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PETE L. CLARK

Abstract. We define an inductive subset of an ordered set and show that

an ordered set X is Dedekind complete iff the only inductive subset of X is
X itself. This result is used to give short proofs of the characterizations of
connectedness and compactness in order topologies.

Many mathematicians have found that certain results in elementary real analy-
sis can be snappily proved by arguments reminiscent of proofs by mathematical
induction. The various enunciations have usually been superficially different – c.f.
[Kh23], [Pe26], [Kh49], [Du57], [Fo57], [MR68], [Sh72], [Be82], [Le82], [Sa84], [Ka07]
– but recently D. Hathaway [Ha11] and the author both gave the following one.

Proposition 1. (Principle of Real Induction) Let S ⊂ [a, b], and suppose:
(i) a ∈ S,
(ii) for all x ∈ S, if x ̸= b there exists y > x such that [x, y] ⊂ S.
(iii) For all x ∈ R, if [a, x) ∈ S, then x ∈ S.
Then S = [a, b].

In this note we give an inductive characterization of Dedekind completeness in
linearly ordered sets, and apply it to prove three topological characterizations of
completeness which generalize familiar results from elementary analysis.

If a is an element of a linearly ordered set X, we define the intervals

(−∞, a) = {x ∈ S | x < a}, (−∞, a] = {x ∈ S | x ≤ a},
(a,∞) = {x ∈ S | a < x}, [a,∞) = {x ∈ S | a ≤ x}.

For a subset S of a linearly ordered set X, a supremum supS of S is a least
element which is greater than or equal to every element of S, and an infimum
inf S of S is a greatest element which is less than or equal to every element of S.
X is complete if every subset has a supremum; equivalently, if every subset has
an infimum. If X is complete, it has a least element 0 = sup∅ and a greatest
element 1 = inf ∅. X is Dedekind complete if every nonempty bounded above
subset has a supremum; equivalently, if every nonempty bounded below subset has
an infimum. X is complete iff it is Dedekind complete and has 0 and 1.

We say a subset S ⊂ X is inductive if it satisfies all of the following:
(IS1) There exists a ∈ X such that (−∞, a] ⊂ S.
(IS2) For all x ∈ S, either x = 1 or there exists y > x such that [x, y] ⊂ S.
(IS3) For all x ∈ X, if (−∞, x) ⊂ S, then x ∈ S.

Theorem 2. (Principle of Ordered Induction) For a linearly ordered set X, TFAE:
(i) X is Dedekind complete.
(ii) The only inductive subset of X is X itself.
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Proof. (i) =⇒ (ii): Let S ⊂ X be inductive. Seeking a contradiction, we suppose
S′ = X \ S is nonempty. Fix a ∈ X satisfying (IS1). Then a is a lower bound for
S′, so by hypothesis S′ has an infimum, say y. Any element less than y is strictly
less than every element of S′, so (−∞, y) ⊂ S. By (IS3), y ∈ S. If y = 1, then
S′ = {1} or S′ = ∅: both are contradictions. So y < 1, and then by (IS2) there
exists z > y such that [y, z] ⊂ S and thus (−∞, z] ⊂ S. Thus z is a lower bound
for S′ which is strictly larger than y, contradiction.
(ii) =⇒ (i): Let T ⊂ X be nonempty and bounded below by a. Let S be the set
of lower bounds for T . Then (−∞, a] ⊂ S, so S satisfies (IS1).
Case 1: Suppose S does not satisfy (IS2): there is x ∈ S with no y ∈ X such that
[x, y] ⊂ S. Since S is downward closed, x is the top element of S and x = inf(T ).
Case 2: Suppose S does not satisfy (IS3): there is x ∈ X such that (−∞, x) ∈ S
but x ̸∈ S, i.e., there exists t ∈ T such that t < x. Then also t ∈ S, so t is the least
element of T : in particular t = inf T .
Case 3: If S satisfies (IS2) and (IS3), then S = X, so T = {1} and inf T = 1. �

Remark 1: Since a linearly ordered set X is Dedekind complete iff its order dual is
Dedekind complete, there is a corresponding “downward” version of Theorem 2.

Remark 2: Taking X to be well-ordered, we recover transfinite induction. Tak-
ing X = [a, b] ⊂ R, we recover Proposition 1.

A bounded open interval in a linearly ordered set X is an interval of the form
(a, b) or [0, b) (if X has a bottom element) or (a, 1] (if X has a top element). The
bounded open intervals form a base for the order topology on X. A linearly
ordered set X is dense if for all a < b ∈ X, there exists c with a < c < b.

