HANDOUT NINE: THE CHANGE OF VARIABLES FORMULA

PETE L. CLARK

The change of variables formula is based on the u-substitution in single variable calculus, or more precisely on the "inverse substitution": say we have $\int_{x_{m}}^{x_{M}} g(x) d x$, and we want to make the substitution $x=f(u)$. Then $d x=f^{\prime}(u) d u$ and

$$
\int_{x_{m}}^{x_{M}} g(x) d x=\int_{u_{m}}^{u_{M}} g(f(u)) \frac{d f}{d u} d u .
$$

Here we must change the x-limits to u-limits. Since $x=f(u), u=f^{-1}(x)$, the inverse function to x. So the substitution gives:

$$
\int_{x_{m}}^{x_{M}} g(x) d x=\int_{f^{-1}\left(x_{m}\right)}^{f^{-1}\left(x_{M}\right)} g(f(u))(d f / d u) d u
$$

But notice that it would not necessarily be correct to write $u_{m}=f^{-1}\left(x_{m}\right), u_{M}=$ $f^{-1}\left(x_{M}\right)$: that is, it may be that after the change of variables the lower limit is actually a larger number than the upper limit. Indeed, this happens exactly when the function $u=f^{-1}(x)$ is decreasing: for instance, suppose $\left[x_{m}, x_{M}\right]=[1,2]$ and $x=1 / u$, so $u=1 / x$. Then $u(1)=1$ and $u(2)=\frac{1}{2}$, so the upper and lower endpoints are reversed. But recall that a function is decreasing if and only if its derivative is negative, and that the derivative of f^{-1} is negative if and only if the derivative of f is negative, since $f^{-1 \prime}(x)=\frac{1}{f^{\prime}\left(f^{-1}(x)\right)}$. Therefore, letting u_{m} be the smallest u-value - i.e., whichever of $f^{-1}\left(x_{m}\right)$ and $f^{-1}\left(x_{M}\right)$ is smaller - and u_{M} be the largest u-value, the substitution can also be written as

$$
\int_{x_{m}}^{x_{M}} g(x) d x=\int_{u_{m}}^{u_{M}} g(f(u))\left|\frac{d f}{d u}\right| d u
$$

the reason being that if f is increasing, $\left|\frac{d f}{d u}\right|=\frac{d f}{d u}$ and $u_{M}=f^{-1}\left(x_{M}\right)$, so the integral is the same as before, whereas if f is decreasing, $\left|\frac{d f}{d u}\right|=-\frac{d f}{d u}$ but $u_{M}=$ $f^{-1}\left(x_{m}\right)$, so in switching the upper and lower limits to put u_{M} on top and replacing $\frac{d f}{d u}$ with $\left|\frac{d f}{d u}\right|$, we introduce two minus signs, which is as good as no minus signs at all.

All this is to explain why the change of variables formula in several variables is a generalization of the u-substitution.

Indeed, supppose we have a double integral $\iint_{R} g(x, y) d x d y$ and we want to change to new variables u, v realted to x, y by

$$
x=f_{1}(u, v), y=f_{2}(u, v)
$$

We define the Jacobian $J\left(\frac{x, y}{u, v}\right)$ to be the two-by-two determinant

$$
\left|\begin{array}{ll}
\frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial v} \\
\frac{\partial f_{2}}{\partial u} & \frac{\partial f_{2}}{\partial v}
\end{array}\right|=\frac{\partial f_{1}}{\partial u} \frac{\partial f_{2}}{\partial v}-\frac{\partial f_{1}}{\partial v} \frac{\partial f_{2}}{\partial u} .
$$

Then the change of variables formula reads

$$
\iint_{R} g(x, y) d x d y=\iint_{R^{\prime}} g\left(f_{1}(u, v), f_{2}(u, v)\right)\left|J\left(\frac{x, y}{u, v}\right)\right| d u d v
$$

Note first that we have taken the absolute value of the Jacobian, and second that the region R^{\prime} means " R written in the (u, v)-variables": technically, R^{\prime} is the set of all points (u, v) such that $\left(f_{1}(u, v), f_{2}(u, v)\right)$ is a point of R, but this is an unhelpfully abstract way of thinking about things: we would only change to (u, v)-variables in the first place if R had a nice(r), simple(r) description in terms of the new variables.

