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I wish to describe the foundations and some basic aspects of the theory of factoriza-
tion in integral domains. The issue of uniqueness of factorization is the beginning
of a systematic study of number theory, and it also plays a key role in the study
of hypersurfaces and divisors in algebraic geometry. Moreover, the subject has a
richness which makes its study inherently rewarding.

Nevertheless I know of no satisfactory treatment of factorization in any text writ-
ten for a general mathematical audience. While teaching an undergraduate/basic
graduate number theory course, I wrote up some notes on factorization. The temp-
tation to do the subject justice caused the notes to expand to their present form.

My goals are as follows: first to present a more comprehensive (and thus overall
more elementary) discussion than has previously appeared in the literature. Sec-
ond, I wish to highlight connections to number theory and (more briefly) algebraic
geometry. Third, I wish to emphasize the recurrent role of two (related) phenomena
in the theory: the consideration of norm functions of various sorts and the use of
order-theoretic concepts, especially well-ordered sets.

Classical Roots – The Fundamental theorem of Arithmetic

The study of factorization in rings has its roots in elementary number theory and
is thus impressively ancient, going back at least to Euclid of Alexandria (circa 300
BCE). The inspiration for the entire theory is the Fundamental Theorem of
Arithmetic, which can be stated in two parts as follows:

(FTA1) For all integers n > 1, n may be written as a product of prime num-
bers: n = p1 · · · pr (we say “n admits a prime factorization”).
(FTA2) For all integers n > 1, the factorization of n into primes is essentially
unique: that is, if

n = p1 · · · pr = q1 · · · qs,
then r = s and after reordering the terms of the product we have pi = qi for all i.

(FTA1) is quite easy to prove, provided we have in our arsenal some form of math-
ematical induction. One gets an especially clean proof by using the well-ordering
principle. Let S be the set of integers n > 1 which do not have at least one prime
factorization. We wish to show that S is empty so, seeking a contradiction, sup-
pose not. Then by well-ordering S has a least element, say N . If N is prime, then
we have found a prime factorization, so suppose it is not prime: that is, we may
write N = N1N2 with 1 < N1, N2 < N . Thus N1 and N2 are too small to lie in
S so each have prime factorizations, say N1 = p1 · · · pr, N2 = q1 · · · qs, and then
N = p1 · · · prq1 · · · qs gives a prime factorization of N , contradiction!

We generally attribute the Fundamental Theorem of Arithmetic to Euclid, although
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neither statement nor proof appears in his Elements. Why? Because his Elements
contains the following result, now called Euclid’s Lemma.

Theorem. ([Euc, Prop. VII.30]) Let p be a prime number and let a and b be
positive integers. If p | ab, then p | a or p | b.

Let us recall briefly how Euclid proved Euclid’s Lemma. Given two positive integers
a and b, he gives an (efficient!) algorithm to compute the greatest common divisor
of a and b: repeated division with remainder. The steps of this Euclidean Algo-
rithm can easily be reversed to show that the greatest common divisor gcd(a, b)
of a and b may be expressed as an integral linear combination of them: that is, it
gives an effective proof of the following result.

Proposition. Let a and b be positive integers. Then there exist x, y ∈ Z such that

gcd(a, b) = xa+ yb.

Now suppose that a prime p divides ab and that p - a. Then 1 = gcd(a, p), so
applying the Proposition with p = b gives integers x and y such that 1 = xa+ yp.
Multiplying through by b we get b = xab + ypb. Since p | ab it divides both xab
and ypb and thus divides b. This completes Euclid’s proof of Euclid’s Lemma.

Of course an immediate induction argument gives a generalized form of Euclid’s
Lemma: if a prime p divides a product a1 · · · an, then p | ai for at least one i.

The point is that, now that we have disposed of (FTA1), (FTA) is formally equiv-
alent to Euclid’s Lemma. More precisely:

Assume (FTA), and let p, a, b be positive integers with p prime, such that p | ab.
Thus we may write pc = ab. Write out prime factorizations a = p1 · · · pr, b =
q1 · · · qs, c = v1 · · · vt and substitute:

pv1 · · · vt = p1 · · · prq1 · · · qs.
Now we have two prime factorizations for the same integer, so we must have that
qj = p for some j or vk = p for some k, and thus p | a or p | b.

Conversely, assume (FTA1) and Euclid’s Lemma. We wish to show (FTA2). Again,
this can be done very cleanly using well-ordering: assume that the set S of integers
n ≥ 2 which admit more than one factorization into primes is nonempty, and let N
be the least element:

N = p1 · · · pr = q1 · · · qs.
Now p1 | q1 · · · qs, so by Euclid’s Lemma p1 | qj for at least one j. Since p1 and
qj are both primes, this implies p1 = qj . Dividing through, we get two different

expressions of N
p1

as a product of primes. By the minimality of N , these two fac-

torizations must be the same, and therefore the prime factorizations of N , which
are obtained just by multiplying both sides by p1 = qj , must have been the same,
contradiction.

Since the ancient Greeks did not have mathematical induction in any form, (FTA1)
would have been difficult for them to prove. But they probably regarded it as obvi-
ous. Thus it seems fair to say that Euclid proved the “hard part” of (FTA). That
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(FTA2) lies much deeper than (FTA1) will become increasingly clear as our general
study of factorization in integral domains gets properly underway.

I expect that the preceding arguments are familiar to you. In fact, I’m count-
ing on it. In the body of this article, we will study implications among various
factorization properties of abstract integral domains. To a remarkable degree, the
material of this section provides a blueprint for the general case, in particular for
the following implications (all terms will be defined in due course):

Euclidean domain =⇒ Factorization Domain.

Euclidean domain =⇒ Principal Ideal Domain =⇒ Bézout domain =⇒ GCD-
domain =⇒ Euclid’s Lemma Domain (EL Domain).

Factorization Domain + EL Domain ⇐⇒ Unique Factorization Domain.

It is worth asking: are there other ways to prove FTA? The answer is a resounding
yes. Indeed, in the early 20th century, direct proofs of FTA were found by Linde-
mann [Li33] and Zermelo [Z34]. Their proofs are rather similar, so we speak of the
Lindemann-Zermelo argument.1 Here it is:

We claim that the factorization of a positive integer is unique. Assume not; then the
set of positive integers which have at least two different standard form factorizations
is nonempty, so has a least element, say N , where:

(1) N = p1 · · · pr = q1 · · · qs.
Here the pi’s and qj ’s are prime numbers, not necessarily distinct from each other.
However, we must have p1 6= qj for any j. Indeed, if we had such an equality, then
we could cancel and, by an inductive argument we have already rehearsed, reduce
to a situation in which the factorization must be unique. In particular p1 6= q1.
Without loss of generality, assume p1 < q1. Then, if we subtract p1q2 · · · qs from
both sides of (1), we get

(2) M := N − p1q2 · · · qs = p1(p2 · · · pr − q2 · · · qs) = (q1 − p1)(q2 · · · qs).
By the assumed minimality of N , the prime factorization of M must be unique.
However, (2) gives two different factorizations of M , and we can use these to get a
contradiction. Specifically, M = p1(p2 · · · pr − q2 · · · qs) shows that p1 | M . There-
fore, when we factor M = (q1 − p1)(q2 · · · qs) into primes, at least one of the prime
factors must be p1. But q2, . . . , qj are already primes which are different from p1,
so the only way we could get a p1 factor is if p1 | (q1− p1). But this implies p1 | q1,
and since q1 is also prime this implies p1 = q1. Contradiction!

