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1 Introduction

Fundamental groups and Galois groups: Let X/k be a smooth, complete con-
nected curve over an algebraically closed field k. We have defined the etale
fundamental group π1(X/k) (in this lecture I abuse notation by ignoring geo-
metric basepoints) as the lim

←−
of automorphisms of finite etale connected covers

Y → X . Recall also that every fundamental group can be interpreted as a
Galois group: π1(X/k) = Gal(k(X)unr/k(X)), the Galois group of the maxi-
mal everywhere unramified extension of the function field k(X). So it appears
that a fundamental group is a special kind of Galois group. On the other
hand, consider the process of puncturing the curve: write X ′ = X − C, C
a finite set of points, so that X ′/k is an affine curve. In this case we get
π1(X − C) = Gal(k(X)C−unr/k(X)), the maximal extension ramified only at
the points of C. Since every finite Galois cover of X is ramified at only finitely
many points, the Galois group itself is obtained as a limit of fundamental groups
via the puncturing process. To put this in a more picturesque way:

Theorem 1 (Zen) Gal(k(X)sep/k(X)) = π1(X − X), the fundamental group
of the curve punctured everywhere.

To summarize, when contemplating the fundamental group of an affine curve,
it is often profitable to view it as the collection of generically unramified covers
of the completed curve which are allowed to ramify at the “points at infinity.”
Moreover, we expect to see Galois theory arising in our study of fundamental
groups.

Now, recall how Romyar computed geometric fundamental groups in charac-
teristic 0:

Theorem 2 (SGA 1) Let S/k be a connected, finite-type scheme. Let k′/k be
an algebraically closed extension field.

a) π1(S ⊗k k
′) → π1(S/k) is surjective.

b) If S is proper or if char(k) = 0, π1(S ⊗k k
′) ∼= π1(S).

c) if k ↪→ C is a field embedding, then π1(S/k) ∼= ̂π1,top(S(C)).
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The goal of this talk is to give some insight into why b) and c) fail for affine
curves in characteristic p > 0. In particular, the problem of computing the
fundamental group in the geometric case is sufficiently challenging that we (=
the mathematicians of the world) are not yet ready to consider the case of k
non-algebraically closed and the associated representation of Gk into the outer
automorphism group of the fundamental group.

2 Complete curves

Throughout the rest of these notes, all curves are smooth and connected, and
k denotes some algebraically closed field of characteristic p. We begin with the
simplest possible question: What is the fundamental group of the projective
line?

Theorem 3 π1(P
1/k) = 0.

First proof: In fact, there is a Riemann-Hurwitz formula valid for finite sep-
arable morphisms (a fortiori for etale covers) in characteristic p, which in the
unramified case becomes the familiar 2−2g(Y ) = d(2−2g(X)) (see Hartshorne,
IV.2 for a nice discussion).

In some sense, a more enlightening answer is provided by the following (sig-
nificantly harder) result of Grothendieck:

Theorem 4 Let C/k be a complete curve of genus g. Then there is a surjection
Γg,0 → π1(C/k). In particular, π(C/k) can be generated topologically by 2g
generators.

Sketch proof: Step 1 is the following result from SGA 1:

Theorem 5 Let A be a complete Noetherian local ring with residue field k
(remark: such an A always exists; we could e.g. take the ring of Witt vec-
tors with coefficients in k). Let X0/k be a smooth projective variety such that
H2(X0,OX0

) = H2(X0,Ω
∨
X0/k) = 0. Then there exists X/A a smooth projective

scheme such that X ⊗A k ∼= X0.

