
ON SOME ELEMENTARY INVARIANTS OF FIELDS

PETE L. CLARK

1. Field Invariants

In this chapter we wish to review a number of classical properties and invariants
of fields, and to discuss their elementary (or non-elementary) nature. Actually, we
wish to distinguish between two notions of elementary properties of fields. The
first, and weaker notion, is that of a property P of fields (in the usual, wide sense
of non-formalized mathematics) such that whenever a field F has the property P ,
so does any other field F ′ which is elementarily equivalent to F . The second, and
stronger notion, is that of a proprerty P of fields which can be given by a sentence
φ in the language of rings. We call the first property simply elementary, or an
elementary invariant, and the second property finitely axiomatizable. By way of
explanation, observe that if P is an elementary property, then it can be axiomatized
– it is equivalent to a possibly infinite union of first-order sentences φ – indeed the
definition of an elementary property ensures that the collection of sentences true
in every field having property P is well-defined, and this is the axiomatization. If
the axioms are themselves equivalent to a finite list, they are equivalent to a single
sentence φ – this justifies our terminology.

It is very much in the spririt of the talks presented at the Winter School to distin-
guish between elementary properties and finitely axiomatizable properties. Indeed,
a property is elementary if and only if it is preserved by passage to ultrapowers,
whereas a property is finitely axiomatizable if and only if it is preserved by passage
to ultraproducts. We will see many examples (some very familiar) of elementary
properties that are not finitely axiomatizable below.

A word about the “geometric interpretation of elementary equivalence”: as noted
by Pop, the condition that two fields F1, F2 are elementarily equivalent can be
viewed as a sort correspondence between Diophantine problems over one field and
Diophantine problems over the other. But we should be careful: this is not literally
true in the sense Pop presented in his lecture notes.1 By definition, two fields are
elementarily equivalent if for all sentences φ (i.e., no free variables) in the language
of fields, φ holds in one field if and only if it holds in the other. The point is
that, since the sentences φ will have quantifiers (and no free variables!), there is
no corresponding geometric object Sφ existing as a subset of Zn. Moreover, it is
certainly not enough to check that for every constructible2 subset S ⊂ Zn, S(F1)
is nonempty if and only if S(F2) is nonempty; we need quantifiers. For example,

1Some discussion of this point took place at Professor McCallum’s dining room table.
2In the Zariski topology; recall that a constructible subset of a topological space is a finite

union of locally closed subspaces, or equivalently is an element of the Boolean algebra generated
by the closed subsets
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take F1 = C and F2 = C(t). Then any finite-type Z-scheme will have points over
F1 if and only if its fibre over Spec(Q) – a Q-algebraic set – is nonempty, and this
is exactly the same condition for it to have points over F2. On the other hand, the
sentence “For all b, c ∈ F , there exists x ∈ F such that x2 + bx+ c = 0” is true in
F1 but not in F2 (take b = 0, c = t) – note the use of quantification.

Remark: It is still true that every finite-type Z-scheme S gives rise to a “Boolean-
valued” elementary invariant of F , according to whether S(F ) is empty or not.
We refer to these invariants as absolute invariants. As above, when F contains an
algebraically closed field, we get no information from the absolute invariants, but
otherwise (e.g. when F is finitely generated) we do get some information; some par-
ticular examples of this will be discussed later, including an example of two finitely
generated fields which are not distinguished by any of their absolute invariants.

1.1. Finitude, characteristic, algebraic closure. Invariant 0: Finiteness/Infinitude
of F .

Because of the sentence “There exist 1 + . . . + 1 (q times) distinct elements of
F and there do not exist 1 + . . . + 1 (q + 1 times) distinct elements,” having q
elements is a finitely axiomatizable property of a field. It follows that finiteness
is an elementary property, being the infinite union of these sentences over all q.
On the other hand, finiteness itself is not finitely axiomatizable, as we can see by
considering the pseudofinite field associated to a nonprincipal ultrafilter D on the
prime numbers.

F∞(D) :=
∏

Fp/D.

(If finiteness were finitely axiomatizable, then F∞(D) would be finite, but then
it would be finite of some given cardinality p, which it isn’t, because at most one
of its factors has this property.)

Of course, the above argument is quite general: if ψi is an infinite collection of
sentences with the property that for all i there exists a structure Mi satisfying ψi

and the negation of ψj for all j 6= i, then
∨

i ψi is not finitely axiomatizable by
consideration of the ultraproduct ΠMi/D.3

Let us make one more comment before moving on to more interesting examples.
First of all, our Invariant 0 has classified finite fields up to isomorphism as well as
elementary equivalence – the complete theory of a finite field has a unique model.
It is worth remarking that the analogous statement is false for any infinite field,
and not just for cardinality reasons:

Proposition 1. The complete theory of any infinite field has at least two countable
models.