One may also give a direct inductive proof of Euclid’s Lemma: see e.g. [Ro63].

Here is yet another proof of (FTA2). Let n = p1 · · · pr be a prime factorization

1In an earlier draft, I attributed this result to Hasse, Lindemann and Zermelo because of

[Has28], which predates [Li33] and [Z34]. However, [Z10, p. 575] contains a valuable discussion of
the history of this result, explaining that it was known to Zermelo in 1912 and passed from him

to Hensel to Hasse. Lindemann’s work seems to be independent of Zermelo’s.
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of n. Using this factorization we can build a composition series for Z/nZ whose
successive quotients are Z/piZ. Therefore, if we have two different factorizations

n = p1 · · · pr = q1 · · · qs
we may apply the Jordan-Hölder theorem [Lan02, Thm. I.3.5] to conclude that the
multisets of composition factors agree, which means precisely that the factorization
is unique up to the ordering of the factors.

Basic Terminology

Let R be an integral domain. An element x ∈ R is a unit if there exists y ∈ R such
that xy = 1. The set of units of R forms a group under multiplication, denoted R×.

We say a nonzero, nonunit element x of R is irreducible if x has only trivial
factorizations: that is, if x = yz, then one of y or z is a unit.2 (Note that it cannot
be the case that both y and z are units, for then x would itself be a unit.)

Example 0.1: The irreducible elements of Z are ±p, where p is a prime number.3

Example 0.2: In Q, or in any field, there are no irreducible elements, because
every nonzero element is a unit.

Let a be any nonzero nonunit in an integral domain R. An irreducible fac-
torization (or just a factorization) of a is an expression

a = x1 · · ·xn,

where each xi is irreducible. In other words, a factorization is an expression of a
nonzero nonunit as a product of irreducible elements.

1. Norm functions

An interesting link between number theory and algebra is afforded by the study
of “norm functions” on rings, namely on functions N : R → N. Many rings of
number-theoretic interest – e.g, the ring ZK of integers in any number field K
– come endowed with natural norm functions. On the other hand, many abstract
algebraic properties of commutative rings turn out to be equivalent to the existence
of a norm function with various properties.

1.1. Weak multiplicative norms and multiplicative norms.

We say a function N : R→ N is a weak multiplicative norm if it satisfies:

(MN1) N(0) = 0, N(R \ {0}) ⊂ Z+; and
(MN2) For all x, y ∈ R, N(xy) = N(x)N(y).

Proposition 1. Let N : R → N be a weak multiplicative norm on the ring R.
Then for any unit a ∈ R, N(a) = 1.

2The term atom is preferred by most contemporary factorization theorists.
3The reader may be wondering why we don’t simply call irreducible elements “primes”. The

important but subtle answer is given in §3.3.
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Proof. We have N(1) = N(1 · 1) = N(1) ·N(1), and since N(1) 6= 0,4 we must have
N(1) = 1. Similarly, if a is a unit, there exists b ∈ R such that ab = 1 and then
1 = N(1) = N(ab) = N(a)N(b), which implies N(a) = N(b) = 1. �

For any ring R, define N0 : R→ N by N0(0) = 0, N0(R \ {0}) = 1.

We say that a weak multiplicative norm N : R → N is a multiplicative norm if
it satisfies the converse of Proposition 1, i.e.,

(MN3) x ∈ R, N(x) = 1 =⇒ x ∈ R×.

Proposition 2. Let R be a commutative ring.
a) R is an integral domain iff N0 is a weak multiplicative norm.
b) If R admits any weak multiplicative norm, it is an integral domain.
c) The map N0 is a multiplicative norm on R iff R is a field, in which case it is
the unique weak multiplicative norm on R.

The proof is straightforward and we leave it to the reader.

1.2. Abstract number rings.

One of the themes of this article is the phenomenon that factorization properties of
commutative rings are implied by the existence of a multiplicative norm satisfying
certain additional properties. Along with this we consider the inverse problem: do
certain structural properties of rings imply the existence of certain kinds of norms?
If so, can one use these properties to construct a canonical norm? In this section
we consider an important class of rings in which the answer is yes.

Consider the following condition (“finite norms”) on a commutative ring R:

(FN) For all nonzero ideals I of R, #R/I <∞.

For a ring R satisfying (FN), we can define an ideal norm function: ||(0)|| := 0
and for any I 6= (0), ||I|| = #R/I. This gives rise to a norm function on elements in
the above sense simply by defining N(a) = N((a)), i.e., as the norm of the principal
ideal (a) = {ra | r ∈ R}.

Lemma 3. Let 0 6= I ⊂ J be ideals in a ring R which satisfies (FN). If ||I|| = ||J ||,
then I = J .

The proof is immediate.

Lemma 4. Let R be a ring satisfying (FN), and let N ∈ Z+. There are only
finitely many nonzero ideals of R of norm equal to N .

Proof. Choose any N + 1 distinct elements x1, . . . , xN+1 of R, and let

S = {xi − xj | i 6= j}.
Then S is a finite set consisting of nonzero elements of R, say y1, . . . , yM . For each
1 ≤ i ≤M by Lemma 3 there are only finitely many ideals I of R containing yi, so
overall the set of all ideals containing some element of S is finite. But if I is any
ideal of norm N , then I ∩ S is nonempty by the pigeonhole principle. �

4Here we use that 1 6= 0 in R.
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Proposition 5. For a ring R satisfying (FN), exactly one of the following holds:
(i) N(R) = {0, 1}. Then R is a field, and N is a multiplicative norm.
(ii) {0, 1} ( N(R) and N(R) is finite. Then R is a finite ring which is not a
domain, and N is not a weak multiplicative norm.
(iii) {0, 1} ( N(R) and N(R) is infinite. Then R is an infinite integral domain
which is not a field, and N is a multiplicative norm.

Proof. Step 0: Since 0 6= 1, we always have {0, 1} ⊂ N(R). Moreover, N(x) =
1 ⇐⇒ xR = R ⇐⇒ x ∈ R×, so N is a weak multiplicative norm on R iff it is
a multiplicative norm. If R is a field, then by Proposition we have N(R) = {0, 1}.
Henceforth we assume that R is not a field.
Step 1: We claim that if R is not an integral domain, then R is a finite ring. Indeed,
let 0 6= a be a zero divisor, so I = {r ∈ R | ra = 0} is a nonzero ideal of R. Consider
the map a• : R → R, r 7→ ar; this is an endomorphism of the underlying additive
group (R,+). The image of a• is the principal ideal aR and its kernel is I, so

R/I ∼= aR.