Step 2: In particular, if X0/k is a curve, 2-dimensional cohomology of coherent
sheaves vanishes on it and we can lift X0 to some X/A. We write Xs for the
special fibre (which we were calling X0), Xη for the generic fibre, and Xη for
the geometric generic fibre. Now we have the following diagram:

[π1(Xη)]π1(Xη)e, tspsseπ1(Xs)s, rαπ1(Xη)eπ1(X)

Here the diagonal map is just the composite of the left map and the bottom
map. In fact the rightmost map, alpha is an isomorphism [see Orgogozo-Vidal],
which enables us to define the specialization map sp by inverting α. The the-
orem (due to Grothendieck) is now that the specialization map is surjective.
This completes the proof sketch.
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An example to show that sp is not always an isomorphism: let E/k be an elliptic
curve. It is part of the basic theory of abelian varieties [Mumford] that every
etale cover is given by a separable isogeny. Composing any isogeny E′ → E with
its dual, we see that it is enough to consider the multiplication-by-n maps, so
that π(E/k) = lim

←−n
E[n](k) = Πl 6=pTl(E) × Tp,et(E). Here Tp,et(E) is the etale

part of the Tate module of E, so is isomorphic to Ze
p, where e is the p-rank of

E, i.e. 1 or 0 according to whether E is ordinary or supersingular. In no case is
e = 2, which is what we see from characterstic zero. Remark: Indeed, working
now with a curve C/k of any genus at least one, it is a fundamental result that
π1(C/k)

ab ∼= T (J(C)) (see for example, Serre’s Groupes Algebriques et Corps
de Classes), and a similar argument to the above shows that the specialization
map is never surjective (even) on the abelianization of π1.

On the other hand, from the above examples, it looks as if it is only the el-
ements of p-power order in π1 that are screwing us up. Indeed, for any profinite
group G, let G6p be the maximal prime-to-p quotient of G. Then:

Theorem 6 (Grothendieck) The specialization map induces an isomorphism
π1(Xη)6p

∼
−→ π1(Xs)

6p.

We end our discussion of complete curves here, even though there is certainly
more to be said. Very soon, however, we will find the state of our knowledge in
this case to be enviable.

3 Affine curves

Question 7 π1(A
1/k) =???

If one doesn’t know any better, the guess π1(A
1/k) = 0, in analogy to the

characteristic 0 case, might be made. In fact we can show that this is very far
from the truth:

Proposition 8 π1(A
1/k) is not topologically finitely generated.

Proof: It will be enough to exhibit a cover of A1/k with Galois group (Z/pZ)n for
all n, or equivalently, putting q = pn, to exhibit a cover with Galois group Fq. To
do this we introduce the Artin-Schreier isogeny: φq : A1/k → A1/k, x 7→ xq −x.
Due to the magic of characteristic p, this is a group homomorphism. Since
its differential is -1, which is an isomorphism on cotangent spaces, φq is etale.
Since k is algebraically closed, it is surjective, and it follows that it is finite
etale. Clearly the automorphism group of the cover is given by the kernel of φq,
which is Fq, qed.

Can we say anything in the direction of bounding the size of π1(A
1/k)? We

can: for C/k an affine curve, say the points at infinity are the points C − C,
i.e. those points at which we punctured the completed curve to get C. We
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can define the tame fundamental group π1(C)tame as the inverse limit over all
automorphisms of covers of the completed curve which are unramified over C
and tamely ramified at all points at infinity. Clearly π1(C)tame is a quotient of
the full π1(C). It is for this quotient that we recover the considerations of the
previous section:

Theorem 9 (Grothendieck) There exists a canonical specialization map sp :
π1(Cη)tame → π1(C/k)

tame which is a surjection. Moreover the map induced by
the specialization map on the prime-to-p quotients is an isomorphism:
π1(Cη)6p

∼
→ π1(C/k)

6p.

Applying this result in the case of the affine line, we see that the tame funda-
mental group is trivial, and indeed the maximal prime-to-p-quotient is trivial.
Note well that for a group G, it is a much weaker condition to say G6p = 1 than
to say G is a p-group. We analyze this a bit:

For any profinite group G, let p(G) be the subgroup generated by all the p-
Sylows of G, so p(G) is normal in G and G/p(G) = G6p. We say that G is
quasi-p if G = p(G), i.e. if G6p = 1. Obviously every p-group is quasi-p. The
converse is true for the class of groups with a normal p-Sylow, e.g. nilpotent
groups and especially for abelian groups. It is certainly not true in general that
quasi-p groups are p-groups: the symmetric group Sn is quasi-2 for all n (and
not a 2-group for n at least 3), and SLn(Fp) is quasi-p and not p for all p.

