
HANDOUT EIGHT: GREEN’S THEOREM

PETE L. CLARK

1. The two forms of Green’s Theorem

Green’s Theorem is another higher dimensional analogue of the fundamental
theorem of calculus: it relates the line integral of a vector field around a plane
curve to a double integral of “the derivative” of the vector field in the interior
of the curve. It admits two different but completely equivalent formulations, a
“flux” version for normal line integrals and a “circulation” version for tangent line
integrals. We have already predicted the former version as an “integral form” of
the fact that divergence is equal to flux density. Here it is again:

Theorem 1. (Green’s Theorem: Flux Form) Let R be a region in the plane with
boundary curve C and F = (P,Q) a vector field defined on R. Then

(1)

∫ ∫

R

Div(F )dxdy =

∫

C

F · n.

We recall that
∫

C
F · n means the normal line integral around the closed curve

C. That is, if r(t) = (x(t), y(t)) is a parameterization and the velocity vector is
v(t) = (x′(t), y′(t)), then n(t) = R(v(t)) = (y′(t),−x′(t)) is the rightward nor-

mal, the velocity vector turned 90 degrees to the right. Note that there are two
possible orientations of the curve C, such that changing the orientation will change
the line integral by a minus sign. The orientation which makes the theorem true
is the so-called positive orientation: that is, we walk in such a way so as to keep
the interior of the region on our left. Recall that the physical interpretation of this
result is that by integrating the net flux density (flow out minus flow in) at every
point of the region we get the total flux, i.e., the total net flow of fluid out of the
boundary of the surface.

There is another formulation of Green’s theorem in terms of circulation, or curl.
To get it from Theorem 1, apply the Theorem to the vector field R(F ) obtained by
turning every vector of F 90 degrees to the right. Then the right hand side is

∫

C

R(F ) · R(dr) =

∫

C

F · dr,

by the dot product formula, since if we rotate both F and dr 90 degrees to the
right, we change neither their lengths nor the angle between them. Thus the right
hand side becomes a usual (tangent) line integral, and we get

∫ ∫

R

Div(R(F ))dxdy =

∫

C

F · dr.

1
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But as we observed in Handout 5,

Div(R(F )) = Div(Q,−P ) =
∂Q

∂x
−

∂P

∂y
= curl(F ),

i.e., the divergence of the rotated vector field is the (scalar part) of the curl of
the original vector field. Substituting this in, we get the second form of Green’s
Theorem.

Theorem 2. (Green’s Theorem: Circulation Form) Let R be a region in the plane
with boundary curve C and F = (P,Q) a vector field defined on R. Then

(2)

∫ ∫

R

curl(F )dxdy =

∫ ∫

R

(
∂Q

∂x
−

∂P

∂y
)dxdy =

∫

C

F · dr.

In a similar way, the flux form of Green’s Theorem follows from the circulation
form: we substitute L(F ) in place of F in Equation (2) and use the fact that

curl(L(F )) = curl(−Q,P ) =
∂

∂x
(P ) −

∂

∂y
(−Q) =

∂P

∂x
+

∂Q

∂y
= Div(F ).

Recal that the curl of a planar vector field is technically a vector pointing in the k̂

direction, and k̂ is the normal vector N to the plane. Then a more precise version
of Theorem 2 is

(3)

∫ ∫

R

curl(F ) · NdA =

∫

C

F · dr.

Later we will consider surface integrals, which are to ordinary double integrals
as line integrals are to ordinary single integrals: i.e., we can integrate a function
along a surface in space. We will see that Equation (3) is still valid for a surface in
space whose boundary is a smooth curve: this more general formulation is called
Stokes’ Theorem1.

We do want to give the proof of Green’s Theorem, but even the statement is com-
plicated enough so that we begin with some examples.

Example: We verify Green’s Theorem (in circulation form) for the vector field

Fa(x, y) = (x/ra, y/ra) (r =
√

x2 + y2) on the circle of radius r centered at the
origin.

Solution: Let Rr be the disk of radius r, whose boundary Cr is the circle of radius
r, both centered at the origin. We have devoted much attention to these vector
fields earlier in the course: recall that since they are purely radial, the field is per-
pendicular to the tangent vector at every point, so

∫

Ca

Fadr = 0. To verify Green’s

Theorem we need to see that the double integral of the curl over Ra is zero. But
we calculated earlier that this field is irrotational – indeed it is a gradient field – so
the curl is zero and we are integrating the zero function over the disk: both sides
are zero.