Reminder of proof: One knows that in a complete theory with a unique countable
model (an “ω-categorical theory”), the algebraic closure of any finite set is finite,

3This formulation makes especially clear that one use of ultraproducts is to hide appeals to
the compactness theorem.
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and indeed uniformly bounded: there exists a function f : Z+ → Z+ such that the
algebraic closure of an n-element set has at most f(n) elements [Marker, p. ???].
Applying this to an ω-categorical field, we see that there exists N = N(F ) such
that for all α ∈ F , the subfield generated by α has size at most N . But this means
that F ⊂ µN (F ), so that F has at most N elements.

Using a little more model theory, this result can be improved as follows.

Proposition 2. Any infinite field has infinitely many countable models.

A proof of this result was supplied at the author’s request by N. Ackerman; we give
his argument in the appendix.

Remark: The number of countable models of any theory over a countable lan-
guage is at most 2ℵ0 , so that the number of countable models I(T (F ),ℵ0) of any
infinite field F satisfies

ℵ0 ≤ I(T (F ),ℵ0) ≤ 2ℵ0 .

These inequalities are sharp: e.g. the lower bound is attained by an algebraically
closed field and the upper bound by a real-closed field. (We are not sufficiently set-
theoretically inclined to pursue here the question of whether, assuming the falsity
of the continuum hypothesis, I(T (F ),ℵ0) can take on a cardinality strictly between
ℵ0 and 2ℵ0 except to say: probably not.)

Note that the elementary equivalence class of the pseudofinite field F∞(D) de-
pends on the choice of the ultrafilter D! (We see again the basic difference between
ultraproducts and ultrapowers – it follows immediately from Los’ theorem that all
ultrapowers of a structure are elementarily equivalent to the structure.) For in-
stance, consider the sentence

“There exists x ∈ F such that x2 + 1 = 0.”

This is true in the field Fp iff p = 2 or p is one modulo 4 – i.e., on an infinite,
coinfinite subset of P , the set of prime numbers. Indeed, inside the Stone-Cech
compactification of P both the collection of D’s for which this statement is true in
F∞(D) and the the set of D’s for which it’s false, are nonempty open subsets.

Exercise: As D varies through the 22ℵ0

elements of SC(P), how many elemen-
tarily inequivalent fields F∞(D) arise?

Invariant 1: The characteristic.

The discussion is exactly as above: having a given positive characteristic p is finitely
axiomatizable, so having positive characteristic and having characteristic zero are
both elementary, but neither of these are finitely axiomatizable, as the example
F∞(D) makes clear.

Remark about absolute invariants: Let p ≥ 0 be a prime ideal of Spec Z, and
let Sp = Spec Fp ⊂ Spec Z be the subscheme given by the ideal p (so F0 = Q.)
Then Sp(F ) is the set of F -algebra homomorphisms from Fp ⊗Z F to F ; this is
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the empty set unless F has characteristic p. Thus the characteristic of a field is an
absolute invariant, and, knowing the characteristic, we can reduce the study of all
absolute invariants to the the study of finite-type schemes over the prime subfield
of F .

Invariant 2: Whether F is algebraically closed.

Again, being algebraically closed is elementary but the obvious axiom scheme can-
not be made finite. For instance, this can be seen as follows: for each prime p, let
Fp be a perfect field whose absolute Galois group is a nontrivial pro-p-group. Then
∏

Fp/D is algebraically closed.4

Coming back to the question of classification up to elementary equivalence versus
classification up to isomorphism, recall that algebraically closed fields are classified
up to isomorphism by their characteristic and their absolute transcendence degree.
In particular, ACFp is uncountably categorical, so by Vaught’s test it is complete.
(Of course, the “better” proof is to deduce the completeness from quantifier elimi-
nation!) Thus we have found enough invariants to classify algebraically closed fields
up to equivalence, and again the relation between equivalence and isomorphism is
quite easy – the extra invariant needed is the transcendence degree.

1.2. Pseudoalgebraic closure. Invariant 3: Whether F is PAC.

Recall that a field F is said to be pseudo-algebraically closed (PAC) if every ab-
solutely irreducible variety V/F has an F -rational point. This is an elementary
invariant: to see this easily, we use the result of Frey-Geyer ([?]), which says that
it suffices to check that every absolutely irreducible plane curve C/F has an F -
rational point. The point is that it is elementary to say whether a plane curve of
degree d is irreducible, and if it has degree d then geometrically it can break up
into at most d components, so that if it is absolutely reducible, it becomes so after
a degree d field extension. We will see later on that finite field extensions can be
interpreted in F ; the conclusion is that “Every absolutely irreducible degree d plane
curve has an F -rational point” is given by a sentence in the language of rings. As
usual, the PAC property, being the union over d of all these sentences, is not finitely
axiomatizable, and again the pseudofinite field F∞(D) gives the counterexample:
no finite field is PAC (it is very easy to construct a hyperelliptic curve over a finite
field without rational points), but the Riemann hypothesis for curves over finite
fieldsd implies that for fixed d, absolutely irreducible plane curves of degree d have
rational points whenever the cardinality of F is sufficiently large.