It works the same in three variables, namely if

$$
x=f_{1}(u, v, w), y=f_{2}(u, v, w), z=f_{3}(u, v, w)
$$

then
$\iiint_{V} g(x, y, z) d x d y d z=\iiint_{V^{\prime}} g\left(f_{1}(u, v, w), f_{2}(u, v, w), f_{3}(u, v, w)\right)\left|J\left(\frac{x, y, z}{u, v, w}\right)\right| d u d v d w$, where

$$
J\left(\frac{x, y, z}{u, v, w}\right)=\left|\begin{array}{lll}
\frac{\partial f_{1}}{\partial u} & \frac{\partial f_{1}}{\partial v} & \frac{\partial f_{1}}{\partial w} \\
\frac{\partial f_{2}}{\partial u} & \frac{\partial f_{2}}{\partial v} & \frac{\partial f_{2}}{\partial w} \\
\frac{\partial f_{3}}{\partial u} & \frac{\partial f_{3}}{\partial v} & \frac{\partial f_{3}}{\partial w}
\end{array}\right|
$$

Example (Polar coordinates): We have

$$
x=r \cos \theta=f_{1}(r, \theta), y=r \sin \theta=f_{2}(r, \theta)
$$

Thus we compute

$$
J\left(\frac{x, y}{r, \theta}\right)=\left|\begin{array}{cc}
\cos \theta & -r \sin \theta \\
\sin \theta & r \cos \theta
\end{array}\right|=r \cos ^{2} \theta=r \sin ^{2} \theta=r
$$

and we've recovered the fact that in polar coordinates $d A=r d r d \theta$.
Example (spherical coordinates): We have

$$
x=\rho \cos \theta \sin \varphi, y=\rho \sin \varphi \sin \theta, z=\rho \cos \varphi
$$

We will calculate

$$
\left.=\left\lvert\, \begin{array}{cc}
\cos \theta \sin \varphi & -\rho \sin \theta \sin \varphi \\
\sin \theta, \varphi
\end{array}\right.\right)
$$

$\cos \varphi\left(-\rho^{2} \sin ^{2} \theta \sin \varphi \cos \varphi-\rho^{2} \cos ^{2} \theta \sin \varphi \cos \varphi\right)-\rho \sin \varphi\left(\rho \cos ^{2} \theta \sin ^{2} \varphi-\sin \varphi \sin ^{2} \varphi\right)$

$$
=-\rho^{2} \sin \varphi
$$

Thus $\left|J\left(\frac{x, y, z}{r, \theta, \varphi}\right)\right|=\rho^{2} \sin \varphi$, as was claimed earlier in the course.
Note that your textbook gets $\rho^{2} \sin \varphi$ as a Jacobian rather than with a minus sign. This is correct, since it computes the Jacobian with the variables in a different order: (ρ, φ, θ), rather than our (ρ, θ, φ). (In general, switching two columns of a matrix multiplies the determinant by -1 .) Since we can order the new variables however we want, we definitely need to take absolute values when applying the change of variables formula.

Example (Volume of an ellipsoid): Let V be the space region bounded by the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1$. We will find the volume of V by changing variables and using the fact that the volume of the region bounded by the unit sphere is $\frac{4}{3} \pi$.

Indeed, consider the change of variables

$$
x=a u, y=b v, z=c w
$$

Under this change of variable the equation of the boundary surface becomes $u^{2}+$ $v^{2}+w^{2}=1$, which is just the unit sphere in (u, v, w)-variables. Therefore

$$
\begin{gathered}
\left.\operatorname{vol}(V)=\iiint_{V} 1 d V=\iiint_{V^{\prime}}|J(x, y, z)(u, v, w)| d u d v d w=\left|J\left(\frac{x, y, z}{u, v, w}\right)\right|\right) \mid \operatorname{vol}\left(V^{\prime}\right) \\
=\frac{4 \pi}{3} \left\lvert\, J\left(\left.\frac{x, y, z}{u, v, w} \right\rvert\,\right.\right.
\end{gathered}
$$

We leave it for you to compute that $J\left(\frac{x, y, z}{u, v, w}\right)=a b c$, so that the volume of the region V is $\frac{4 \pi}{3} a b c$.