In the 1950s, Abhyankar conjectured the following, which in view of what we
seen, is the most ambitious possible claim.

Conjecture 10 (Abhyankar)

a) Any finite quasi-p group arises as a quotient of π1(A
1/k).

b) More generally, if C/k is an affine curve of genus g and n > 0 punctures, then
a finite group G arises as a quotient of π1(C/k) iff G6p has free rank ≤ 2g+n−1.

Abhyankar’s conjecture was proven in the case of the affine line by Raynaud
in 1993, and shortly thereafter in full generality by Harbater. Much use is made
of the techniques of rigid analytic geometry. It is also very important to remark
that the work of Raynaud/Harbater still does not “compute” π1(A

1/k) for us; it
only tells us what the finite quotients are. (By analogy, one can see after a first
algebra course that the cyclotomic extensions and their subfields exhibit abelian
extensions of Q with any prescribed finite abelian group as Galois group, but
this is much weaker than what we understand as classfield theory for Q.)

Having laid out the basic results, I’d like now to look at some special cases
of the conjecture, again in the A1/k case. Especially, there are interesting con-
nections with the classfield theory of the complete field k((t)).
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4 Digression on Witt vectors

The abelian case of Abhyankar’s conjecture is especially easy, since, as we re-
marked above, quasi-p-abelian groups are p-groups. We have already shown
how to realize (Z/pZ)n as a Galois covering group of the affine line. If we could
futher realize (Z/paZ)n for any a, then by basic Galois theory we will be able
to get every abelian p-group. This realization is done in a very elegant way
in Serre’s Groupes algebriques et corps de classes (and is taken from work of
Rosenlicht). We will just sketch the construction here as an advertisement for
the book. First, let Wa/Fp be the ring-scheme of Witt vectors of length a,
i.e. as a scheme Wa/Fp is just the a-fold product of the affine line, but has a
functorial addition and multiplication law given by “universal” polynomials. By
basechange, we can view Wa as being a commutative groupscheme over Fq, and
as such it has an Artin-Schreier isogeny φq : x 7→ Fr(x)− x, where Fr(x) is the
q-Frobenius map. As in the a = 1 case, φq gives exhibits Wa as a covering of
itself with Galois group equal to Wa(Fq), which as an additive group is isomor-
phic to (Z/paZ)n. Now Rosenlicht constructs a morphism of schemes (not of
groupschemes!) A1 → Wa; we can use this map to pullback the Artin-Schreier
covering to a covering Y → A1:

Y esWas, rφqA1eWa

To construct the morphism, we say that Wa is the generalized Jacobian of
P1 corresponding to the modulus m = m.[∞]. More plainly, there exists an
equivalence relation on the degree 0 divisor group of A1: we mod out

by principal divisors congruent to 1 modulo m.[∞] (i.e. by rational functions
f such that f − 1 vanishes to order at least m at ∞ (this is a quotient of local
unit groups at infinity, so should be reminiscent of local classfield theory!) One
then shows that this divisorclassgroup has a natural algebraic structure, and
that as an algebraic group it is isomorphic to Wa.

5 π1(A
1/k) depends on k

In this section we will exploit the etale cohomology of the Artin-Schreier map,
and as a result see that the fundamental group of the affine line depends upon
the particular algebraically closed field k chosen.

View φ : x 7→ xp − x as a morphism φ : Ga → Ga. We then have an exact
sequence of etale sheaves on Spec k:

0 −→ Fp −→ Ga
φ

−→ Ga −→ 0.