I’m certainly no expert on the matter, but my impression is that while much is
known about PAC fields ([?]), there are too many of them to classify even up to
elementary equivalence: for each projective profinite group G, there is a PAC field
F with Galois group GF = G. Morever, there will be many different PAC fields
with Galois group G – indeed, in the (simplest!) case G = Ẑ, we already saw that
there are infinitely many PAC fields F∞(D) with this Galois group.

4Although we shall not mention it again in these notes, it is important that the obvious axiom
scheme for algebraically closed fields, although infinite, is recursive, an important point for the
decidability of the theory ACFp of algebraically closed fields of characteristic p.
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1.3. The Hilbert property. Invariant 4: Whether F is Hilbertian.

The property which from the perspective of [?] is somehow dual to PAC, namely,
Hilbertianity of F , is also elementary. To see this, we use the geometric characteri-
zation in terms of thin sets from [?]. Namely F is not Hilbertian if F = A1(F ) can
be written as a finite union F = S1 ∪ . . . ∪ Sn, where Si = φi(Ci(F )), φi : Ci → Ai

is a morphism of degree at least 2 from an irreducible affine curve.

Some examples of non/Hilbertian fields: A finite field is not Hilbertian; nor is
an algebriacally closed field. Any field for which there exists n such that the set of
nth power classes F ∗/F ∗n is finite is not Hilbertian – so no locally compact field is
Hilbertian. A fundamental property of a Hilbertian field is that any finite group G
arising as a Galois group of F (T ) also arises as a Galois group of infinitely many dis-
joint field extensions Ki/F . Since it is conjectured that for any field F , every finite
group arises as a Galois group of F (T ), it is also conjectured that every finite group
arises infinitely many times as a Galois group over every Hilbertian field.5 A num-
ber field is Hilbertian (Hilbert’s theorem!); for any field F , F (T ) and F ((T1, T2))
are Hilbertian; and finitely generated extensions of Hilbertian fields are Hilbertian
[?]. In particular, all absolutely finitely generated fields of characteristic zero and
all infinite finitely generated fields of characteristic p are Hilbertian. We mention
in passing a surprising connection between the seemingly antithetical properties of
Hilbertianity and pseudo-algebraic closure: with probability 1, the fixed field of the
subgroup generated by n randomly chosen elements of the absolute Galois group
of a Hilbertian field is PAC [?]. In terms of our attempt to classify fields up to
elementary equivalence, the Hilbert property gives us only the following (rather
weak) conclusion:

Fact: If F ∼ F (T ), then F is Hilbertian.

1.4. The Ci property. One says that a field K has the property Ci(d) if every
homogeneous form of degree d in more than di variables has a (not identically zero)
solution. This is visibly finitely axiomatizable. So the property Ci, which is by de-
finition Ci(d) for all d, is clearly elementary. This is a key property in the context
of elementary equivalence of function fields, so let us review some examples and
facts:

Fact: A field is C0 if and only if it is algebraically closed.

Fact (Chevalley-Warning): A finite field is C1.

Fact (Lang): A complete local field with algebraically closed residue field is C1.

Fact: If F is Ci, F ((t)) is Ci+1.

Fact (Tsen-Lang): If F is Ci and K/F has transcendence degree n, then K is Ci+n.

Fact (CITE!!): If F is not Ci−1, F (T ) is not Ci.

5One knows at least that every finite solvable group arises over F (T ); for similar partial results,
see [?].
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This last fact shows that the transcendence degree of a finitely generated func-
tion field over an algebraically closed field is an elementary invariant. We will give
another proof of this using Brauer groups.

Example: The property C2 is not finitely axiomatizable, as the theorem of Ax-
Kochen shows: there is a nonprincipal ultrafilter D on P such that

∏

Qp/D ∼=
∏

Fp((t))/D.

For all d and p each field Fp((t)) is C2(d), so the right hand side is C2(d) for all d,
hence C2. Terjanian showed that no Qp is C2, so if C2 were given by a sentence,
the left hand side would not be C2, contradiction.

Exercise: Show that for all i > 0, Ci is not finitely axiomatizable.

1.5. Finite-dimensional F -algebras. We now wish to explore a constellation of
elementary invariants arising from interpreting finite-dimensional algebras in F .
Recall that we say an algebraic structure is interpretable in F if we can realize the
set as a definable (with constants!) subset of Fn for some n in such a way that the
functions, relations, etc. on the structure are also definable with respect to F .

