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1. Introduction: Newton’s vector field

The motivation for this unit is to make mathematical sense out of our idea that
in a gravitational field energy is conserved. More precisely, consider the vector field
F = −F2(x, y, z) = −(x, y, z)/||(x, y, z)||3, which is, according to Newton’s law of
universal gravitation and up to a multiplicative constant, the force felt by a mass
at a point (x, y, z) due to the gravitational attraction of a large mass located at
the origin. Suppose we take any path through space so that the distance to the
origin is some constant d: that is, we take any path confined to the sphere of radius
d. Then the velocity vector at every point lies in the tangent plane to the sphere
Sd, and in particular is perpendicular to the purely radial vector field F : in other
words, the line integral

∫

C
F · dr, where C is any curve confined to the sphere Sd,

is equal to zero.

But, as mentioned in the last handout, we suspect that more is true: suppose
we take an arbitrary closed path C (not passing through the origin), e.g. an ellipti-
cal orbit. Then the field F need not be perpendicular to the velocity vector at any
point, so the integrand of the line integral

∫

C
F · r. is not identically zero, but we

nevertheless feel that the work done should come out to be zero. More generally, if
we take a path C which is not even necessarily closed (but still not passing through
the origin) with initial point P0 = (x0, y0, z0) and P1 = (x1, y1, z1), then we feel
that the total work should be given by an expression which depends only on the
distances d0 = ||(x0, y0, z0)|| and d1 = ||(x1, y1, z1)|| of P0 and P1 from the origin:
if d1 > d2, then the particle ends up farther away than it starts, so energy must
be put into the system: the work should be negative. Conversely, if d2 > d1, the
particle ends up closer than it started, so energy is released from the system: the
work should be positive. And if d1 = d2, energy should be conserved.

We could compute some line integrals around various closed paths and see that
they are zero, but even if we did this for many paths, how would we know that the
line integral is zero for all closed paths? We need to instead take a more abstract
look at properties of vector fields in general: it turns out that there are several
conditions on a vector field F which are equivalent to the line integral around every
closed path being zero, one of which we can verify in a straightforward way. As a
consequence of this study, we will discover a wonderful generalization of the fun-
damental theorem of calculus to integrals along closed paths, and this will at the
same time make clear exactly what kind of “energy” is being conserved (potential
energy!)
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2. Conservative vector fields

Let F be a vector field defined on the plane or in space – in fact, as usual we
really only require it to be defined on some appropriate subset thereof: for instance,
even Newton’s vector field −r/||r||3 has a singularity at the origin. Let us give a
name to the (possible) property of F that we are trying to understand:

We say F is conservative if for every closed path C on which the vector field
is defined, the line integral

∫

C
F · dr = 0.

The point is that the condition of being conservative turns out to be equivalent
to many other conditions, some relatively obviously so, others not. Here is another
condition:

A vector field F is said to be independent of path if whenever C1 and C2 are
two oriented paths with the same starting point P and ending point Q, then

∫

C1

F · dr =

∫

C2

F · dr.

Again, this is a condition that is difficult to verify (how will we test all possible
paths), but on the other hand at least we can sometimes show that it does not hold:

Example: Let F (x, y) = (−y, x). Recall that this is one of our vector fields with

circular integral curves, and this field in particular has constant curl ∂Q
∂x − ∂P

∂y =

d(x)/x − d(−y)/dy = 2. Take P = (−1, 0) and Q = (1, 0). Here are two different
paths from P to Q: C1 is the straight line path, with a parameterization given by
r1(t) = (−1 + t, 0) for 0 ≤ t ≤ 2; C2 is the positively oriented semicircular arc
given by r2(t) = (cos t, sin t), for π ≤ t ≤ 2π. In fact we can see before we even
do the calculation that the first line integral will be zero: along the right half of
the straight line the vector field points due north, along the left half of the straight
line the vector field points due south, and there is a symmetry here so that the
magnitude at (−x, 0) is equal to the magnitude at (x, 0). We have also seen and
computed before that the line integral along C2 will not be zero: we are moving
along an integral curve of the vector field, so the work done will be positive. But
to be sure:

∫

C1

−ydx + xdy =

∫ 1

−1

0 + (−1 + t) · 0 = 0.

∫

C2

−ydx+xdy =

∫ 2π

π

− sin t(− sin tdt)+(cos t)(cos tdt) =

∫ 2π

π

(sin2 t+cos2 t)dt =

∫ 2π

π

1 = π.

So already we know that this vector field is not independent of path.