We may well ask: what is the use of Green’s Theorem? It relates two quanti-
ties that we already in theory know how to compute. The point is that Green’s

1Or occasionally, by those whose mathematical ability far exceeds their knowledge of punctu-

tation, “Stoke’s Theorem.”
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Theorem gives us a choice: would we rather compute the line integral or the double
integral? In many cases, one of the two is much easier to evaluate than the other,
and Green’s Theorem makes some calculations routine that we would otherwise
despair to complete.

Example: Evaluate the line integral
∫

C
(x5 + 3y)dx + (2x − ey3

)dy, where C is
the circle centered at (1, 5) of radius 2.

Solution: In theory we can do this line integral: the circle is parameterized by
r(t) = (2((cos t)+1), 2((sin t)+5)), whose velocity vector is v(t) = (−2 sin t, 2 cos t).
So the integral we want is
∫ 2π

0

((2 cos t+1)5 +3(2 sin t+5)(−2 sin tdt)+(2(2 cos t+1)−e(2 sin t+5)3)(2 cos tdt).

This line integral can be done – the subtitution u = (2 sin t + 1) will take care of
the exponential part – but we are not going to enjoy the calculation. On the other
hand the curl of the vector field is ∂Q

∂x
− ∂P

∂y
= 2 − 3 = −1, so by Green’s Theorem

all we need to do is integrate the constant function −1 over the disk of radius 2:
we’ll get −1 times the area of the disk, or −4π. What a relief!

2. The Proof of Green’s Theorem

We will prove Green’s Theorem in circulation form, i.e., Equation 2. We begin
by proving the theorem in the case where the region R is of a special type: i.e., it is
simultaneously x-convex and y-convex in the terminology we introduced in our
study of double integrals2: that is, it is at the same time expressible as the region
between two curves y2 = G(x) and y1 = g(x) bounding it above and below and as
the region between two curves x2 = H(y) and x1 = h(y) bounding it on the right
and on the left. Let CT (T is for “top”) be the curve bounding the region on the
top, so it has a parameterization rT (t) = (t,G(t)), valid for a ≤ t ≤ b; similarly let
CB (B is for “bottom”) be the curve bounding the region on the bottom, with a
parameterization rB(t) = (t, g(t)) also for a ≤ t ≤ b. Together CT and CB make
up the boundary C of the region R, but we must be careful with the orientation
on the boundary: with the positive orientation the boundary is C = CB −CT . We
have a completely analogous discussion with respect to the y-variable: there is a
curve CR (R is for “right”) bounding the region on the right, with parameterization
rR(t) = (H(t), t) and a curve CL (L is for “left”) bounding the region on the left,
with parameterization rL(t) = (h(t), t), both for c ≤ t ≤ d. This time the positive
orientation on the boundary means that C = CR − CL.

We start with the left hand side of Equation (2), namely with
∫ ∫

R

∂Q

∂x
−

∂P

∂y
dA =

∫ ∫

R

∂Q

∂x
dA −

∫ ∫

R

∂P

∂y
dA.

We evaluate the first integral by integrating with respect to x first, getting
∫ ∫

R

∂Q

∂x
dA =

∫ y=d

y=c

∫ x=H(y)

x=h(y)

∂Q

∂x
dxdy =

2In the unimaginative but unfortunately rather standard terminology used in the text, this

region is simultaneously Type I and Type II.
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∫ d

c

Q(H(y)) − Q(h(y))dy.

And we evaluate the second integral by integrating with respect to y first, getting

−

∫ x=b

x=a

∫ y=G(x)

y=g(x)

∂P

∂y
dydx = −

∫ b

a

P (G(x)) + P (g(x))dx.

So the entire left hand side (the double integral of the curl) is

(4)

∫ d

c

Q(H(y))dy −

∫ d

c

Q(h(y))dy −

∫ b

a

P (G(x))dx +

∫ b

a

P (g(x))dx.

Now we will work the right hand side to get it in this form. We split the line
integral into two pieces, using for one piece the decomposition of the boundary
C = CB − CT and on the other piece the decomposition C = CR − CL:

∫

C

F · dr =

=

∫

C

Pdx + Qdy =

∫

C

Pdx +

∫

C

Qdy =

∫

CB−CT

Pdx +

∫

CR−CL

Qdy =

(5)

∫

CB

Pdx −

∫

CT

Pdx +

∫

CR

Qdy −

∫

CL

Qdy.