In particular, any finite dimensional F -algebra A can be interpreted in F ; if it
has dimension n we need n3 “structure constants” for A to define the multiplica-
tion map: let A = Fv1 ⊕ . . . Fvn and put

(Σaivi) · (Σbjvj) := ΣkΣiΣjaibjc
ij
k vk.

The following properties of a finite-dimensional algebra A are finitely axiomatiz-
able:
a) A has a unit.
b) A is associative.
c) A is commutative.
d) The center of A is Fv1 = F1.
e) A is a division algebra.
f) A is isomorphic to the matrix algebra Mn(F ).
g) AutF−alg(A) is a (particular!) finite group G.

All of these are clearly elementary statements, except possibly for the last: if we
can interpret A we can interpret EndF (A) = M[A:F ](A), the algebra of F -vector
space endomorphisms of A. We can then write down the conditions for an element
φ ∈ EndF (A) to preserve the algebra structure and to be invertible, so if we have
finitely many of them we can explicitly write down that under composition they
form a group isomorphic to some given group G.

Absolute algebraic invariants: Since the notion of interpretation allows constants,
the class of finite-dimensional algebras that we can speak of individually is that
class which arises by base change from the algebraic closure of the prime subfield
(because, being finite-dimensional, they must therefore arise by basechange from a
finite field extension of the prime subfield). For example, we can speak individually
of the finite field extensions of the prime subfield of F , and from this we deduce



ON SOME ELEMENTARY INVARIANTS OF FIELDS 7

that the asbsolute subfield F = f ∩ F is an elementary invariant. This is an
example of one of our absolute invariants.

We can’t speak of other F -algebras individually, but by quantifying over them
we can make many statements about the non/existence of finite dimensional F -
algebras satisfying certain properties.

Galois groups: For instance, the above work shows that for any finite group G,
the statement “There exists a finite Galois extension of F with Galois group G”
can be given by a sentence in the language of fields. With just a little more work us-
ing properties of tensor products of field extensions (exercise!), one can say “There
exist n linearly disjoint Galois extensions K1, . . . ,Kn over F with Galois group G.”
Because of this, we can attach to the elementary equivalence class of a field F the
data of a multiplicity function

mF = mGF
: G → {0, 1, . . . ,∞},

where G is the set of isomorphism classes of finite groups – to each finite group G,
mF (G) is the number of Galois extensions of F with Galois group G, or ∞ if there
are infinitely many.

A good question to ask at this point is: can we extract further elementary in-
formation from GF besides the multiplicity function mF ? The answer depends
upon “the size” of GF . Recall that a profinite group G is said to be small if it
only has finitely many subgroups of any given finite index. Having small absolute
Galois group is an elementary invariant – indeed it is equivalent to all the multi-
plicities being finite (and the fact that there are “only” finitely many isomorphism
classes of groups of fixed order n). We leave for the reader the proof of the following

Fact: If m : G → {0, 1, . . .} (no ∞!) is a small multiplicity function, there ex-
ists at most one isomorphism class of profinite group G with m = mG.

So if GF is small, it is itself an elementary invariant. Disappointingly, the converse
is also true: if mF (G) = ∞, then for all cardinals κ, there exists an elementar-
ily equivalent field which has at least κ+ disjoint extensions with Galois group G.
(The proof is straightforward for those who are comfortable with saturated models:
realizing G as a transitive subgroup of some symmetric group Sn, by realizing a
certain n-type over a cardinality κ subset, one sees that any κ+-saturated model
will do.)

The number of elementary equivalence classes of fields with GF isomorphic to a
fixed G will in general be large – we saw this before with the many inequivalent
fiels F∞(D), all with Galois group Ẑ. (There are many more inequivalent fields
with this Galois group and characteristic zero, e.g. the non-PAC field C((t)).) In
fact the class of fields which are determined up to elementary equivalence by their
absolute Galois group has been determined by F.V. Kuhlmann, who finds, apart
from the classical example of real-closed fields and certain p-adically closed fields
(among them the abelian extensions K/Qp) there are only three possible further
families of such fields.
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If we restrict to finitely generated fields, however, then it is a celebrated result
of Pop that GF

∼= GF ′ =⇒ F ∼= F ′ – this is the so-called zero-dimensional case
of “Grothendieck’s anabelian dream.” Thus the absolute Galois group of a finitely
generate field “has enough information” to determine the field; we just need to
extract that information in an elementary way!

Notice that our multiplicity function is useless for any Hilbertian field: if the in-
verse Galois problem has an affirmative solution, the multiplicity function on any
Hilbertian field will be identically ∞-valued!