Now I claim that it cannot be conservative either. Indeed, we get a closed path
starting at P by taking the first path C1 from P to Q and then the second path in
the opposite orientation −C2 from Q to P . Then

∫

C2−C1

F · dr =

∫

C2

F · dr −

∫

C1

F · dr,
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and we know this quantity is not zero because we just showed that the line integrals
along the two different paths are not equal!

Conversely, suppose we had first found a closed path C around which the line
integral of F was not zero – a good choice for this F would be the entire unit circle,
oriented positively: we’ve seen that the line integral of F around the unit circle is
2π. Then we could choose any point Q different from the starting and ending point
P of the closed path, and consider the closed path as being made up of C1, the part
from P to Q and −C2, the rest of the path with the orientation reversed. These
arguments are valid for any vector field, so we conclude:

A vector field is conservative if and only if it has the property that all line in-
tegrals are independent of path.

It might seem that no progress has been made – we now have two conditions
that are equally impossible to verify directly, but in fact the path independence
property can be used in an exciting way. Indeed, fix any point P0 at which the
vector field is defined. Then, to say that the vector field is independent of path is
to say that for any other point Q, then the line integral of any path from P0 to Q
can be unambiguously written as

∫ Q

P0

F · dr.

But this reminds of a definite integral with a variable upper limit in one-variable
calculus: if f is any (continuous) function, we can define a new function F by

F (x) =

∫ x

x0

f(t)dt

and one version of the fundamental theorem of calculus is that F is an antiderivative
of f : namely F ′ = f . In our case we have unfortunately already used the capital
F for the vector field, but that is only a notational worry: we can define a scalar
function

f(Q) =

∫ Q

P0

F · dr.

Now comes the punchline: f really is an antiderivative of F , in the sense that
∇(f) = F . We give the proof:

Write F = Pdx + Qdy + Rdz. We will show that ∂f
∂x = P , and exactly the same

method will give ∂f
∂y = Q, ∂f

∂z = R. By definition, the partial derivative of any

function f(x, y, z) is

lim
∆x→0

f(x + ∆x, y, z) − f(x, y, z)

∆x
.

So for our function we put Q = (x, y, z) and look at

f(x + ∆x, y, z) − f(x, y, z)

∆x
=

∫ (x+∆x,y,z)

P0

F · dr −
∫ (x,y,z)

P0

F · dr

∆x
=

∫ (x+∆x,y,z,)

(x,y,z)
F · dr

∆x
=

∫ (x+∆x,y,z)

(x,y,z)

Pdx,
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since we can integrate over a path where y and z are both constant, hence dy =
dz = 0. Now, by an averaging property of integrals, as we integrate a function
about a smaller and smaller interval about a point and divide by the length of the
interval, in the limit we will just get the value of the function at that point, so the
limit as ∆x → 0 is just P (x, y, z): i.e., ∂f

∂x = P . In a similar way, we get ∂f
∂y = Q

and ∂f
∂z = R, so that indeed

∇(f) = (
∂f

∂x
,
∂f

∂y
,
∂f

∂z
) = (P,Q,R) = F.

To recap, we have shown that a vector field which is independent of path is the
gradient of some function f . The converse is also true, and is easier: if F = ∇(f)
is a gradient field, then F is independent of path, and indeed

∫ Q

P

F · dr = f(Q) − f(P ).

To see this, let r(t) = (x(t), y(t), z(t)) be a parameterized curve with r(tmin) =
P, r(tmax) = Q. Then

∫

C

F · dr =

∫ tmax

tmin

F (x(t), y(t), z(t)) · (x′(t), y′(t), z′(t))dt =

∫ tmax

tmin

d

dt
f(x(t), y(t), z(t))dt = f(x(t), y(t), z(t))|tmax

tmin
= f(Q) − f(P ).

We sum up our findings in the following result, which is nothing less than a gener-
alization of the Fundamental Theorem of Calculus for line integrals:

Theorem 1. (Fundamental Theorem of Calculus for Line Integrals) Let F be a
vector field defined in a region of the plane or in space. Then the following condi-
tions on F are equivalent:
a) F is conservative: for any closed curve

∫

C
F · dr = 0.

b) F is independent of path.
c) F = ∇(f) is a gradient vector field.
In case these conditions hold, the line integral of F along any path connecting P to

Q is
∫ Q

P
F · dr = f(Q) − f(P ).