But now we win: using the four parameterizations rT , rB , rL, rR from above, we
see that each of the four terms of (4) is equal to a corresponding term in (5), indeed

∫

CB

Pdx =

∫ b

a

P (g(x))dx,

∫

CT

Qdx =

∫ b

a

P (G(x))dx,

∫

CL

Qdy =

∫ d

c

Q(h(y))dy,

∫

CR

Qdy =

∫ d

c

Q(H(y))dy,

so equations (4) and (5) are the same. This proves Green’s Theorem for “xy-convex”
regions.

The proof for a general region follows from this by a dissection argument: indeed,
by adding straight line boundaries we can cut up any region into a finite collection
of regions each of which is “xy-convex,” say R = R1 ∪ . . . ∪ RN . On each little
region Ri we just showed that

∫ ∫

Ri

∂Q

∂x
−

∂P

∂y
dA =

∫

Ci

Pdx + Qdy.

So by the additivity of integrals we have
∫ ∫

R=R1∪...∪Rn

∂Q

∂x
−

∂P

∂y
dA =

n
∑

i=1

∫ ∫

Ri

∂Q

∂x
−

∂P

∂y
=

n
∑

i=1

∫

Ci

Pdx + Qdy.

We want to say that this last expression is the total line integral along the boundary
of R, but what about all these extra lines that we added? It turns out okay: the
way we have chosen orientations, we go around all these extra lines exactly twice,
once in each direction, so their contributions to the line integral cancel out exactly,
and we end up with the line integral around the original boundary

∫

C
Pdx + Qdy.

This completes the proof of Green’s Theorem.
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Actually, the proof proves more than we probably had in mind originally: Green’s
theorem holds for any region in the plane which can be sewn out of finitely many
xy-convex regions. In particular nothing stops us from “sewing in holes”: Green’s
Theorem applies equally well to regions whose boundary is more than one simple
closed curve, e.g. the region between two circles. In Section 5 we will see that some
of the most useful applications come from applying Green’s theorem to such regions.

We wanted to present the proof in its entirety because it is an argument which
is both important and beautiful: it uses many of the techniques we have learned so
far: that we can interchange the order of integration in a multiple integral; that the
same curve can have different parameterizations; and that we must pay attention to
issues of orientation. This same idea of proof (start with a convex region, evaluate
the same mutiple integral as an iterated integral in several different orders) works
also for the proofs of Stokes’ Theorem and Gauss’ Theorem (coming soon) although
the details are (even more) complicated, and we will not repeat these proofs.

3. Applications to flux and divergence of planar vector fields

Still commenting on the proof of Green’s Theorem, we remark that actually the
second part (on dividing the region) is just as important as the first: interpreting
Green’s Theorem in divergence form, it has the important physical interpretation
that flux is additive: if we glue two regions together along their common boundary,
the total flux through the new region is the same as the sum of the fluxes of the
original two regions. Keeping this principle in mind, we could have proved Green’s
Theorem in a completely geometric way by filling up the region R wih more and
more rectangles (whose area approaches zero) and using the fact that we already
showed, that the integral of the divergence equals the flux in the limit as the area
of the rectangle goes to zero. To use the language of physicists (and engineers),
what we earlier showed was the differential form of Green’s Theorem (i.e., for
“infinitesimally small” boxes) and what we just showed is the integral form of
Green’s Theorem (i.e., overall, or adding everything up). So the integral form fol-
lows from the differential form by a limiting process involving boxes whose area goes
to zero – i.e., exactly the sort of limiting process that is implicit in the definition
of a double integral.

Conversely, the differential statement follows immediately from Green’s Theorem,
reconfirming and generalizing our geometric interpretation of divergence: Let P be
a point and Rǫ be a small region centered at that point with area Aǫ and boundary
curve Cǫ. Then we get

lim
→0

∫

Cǫ

F · n

Aǫ

= lim
ǫ→0

∫ ∫

Aǫ

Div(F )dA

Aǫ

= Div(F )(P ),

since as the diameter of Rǫ goes to zero, the minimum value and the maximum
value of Div(F ) both converge to Div(F )(P ).