Brauer group invariants: Recall that the Brauer group of a field classifies finite-
dimensional central simple F -algebras up to equivalence: every such algebra A is
isomorphic to Mn(D), a matrix algebra over a division algebra, and A ∼ A′ if
D ∼ D′. Recall also that the Brauer group of a finite field vanishes, whereas the
Brauer group of a number field is calculated by the Hasse principle:

0 → Br(K) →
⊕

v

Br(Kv)
Σ
→ Q/Z → 0

where the middle sum extends over the places of K, and the Brauer group of the
completion Kv is Q/Z, Z/2Z or 0 according to whether v is a finite place, a real
Archimedean place, or a complex Archimedean place.

Say that K is a field of characteristic zero. There is a natural (basechange) map

ϕ : Br(Q) → Br(K)

induced by A 7→ A⊗QK. Since finite-dimensional algebras over Q can be spoken of
in absolute terms, the kernel of ϕ is an elementary invariant; we call it the absolute
Brauer kernel.

In fact this is an example of what we called above an absolute geometric invariant.
Associated to every element of D ∈ Br(Q) we have a Severi-Brauer variety VD/Q,
with the property that for any field K of characteristic zero, [D⊗K] = 0 ∈ Br(K)
iff VD(K) 6= ∅. Thus the absolute Brauer kernel is obtained by checking whether
each Severi-Brauer variety over Q has a K-rational point.

In fact we can do the same thing with Q replaced by any number field k. As
an application, let K/k be a finitely generated field of characteristic zero with
absolute subfield k, so that K = k(V ) can be viewed as the function field of a
smooth projective absolutely irreducible k-variety V . The Brauer kernel then has
an interpretation via the exact sequence

0 → Pic(V ) → Pic(V/k)(k)
α
→ Br(k) → Br(V ),

where the map α gives the obstruction to a rational divisor class being represented
by a k-rational divisor. Since the map Br(k) → Br(K) factors through Br(V ), the
existence of a nontrivial element of the absolute Brauer kernel is equivalent to the
existence of a k-rational divisor class on V not represented by a k-rational divisor.
We conclude that this (admittedly somewhat abstruse) geometric property is an
elementary invariant of K.
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As an application of the absolute Brauer kernel, we can distinguish Severi-Brauer
varieties of the same dimension from each other: indeed, it is a fundamental result
of Amitsur that if K = k(VD) is the function field of the Severi-Brauer variety D,
the absolute Brauer kernel is the cyclic subgroup generated by [D]. It follows that
if K ∼ K ′ are the function fields of two Severi-Brauer varieties of the same dimen-
sion 〈[D]〉 = 〈[D′]〉. Amitsur conjectured that whenever two Brauer group elements
generate the same cyclic subfield of the Brauer group, their function fields are iso-
morphic, and he proved this in case the division algebras in quiestion are cyclic.
Since one knows that all division algebras over global fields are cyclic (Hasse-Brauer-
Noether theorem), this completes the proof.

1.6. Transitional invariants. In this section we axiomatize (in the informal sense!)
a kind of field invariant which “changes properly” under finitely generated field ex-
tensions. A model of the sort of behavior we have in mind is the Ci property for a
field: namely if k is a Ci field and K/k is a field extension of transcendence degree
r, then K is Ci+r. This leads us to the following

Definition: A transitional field invariant is an assignment

i : Fields → {0, 1, 2, . . . ,∞}

with the following properties (we interpret the relations≤ and + on the set {0, 1, 2, . . .∞}
in the most obvious way):
• If L/K is an algebraic field extension, then i(L) ≤ i(K).
• If L/K is a field extension of transcendence degree n, then i(L) ≤ i(K) + n.

A transitional field invariant is strict if whenever K/F is a finitely generated field
extension of transcendence degree n such that i(F ) <∞, then i(K) = i(F ) + n.

If i is any transitional field invariant, then we define its virtualization vi to be
vi(F ) := min[K:F ]<∞ i(K). If i is strict, then so is vi.

Analogously, we say that a {0, 1, . . . ,∞}-valued field invariant is local if when-
ever K is a complete field with residue field F we have i(K) ≤ i(F ) + 1; it is
equicharacteristic local if we have i(F ((t))) ≤ i(F ) + 1. Finally, it is strict if
we have equality when i(F ) <∞.

The theme of this section is the search for a strict transitional invariant i which
is elementary and which is finite on a large class of fields (especially, on finitely
generated fields). The existence of this implies that the transcendence degree is an
elementary invariant among finitely generated fields. We will see several examples
of elementary invariants which are conjecturally strictly transitional and strictly
transitional invariants which are conjecturally elementary. In the end it is the
Milnor conjecture which provides us with an invariant which has all the desirable
properties.

Example 0: The trivial example of a strict transitional invariant is the absolute
transcendence degree. But it is not elementary (nor is it local, for that matter).