3. Potential functions and potential energy

Let us revisit Newton’s vector field F (x, y, z) = −(x, y, z)/||(x, y, z)||3 armed
with the fundamental theorem of line integrals. Now we know that if we want to
show that this vector field is conservative, we must find a function f such that

∇(f) = F . We can take f(x, y, z) = r−1, where r =
√

x2 + y2 + z2
1/2

. Indeed,

dr/dx = 2x
2r = x

r , and by symmetry dr/dy = y
r and dr/dz = z

r . Thus ∂f
∂x =

d(r−1)/dx = −r−2dr/dx = −r−2(x)/r = −x/r3. Similarly ∂f
∂y = −y/r3 and ∂f

∂z =

−z/r3, which is what we wanted: ∇(f) = F . So Newton’s field is conservative, and
equivalently it is independent of path: the work done along any path from initial
point P = (x0, y0, z0) to final point Q = (x1, y1, z1) is

∫ Q

P

F · dr = f(Q) − f(P ) =
1

||(x1, y1, z1)||
−

1

||(x0, y0, z0)||
.
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Put now

ϕ = −f(x, y, z) =
−1

||(x, y, z)||
.

Then ϕ, unlike f , is a function that is increasing with the distance to the origin r.
Imagine we are piloting a rocket and we get it 1,000,000 km away from the origin:
we have literally done a lot of work and invested a lot of energy to do this, energy
that we could gain back by cutting the engines and letting the rocket fall back
towards the earth. Thus we call ϕ the potential function for the conservative
vector field F : it measures the potential energy.

Some comments are in order: first, you may notice that in this example, although
ϕ increases with r, it is nevertheless always negative, just less negative the farther
we get away from the origin. If this seems depressing, we should point out that
energy is only well-defined as a relative quantity: that is, it is only changes in
energy that are meaningful. Indeed, the change in potential energy ϕ(Q)−ϕ(P ) is

−
∫ Q

P
F · dr (since we do negative work to put energy into a system). Speaking in

purely mathematical terms, we see that if we replaced ϕ by ϕ+C for any constant
C, we would get another potential function, since ∇(−f +C) = ∇(f): it is still the
case in this context that antiderivatives are well-defined only up to an additive con-
stant, so it is a good thing that we subtract two values of the antiderivative in the
fundamental theorem: f(Q)+C−(f(P )+C) = f(Q)−f(P ) does not depend on C.1

The equation ϕ = C (or equivalently f = −C) consists of points which have
the same potential energy C: accordingly, this is called an equipotential surface,
and two points lie on the same equipotential surface precisely when there is no
work done along any path between them. The path-independence of a gradient
field can be seen as a generalization of the earlier fact that the gradient ∇(f) is
always perpendicular to the level surface f = C at any point: indeed, if the path
stayed entirely in the ϕ = C level surface, then the force would be perpendicular to
the direction of motion at every point, so we are integrating the zero function. For
Newton’s vector field the level surfaces are spheres and we made this obervation at
the beginning of the unit.

The term “conservative” refers to the fact that the change in potential energy
around a closed path is zero for a conservative vector field. On the other hand,
there is a more general law of conservation of total mechanical energy for a
particle taking any kind of path in a conservative field. We keep track not just of
the potential energy but also the kinetic energy, which is defined as K = 1/2mv2,
where v is the speed. Newton’s second law reads F = −∇ϕ = må = mr′′ or

m
dv

dt
+ ∇ϕ = 0.

Dotting this quantity with the velocity v = dr/dt, we get the scalar equation

(1) m
dv

dt
·
dr

dt
+ ∇ϕ ·

dr

dt
= 0.

1Conversely, if f1 and f2 are two functions on a connected region such that ∇(f1) = ∇(f2),
then f2 = f1 + C.
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But note that 1/2mv2 = 1/2m(v · v), so the derivative of the kinetic energy with
respect to time is

d/dt1/2m(v · v) = 1/2m(
dv

dt
· v + v ·

dv

dt
) =

m(
dv

dt
· v) = m(

dv

dt
·
dr

dt
),

which is the first term in Equation (1). On the other hand, we know by the chain
rule that

∇ϕ ·
dr

dt
= d/dt(ϕ(r(t)),

so Equation 1 is saying that the derivative of a certain quantity is zero:

(2) d/dt(1/2mv2 + ϕ(r(t)) = 0.

Integrating this equation, we get that

1/2mv2 + ϕ(r(t)) = C,

i.e., that the sum of the kinetic and the potential energy is independent of time,
exactly the conservation law we wanted.

4. Closed and exact differentials

Let us insist on a still more practical way of determining when a vector field is
conservative. For instance, here are two vector fields in the plane:

F1(x, y) = (2xy3, 3y2(x2 + 1))

F2(x, y) = (x3 + 6y, 17x2y2).