Similarly, the equation
∫ ∫

R

curl(F )dA =

∫

C

Fdr
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tells us that the curl of a vector field in the plane is what we said it was: suppose
that curl(F ) is positive at some point (x0, y0). Then, since the curl varies contin-
uously from point to point, there is some small disk R about that point on which
the curl is positive, so that the left hand side of Green’s Theorem is positive. That
means that the line integral of the vector field around the boundary is positive:
travelling counterclockwise in a circle of sufficiently small radius about a point of
positive curl, positive work is done. If you think about it for a second, you will
agree that we have found a rigorous mathematical way of expressing that the pad-
dlewheel fixed at (x0, y0) will turn counterclockwise!

This argument is for planar vector fields only. That the curl does what we say
it does in three space – including the bit about the axis of rotation – will come as
a consequence of our later generalized form of Green’s Theorem, namely Stokes’
Theorem.

4. Using Green’s Theorem to Compute Areas

Recall that if R is any plane region, then the double integral
∫ ∫

R
1dA computes

the area of R. Since we now possess an almost magical ability to convert double
integrals into line integrals, we might try to exploit our powers to compute areas
of regions via line integrals around the boundary. In order to do this, we need only
find a vector field F = (P,Q) with the property that curl(F ) = ∂Q

∂x
− ∂P

∂y
≡ 1. There

are many such vector fields – indeed we can choose the function P (x, y) arbitrarily
and solve for Q, getting Q =

∫

(1 + ∂P
∂y

)dx.

The simplest choice is P = 0, Q = x, gving the formula

(6) area(R) =

∮ tmax

tmin

(0, x(t)) · (x′(t), y′(t))dt =

∮ tmax

tmin

x(t)y′(t)dt.

A more traditional choice is F = 1
2 (−y, x), giving

(7) area(R) =
1

2

∮ tmax

tmin

x(t)y′(t) − x′(t)y(t)dt.

Note that as a consequence of the right hand sides of equations (6) and (7) both
being equal to the area of R, they must also be equal to each other. This amounts
to the identity

∮

x(t)y′(t) + x′(t)y(t)dt = 0.

This can be seen using integration by parts:
∫ tmin

tmax

xdy + ydx = xy|tmax

tmin
= x(tmax)y(tmax) − x(tmin)y(tmin),

which is zero in our case: since the curve is closed (as the circles on the in-
tegral signs are there to remind us), the initial and terminal points coincide:
(x(tmax), y(tmax)) = (x(tmin), y(tmin)).

Example: We use both formulas to compute the area of the (interior of the!) ellipse
with semiaxes a and b – i.e., so that with the most convenient choice of coordinates

it is given by the equation x2

a2 + y2

b2
= 1. Either way, we use the parameterization
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(̊t) = (a cos t, b sin t) with 0 ≤ t ≤ 2π.

Using (6) we get the integral
∫ 2π

0

(a cos t)(b cos t)dt = ab

∫ 2π

0

cos2 tdt = πab,

where we have used that
∫ 2π

0
cos2 tdt = π. One can do this integral using the

trig identity cos2 t = 1
2 (1 + cos 2t), or in many other ways. Here’s an elegant

one: since sin2(t + π/2) = cos2(t) and both sin2(t) and cos2(t) have period π, it

must be that I1 =
∫ 2π

0
sin2(t)dt =

∫ 2π

0
cos2(t)dt = I2 (think about it). But then

2I1 = I1 + I2 =
∫ 2π

0
cos2(t) + sin2(t)dt =

∫ 2π

0
1dt = 2π, so I1 = I2 = π.

Using the formula (7), we get the integral

1

2

∫ 2π

0

(a cos t)(b cos t) − (−a sin t)(b sin t) =
ab

2

∫ 2π

0

cos2(t) + sin2(t)dt = πab.

Remark: There is a surprisingly practical reason to prefer formula (7) to formula
(6) (or to any of the other infinitely many formulas we get using vector fields of
unit curl): there is a mechanical device, called a planimeter, consisting of two
metal arms joined by a flexible elbow. One end is fixed in place outside of the plane
region, and the other end has attached to it a little wheel – aha! – which spins as
it is dragged around the boundary of the curve.

For an explanation of the mathematics behind the planimeter – as well as instruc-
tions on how to build one! – consult the webpage

http://www.math.harvard.edu/∼ knill/math21a2000/planimeter.