By hypothesis, R/I is finite, so aR is finite. Moreover, since aR is a nonzero ideal
of R, R/aR is finite. But we have a short exact sequence

0→ aR→ R→ R/aR,

which shows that R itself is finite.
Step 2: If R is finite, then N(R) is finite, and there exist x, y ∈ R \ {0} such that
xy = 0. In particular 0 = N(xy) 6= N(x)N(y), so N is not weakly multiplicative.
Step 3: We claim that if R is an infinite domain which is not a field, then N(R)
is infinite. Indeed, in such a ring R, there exists a ∈ R which is neither zero nor
a unit. Then for all n ∈ Z+, (an+1) ( (an) – otherwise an+1 | an, so that there
exists x ∈ R with an+1x = an, or an(ax− 1) = 0 so a = 0 or a ∈ R×. By Lemma
3, we have N(a) < N(a2) < . . ..
Step 4: We claim that if R is a domain then N is a multiplicative norm. For this
it is enough to verify (MN2) for x, y 6= 0. Consider the quotient homomorphism
R/(xy) → R/(x). This map is surjective, and its kernel is (x)/(xy). Moreover,
since y is not a zero divisor, multiplication by y gives an isomorphism of R-modules
ϕy : R→ yR. Since ϕy(xR) = xyR, passing to the quotient gives R/x ∼= yR/xyR,
and this shows N(xy) = N(x)N(y). �

An abstract number ring is an infinite ring satisfying (FN) which is not a field.

Proposition 6. Let R be a domain with additive group isomorphic to Zd for some
d ∈ Z+. Then R is an abstract number ring.

Proof. Since (R,+) ∼= Zd, for every n ∈ Z+, the multiplication by n map is injective
on R. In particular n · 1 6= 0, so R has chracteristic 0. If R were a field, (R,+)
would contain the additive group of the rational field Q, which would therefore have
to be finitely generated as an abelian group. It isn’t, so R is not a field.

It remains to show that R has the finite norm property. Since every nonzero
ideal contains a nonzero principal ideal, it is enough to verify that for all 0 6= α ∈
R, R/(α) is finite. Now the elements 1, α, α2, . . . , αn, . . . cannot all be linearly
independent over Z, so choose the least positive integer n such that there exist
integers a0, . . . , an, not all 0, with anα

n + . . . + a1α + a0 = 0. If a0 = 0, then
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since R is a domain and α 6= 0, we could divide through to get a linear dependence
relation of smaller degree. So a0 6= 0. Rewriting the equation as

(3) −a0 = α(anα
n−1 + . . .+ a1),

we see that the ideal αR contains the nonzero integer a0. We have a quotient
map R/a0R → R/αR. As an abelian group, R/a0R ∼= Zd/a0Zd ∼= (Z/a0Z)d. In
particular it is finite, hence so is its homomorphic image R/αR. �

Let R be a domain which is additively isomorphic to Zd. We claim that its fraction
field K is a degree d field extension of Q (so in particular, K is a number field).
Indeed, for α ∈ R, rewriting (3) as

1

α
=
−(anα

n−1 + . . .+ a1)

a0

shows that to form the fraction field of R we need only adjoin inverses of the nonzero
integers. In other words, the natural map R⊗Z Q→ K is an isomorphism.

One says that R is an order in the number field K. In this case, the canonical
norm N we have constructed on R is nothing else than the absolute value of the
field norm from K down to Q, restricted to R. We leave the proof of this as an
exercise for the reader with number-theoretic interests.

Other examples of abstract number rings include: the coordinate ring of an in-
tegral affine curve over a finite field, a DVR with finite residue field, and any ring
in between an abstract number ring and its fraction field [LeMo72, Thm. 2.3]. In
particular, the integral closure of an abstract number ring in its fraction field is
an integrally closed abstract number ring. The integral closure of an order R in
a number field K is called the ring of integers of K and will be denoted here
by ZK . To a very large extent, classical algebraic number theory is the study of
properties of the domains ZK , especially their factorization properties.

1.3. Dirichlet rings.

We shall give an application of Proposition 1.2 to show that a ring is a domain.

Let R be a ring. The Dirichlet ring DR is a ring whose elements are the functions
f : Z+ → R. We define addition pointwise, i.e.,

(f + g)(n) := f(n) + g(n),

whereas multiplication is given by the convolution product

(f ∗ g)(n) =
∑

d1d2=n

f(d1)g(d2).

When R = R or C, this is often called the ring of arithmetic functions.

Theorem 7. A ring R is an integral domain iff DR is an integral domain.

Proof. The map R ↪→ DR which sends r to the function which carries 1 to r
and every other positive integer to 0 embeds R as a subring of DR. So if DR is
a domain, certainly R is. Conversely, by Proposition 1.2 it suffices to construct
a weak multiplicative norm function on DR. The function N which sends the 0
function to 0 and any other function f to the least n such that f(n) 6= 0 is easily
checked to be a weak multiplicative norm. �
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Remark 1.1: Let R be a domain. Then the weak multiplicative norm N constructed
on DR above is a multiplicative norm if and only if R is a field.

The Dirichlet ring DC is often called the ring of arithmetic functions.

2. Factorization domains

Let us say that a domain R is a factorization domain (for short, FD) if every
nonzero nonunit element has a factorization into irreducibles.5

Example 2.1: A field is trivially a FD: it has no nonzero nonunits.

Example 2.2: Part a) of the fundamental theorem of arithmetic asserts that Z
is a FD. The proof was an easy “minimal counterexample” argument.

In practice, most domains encountered in algebra and number theory are factor-
ization domains. We justify this statement by giving two sufficient conditions for a
domain to be a FD, each of which is widely applicable.

The idea behind the first condition is extremely simple: factorization ought to
be a process of decomposing more complex objects into simpler ones. If to every
nonzero element a of R we can assign a positive integer “complexity” C(a) such
that in any nontrivial factorization a = bc – i.e., with b and c nonunits – we have
1 ≤ C(b), C(c) < C(a) – then factorizations lower the complexity so that eventu-
ally the process must terminate.

In particular any multiplicative norm on R satisfies this key property, so:

Proposition 8. A ring admitting a multiplicative norm is a factorization domain.

Proof. We need only adapt the inductive proof of (FTA1). Indeed, let N be a
multiplicative norm on the ring R. Suppose for a contradiction that the set S of
nonzero nonunits in R which do not admit irreducible factorizations is nonempty.
Then there exists x ∈ S with N(x) minimal. Such an x is not irreducible, so it can
be factored as x = yz, with both y, z nonunits. Then N(x) = N(y)N(z) ∈ Z+ and
N(y), N(z) > 1, so that N(y), N(z) < N(x). But y and z, having smaller norms
than x, each have irreducible factorizations, say y = y1 · · · yr and z = z1 · · · zs.
Then x = y1 · · · yrz1 · · · zs is an irreducible factorization of x, contradiction. �

Now for the second condition. In a domain R, we an element a properly divides
an element b if b = xa and x is not a unit. This condition is equivalent to a | b
but b - a and also to (a) ) (b). A domain R satisfies the ascending chain condi-
tion on principal ideals (henceforth ACCP) if there does not exist an infinite
sequence of elements {ai}∞i=1 of R such that for all i, ai+1 properly divides ai.