Example 1: The “Tsen-Lang invariant” TL : F 7→ the least i such that F is a
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Ci field is elementary strict transitional. It is moreover equicharacteristic local
(but not local!). So, as we’ve seen above, TL allows us to conclude that transcen-
dence degree is an elementary invariant among function fields over e.g. algebraically
closed fields and finite fields. The problem is that being Ci for any i is too strong
a property: vTL(Qp) = vTL(Q) = ∞.

Example 2: The p-cohomological dimension. Let cdp(F ) be the p-cohomological
dimension of GF : this is the unique i such that for all discrete p-primary torsion
GF -modules M and all n > 0, Hi+n(GF ,M) = 0 and Hi(GF ,M) 6= 0 for some
M . For simplicity, we stay away from the case when p equals the characteristic of
F . Under this hypothesis, one finds in [?] that cdp (and hence also vcdp) is strict
transitional and strict local. Moreover, it has very appealing finiteness properties:

• cdp(F ) = 0 iff F is p-closed6

• For all p, cdp(Fq) = 1.
• For all p, `, cdp(Ql) = 2.
• cd2(R) = ∞, but vcd2(R) = 0.
• If F is a global field, cdp(F ) = 2 unless p = 2 and F is formally real, in which
case cd2(F ) = ∞. But for every global field, vcdp(F ) = 2.

This brings us to the following

Question 3. Is cdp an elementary invariant?

Observe that if any invariant is elementary, so is its virtualization. So if the answer
to this question is yes, then we can detect transcendence degree over an enormous
variety of fields. Here are some results in this direction:

Having cdp(F ) = 0 is elementary. (Because admitting a degree p field extension
can be seen from the “Galois invariant” of the previous section.)

Having cdp(F ) = 1 is elementary. Indeed, one knows that having cdp(F ) = 1
is equivalent to the vanishing of the p-component of the Brauer group of all finite
extensions of F ; see [?]. We have seen that this latter property is elementary.

Exercise: Show that if F contains p pth roots of unity, the property of Br(F )[p∞] =
0 is finitely axiomatizable. (Hint: use Merkurjev’s Theorem that Br(F )[p∞] is gen-
erated by cyclic algebras.) Is the property cdp(F ) ≤ 1 finitely axiomatizable?

One defines cd(F ) as the supremum over cdp(F ) for all p. So if cdp is elemen-
tary for all primes p then so is cd, but not necessarily conversely. One knows that
the property of having cohomological dimension 2 is elementary: this is a conse-
quence of a deep theorem of Suslin, which says that cohomological dimension at
most 2 is equivalent to the property that for all finite extensions l/k and all finite
central division algebras D/l, the reduced norm map N : D → l is surjective. We
leave it as an exercise to the reader who is familiar with this material to show that
this latter statement is elementary.

6That is, there does not exist a finite field extension K/F of degree divisible by p.
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I know of no similar (even conjectural) characterizations of having p-cohomological
dimension at most 3 that would give us a truly good reason for believing its general
elementary nature, although I will admit that in my heart I am convinced by the
assembled evidence together with the following remarkable fact.

Proposition 4. Because the Milnor Conjecture holds, cd2 is an elementary invari-
ant.

Proof: The particular form of the Milnor Conjecture we want is (as found on p.
12 of Pop’s notes) that, for any field F of characteristic different from two, the
correspondence

en : In(F )/In+1(F ) → Hn(F,Z/2Z)

induced at the level of Pfister forms by

(1, a1) ⊗ . . .⊗ (1, an) → χ−a1
∪ . . . ∪ χ−an

is an isomorphism. Here the left hand side is tensor (Kronecker) product of n di-
agonalized binary quadratic forms, and the χ−ai

in the right hand side denotes the
image of −ai ∈ F×/F×2 under the Kummer isomorphism F×/F×2 → H1(F, µ2) =
H1(F,Z/2Z). Since one knows that the p-cohomological dimension can be com-
puted using the Galois module Z/pZ [CG, p. ??], it follows that the 2-cohomological
dimension of any field k (not of characteristic 2) is the largest integer n such that
there exists an anisotropic n-fold Pfister form. But, the statement “There exists an
n-fold anisotropic Pfister form” (for a particular value of n) is evidently a sentence
in the language of fields, completing the proof.

1.7. More Brauer invariants. In this section, we work with an unspecified prime
p which we assume not to be the characteristic of any of the fields under discussion.

The Milnor conjecture implies that the transcendence degree is an elementary in-
variant among function fields over a field k with (v)cd2(k) < ∞. Here we want to
present a conjecture about Brauer groups that implies the same result for any odd
prime p.

Further Brauer invariants: Define the period of a central division algebra D/K
to be the order of its class in Br(K) – more concretely, it is the least positive a

such that D⊗a ∼= Mn(K). Also we define the index of D/K just to be
√

[D : K].
One knows that for any division algebra D over any field K, the period divides the
index and the two quantities have the same prime factors. For any given prime
p and positive integer a, the following can easily be made into a sentence in the
language of fields:

Ψ(p, a) := “There exists a K-central division algebra of period p and index pa.”