5. Irrotational versus Conservative Vector Fields Revisited

Our study of when a vector field is conservative in the last unit ended somewhat
indefinitively: we showed that a vector field is conservative (which, recall, means
that every line integral along a closed curve is zero) if and only if it is the gradient of
some function, and that a necessary condition for this was that the vector field be
irrotational, i.e., have zero curl at every point. It looked for a while like the converse
should be true: given a vector field with ∂Q

∂x
= ∂P

∂y
, we gave a procedure for finding

a function f such that ∇(f) = F , but unfortunately this procedure worked only
“locally”: near any point we can find such a function f , but in order for the vector
field to be conservative, we need a single function f defined and continuous on the
entire region of definition of the vector field, and we saw that for the vector field

F⋆ = (
−y

x2 + y2
,

x

x2 + y2
)

we could not find an f defined for all nonzero (x, y).

Green’s Theorem clarifies these matters considerably: suppose F is a vector field
defined on a region R with the property that every simple closed curve C in R
is the boundary of some subregion S: equivalently, suppose that for every simple
closed curve, the vector field has no singularities inside the curve. This condition
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on a region R is called simply-connected: it can be expressed intuitively (but
accurately) by saying that the region R has no holes. Suppose that F is an irro-
tational vector field on such a region. Then for any simple closed curve C in the
region, C is the boundary of S, so

∫

C

F · dr =

∫ ∫

S

curl(F )dA = 0,

that is the line integral of F around every closed path is zero.3 We summarize this
argument by the following useful result:

Theorem 3. Let R be a region in the plane which is simply connected (no holes!).
Then every vector field F defined on R with curl(F ) = 0 is conservative, i.e., of the
form ∇(f) for some f defined on all of R.

Thus, if our region has no holes, in order to determine whether F = (P,Q) is

convervative, we need only check whether ∂P
∂y

= ∂Q
∂x

: unless we need the potential

function f , we do not have to go through the calculus of finding it.

We emphasize that this theorem is giving conditions for a system of partial dif-
ferential equations – namely ∂f

∂x
= P, ∂f

∂y
= Q such that ∂P

∂y
= ∂Q

∂x
– has a globally

defined solution: this is simultaneously the type of result that we most want for
applications and is the hardest to derive, so, truly, hurray for Green’s Theorem.

But Green’s theorem is still useful when there are holes in the region.

Example: Let C be any simple closed curve containing the origin, positively ori-
ented; compute

∫

C
F⋆dr, for our special vector field F⋆.

Solution: We have already computed that curl(F⋆) = 0 – so our field is irrota-
tional; moreover we know it’s not conservative, because we computed that the line
integral around any circle is 2π. So take a very small circle Cǫ around the origin,
where small means that Cǫ lies entirely inside our simple closed curve C. Then we
can consider the region R that lies between the two curves C and Cǫ: this region
has more than one boundary component – this is allowed! – and with correct ori-
entations the boundary of R, which we denote ∂R, is equal to C − Cǫ. So Green’s
Theorem tells us that

∫

C

F⋆ · dr −

∫

Cǫ

F⋆ · dr =

∫

C−Cǫ

F⋆ · dr =

∫

∂R

F⋆ · dr =

∫ ∫

R

curl(F⋆)dA =

∫ ∫

R

0dA = 0,

That is, for any simple closed curve circling clockwise around the origin,
∫

C

F · dr =

∫

Cǫ

F · dr = 2π.

3Technically we showed this only for simple closed paths, but any path which intersects itself

can be viewed as the sum of two paths which each have one less self-intersection point: e.g. the

line integral around a figure-eight is the sum of the line integrals around the upper and lower

circles which comprise it, so if the line integral around every simple closed path is zero, the vector

field is conservative.
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Similarly, the integral of F⋆ along any simple closed curve circling clockwise around
the origin will have line integral −2π. Since any closed curve can be split up into
finitely many simple closed curves which either wind clockwise once around the
origin, wind counterclockwise once around the origin, or do not circle around the
origin at all, it follows that the integral of F⋆ along any closed curve is 2πn for
some integer (positive or negative whole number) n. This number n is called the
winding number of C around the origin.

6. Extra: Still More Irrotational Vector Fields and A Beautiful Mind

So we have trained ourselves to be suspicious of irrotational vector fields over
regions with “holes”: the line integral might still depend on the path. But we
don’t want to be too suspicious: e.g. the irrotational radial vector field Fa(x, y) =
(x/ra, y/ra) is conservative for any value of a. It is natural to ask how many other
examples we can produce of irrotational vector fields which are not conservative.