We know either one will be conservative if and only if they are independent of path,
if and only it is the gradient of some function. But how do we find the gradient?

Assume that F = (P (x, y), Q(x, y)) = ∇(f) is a gradient field, and we want to

find f . This means that ∂f
∂x = P (x, y) and ∂f

∂y = Q(x, y). Integrating the first

equation as a function of x we get f(x) = p(x, y)+ g(y), where p(x, y) is a function
such that ∂

∂xp(x, y) = P (x, y).2 Note the undetermined function g(y) – a function
whose partial derivative with respect to x is a given function is determined only up
to the addition of an arbitrary function of y. To learn what g(y) is, we take the
derivative with respect to y, getting

∂f

∂y
=

∂p

∂y
+ g′(y) = Q(x, y),

so that g′(y) = Q(x, y) − ∂p
∂y , and integrating with respect to y, we’ll get the ex-

pression for g(y) and hence for f .

Let’s do this for our first vector field: we integrate P (x, y) = 2xy3 with respect
to x, getting f(x, y) = x2y3 + g(y). Now we differentiate with respect to y, getting
∂f
∂y = 3x2y2 + g′(y) = Q(x, y) = 3x2y2 + 3y2, so

g′(y) = 3x2y2 + 3y2 − (3x2y2) = 3y2.

2Again, we have used up our capital letters already for the vector field, so we use lowercase
letters to denote antiderivatives.
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No problem, g(y) = y3, and we have discovered that

f(x, y) = x2y3 + y3 (+C)

is such that ∇(f) = F . Let’s try this with F2:
∂f
∂x = P (x, y) = x3 + 6y, so

f(x, y) = 1/4x4 + 6xy + g(y), and ∂f
∂y = 6x + g′(y) = Q(x, y) = 17x2y2. So we are

supposed to have

g′(y) = 17x2y2 − 6x??

But this makes no sense: g′(y) is supposed to only be a function of y! That is, we
have discovered that F is not a gradient field at all, so it is not conservative.

There is a way to rephrase this procedure, as follows: if F (x, y) = (P (x, y), Q(x, y)) =

(∂f
∂x , ∂f

∂y ), then there is some relation between the two components P (x, y) and

Q(x, y) of the vector field. Indeed, since P = ∂f
∂x and Q = ∂f

∂y , we must have

∂Q

∂x
=

∂2f

∂x∂y
=

∂2f

∂y∂x
=

∂P

∂y
.

This condition is enough to ensure that the expression Q(x, y)− ∂p
∂y is only a function

of y: indeed then

∂

∂x
(Q(x, y) −

∂p

∂y
) =

∂Q

∂x
−

∂P

∂y
= 0.

Thus before we use the above procedure to find the gradient, we should check
whether the equality ∂Q

∂x − ∂P
∂y = 0 holds; one sometimes expresses this condition

as saying that the “differential” Pdx + Qdy is closed (we do not try to explain

this terminology). On the other hand, note that the quantity ∂Q
∂x − ∂P

∂y is just the

scalar part of the curl of our vector field F , and we have rediscovered an earlier
fact: curl(∇f) = 0, or in words, a gradient field is irrotational.

This has a very satisfying physical interpretation: suppose the curl of a vector
field is not zero at a point. Then the vector field is not independent of path, i.e.,
energy is not being conserved. But recall that our (so far unjustified) physical
interpretation of the curl is that if we nailed down a paddlewheel at that point, ori-
ented in an appropriate direction, then the paddlewheel will rotate. And what is it
that makes the paddlewheel rotate? Energy! The fact that in this circumstance en-
ergy is lost from the system (and gained by us) is the source of hydroelectric power!

Although we used planar vector fields as examples, an analogous discussion is valid
for vector fields F = (P,Q,R) in space: gradient vector fields are irrotational. In-

deed, writing down ∂f
∂x = P , ∂f

∂y = Q and ∂f
∂z and taking all mixed second order

partials leads to the equations ∂P
∂z = ∂R

∂x , ∂P
∂y = ∂Q

∂x , ∂Q
∂z = ∂R

∂y , which is equivalent

to curl(F ) = 0. And similarly, if one has an irrotational vector field, one can apply
a procedure of repeated integration and differentiation to try to find the gradient:
let f1(x, y, z) be an antiderivative of P with respect to x, f2(y, z) := Q − ∂

∂y f1,

f3(y, z) be an antiderivative of f2(y, z) with respect to y, f4(z) := R − ∂
∂z f3 and

f5(z) be an antiderivative of f4 with respect to z. Then

f = f1(x, y, z) + f2(y, z) + f3(z) + C.
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For an example of this process, see pages 500-501 of your textbook. (Truthfully it
is a bit of a pain and will not come up much.)