It is probable that these sentences should distinguish between function fields of
differing transcendence degrees over a very general class of base fields k, as we will
now explain. We begin with the following result:

Proposition 5. Let k be a field with the property that for some prime p, there
exists an absolute bound on i on the indices of all elements of prime order in the
Brauer group of all finite extensions of k. Then k is not elementarily equivalent to
any finitely generated regular field extension of positive transcendence degree.
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Seeking a contradiction, suppose K/k is a finitely generated field extension of pos-
itive transcendence degree with K ∼ k. Because the hypotheses are stable upon
finite base extension of k, we may assume that k contains the pth roots of unity
and that K admits a corresponding smooth projective variety V/k with a k-rational
point, so that the map Br(k) → Br(K) is injective. By hypothesis, there is a k-
central division algebra D of period p and index pi but none of period p and index
pi+1. We will produce a central division algebra D′/K of period p and index pi+1,
exhibiting the inequivalence of k and K. First consider the pushforward of D to
K – we get a “constant” Azumaya algebra, which by our above base extension we
have ensured is still division. Observe that there exist plenty of cyclic p extensions
L/K such that DL remains a division algebra – indeed take any p-extension ex-
cept a basechange of k. The property of their existing a period p index pi division
algebra and a cyclic p-extension which does not reduce its index is elementary –
since it’s true in K, it must therefore also be true of some division algebra (which
we continue to denote D) over k. Now consider the following result from [?]:

Proposition 6. Let k′/k be a cyclic p-extension with generator σ and A/k a central
simple algebra. Write Ak′ , Ak(t), Ak((t)) for the base changes of A to k′, k(t) and
k((t)) respectively. Then the following are equivalent:
a) A0 := Ak′ is a division algebra.
b) A1 := Ak(t) ⊗k(t) (k′(t)/k(t), σ, t) is a divison algebra.
c) A2 := Ak((t)) ⊗k((t)) (k′((t))/k((t)), σ, t) is a division algebra.

Choose a finite map V → Pn such that in the associated coordinate system (t1, . . . , tn)
the assumed k-rational point on V lies over the origin in Pn. By an iterated appli-
cation of the propostion, we can build a division algebra Dn/k(t1, . . . , tn) of period
p and index pi+n. Looking at part c) of the proposition, we see that Dn remains a
division algebra even locally around the origin, so that its pullback to V remains a
division algebra even locally around P , hence is a division algebra.

The question of course, is when the hypotheses of Proposition 5 are satisfied. Con-
sider the following conjecture.

Conjecture 7. (Period-index conjecture for Brauer groups) Let k be a field of
characteristic different from p with cdp(k) = d.
a) If [D] ∈ Br(k)[p], then the index of D divides pd−1.
b) Assume that there exists a positive integer a such that for all finite field exten-
sions l/k, all elements [D] ∈ Br(l)[p] have index dividing pa. Then if K/k is a
field extension of transcendence degree one, all elements D ∈ Br(K)[p] have index
dividing pa+1.

Proposition 5 and Conjecture 7 imply that for any p, fields of differing transcen-
dence degrees over a field of finite (virtual) p-cohomological dimension are elemen-
tarily inequivalent.

I am afraid that the evidence for Conjecture 7 is thus far rather meager. Part
a) holds rather trivially for fields of p-cohomological dimension at most one. It is
classically known to hold for local and global fields; it is known for p = 2 and p = 3
for C2-fields [Artin];
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2. Definability of the constant field

In this chapter, the phrase “K/k is a function field” means that K is a finitely
generated regular field extension – i.e., k is algebraically closed in K. In the course
of studying the eevip in the geometric case (Pop’s Theorem B) one encounters the
following problem (which moreover has independent interest).

Question 8. (Definability problem) For which fields k is it the case that k is de-
finable in every function field K/k?

Let us recall the results on this problem which were presented by Pop and his
students at the Winter School: the affirmative answer is obvious in the case k = Fq,
since we can take the predicate

P (x) : xq−1 = 1.

Consider next the geometric case: k is algebraically closed. The definability of k in
a one variable function field is shown in [?]. In his Inventiones paper, Pop shows
how the case of an arbitrary function field reduces to the one-variable case by means
of a simple geometric lemma. As part of the student presentation at the Winter
School, it was shown that Question 4 also has an affirmative answer when k = R

or Qp.

On the other hand, the problem is completely open for k = Q (and equally well
for any finitely generated field of characteristic zero) – indeed, as far as I know we
have no reason to believe that the answer is yes.