Using F⋆ we can make some more: if K is any nonzero constant, then KF⋆ will
still have zero curl and still not be equal to ∇f (since then F⋆ would be ∇f/K).
Also we can add any conservative vector field: if G = KF⋆ + ∇f , then (because
curl(F1 + F2) = curl(F1) + curl(F2) and curl(KF1) = K curl(F1)) G is irrotational,
and it can’t be a gradient field, since KF⋆ + ∇f = ∇g implies KF⋆ = ∇(g − f),
which it isn’t. Intuitively (and also in a sense that can be made precise using linear
algebra) these examples G are dependent on F⋆. Are there any other irrotational
nonconservative vector fields on the complement of the origin, i.e., any examples
which are independent of F⋆?

Remarkably, the answer is no: if G is any irrotational vector field defined every-
where except at the origin, then there is a constant K such that G − KF⋆ = ∇(f)
is a gradient field.

Indeed we can figure out what K must be for G, as follows: by Green’s theo-
rem, we know that all integrals of G along simple closed counterclockwise curves
have the same value, say I =

∫

C
G · dr. If we put K := I

2π
, then the integral of

G − KF⋆ along any closed curve C is
∫

C

G − KFdr =

∫

C

Gdr − K

∫

C

F⋆ = I − K(2π) = I − (
I

2π
)(2π) = 0,

so G − KF is conservative and hence is the gradient of some function. We have
been saying all along that F⋆ is a “very special” vector field: now we know how
special: it is essentially the only irrotational nonconservative vector field on the
complement of the origin.

In general, if R is a region of the plane, we can ask for the number of independent

irrotational nonconservative vector fields define don R: we say this number is N
if there exist vector fields F1, . . . , FN defined on R which are irrotational with the
following two properties:

• for any constants C1, . . . , CN which are not all zero the vector field

(8) C1F1 + C2F2 + . . . + CNFN
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is not a gradient field;
• for any other irrotational vector field G defined on R, there are some constants
C1, . . . , CN such that

(9) G − (C1F1 + C2F2 + . . . + CNFN ) = ∇(f)

for some function f .

This latter condition is saying that all irrotational vector fields “depend” on the
Fi’s up to a gradient vector field in the same way as we already saw for N = 1.

A yet more amazing result is that the number of independent nonconservative
irrotational vector fields is always equal to the number of holes of the region.
Indeed, if we consider the region R which is the plane minus a set of N points
P1 = (x1, y1), P2 = (x2, y2), . . . , PN = (xN , yN ), then there is a translated version
of our special vector field at each point:

F⋆,Pi
=

(y − yi, x − xi)

(x − xi)2 + (y − yi)2
.

Since we have just translated everything to the point Pi, the line integral of F⋆,Pi
)

around a small counterclockwise circle enclosing Pi (and none of the other points) is
2π. Using this, it can be shown that any linear combination of the F⋆Pi

’s as in (6) is
still not conservative (this is not so hard, but we don’t try to explain it here: we’re
just sketching some ideas), but given an arbitrary irrotational vector field G with
singularities at these points, by keeping track of the values Ii of the line integrals
around little circles around the points Pi, then Ii

2π
give the coefficients such that

Equation (7) holds, i.e., by subtracting just the right combination of these special
vector fields we turn G into a gradient field.

(The same result would hold if some or all of our “holes” were not just isolated
points Pi but entire regions Ri with boundary a simple closed curve.)

To be sure, this is serious mathematics: the idea that the number of irrotational
vector fields up to gradient fields on a region R counts the number of holes in the
region R is due to the early 20th century mathematician Gustave de Rham and
is called de Rham theory4. It is true not just for vector fields on subsets of the
plane but for vector fields on surfaces and even higher-dimensional spaces.

Now one reason I bring this up is that in the movie A Beautiful Mind based on the
biography of the mathematician John F. Nash Jr., the main character – played by
Russell Crowe – learns that he is required to teach a multivariable calculus class five
minutes before the start of the class. After flipping through the textbook in front
of the students and throwing it into the trash, he writes the following problem in
the blackboard in the hope that it will take the students “the rest of your natural
lives” to solve it (thereby leaving him alone to do his own work):
Find a set X in R

3 such that if:
V is the set of irrotational vector fields on R

3 \ X and
W is the set of gradient vector fields on R

3 \ X,
then the dimension of V/W is 8.