5. Not all irrotational vector fields are gradient fields

We noted in the last section that every gradient field is irrotational. Conversely,
if we have an irrotational vector field (zero curl), we gave an explicit procedure for
reconstructing the gradient. So how can it be that not all irrotational fields are
gradient fields??

The first answer is that seeing is believing: recall our “very special” vector field
F⋆(x, y) = ( −y

x2+y2 , x
x2+y2 ). We computed in Handout 5 that curl(F⋆) = 0 and in

Handout 6 that the line integral
∫

C
F⋆ = 2π, where C is any circle centered at the

origin: not conservative! Indeed, recall that the flow lines of this vector field are
counterclockwise circles, so visibly the work done in going around a circle is positive.

Let’s apply our procedure to find the gradient of such a field: it will be slightly
cleaner to reverse the order and first find a function q(x, y) such that ∂

∂y q =

Q(x, y) = x
x2+y2 . To do this integral, recall that

∫

dt

a2 + t2
= (1/a) arctan(t/a).

So an antiderivative of Q with respect to y is x times an antiderivative of 1
x2+y2 with

respect to y or q(x, y) = x(1/x) arctan(y/x) = arctan(y/x). Now we are prepared
to modify q by a function of g(x) so that ∂

∂xq = P , but in fact this is not necessary:
already we have

∂

∂x
q =

∂

∂x
arctan(y/x) =

y ∂
∂x (1/x)

1 + (y/x)2
=

−y/x2

1 + y2/x2
=

−y

x2 + y2
= P (x, y).

So the plot thickens because we have found a gradient function, namely f(x, y) =
arctan(y/x). On the other hand, this function is not defined along the y-axis, when
the denominator vanishes. So if we took a closed path to the right of the line x = 0,
then the line integral would indeed be zero, and similarly if we took a path to the
left of x = 0, but our circular path crosses the line, and at this point the gradient is
not defined. In fact arctan(y/x) is a very familiar function: it is just θ, the angular
coordinate of the point (x, y). So the problem doesn’t really have to do with the
vertical line x = 0, but rather the fact that θ really is not a continuous function
along closed paths which wind around the origin: if we start at angle 0, then by
the time we come full circle θ approaches 2π: in order to insist that the angular
coordinate be a well-defined function with values in [0, 2π) (say), we must resign
ourselves to the fact that as we cross the positive x-axis theta jumps discontinuously
from a value very close to 2π to a value very close to zero. In differential form,
then, our line integral takes the form

∫ 2π

0

dθ = 2π.

In fact line integrals over the vector field F⋆ are “almost” conservative in the sense
that the line integral of F⋆ along any closed curve is 2πn, where n is the winding
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number, the number of times the path winds around the origin in a counterclock-
wise direction.

The details of this example are rather intricate but the moral is this: if the curl of
a vector field at a point is zero, then the line integral is the gradient of a function
f defined locally near that point. However the function f may or may not extend
to the entire domain of definition of the vector field. This is an instance of the fact
of life that one is often guaranteed that differential equations have solutions locally
about some point (an initial condition), but there is no guarantee that the solutions
will exist for all time.

Here is a simpler example of this: consider the differential equation dy/dt = y2

with initial condition y(0) = 1. What is the limit of the solution curve y = y(t) as
t → ∞? This is a separable differential equation, so dy/y2 = dt; integrating we get
−1/y = t + C, or y = −1

t+C . Plugging in t = 0 we want 1 = y(0) = −1
0+C = −1

C , so

C = −1. Thus we have the solution curve y = −1
t−1 . Now I’m sorry to tell you that

this function doesn’t do anything as t → ∞, as it already blows up (approaches
positive infinity) at time t = 1. The global behavior of differential equations is
always a more delicate process and moreover is sensitive to the qualitative features
– what mathematicians call the topology – of the domain.

Recall that our vector field F⋆ has a singularity at the origin – a “hole” – and
we saw that the line integral of F⋆ around a closed path is not conservative only by
virtue of its awareness of the number of times it goes around the hole. This makes
us suspect that if we integrated an irrotational vector field around a simple closed
curve in whose interior there were no “holes” in the vector field, then we would
in fact get zero. This is true and will be discussed as an application of Green’s
Theorem.