The purpose of this Chapter is to give some perspective on the definability
problem and the techniques used by Pop et. al. in the algebraically closed case.
Let us recall the basic idea of the proof: let K = k(C) be the function field of a
curve over an algebraically closed field. Then C has some genus g, and by Riemann-
Hurwitz does not contain as a subfield any (one-dimensional!) function field K ′ =
k(C′) of a curve of strictly greater genus. So let {Cn/k} be a sequence of curves
such that g(Cn) → ∞; choose a plane model Pn(x, y) for Cn. Consider the subset
of K = k(C) defined by the predicate

Ψn(x) : ∃yPn(x, y) = 0.

Because k is algebraically closed, Ψn(x) certainly holds for all x ∈ k. On the other
hand, if it holds for a transcendental element x, then the corresponding y induces
an embedding

k(x, y) = k(Cn) ↪→ k(C)

i.e., a finite map C → Cn. It follows that for n� 0, Ψn defines k in K.

We can abstract this strategy as follows: Suppose k is a field such that for all
n there exist
• a curve Cn of genus at least n, and
• a morphism ϕn : Cn → P1 such that the map on k-rational points
Cn(k) → k∪{∞} is surjective. Then k is definable in every one-variable function
field K = k(C) by the corresponding predicate Ψn(x) for all n > g(C). We can
now ask:

Question 9. For which fields k will this strategy succeed? That is, over which fields
can we define curves of arbitrarily large genus with the bulleted properties?
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Note that the property certainly implies that there exist curves over k of arbitrarily
large genus with infinitely many k-rational points, so by Faltings’ theorem, no num-
ber field has this property. But this is much too much to invoke. Indeed, directly
from the definition, no Hilbertian field can satisfy this property for any curve Cn

of genus at least 1, so in particular this strategy will succeed for no infinite, finitely
generated field.

Indeed, the fact that the definition of the Hilbert property prevents a weaker phe-
nomenon from occurring suggests a slightly different strategy (which fails by design
for Hilbertian fields). Namely, suppose that for each n, there exists a finite set of
curves {Cn,i}N

i=1, each of genus at least n, together with maps ϕn,i : Cn,i → P1

which are jointly surjective: k ∪ {∞} =
⋃

i ϕn,i(k). Then the predicate

Ψn(x) = Ψn,1(x) ∨ . . . ∨ Ψn,N(x)

will still define k in k(C) for all n� 0.

Remark: In more geometric language, we have allowed ourselves to work with
suitable reducible curves.

Here is a class of fields for which our refined strategy will easily succeed.

Definition: Say a field k is anti-Hilbertian if for some integer a > 1, the group of
ath power classes k×/k×a is finite.

Examples: A field k with small absolute Galois groupGk is a fortiori anti-Hilbertian.
So in particular finite fields, algebraically closed fields, and locally compact fields
of characteristic zero are anti-Hilbertian. But also the locally compact fields of
positive characteristic – namely Fq((t)) – are anti-Hilbertian (take any a prime to
q).

Non-examples: To be sure, a Hilbertian field is not anti-Hilbertian. There are
fields which are neither Hilbertian nor anti-Hilbertian, e.g. Q((t)) (since no com-
plete field is Hilbertian; see [?, p. 181].)

We are now ready for the main result of this chapter.

Proposition 10. An anti-Hilbertian field is definable (with parameters) in every
function field K/k.

Proof: Let α1, . . . , αN be a set of representatives for the ath power classes in k.
For all positive integers n, let Pn(x) be a monic polynomial of degree 2n+ 2 with
distinct roots, which is defined over the algebraic closure of the absolute subfield of
k, and for 1 ≤ i ≤ N , take

Cn,i : αiy
a = Pn(x).

Then each Cn,i defines a curve whose smooth proper model has genus at least n,
so by the above discussion the predicate Ψn(x) holds precisely for x ∈ k.

Remark: Following standard model-theoretic terminology, “definable” means “de-
finable with parameters”; in this case the parameters are the ath power classes
α1, . . . , αN . This dependence on the parameters can be eliminated (at least) in the



ON SOME ELEMENTARY INVARIANTS OF FIELDS 15

following cases: when k× = k×a (in particular when k is algebraically closed), and
(more generally) when the natural map k×abs/k

×a
abs → k×/k×a is surjective, where

kabs is the absolute subfield. This latter condition holds in the following cases: a
locally compact field of characteristic zero (or direct limit of such, e.g. Qp); an
arbitrary algebraic extension of a finite field; “almost every” algebraic extension of
Q with finitely generated absolute Galois group. It does not hold in the case of
k = Fq((t)).

Example of a nondefinable field of constants: let k = C({ti}∞i=1). Then k is not

definable (even) with parameters in k(t),. We use “Galois theory”: if a subset S of
a structure M is A-definable for some finite parameter set A, then every automor-
phism of the ambient structure M which fixes A pointwise must stabilize S. From
this the nondefinability follows almost immediately.