Example 2.3: The integers satisfy ACCP: indeed if the integer a properly divides
the integer b, then |a| < |b|, so an infinite sequence of proper divisors would, again,
contradict the well-ordering of the natural numbers.

5The term atomic domain is used by specialists in the area, but is not so familiar to a general
mathematical audience. Our chosen terminology seems more transparent.
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Notice that the second condition is more general than the first, i.e., any ring R
which admits a multiplicative norm satisfies ACCP.: if a properly divides b, N(a)
properly divides N(b) and hence 0 ≤ N(a) < N(b).

Proposition 9. For a commutative ring R, the following are equivalent:
(i) There are no ascending sequences (a1) ( (a2) ( . . . of principal ideals in R.
(ii) Any nonempty set F of principal ideals of R has a maximal element. In other
words, there exists a principal ideal I ∈ F which is not properly contained in any
other principal ideal in F .
(iii) There is no sequence {ai}∞i=1 in R with ai+1 properly dividing ai for all i ≥ 1.

The argument of (i) ⇐⇒ (ii) comes up many times in this subject, so for efficiency
of future use we isolate it in a more abstract form.6

Lemma 10. Let (S,≤) be a partially ordered set. The following are equivalent:
(i) There are no infinite sequences

(4) s1 < s2 < . . . < sn < . . .

of elements in S.
(ii) Any nonempty subset F of S has a maximal element, i.e., there exists x ∈ F
such that if y ∈ F and x ≤ y then y = x.

Proof. It is easier (and, of course, sufficient) to prove that (i) fails iff (ii) fails.
Indeed, if (i) fails, then there exists an infinite sequence as in (4) above, and then
F = {si}∞i=1 is a nonempty subset of S without a maximal element. Conversely, if
(ii) fails, let F be a nonempty subset of S without maximal elements. Since it is
nonempty, there exists s1 ∈ F . Since s1 is not maximal, there exists s2 ∈ F with
s1 < s2. Continuing in this way, we build an infinite sequence as in (4). �

Proof of Proposition 9: We see that (i) ⇐⇒ (ii) by applying Lemma 10 to the
partially ordered set of principal ideals of R, with (a) ≤ (b) iff (a) ⊂ (b). (i) ⇐⇒
(iii): an infinite sequence {ai}∞i=1 with ai+1 properly dividing ai yields a strictly
ascending sequence of principal ideals (a1) ( (a2) ( . . ., and conversely. �

Proposition 11. A principal ideal domain satisfies ACCP.

Proof. Let R be a principal ideal domain, and suppose for a contradiction that
there exists a sequence {ai}∞i=1 in R such that (a1) ( (a2) ( . . .. Put I =

⋃∞
i=1(ai).

By assumption I is principal, say I = (a). One the one hand we have (a) ⊃ (ai) for
all i, but on the other hand, the element a must lie in (aN ) for some N and hence
also aN+k for all k ≥ 0. We conclude that (aN ) = (aN+1) = . . ., contradiction. �

Proposition 12. An integral domain satisfying ACCP is a factorization domain.

First Proof : Let S′ be the set of all nonzero nonunit elements of R which cannot be
factored into irreducibles. Assume, for a contradiction, that S′ is nonempty. Then
the corresponding set

S = {(x) | x ∈ S′}

6The following argument uses “Dependent Choice”, a mild form of the Axiom of Choice (AC).

However, AC is equivalent to the assertion that every nonzero ring has a maximal ideal, a ubiqui-
tously used fact of commutative algebra. Thus in commutative algebra it is standard to assume

AC, so no more comments in that direction here.
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of principal ideals generated by elements of S′ is also nonempty. By ACCP and
Remark 1, there exists a maximal element (x) of S. Now just follow your nose:
by definition of x, it is not irreducible, so can be written as x = yz with y and
z nonunits. This means that the principal ideals (y) and (z) each strictly con-
tain the principal ideal (x), so by the assumed maximality of (x), both y and z
can be factored into irreducibles: y = y1 · · · yr, z = z1 · · · zs, so (as usual!) we get
x = y1 · · · yrz1 · · · zs so x has an irreducible factorization after all, contradiction. �

Second Proof : We take a more direct approach. Let x be a nonzero nonunit ele-
ment. We claim first that there exists a divisor y of x such that y is irreducible.
Certainly this holds if x is irreducible, so assume that x = y1z1 with both y and
z1 properly dividing x. If y1 is irreducible again our claim holds, so assume that
y1 = y2z2 with y2 strictly dividing y1, and thus x = y2z1z2 with (x) ( (y1) ( (y2).
Continuing in this way – i.e., replacing yn by yn+1zn+1 with yn+1, zn+1 properly
dividing yn if yn is irreducible – we would get an infinite strictly ascending chain
(y1) ( (y2) ( . . . of principal ideals, contrary to our assumption. So this cannot be
the case, i.e., for some n, yn is an irreducible divisor of x.

We have shown that any nonzero nonunit, reducible element x of R can be “par-
tially factored”, i.e., written as x = a1y1 with a1 irreducible and y1 a nonzero
nonunit. If y is irreducible, we have completely factored x; if not, the claim applies
to y, giving x = a1a2y2 with (y2) ( (y1). Now we argue as above: if this process
never terminated, we would produce a strictly ascending sequence (y1) ( (y2) ( . . .
contradicting ACCP. So for some n we must have x = a1 · · · anyn with yn ∈ R×,
and thus x = a1 · · · an−1(ynan) is an irreducible factorization of x. �

Third proof : We will show a stronger statement. Namely, if we have a partial
factorization x = a1 · · · an – i.e., each ai is a nonunit but not necessarily irre-
ducible, then we define an elementary move to be the selection of an(y) index i
such that ai is reducible and the replacement of ai in the product by b1b2, where
a = b1b2 and b1 and b2 are nonunits. In the preceding proof, we showed that there
always exists a sequence of elementary moves which terminates in an irreducible
factorization – indeed, this is equivalent to the existence of an irreducible factor-
ization! But now consider the stronger condition that any sequence of elementary
factorizations eventually terminates. This clearly implies ACCP. We now show the
converse: let R be an ACCP domain. A sequence of elementary moves defines a
rooted binary tree, and thus an infinite such sequence yields an infinite binary tree.
But by König’s Infinity Lemma [Kö36], an infinite connected graph in which each
vertex has finite degree must admit an infinite path, which gives rise to an infinite
strictly ascending chain of principal ideals, contradiction! �

3. A deeper look at factorization domains

3.1. A non-factorization domain.

The ring Z of all algebraic integers is not a factorization domain. In fact, Z is in
sense as far from a factorization domain as possible: it has many nonzero nonunit
elements, but no irreducible elements!7 We briefly sketch an argument for this:
first, there exist nonzero nonunit elements of the ring, for instance the element 2.

7Such rings are known to experts as antimatter domains: they have no atoms.
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Its multiplicative inverse in the fraction field Q (of all algebraic numbers) is 1
2 ,

and 1
2 is not an algebraic integer. Second, we claim that there are no irreducible

elements in Z. Namely, if x is any nonzero nonunit algebraic integer, then one can
check that

√
x is also a nonzero nonunit algebraic integer and x =

√
x
√
x.