4Or actually de Rham cohomology, but don’t say this at a party: people will run.
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In other words, find a region in R
3 so that the number of irrotational vector fields

up to gradient fields is 8. We just did this in the plane: take R
2 minus any 8

different points. We will see soon enough as an application of Stokes’ theorem that
if we just take the cylinder on top of the whole picture – i.e., consider R

3 minus the
eight vertical lines projecting down to these points – then the result is the same.
(One can show that this is in a certain sense the simplest solution.)

So now you know the answer to the most famous multivariable calculus problem
in cinematic history. (You will not be surprised to learn that they hired an actual
mathematician, David Bayer, as a consultant for the movie: the little snippets of
math that you hear are remarkably true to life, unlike say, Good Will Hunting,
where nothing looks or sounds quite right.) In a way, you now understand Russell
Crowe’s character more deeply than almost anyone who has seen the movie: he
is the kind of guy who instead of stooping to teach a class, gives them a problem
whose solution is part of the working vocabulary of most practicing mathemati-
cians of the day but is so deep and intricate that an actual multivariable calculus
student will almost certainly make no progress on it. I am tempted to speculate
further on the implausible psychology of the beautiful young coed who is attracted
to her instructor because he poses obnoxiously difficult math problems, but really
decorum forbids me to say anything further on the matter.

7. Extra: Green’s Theorem in Complex Variables

Closely related to the notion of a line integral of a planar vector field – and
equally useful – is that of a complex line integral or contour integral of a
function of a complex variable along a curve in the complex plane. This section,
intended for students who have familiarity with such complex functions up to the
Cauchy-Riemann equations, explains how the complex analogue of the fundamental
theorem of calculus, namely Cauchy’s Integral Theorem, follows from Green’s
Theorem.

We begin with f(z) a function of a complex variable. That is, write z = x + iy,
and f(z) = P (z) + iQ(z). In fact, if we agree to identify R

2 with the complex
plane via (x, y) ⇐⇒ x + yi, such functions correspond precisely to vector fields
F (x, y) = (P (x, y), Q(x, y)).

Viewed in this way a complex line integral is however a pair of line integrals of
vector fields. Let C be an oriented curve in the plane, as usual, except that since
we are writing z = x + iy its parameterization can be written more compactly as
z(t) = x(t) + iy(t). Then we define the complex line integral

∫

C

f(z)dz =

∫ tmax

tmin

(P (z) + iQ(z))(x′(t) + iy′(t))dt.

When we write this out, we get two separate (ordinary) integrals,

∫ tmax

tmin

P (z(t))x′(t) − Q(z(t))y′(t)dt + i

∫ tmax

tmin

P (z(t))y′(t) + Q(z(t))x′(t)dt.
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However, we can still identify each integral as being the dot product of a certain
vector field with the velocity vector v(t) = r′(t), and we get line integrals

∫

C

(P,−Q) · dr + i

∫

C

(Q,P ) · dr,

i.e., the corresponding vector fields are F1 = (P,−Q) and F2 = (Q,P ).

Suppose C is the boundary of a region R in the plane such that f(z) (and hence
P and Q) is defined not just on the boundary C but on all of R. Then Green’s

Theorem applies: we compute curl(F1) = −∂Q
∂x

− ∂P
∂y

and curl(F2) = ∂P
∂x

− ∂Q
∂y

, and

get that
∫

C

f(z)dz =

∫ ∫

R

(−
∂Q

∂x
−

∂P

∂y
)dA + i

∫ ∫

R

(
∂P

∂x
−

∂Q

∂y
)dA.

This expression is perhaps a bit surprising at first: neither expression is either the
curl or the divergence of the original vector field F = (P,Q), so it would not help
us evaluate the line integral if F were irrotational or incompressible. But recall
that the Cauchy-Riemann equations are

∂P

∂x
=

∂Q

∂y
,

∂Q

∂x
= −

∂P

∂y
,

and that a complex function f(z) = P (x + iy) + iQ(x + iy) is holomorphic (or

analytic) on a region R – i.e., the complex derivative limh→0
f(z+h)−f(z)

h
exists in

a small neighorhood of each point in R – if and only if f(z) satisfies the Cauchy-
Riemann equations in R.5 Therefore, for holomorphic functions both integrands
are identically zero, so certainly the integrals are zero, and we have proved the
following very important result.

