ maxℵ0,#k.

Conversely:

Theorem 23.30. (Rosen [Ros76]) For every countable abelian group G, there exists
an elliptic Dedekind domain R with ground field an algebraic extension of Q and
such that PicR ∼= G.

In 2008 I built on this work of Rosen to prove the following result [Clk09].
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Theorem 23.31. For any commutative group G, there is an elliptic Dedekind
domain R such that:
(i) R is the integral closure of a PID in a separable quadratic field extension, and
(ii) PicR ∼= G.

Thus Theorem 23.31 implies the results of Claborn and Leedham-Green. On the
other hand, Exercise 23.12 shows that the absolute algebraicity (or even the count-
ability!) of the ground field k achieved in Rosen’s construction cannot be maintained
for uncountable Picard groups. Indeed our argument goes to the other extreme:
we construct the ground field k as a transfinitely iterated function field.

Our argument will require some tenets of elliptic curve theory, especially the no-
tion of the rational endomorphism ring EndK E of an elliptic curve E/K . A
K-rational endomorphism of an elliptic curve is a morphism φ : E → E defined
over K which carries the neutral point O of E to itself.

Proposition 23.32. Let k be a field and E/k an elliptic curve.

a) The additive group of Endk(E) is isomorphic to Za(E) for a(E) ∈ {1, 2, 4}.
b) There is a short exact sequence

0 → E(k) → E(k(E)) → EndK(E) → 0.

Since Endk(E) is free abelian, we have E(k(E)) ∼= E(k)
⊕

Za(E).
c) There is a canonical isomorphism E(k) ∼= Pic k[E].

Proof. a) See [Si86, Cor. III.9.4].
b) E(k(E)) is the group of rational maps from the nonsingular curve E to the
complete variety E under pointwise addition. Every rational map from a nonsin-
gular curve to a complete variety is everywhere defined, so E(k(E)) is the group
of morphisms E → E under pointwise addition. The constant morphisms form a
subgroup isomorphic to E(k), and every map E → E differs by a unique constant
from a map of elliptic curves (E,O) → (E,O), i.e., an endomorphism of E.
c) By Riemann-Roch, Ψ1 : E(k) → Pic0E by P ∈ E(k) 7→ [[P ] − [O]] is an
isomorphism [Si86, Prop. III.3.4]. Moreover, Ψ2 : Pic0(E) → Pic k[E] given by∑
P nP [P ] 7→

∑
P ̸=O nP [P ] is an isomorphism. Thus Ψ2◦Ψ1 : E(k)

∼→ Pic k[E]. �

Now fix a field k, and let (E0)/k be any elliptic curve.70 Define K0 = k, and
Kn+1 = Kn(E/Kn

). Then Proposition 23.32 gives

E(Kn) ∼= E(k)⊕
n⊕
i=1

Za(E).

Lemma 23.33. Let K be a field, (Ki)i∈I a directed system of field extensions of
K, and E/K an elliptic curve. There is a canonical isomorphism

lim
I
E(Ki) = E(lim

I
Ki).

70In the paper [Clk09] I took the specific choice (E0)/Q : y2 + y = x3 − 49x − 86, mostly

for sentimental reasons. This curve has the property that E0(Q) = 0 [Ko89, Theorem H] and

nonintegral j-invariant 21233

37
, so EndQ E = Z. But in fact the construction can be made to work

starting with any elliptic curve, and we have decided to phrase it this way here.
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Exercise 23.13: Prove Lemma 23.33.

Now let o be an ordinal number. We define the field Ko by transfinite induc-
tion: K0 = k, for an ordinal o′ < o, Ko′+1 = Ko′(E/Ko′

), and for a limit ordinal o,
Ko = limo′<oKo′ . By the Continuity Lemma, we have E(Ko) = limo′∈oE(Ko′).

Lemma 23.34. Let a ∈ Z+. For an abelian group A, the following are equivalent:
(i) A is free abelian of rank a · κ for some cardinal κ.
(ii) A has a well-ordered ascending series with all factors As+1/As ∼= Za.

Exercise 23.14: Prove Lemma 23.34.
(Suggestion: use the Transfinite Dévissage Lemma.)

Corollary 23.35. We have E(Ko)/E(k) ∼=
⊕

o′∈o Za(E).

Exercise 23.15: Prove Corollary 23.35.

One can put together the results derived so far together with Exercise 22.2 to get a
proof of Theorem 23.28. However, to prove Theorem 23.31 we need to circumvent
the appeal to Theorem 23.10. This is handled as follows.

Theorem 23.36. Let E/k be an elliptic curve with equation y2 = P (x) = x3 +
Ax+B. a) The affine ring k[E] is weakly replete.
b) If k is algebraically closed, k[E] is not replete.
c) Suppose k does not have characteristic 2 and k[E] is not replete. Then for all
x ∈ k, there exists y ∈ k with y2 = P (x).

Proof. Each point P ̸= O on E(k) a prime ideal in the standard affine ring k[E];
according to the isomorphism of Proposition 23.32c), every nontrivial element of
Pic(k[E]) arises in this way. This proves part a). Part b) is similar: if k is al-
gebraically closed, then by Hilbert’s Nullstellensatz every prime ideal of k[E] cor-
responds to a k-valued point P ̸= O on E(k), which under Proposition 23.32c)
corresponds to a nontrivial element of the class group. Therefore the trivial class is
not represented by any prime ideal. Under the hypotheses of part c), there exists

an x ∈ k such that the points (x,±
√
P (x)) form a Galois conjugate pair. Therefore

the divisor (x,
√
P (x)) + (x,−

√
P (x)) represents a closed point on the curve Co,

in other words a nonzero prime ideal of k[E]. But the corresponding point on E(k)

is (x,
√
P (x)) + (x,−

√
P (x)) = O. �

Finally we prove Theorem 23.31(i). Let G be an abelian group, and write it as
F/H where F is a free abelian group of infinite rank. As above let k be any field
of characteristic zero and E/k any elliptic curve. By Corollary 23.35, for all suffi-
ciently large ordinals o, there is a surjection E(K0) → F and thus also a surjection
E(Ko) → G. By Proposition 23.32c), there is a subgroup H of Ko[E] such that
(PicKo[E])/H ∼= G. By Proposition 18.1a) and Proposition 23.8, there is an over-
ring T of Ko[E] such that PicT ∼= G, establishing Theorem 23.31(i).

As for the second part: let σ be the automorphism of the function field k(E)
induced by (x, y) 7→ (x,−y), and notice that σ corresponds to inversion P 7→ −P
on E(k) = Pic(k[E]). Let S = Rσ be the subring of R consisting of all functions
which are fixed by σ. Then k[E]σ = k[x] is a PID, and S is an overring of k[x],
hence also a PID. More precisely, S is the overring of all functions on the projective
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line which are regular away from the point at infinity and the x-coordinates of all
the elements in H (note that since H is a subgroup, it is stable under inversion).
Finally, to see that R is the integral closure of S in the separable quadratic field
extension k(E)/k(x), it suffices to establish the following simple result.

Lemma 23.37. Let L/K be a finite Galois extension of fields, and S a Dedekind
domain with fraction field L. Suppose that for all σ ∈ Gal(L/K), σ(S) = S. Then
S is the integral closure of R := S ∩K in L.

Proof. Since S is integrally closed, it certainly contains the integral closure of R in
L. Conversely, for any x ∈ S, P (t) =

∏
σ∈Gal(L/K)(t− σ(x)) is a monic polynomial

with coefficients in (S ∩K)[t] satisfied by x. �

This completes the proof of Theorem 23.31.
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