Remark 3.1: It follows from the material of the previous section that any domain
which is not a factorization domain is a ring which admits a weak multiplicative
norm (e.g. the trivial norm N0) but no multiplicative norm. Thus Z gives a specific
example of such a domain. In fact the above argument gives more: because the only
positive integer which is an nth power for all n is 1, the only weak multiplicative
norm on Z is the trivial norm N0.

More generally, if R is any domain which is not a field and for which there ex-
ists n > 1 such that the nth power map x 7→ xn is surjective, then R has nonzero
nonunits but no irreducible elements, so is not a factorization domain.

3.2. FD versus ACCP.

Is every factorization domain an ACCP domain? In 1968, the distinguished al-
gebraist P.M. Cohn claimed an affirmative answer [Coh68, Prop. 1.1], however
without giving any proof. In 1974 Anne Grams showed that no such proof was
possible.

Theorem 13. There exist factorization domains which do not satisfy ACCP.

Proof. See [Gr74]. �

3.3. ACC versus ACCP.

Many students of ring theory are less familiar with ACCP than with the following:

Proposition 14. For a ring R, the following conditions are equivalent:
(i) Every nonempty set S of ideals of R has a maximal element, i.e., an element
I ∈ S such that I is not properly contained in any other ideal J of S.
(ii) (ACC) In any infinite sequence of ideals

I1 ⊆ I2 ⊆ . . . ⊆ In ⊆ . . .
we have equality from some point onward: there exists N ∈ Z+ such that for all
k ≥ 0, IN+k = In.
(iii) Every ideal I of R is finitely generated: there exist finitely many elements
x1, . . . , xn in R such that

I = 〈x1, . . . , xn〉 = {r1x1 + . . .+ rnxn | ri ∈ R}.
A ring satisfying these equivalent properties is caled Noetherian.

Proof. (i) ⇐⇒ (ii): For any nonempty family F of subsets of a given set R, the
condition that that any infinite sequence I1 ⊂ I2 ⊂ . . . of elements of F is equivalent
to the condition that every nonempty subset of F has a maximal element: if (i)
does not hold, then there exists a sequence I1 ( I2 ( I3 ( . . ., and then {In}∞n=1

has no maximal element. Conversely, if (ii) does not hold, then there exists I1 ∈ F ;
since I1 is not maximal, so there exists I2 ∈ F such that I2 ) I1, since I2 is not
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maximal, there exists I3 ∈ F such that I3 ) I2: continuing in this way, we build
an infinite strictly ascending chain.
(ii) =⇒ (iii): If there exists an ideal I which is not finitely generated, then for
any x1 ∈ I, I1 := 〈x1〉 ( I. Since I1 is finitely generated and I is not, there exists
x2 ∈ I \ I1. Put I2 = 〈x1, x2〉, so I2 ⊂ I. Again, because I is not finitely generated,
there exists x3 ∈ I \I2. In this way we construct an infinite strictly ascending chain
I1 ( I2 ( I3 ( . . ., contradicting (ii).
(iii) =⇒ (ii): Let I1 ⊆ I2 ⊆ . . . be an infinite sequence of ideals. Then the union
I :=

⋃∞
i=1 Ii is again an ideal. By assumption, I is finitely generated, so there exist

x1, . . . , xn ∈ R with I = 〈x1, . . . , xn〉. But since I is the union of the Ii’s, for each
1 ≤ i ≤ n, there exists ki ∈ Z+ such that xi ∈ Iki . Put k = max(k1, . . . , kn); then
x1, . . . , xn are all in Ik, so I = Ik, which forces Ik = Ik+1 = . . . = I. �

Proposition 15. A principal ideal domain is a Noetherian domain.

Proof. This is an immediate consequence of the definitions: a PID is a domain in
which each ideal can be generated by a single element, whereas a Noetherian ring
is one in which each ideal can be generated by finitely many elements. �

Noetherianity is justly regarded as the single most important condition on a ring.
This esteem comes in part from the large class of Noetherian rings:

Theorem 16. Let R be a Noetherian ring.
a) If I is any ideal of R, then the quotient R/I is Noetherian.
b) The polynomial ring R[t] is Noetherian.
c) The formal power series ring R[[t]] is Noetherian.

Proof. Part a) follows immediately from the inclusion preserving correspondence
between ideals of R/I and ideals of R containing I, whereas part b) is the celebrated
Hilbert basis theorem: see e.g. [AM69, Cor. 7.6] or [Lan02, Thm IV.4.1]. Part
c) is a variant of the Hilbert basis theorem; see e.g. [Mat89, Thm. 3.3]. �

Unlike ACC, the condition ACCP does not in general pass to quotient rings (even
quotient domains). Indeed, it will follow from Theorem 29 that a polynomial ring
Z[t] := Z[(ti)i∈J ] in any set J of indeterminates is an ACCP domain. But every
commutative ring is isomorphic to a quotient of some ring Z[t].

On the other hand, the analogue of Theorem 16b) for ACCP does hold:

Theorem 17. R be an ACCP domain. Then:
a) The polynomial ring R[t] is an ACCP domain.
b) The formal power series ring R[[t]] is an ACCP domain.

Proof. a) In an infinite ascending chain (Pi) of principal ideals of R[t], deg(Pi)
is a descending chain of non-negative integers, so eventually stabilizes. Therefore
for sufficiently large n, we have Pn = anPn+1, where an ∈ R and (an+1) ⊃ (an).
Since R satisfies (ACCP) we have (an) = (an+1) for sufficiently large n, whence
(Pn) = (Pn+1) for sufficiently large n: R[t] satisfies (ACCP).
b) The proof of part a) goes through so long as we make the following modification:
we replace the degree of the polynomial Pi by the order of vanishing of the formal
power series Pi: explicitly, if P =

∑∞
n=N ant

n with aN 6= 0, then ordP = N . �



14 PETE L. CLARK

In the important paper [AAZ90], the following question is asked: if R is a factoriza-
tion domain, must R[t] be a factorization domain as well? A negative answer was
given by M. Roitman [Roi93]. Note that this, together with Theorem 17, certainly
implies Theorem 13, and gives a hint that the property of being a factorization
domain is, by itself, not worth very much.

4. Unique factorization domains

4.1. Associates, Prin(R) and G(R).

In order to give a definition of a unique factorization domain, we must specify
when two different factorizations of the same nonzero nonunit x are to be regarded
as “equivalent.” In the case of factorizations of positive integers into prime num-
bers, we only had to worry about the ordering of the irreducible factors. Of course
we still wish to regard two factorizations into irreducibles differing only in the order
of the factors as equivalent, but there is more to say. For instance, in Z we have

18 = 2 · 3 · 3 = (2) · (−3) · (−3),

and several other choices for the sign besides. The correct generalization of this to
an arbitrary domain comes from the following observation: if x is an irreducible
element of R and u is a unit of R, then ux is also an irreducible element of R.
Similarly, by multiplying by units we can get many different equivalent-looking
factorizations, e.g.

a = x1 · · ·xr = (ux1) · · · (uxr−1) · (u1−rxr).