Theorem 4. (Cauchy’s Integral Theorem) Let R be a closed region in the plane with
smooth boundary ∂R (we allow the boundary to be any finite number of simple closed
curves). Then if f(z) is any complex function which is defined and holomorphic on
all of R,

∫

∂R

f(z)dz = 0.

Remark: We should therefore view the (two) Cauchy-Riemann equations as the
complex analogue of the vector equation curl(F ) = 0. (If we have our heart set on

it, we can write the Cauchy-Riemann equations as one equation, namely ∂f
∂z

= 0,
but we do not want to get into this.) Thus it is precisely the holomorphic functions
which play the analogous role in the theory of complex line integrals that the irro-
tational vector fields play in the usual theory.

Some comments are due as for Green’s Theorem: if the boundary of R is a simple
closed curve C, then we are just getting

∫

C
f(z)dz = 0. In particular, if f(z) is

holomorphic on the entire complex plane (such functions are indeed called entire),
then

∫

C
f(z)dz = 0 for all curves. In general, if the region has multiple boundary

5We recall that when we say that a function satisfies a partial differential equation at a point,

we mean that the function is defined on at least a small open disk about that point and satisfies

the equation on that entire disk.
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components C1 ∪ . . .∪Cr, then we are getting a relation between the integrals over
these curves, namely that

∫

C1

f(z)dz + . . . +

∫

Cr

f(z)dz = 0.

Example: Let f(z) = 1
z
; note that this function has a singularity at 0, and nowhere

else. If we were content to integrate around any simple closed curve not enclosing
0, then Cauchy’s theorem guarantees that the integral is zero. But of course we are
going to integrate around the unit circle! Take z(t) = cos t + i sin t, so

∫

C

f(z)dz =

∫ 2π

0

1

cos t + i sin t
(− sin t + i cos t)dt.

By multiplying and dividing the fraction by cos t−i sin t,6 the denominator becomes
1 and we get

∫ 2π

0

(cos t − i sin t)(− sin t + i cos t)dt =

∫ 2π

0

idt = 2πi.

Now, as in the discussion of the previous section, Green’s Theorem tells us that this
is all we need to compute: if C is any curve which winds n times counterclockwise
around the origin, then

∫

C

dz

z
= 2πin.

Finally, the considerations of the less section have analogues here (which are in fact
older and better known in the complex setting): the function f(z) = 1

z
is essen-

tially the only holomorphic function on the complement of 0 for which line integrals
around closed curves need not be zero, in the sense that every function g(z) holo-
morphic except at zero can be written as g(z) = R

z
+ h′(z) – here the analogue

of “conservative vector fields are gradient fields” is the simpler “conservative holo-
morphic functions are derivatives of other holomorphic functions.” (In fact even
the reason we cannot integrate 1

z
is the same as the reason we could not integrate

our special vector field F⋆ – its antiderivative is defined locally, but involves the
angular coordinate θ so cannot be continuously defined for an entire path around
the origin.) And moreover, this number R has the property that for any closed
curve C winding n times around the origin,

∫

C
g(z)dz = 2πinR. This number R is

called the residue of g(z) at 0, and one learns techniques (Laurent expansion) for
calculating it explicitly in a complex variables course.

Moreover, there is the same generalization to functions g(z) having singularities
at finitely many points z1, . . . , zn in the complex plane: integrating g(z) about a
small counterclockwise circle centered at zi gives a number of the form 2πiRi, and
we call Ri the residue of g(z) at zi. Then we have the following result.

Theorem 5. (Residue Theorem) Let g(z) be a function holomorphic on a region R
except for finitely many singularities at points z1, . . . , zn. Let C be a curve in the
region R, not passing through any of the singularities, which has winding numbers

6This calculation would be less arduous if we allowed ourselves Euler’s remarkable identity

e
it = cos t + i sin t.
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n1, . . . , nn with respect to each z1, . . . , zn. Let R1, . . . , Rn be the residues of g(z) at
these points. Then

∫

C

g(z)dz =

n
∑

i=1

2πiRi.

The residue theorem is the single biggest tool we have for evaluating (real-valued!)
integrals and series, and I think it is good to know that it is the complex version
of the weak path-independence property of irrotational vector fields.


