
HANDOUT TWO: KEPLER’S LAWS OF PLANETARY MOTION

PETE L. CLARK

Rough: Johannes Kepler made three observations about the behavior of the vari-
ous planets orbiting the sun. A later generation of scientists, trying to understand
gravitational forces, postulated an inverse square law: namely that the force
of gravitational attraction between two bodies should be inversely proportional to
the square of the distance between them. This guess was made by many scientists,
among them Robert Hooke and Isaac Newton. Newton went much further however:
he created a new subject of mathematics able to express precisely the relationships
between arbitrary changing quantities – “the calculus” – and he used calculus to
derive Kepler’s laws as mathematical consequences of a body in motion about the
sun subject to the force of an inverse square law. It does not seem to overstate
matters to describe this achievement as the foremost example of mathematics suc-
cessfully applied to the understanding of nature1

The derivation of Kepler’s laws is rather involved; we will work up to it in a number
of steps. Suppose r = r(t) are the parametric equations of a particle moving in
three-dimensional space, subject at any point (x, y, z) to a force F(x, y, z). Then
Newton’s second law reads

F(r(t)) = ma(t) = mr′′(t),

or, in words, force equals mass times acceleration.2 We also have Newton’s law of
universal gravitation:

F = −
GMm

||r||2
r̂.

This deserves some elaboration: here we have two bodies (idealized as points) with
masses M and m respectively, and r is the vector from the first body to the second
body. The magnitude of the force is then directly proportional to the product of the
masses and inversely proportional to the square of the distance ||r|| between them,
and the G is just a proportionality constant which is supposed to be equal for all
masses. (That G is astoundingly small can be seen in the fact that you do not in
any way perceive a force of attraction between yourself and the objects around you:
you must have mass on the scale of a planet for the gravitational force to come into
play, in contrast to electrical forces: the attraction between a single proton and a
single electron is palpable.) But note that Newton’s law is a vector equation: more
than just describing the magnitude of the gravitational force, it gives the direction:
the force felt by the mass m is opposite in direction to the vector r from M to
m. (By Newton’s third law, there is a force equal in magnitude and opposite in

1If you have another example in mind, I would like to know!
2It has long seemed to me that one can regard Newton’s second law as the definition of force

and that it does not actually express any law of nature. If you think otherwise, you can try to

convince me by coming up with an example of a conceivable physical situation which would violate

F = ma.

1
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direction that m exerts on M : in our applications we assume that the mass M is so
massive that this force does not accelerate M much, i.e., that the larger mass M is
fixed. In reality this is not quite true, but it is an excellent simplifying assumption.)

Combining these two equations we get the equation which we will actually use:

(1) a(t) = r′′(t) =
−Gm

||r||2
r̂.

Here then are Kepler’s laws:

Kepler’s First Law: The orbit of a planet about the sun is elliptical with the sun at
one of the foci of the ellipse. (In particular each planet’s orbit lies in a single plane.)

Kepler’s Second Law: Equal areas are swept out in equal times.

Kepler’s Third Law: The square of the period is proportional to the cube of the
length of the orbit (i.e., of the length of the semimajor axis of the ellipse). More-
over this proportionality constant is the same for all planets, depending only on the
mass of the sun and the universal gravitational constant.

We will need the following strange little fact in the course of the derivation: for
any two vectors v and w in R

3,

(2) (w × (v × w)) · v = ||v × w||2.

To see this, let α be the angle between w × (v × w)) and v. Then by the dot
product formula the left hand side of the expression is equal to

||w × (v × w)||||v|| cos α.

Similarly, we can use the cross product formula to compute the length of w×(v×w):
note that the second vector is the cross product of v and w so it is perpendicular
to w, so the sine of the angle between them is 1 and

||w × (v × w)|| = ||w||||v × w|| = ||w||||v||||w|| sin θ,

where θ is the angle between v and w. Substituting this last equation in, the
entire left hand side is equal to ||v||2||w||2 sin θ cos α. But I claim that θ and α
are complementary angles, so that cos θ = sin α. Let’s see why: v × w is the
normal vector to the plane generated by v and w, and the vector ww × (v × w)
is perpendicular to this normal vector, so u := w ×(v ×w) lies in the same plane
as v and w. But also this vector u is perpendicular to w, so the angle from u to
v – namely α when added to the angle from v to w – namely θ – gives the angle
from uu to w, a right angle. So indeed θ and α are complementary angles, so that
cos α = sin θ and the left hand side becomes

||v||2||w||2 sin2 θ = ||v × w||2.