Thus we need a relation between elements which regards two elements as equivalent
iff they differ multiplicatively by a unit. In fact this is itself a well-defined relation:
its properties are recorded below.

Proposition 18. Let R be a domain, and let x, y ∈ R. The following are equivalent:
(i) x | y and y | x.
(ii) There exists a unit u ∈ R× such that y = ux.
(iii) We have an equality of principal ideals (x) = (y).
If x and y satisfy any (hence all) of the conditions above, we say that x and y are
associates and write x ∼ y.

The proof amounts to unwinding the definitions. We leave it to the reader.

In modern mathematics, when one defines an equivalence relation ∼ on a structure
X it is often worthwhile to explicitly consider the natural map from X → X/ ∼
(i.e., from X to the set of ∼-equivalence classes of X) as being a “quotient map”
and to use it to define some structure on X/ ∼. In particular this is a fruitful
perspective to take for the relation of associates on a domain R.

It turns out to be best to omit the zero element; namely, define R• = R \ {0}:
this is a commutative monoid, with identity 1. Moreover the relation of asso-
ciate elements is compatible with the monoid structure on R•, in the sense that
x1 ∼ y1, x2 ∼ y2 =⇒ x1x2 ∼ y1y2. Thus there is a unique monoid structure on
the quotient R•/ ∼ which makes the quotient map

R• → R•/ ∼
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into a homomorphism of commutative monoids.

The quotient monoid R•/ ∼ may be identified with the monoid of principal ideals
of R under the usual product: (a)(b) = (ab). We thus denote it by Prin(R).

Here is another useful way to view Prin(R) which shows that it has additional
structure. Namely, consider divisibility as a relation on R•. It is reflexive and
transitive, but it (generally) fails to be anti-symmetric precisely because of the ex-
istence of nontrivial associate elements. Thus divisibility is a quasi-ordering on R•.
Given any quasi-ordered set (P,≺), there is a canonical way of making a partially
ordered set (S,≤) out of it: namely, we simply introduce the equivalence relation
x ∼ y if x ≺ y and y ≺ x, and take the quotient S = P/ ∼. Applying this to R•

gives Prin(R).

A commutative ring R is a domain iff the monoid R• is cancellative: that is,
if x, y, z ∈ R• are such that xz = yz, then x = y. One checks immediately that if R
is a domain, this implies that Prin(R) is cancellative as well. In general, every com-
mutative monoid M has a group completion, i.e., a group G(M) and a monoid
homomorphism M → G(M) which is universal for monoid maps from M into a
group. A commutative monoid M is cancellative iff the natural map M → G(M)
is injective. In this case, G(R) := G(Prin(R)) is simply K×/R×, where K is the
field of fractions of the domain R. This gives a third description of Prin(R): as
a submonoid of G(R) it is simply R•/R×. The group G(R) is usually called the
group of divisibility of R. The partial ordering on Prin(R) extends naturally to
a partial ordering on G(R): explicitly, for x, y ∈ K×, x ≤ y ⇐⇒ y

x ∈ R
•.

Any property of R which is phrased only in terms of divisibility of elements can
be faithfully described in the monoid Prin(R). This includes units, irreducible ele-
ments, and the conditions FD and ACCP as well as many to come.

Example: A domain R is a field iff G(R) is trivial.

One implication of this is that one can study factorization at the level of can-
cellative commutative monoids. This is not a thread that we shall pursue here,
although it has certainly been pursued by others in the literature. Our interest is
rather as follows: sometimes a property is most cleanly and naturally phrased in
terms of the factorization monoid or group.

4.2. Valuation rings.

We wish to introduce a class of rings for which consideration of the group of divis-
ibility G(R) is especially fruitful.

A domain R is a valuation ring if G(R) is a totally ordered abelian group. This
is easily seen to be equivalent to the more usual condition that for any x ∈ K×,
at least one of x, x−1 lies in R•. But it is in many respects more graceful. For
instance, it follows immediately from Lemma 10 that a valuation ring is an ACCP
domain iff Prin(R) is well-ordered.
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Theorem 19. Let (Γ,+) be a nontrivial totally ordered commutative group such
that Γ+ := {x ∈ Γ | x ≥ 0} is well-ordered. Then Γ is isomorphic to Z.

Proof. A totally ordered commutative group is Archimedean if for all x, y > 0,
there exists n ∈ Z+ such that nx > y. A classical theorem of Hölder [Hö01] asserts
that every Archimedean totally ordered group is order isomorphic to a subgroup
of (R,+). Now let Γ ⊂ R be a nontrivial well-ordered subgroup. If Γ is discrete,
it is generated by its least positive element, so is isomorphic to Z. If not, 0 is an
accumulation point of Γ, so there exists an infinite strictly decreasing sequence of
positive elements of Γ, so Γ+ is not well-ordered.

If Γ is non-Archimedean, choose x, y > 0 such that for all n ∈ Z+, nx < y. Then
{y − nx}n∈Z+ is an infinite strictly descending chain in Γ+. �

Thus any valuation ring R with noncyclic G(R) is not an ACCP domain. But
indeed such rings are remarkably plentiful, as the following two results show.

Theorem 20. (Levi [Le43]) A commutative group Γ admits a total ordering iff it
is torsionfree, i.e., has no nontrivial elements of finite order.

Moreover, let Γ be any totally ordered commutative group, and let k be any field.
Define R = k((Γ)) to be the ring of k-valued formal series a =

∑
g∈Γ agt

g such

that the set {g ∈ Γ | ag 6= 0} is well-ordered. An element of R is called a Malcev-
Neumann series [Mal48] [Ne49]. It is not hard to show that as a partially ordered
group, G(R) ∼= Γ.

4.3. Unique factorization domains.

Finally, we can give the key definition. An integral domain R is a unique factor-
ization domain (UFD)8 if:

(UFD1) = (FD) Every nonzero nonunit admits an irreducible factorization; and

(UFD2) If a = x1 · · ·xr = y1 · · · ys are two irreducible factorizations of a, then
r = s, and there exists a permutation σ of {1, . . . , r} such that for all 1 ≤ i ≤ r,
xi ∼ yσ(i). That is, after reordering the elements we can pair off each irreducible
in the first factorization with an associate irreducible in the second factorization.

Notice that – up to the very minor need to introduce associate elements to dis-
cuss unique factorization of possibly negative integers – the conditions (UFD1) and
(UFD2) reduce, in the case R = Z, precisely to (FTA1) and (FTA2).

Thus, as in our discussion in the introduction, it is extremely fruitful to intro-
duce a property axiomatizing Euclid’s Lemma.

We say an integral domain R is an EL-domain if for all irreducible elements
x of R, if x | ab, then x | a or x | b. Of course this immediately implies that if x is
irreducible and x divides a1 · · · an, then x | ai for some i.

Theorem 21. Let R be a factorization domain. Then R is a unique factorization
domain iff it is an EL-domain.

8The term factorial domain is also commonly used, especially by continental mathematicians.