Basechanging to any X = SpecA an affine k-scheme and taking etale cohomol-
ogy, we get immediately

Theorem 11 We have H1
et(X,Fp) = Ker(φ : A → A), H1

et(X,Fp) = A
φA , and

Hq
et(X,Fp) = 0 for all q ≥ 2.
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Applying this with A = k[t], we get H1
et(A

1/k,Fp) = Hom(π1(A
1/k),Fp) =

k[t]
φk[t] . But we can give an additive section ψ : k[t]

φk[t] → k[t] of the quotient map

via the system of representatives ΣN>0,(N,p)=1aN t
N . In this way we see that

the cardinality of Hom(π1(A
1/k),Fp) is that of a countably infinite-dimensional

k-vector space, i.e. of k. To summarize, as we enlarge the cardinality of our
algebraically closed field k, we get a larger (infinite) cardinality even of Fp-covers
of the affine line.

6 Links with the Galois group of k((t))

We are going to outline a relationship between π1(A
1/k) and the absolute Galois

group GK , where K = k((1/t)) (∼= k((t))). En route to this we will see that
every finite p-group can be realized as a Galois covering group of the affine line
(which generalizes the considerations of Section 4).

Consider the map Ψ : SpecK → A1 given on rings as the evident inclusion
Ψ∗ : k[t] → k((1/t)). We remark that one can view this map as giving some
kind of formal basepoint at infinity (note, however, that it is actually the generic
point of A1/k which is the image of Ψ); we will not attempt (or need) to make
this notion precise.

Theorem 12 The map Ψ∗ induces an isomorphism

H1
et(A

1/k,Fp)
∼
−→ H1

et(SpecK,Fp).

Proof: By Theorem 11, we need only show that the inclusion of rings k[t] ↪→
k((1/t)) = k[t]⊕ t−1k[[t−1]] induces a bijection on the Artin-Schreier quotients.
Indeed, the Artin-Schreier map preserves the displayed direct sum decomposi-
tion, and since φ(t−1k[[t−1]]) coincides with the restriction tothe maximal ideal
of the etale endomorphism of the local ring k[[t−1]], by definition of etale we
must have φ(t−1k[[t−1]] = t−1k[[t−1]].

Proposition 13 ([Gille, p.220]) Let X/k be either a connected affine scheme
or a complete curve. Then

a)Hq(π1(X),Fp)
∼
−→ Hq

et(X,Fp) for all q .
b) cdp(π1(X)) = cdp(π1(X)(p)) ≤ 1, so in particular π1(X)(p) is a free pro-p-
group. We omit the proof, which is not so hard. Part a) comes down to the
Leray spectral sequence, and part b) uses facts about Galois cohomology of
pro-p-groups developed in Serre’s Cohomologie Galoisienne. In any event, we
therefore have a homomorphism

π1(Ψ)(p) : G
(p)
K → π1(A

1/k)(p)

between two free pro-p-groups which induces an isomorphism onH1(,Fp). Using
another result of Galois cohomology (which says, morally, thatH1(,Fp) is a good
cotangent space for free pro-p-groups), we may conclude
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Theorem 14 π1(Ψ)(p) : G
(p)
K → π1(A

1/k)(p) is an isomorphism.

If we consider the exact sequence

1 → Ip → GK → lim
←−(N,p)=1

µNk → 1

, Ip being the wild intertia, we see that GK is in one sense larger than π1(A
1/k),

namely it has nontrivial prime-to-p-quotients. On the other hand, every quo-
tient of GK has a normal p-Sylow, whereas this is not the case for π1(A

1/k).

Remark: As one might suspect, one can indentify GK with a certain quotient
of π(Gm/k), namely those covers f : Y → Gm such that
a) the pullback by some Kummer map

f ◦ [N ] : Y → Gm
t7→tN

→ Gm

is unramified at 0, and hence can be viewed as a cover of A1;
b) such that Aut(f) has a normal p-Sylow.
For the proof, see [Gille, Le groupe fondamental sauvage d’une courbe affine].
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