Lemma 3. A subset of a Dedekind complete linearly ordered set is Dedekind com-
plete if it is closed in the order topology.

Proof. Left to the reader. �

Theorem 4. For a linearly ordered set X, TFAE:
(i) X is dense and Dedekind complete.
(ii) X is connected in the order topology.

Proof. (i) =⇒ (ii): Step 1: We suppose 0 ∈ X. Since X is dense, a subset S ⊂ X
which contains 0 and is both open and closed in the order topology is inductive.
Since X is Dedekind complete, by Theorem 2, S = X. This shows X is connected!
Step 2: We may assume X ̸= ∅ and choose a ∈ X. By Lemma 3, Step 1 applies to
show [a,∞) connected. A similar downward induction argument shows (−∞, a] is
connected. Since X = (−∞, a] ∪ [a,∞) and (−∞, a] ∩ [a,∞) ̸= ∅, X is connected.
(ii) =⇒ (i): If the order is not dense, there are a < b in X with [a, b] = {a, b}, so
A = (−∞, a], B = [b,∞) is a separation of X. Suppose we have S ⊂ X, nonempty,
bounded below by a and with no infimum. Let L be the set of lower bounds for
S, and put U =

∪
b∈L(−∞, b), so U is open and U < S. We have a ̸= inf(S), so

a ∈ U , and thus U ̸= ∅. If x ̸∈ U , then x ≥ L and, indeed, since L has no maximal
element, x > L, so there exists s ∈ S such that s < x. Since the order is dense there
is y with s < y < x, and then the entire open set (y,∞) lies in the complement of
U . Thus U is also closed. Since X is connected, U = X, contradicting U < S. �
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Theorem 5. For a nonempty linearly ordered set X, TFAE:
(i) X is complete.
(ii) X is compact in the order topology.

Proof. (i) =⇒ (ii): Let U = {Ui}i∈I be an open covering of X. Let S be the
set of x ∈ X such that the covering U ∩ [0, x] of [0, x] admits a finite subcovering.
0 ∈ S, so S satisfies (IS1). Suppose U1 ∩ [0, x], . . . , Un ∩ [0, x] covers [0, x]. If there
exists y ∈ X such that [x, y] = {x, y}, then adding to the covering any element
Uy containing y gives a finite covering of [0, y]. Otherwise some Ui contains x and
hence also [x, y] for some y > x. So S satisfies (IS2). Now suppose that x ̸= B
and (−∞, x) ⊂ S. Let ix ∈ I be such that x ∈ Uix , and let y < x be such
that (y, x] ∈ Uix . Since y ∈ S, there is a finite J ⊂ I with

∪
i∈J Ui ⊃ [a, y], so

{Ui}i∈J ∪ Uix ⊃ [a, x]. Thus x ∈ S and S satisfies (IS3). Thus S is an inductive
subset of the Dedekind complete ordered set X, so S = X. In particular T ∈ S,
hence the covering has a finite subcovering.
(ii) =⇒ (i): For each x ∈ X there is a bounded open interval Ix containing x. If
X is compact, {Ix}x∈X has a finite subcovering, so X is bounded, i.e., has 0 and
1. Let S ⊂ X. Since inf ∅ = 1, we may assume S ̸= ∅. Since S has an infimum
iff S does, we may assume S is closed and thus compact. Let L be the set of lower
bounds for S. For each (b, s) ∈ L×S, consider the closed interval Cb,s := [b, s]. For

any finite subset {(b1, s1), . . . , (bn, sn)} of L×S,
∩N

i=1[bi, si] ⊃ [max bi,min si] ̸= ∅.
Since S is compact there is y ∈

∩
L×S [b, s] and then y = inf S. �

Corollary 6. (Heine-Borel) For a linearly ordered set X, TFAE:
(i) X is Dedekind complete.
(ii) A subset S of X is compact in the order topology iff it is closed and bounded.

Proof. (i) =⇒ (ii): A compact subset of any ordered space is closed and bounded.
Conversely, if X is Dedekind complete and S ⊂ X is closed and bounded, then by
Lemma 3, S is complete and then by Theorem 5, S is compact.
(ii) =⇒ (i): If S ⊂ X is nonempty and bounded above, let a ∈ S. Then
S′ = S ∩ [a,∞) is bounded, so S′ is compact and thus S′ is complete by Theorem
5. The least upper bound of S′ is also the least upper bound of S. �
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