FACTORIZATION IN INTEGRAL DOMAINS 17

Proof. We showed in the introduction that (FTA) ⇐⇒ (FTA1) + Euclid’s Lemma,
which is nothing else than the present result for R = Z. The proof given there
extends essentially verbatim to the general case. �

More precisely, we have the following useful characterization of UFDs:

Theorem 22. For an integral domain R, the following are equivalent:
(i) R is a unique factorization domain.
(ii) R is an ACCP domain and is an EL-domain.
(iii) R is a factorization domain and an EL-domain.

Proof. (i) =⇒ (ii): suppose R is a UFD. By Theorem 21, R is an EL-domain.
Moreover, suppose R does not satisfy ACCP: (x1) ( (x2) ( . . .. Then x2 is a
nonzero nonunit. Since (x3) strictly contains x2, there exists a nonzero nonunit
y1 such that x2 = x3y1. Since x3 and y1 are both nonzero nonunits, they have
unique factorizations into irreducibles, which means that the unique factorization
of x2 into irreducibles has at least two irreducible factors. Similarly, there exists
a nonzero nonunit y2 such that x3 = x4y2, so x2 = x4y2y1, so that we now know
that the unique factorization of x2 into irreducibles has at least 3 irreducible fac-
tors. Proceeding in this way we can show that the unique factorization of xn into
irreducibles has at least n irreducible factors for any n ∈ Z+, which is absurd.
(ii) =⇒ (iii) by Proposition 12, whereas (iii) =⇒ (i) by Theorem 21. �

4.4. Prime elements.

Recall the notion of a prime ideal p in a ring R: this is a proper ideal such
that x, y ∈ R, xy ∈ p implies x ∈ p or y ∈ p.

Let us define a nonzero element x in a domain R to be a prime element if the
principal ideal (x) is a prime ideal. Unpacking this, we see that an element x is
prime iff x | ab implies x | a or x | b.

Lemma 23. a) In any domain R, a prime element is irreducible.
b) A domain R is an EL-domain exactly when all irreducible elements are prime.

Proof. a) If x = ab with a and b nonunits, then certainly x - a and x - b.
b) This is, of course, the definition of an EL-domain. �

In particular, since UFD =⇒ EL-domain, in any UFD there is no distinction to
be made between irreducible elements and prime elements. Conversely, a FD will
fail to be a UFD iff there exist irreducible elements which are not prime.

The condition that a domain R be a UFD can also be expressed very elegantly
in terms of the group of divisbility G(R) of §X.X. Namely, R is a UFD iff G(R) is
isomorphic, as an ordered abelian group, to the direct sum of copies of (Z,+), one
copy for each principal prime ideal.

4.5. Norms on UFDs.

In this section we give a complete description of all weak multiplicative norms
(and also all multiplicative norms) on a UFD.
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Let R be a UFD and N : R → N be a weak multiplicative norm. As for any
domain, if x and y are associate elements of R, y = ux for u ∈ R×, so

N(y) = N(ux) = N(u)N(x) = 1 ·N(x) = N(x).

Let P be the set of principal nonzero prime ideals of R. For each p ∈ P, choose
any generator πp. Put np := N(πp). This data completely determines N , since any
nonzero element x of R can be written in the form u

∏
p∈P π

xp
p with xp ∈ N and

xp = 0 for all but finitely many elements of P, and then we must have

(5) N(x) =
∏
p∈P

n
xp
p

Conversely, by assigning to each p ∈ P a positive integer np, we can define a
function N : R \ {0} → Z+ by

x = u
∏
p∈P

π
xp
p 7→ N(x) =

∏
p∈P

n
xp
p

(and N(0) := 0, of course), then N is a weak multiplicative norm.

Again this may be rephrased using the monoid Prin(R): for any domain R, the
weak multiplicative norms on R correspond bijectively to monoid homomorphisms
Prin(R) → (Z+, ·). If R is a UFD, Prin(R) ∼=

⊕
( N,+) is the free commuta-

tive monoid on the set of principal nonzero prime ideals, so a homomorphism
Prin(R) → (Z+, ·) is uniquely specified by the image of each principal nonzero
prime ideal.

A multiplicative norm N on a general integral domain may also be expressed in
terms of Prin(R), but not as gracefully: a multiplicative norm determines and is
determined by a monoid homomorphism N : Prin(R) → Z+ with the additional
property that N(x) = 1 ⇐⇒ x = 1, the identity of Prin(R). At first glance this
looks to be the condition of injectivity, but it is significantly weaker than that: for
a homomorphism of monoids ϕ : M → N , that the preimage of 1N is just 1M does
not preclude the existence of x 6= y ∈M such that ϕ(x) = ϕ(y) 6= 1. For instance,
if a, b, d ∈ Z+ with a < b, then in the number ring Z[

√
−d], the two elements

a+ b
√
−d and b+ a

√
−d each have norm a2 + db2 but are not associate.

Nevertheless, if R is a UFD things are straightforward: for the weak multiplicative
norm N = (np)p∈P on R to be a multiplicative norm, it is necessary and sufficient
that np > 1 for all p ∈ P.

In particular, we record the following simple fact for later use.

Lemma 24. Any UFD admits at least one multiplicative norm.

It is natural to ask whether there is a characterization of UFDs in terms of the exis-
tence of a multiplicative norm function of a certain type. The answer is affirmative
and is due to C.S. Queen. We need the following notation: let R be a domain with
fraction field K, and let I be a nonzero ideal of R. We put

(R : I) = {x ∈ K | xI ⊂ R}
and

I = (R : (R : I)).
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It is straightforward to check that I is an ideal of R which contains I.

Theorem 25. (Queen [Q96]) For a ring R, the following are equivalent:
(i) R is a UFD.
(ii) R admits a multiplicative norm N with the following additional property: for
all a, b ∈ R with a - b and b - a, there exists 0 6= c ∈ Ra+Rb with N(c) <
min(N(a), N(b)).

We shall content ourselves with the following remarks: first, the ideal Ra+Rb is
principal if and only if a and b admit a greatest common divisor in the sense of §6.
In §6 we will see that in a UFD this is always the case. Using this observation it
is easy to prove (i) =⇒ (ii): we can take the norm with np = 2 for all p ∈ P and
then the condition that a - b and b - a implies that their greatest common divisor c
properly divides both and therefore has strictly smaller norm.

We define a Queen norm to be a multiplicative norm satisfying the additional
property (ii) of Theorem 25. Then the theorem may be restated as: a ring is a
UFD iff it admits a Queen norm.

5. Polynomial and power series rings over UFDs

5.1. Polynomial rings.

Lemma 26. Let x be an element of a domain R.
a) The element x is a unit in R iff it is a unit as an element of R[t].
b) The element x is irreducible in R iff it is irreducible as an element of R[t].
b) The element x is prime in R iff it is prime as an element of R[t].