Now we begin our derivation of the Kepler’s first law. The first order of business
is to see that the motion lies in a single plane. Indeed, this plane will be the plane
containing the initial velocity vector v(0) and the initial acceleration vector r′′(0).
That the motion cannot escape this plane seems intuitively clear since it starts in
the plane and the direction of the force is always back towards the sun, which lies
in the plane: at no point do we exert a force which has any component in the
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perpendicular direction. We need the expression for the normal vector the plane of
motion anyway, so we start with:

Step 1: r × v = c is a constant, so that c gives the normal vector for the plane
of motion (the fact that c ⊥ r(t) for all t means the motion is confined to a single
plane).

Proof: To show that a function is constant, we can show its derivative is zero:
d/dt(r× v) = dr/dt× v + r× dv/dt = v× v + r× a = 0, since in each case we are
taking the cross product of two vectors which lie along the same line: we use here
the fact taht the acceleration vector lies along the same line as the position vector
as given in Equation 1.3

Let r̂ be a unit vector in the direction of r and write r = ||r(t)||, so we have
r = rr̂.

Step 2: We calculate
c = r × v = (rr̂) × (dr/dt) =

(rr̂ × (rdr̂/dt + dr/dtr̂) = r2(r̂ × dr̂/dt) + rdr/dr(r̂ × r̂) = r2(r̂ × dr̂/dt).

Step 3: We claim that r̂ · r̂′ = 0. Indeed, since r̂ · r̂ = ||̂r||2 = 1, we have

0 = d/dt(1) = d/dt(r̂ · r̂) = r̂′ · r̂ + r̂ · r̂′ = 2(r̂ · r̂′).

Step 4:

d/dt(v×c) = r′′×c+v×dc/dt
⋆
= r′′(t)×c = (−GM/r2r̂)×(r2(r̂×r̂′)) = −GM(r̂×(r̂×r̂′)).

Now by Step 3 r̂ and r̂′ are perpendicular, so in a suitable coordinate system r̂, r̂′

r̂ × r̂′ can be thought of as î, ĵ, k̂. Since î × k̂ = −ĵ, we have also that

r̂ × (r̂ × r̂′) = −r̂′

. Thus:
d/dt(v × c) = GM r̂′.

Integrating this equation, we get

(3) v × c = GM r̂ + d,

where d is a constant vector.

Step 5: Dot both sides of Equation 3 with r, getting

(v × c) · r = (v × (r × v))ṙ = (GM r̂ + d) · r.

We need to simplify both sides: as for the left hand side, it is the reason we proved
the identity of Equation 2, applying it, the left hand side is ||r× v||2 = ||c||2 = c2,
say. As for the right hand side, let θ be the angle between r̂ and d, and we get

(GM r̂ + d) · r = GMr + dr cos θ = rGM(1 +
d

GM
cos θ).

3Note indeed that we do not need the inverse square law for this step: assuming only that the

sun pulls back on the planet along the vector connecting them, it follows that the motion will lie

in a single plane.
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Equating the left and right sides, we get

(4) r =
c2

GM

1 + d
GM cos θ

=
p

1 + e cos θ
,

where we have taken p := c2

GM , e := d
GM . We are now essentially done: we just have

to put this polar equation in ranctangular coordinates. Clearing the denominator,
we get

r + er cos θ = p,

or
r2 − (p − er cos θ)2.

Now r2 = x2 + y2 and x = r cos θ, so we get

x2 + y2 − (p − ex)2 = p2 − 2epx + e2x2.

(1 − e2)x2 + 2epx + y2 = p2.

After all this work, there is an interesting surprise: we do not necessarily get an
ellipse: for this we need 1− e2 < 0 or e < 1. If e = 1 we get a parabola and if e > 1
we get a branch of a hyperbola. Both of these are indeed possible as motions of
“planets” whose orbits are not periodic, like comets. In any case, we can clean up
the equation a bit by dividing by 1− e2 and complete the square with respect to x:

x2 +
2ep

1 − e2
x +

y2

1 − e2
=

p2

1 − e2
.

(x2 +
2ep

1 − e2
x + (

ep

1 − e2
)2 +

y2

1 − e2
=

p2

1 − e2
+ (

ep

1 − e2
)2 =

p2

(1 − e2)2
.

(x +
ep

1 − e2
)2 +

y2

1 − e2
=

p2

(1 − e2)2
.

(x + ep
1−e2 )2

p2/(1 − e2)2
+

y2

p2/(1 − e2)
= 1.

Assuming e < 1, this is an ellipse with semimajor/minor axes a2 = p2/(1 − e2)2

and b2 = p2/(1 − e2). By definition, the focus is c, where c2 = a2 − b2 = p2e2

(1−e2)2 .

So indeed the ellipse is centered at (− ep
1−e2 , 0) = (−c, 0).

Thankfully, the derivation of the other two laws is much easier. Kepler’s second
law means the following: consider the line segment connecting the sun to the planet
travelling around on its elliptical orbit. This segment sweeps out a certain area, a
“sector of the ellipse.” To say that it sweeps out equal areas in equal times means:
dA/dt is constant. Before we prove this, it is worth noting that this would cer-
tainly not be true for the “standard parameterization” (acosθ, b cosθ) of the ellipse
x2/a2 + y2/b2 = 1, because this parameterization is symmetrical: the particle is
travelling at the same speed when it crosses the x-axis both at the left-most point
(nearest the focus) and at the right-most point (farthest away from the focus), but
if the areas are to be equal, the planet must move fastest along the path when it is
closest to the sun and slowest when it is farthest away.

Anyway, we compute the area in polar coordinates as

A(θ2) − A(θ1) =

∫ θ2

θ1

1/2r2(ϕ)dϕ.
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(We will discuss this formula more fully later on in the course.) The fundamental
theorem of calculus tells us that if we differentiate an integral we get back the
function we started with, so dA/dθ = 1/2r2(θ). But careful: we want the rate of
change of area with respect to time, not with respect to the angle. The angle is
itself changing with respect to time, so we have a chain rule situation:

dA/dt = dA/dθdθ/dt = 1/2r2(θ)dθ/dt.

To compute d/θ/dt, we write r̂ = (cos θ, sin θ), so that r̂′ = (-sin θdθ/dt, cos θdθ/dt).
Recall we had c = r2(r̂ × r̂′) for a constant vector c. Substituting in, we get

c = r2(dθ/dtk̂),

so c = ||c|| = r2dθ/dt, so dA/dt = 1/2r2(c/r2) = 1/2c, a constant as claimed.

Finally, for Kepler’s third law, recall that the total area of an ellipse with semima-
jor axis a and semiminor axis b is πab. (If you don’t remember this formula, you

can derive it by evaluating the definite integral
∫ a

−a

√

b2(1 − (x/a)2)dx using the

substitution x = a sin θ.) The period T of the orbit is the time it takes for the
planet to go once around the sun. So if we integrate the rate of change of area from
0 to T we’ll get the total area:

πab =

∫ T

0

dA/dtdt =

∫ T

0

1/2cdt = 1/2cT.

Thus T = 2πab/c hence T 2 = 4π2a2b2/c2. Using

b2 =
p2

1 − e2
, a =

p

1 − e2

we get b2 = pa. Also
p = c2/GM

so

T 2 =
4π2a2(pa)

pGM
=

(

4π2

GM

)

a3.

Thus T is proportional to a3/2, which is Kepler’s third law.

This was the most involved calculation we will see in this course. But if you
thought it was a bit much, imagine the scientists at the close of the 17th century,
completely unfamiliar in the ways of derivatives, integrals, dot and cross products:
can you imagine what it must have looked like to them? I think it very instructive
to see what the derivation takes, because it makes clear that guessing Newton’s
inverse square law of gravitation (as Hooke did, among others), it is by no means
clear that Kepler’s laws must follow.