Proof. a) Units are mapped to units under any homomorphism of rings, so certainly
if x ∈ R is a unit, x ∈ R[t] is a unit. Conversely, if there exists y ∈ R[t] such that
xy = 1, then taking degrees shows that deg y = 0, i.e., y ∈ R.
b) If x is irreducible in R, then by part a) x is not a unit in R[t]. Moreover if x = yz
is a factorization in R[t], then taking degrees shows that y, z ∈ R and thus either
y or z is a unit in R and hence also in R[t]. Conversely, if x = yz is a factorization
in R with y, z nonunits, then it is also a factorization in R[t] with y, z nonunits.
c) It is immediate from the definition that if x is prime as an element of R[t] then it is
prime as an element of R. Conversely, suppose x is a prime element of R. Note first
that for any polynomial P = adt

d+ . . .+a1t+a0 ∈ R[t], an element c ∈ R divides P
iff c | ai for all 0 ≤ i ≤ d. Now let f = amt

m+. . .+a1t+a0, g = bnt
n+. . .+b1t+b0.

Seeking a contradiction we shall suppose that x | fg but x - f and x - g. Let I be
the least index i such that x - ai and let J be the least index J such that x - bj .
Then x divides the coefficient of tI+J in fg, namely cI+J =

∑
i+j=I+J aibj . For all

(i, j) 6= (I, J) we have i < I or j < J and thus x | ai or x | bj : either way x | aibj .
Therefore also x divides the remaining term aIbJ and since x is prime in R, x | aI
or x | bJ , contradiction. �

Theorem 27. (Hensel) If R is a UFD, so is R[t].

We expect that most readers will have seen Theorem 27 and its proof via Gauss’
Lemma on primitive polynomials. For the sake of variety, we will give here a
“lemmaless” proof which is modelled on the Lindemann-Zermelo proof of FTA.
(Later we will give another very striking proof, due to Nagata.) This argument,
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with minor variations, appears several times in the literature. It seems that the
first such instance is a paper of S. Borofsky [Bor50].

Proof. By Theorem 22, it suffices to show that R[t] is an ACCP domain and an
EL-domain. By Theorem 17, since R is an ACCP domain, so is R[t]. Now, seeking
a contradiction, we suppose that R is an EL-domain but R[t] is not. Among the
set of all elements in R[t] admitting inequivalent irreducible factorizations, let p be
one of minimal degree. We may assume

p = f1 · · · fr = g1 · · · gs,
where for all i, j, (fi) 6= (gj) and

m = deg f1 ≥ deg f2 ≥ . . . ≥ deg fr > 0,

n = deg g1 ≥ deg g2 ≥ . . . ≥ deg gs > 0,

with n ≥ m > 0. Indeed, by Lemma 26b), any irreducible element x of degree 0 of
R[t] is irreducible in R. Since R is a UFD, x is prime in R and by Lemma 26c) x
is prime in R[t]. But then x is associate to one of the irreducible elements on the
other side of the equation, so we may cancel them. Moreover if r = s = 1 then we
have equal factorizations, whereas if exactly one of r, s is equal to one then we have
factored an irreducible element: thus r, s > 1. It follows that deg g < deg p.

Suppose the leading coefficient of f1 (resp. g1) is a (resp. b). Put

q = ap−bf1t
n−mg2 · · · gs = f1(af2 · · · fr−btn−mg2 · · · gs) = (ag1−bf1t

n−m)g2 · · · gs.
Thus q = 0 implies ag1 = bf1t

n−m. If, however, q 6= 0, then

deg(ag1 − bf1t
n−m) < deg g1,

hence deg q < deg p and q has a unique factorization into irreducibles, certainly
including g2, · · · , gs and f1. But then f1 must be a factor of ag1 − bf1t

n−m and
thus also of ag1. Either way ag1 = f1h for some h ∈ R[t]. Since deg(ag1) =
deg g1 < deg p, by induction the factorization of ag1 into irreducibles is unique. It
follows that h = ah2, so ag1 = f1ah2, or g1 = f1h2, contradiction. �

By induction, we deduce:

Corollary 28. Let R be a UFD and n ∈ Z+. Then R[t1, . . . , tn] is a UFD.

Theorem 29. Let R be a UFD and let S = R[t1, t2, . . .] be a polynomial ring over
R in infinitely many indeterminates. Then R is a non-Noetherian UFD.

Proof. We show S is non-Noetherian by exhibiting an infinite chain of ideals:

〈t1〉 ⊂ 〈t1, t2〉 ⊂ . . . ⊂ 〈t1, . . . , tn〉 ⊂ . . .
Suppose that for any n, tn+1 were an element of 〈t1, . . . , tn〉. In other words, there
exist polynomials P1, . . . , Pn such that

tn+1 = P1t1 + . . .+ Pntn.

Setting t1 = . . . = t0 = 0, tn+1 = 1 gives 1 = 0 in R, a contradiction.

By Theorem 22, to show that R is a UFD it suffices to show that it satisfies the as-
cending chain condition on principal ideals and Euclid’s Lemma. The first is almost
immediate: any nonzero element is a polynomial in a finite number of variables,
say P (t1, . . . , tn). Any divisor Q of P is again a polynomial in only the variables
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t1, . . . , tn, so that an ascending chain (P ) ⊂ (P2) ⊂ . . . ⊂ (Pn) ⊂ . . . can be viewed
as an ascending chain in the UFD R[t1, . . . , tn], so it stabilizes since UFDs satisfy
ACCP. Finally, let P be an irreducible element in S. The EL-condition is equivalent
to the principal ideal (P ) being a prime ideal, which is equivalent to the quoteint
S/(P ) being an integral domain. But as above P is a polynomial in only finitely
many variables, say P (t1, . . . , tn) and if P (t1, . . . , tn) = X(t1, . . . , tn)Y (t1, . . . , tn)
with neither X nor Y a unit in R[t1, . . . , tn] then the factorization remains valid in
the larger domain S, and since S× = R[t1, . . . , tn]× = R×, it remains a nontrivial
factorization (i.e., neither X nor Y is a unit in S). So P (t1, . . . , tn) is irreducible
in Rn := R[t1, . . . , tn]; since Rn is a UFD, the principal ideal PRn is prime. But

S/PS = Rn[tn+1, tn+2, . . .]/PRn[tn+1, tn+2, . . .] ∼= (Rn/PRn)[tn+1, tn+2, . . .].

Since (Rn/PRn)[tn+1, tn+2, . . .] is a domain, so is S/PS, so PS is a prime ideal. �

The use of a countably infinite set of indeterminates in Theorem 29 was only a
notational convenience: a similar argument shows the same result for any infinite
set of indeterminates.

As an application, we can see that ACC is not a property that depends only on
the group of divisibility. Indeed, the group of divisibility of a UFD is the direct
sum of copies of Z indexed by the nonzero principal prime ideals. It is easy to
see that for any cardinal κ, there exists a PID with exactly κ nonzero principal
prime ideals, hence the group of divisibility of a polynomial ring in infinitely many
indeterminates is isomorphic to the group of divisibility of some PID.

5.2. Power series rings.

Let R be a UFD, and consider the formal power series domain R[[t]]. By The-
orems 17 and 22, R[[t]] is an ACCP domain. But must R[[t]] be a UFD?

In contrast to Theorem 27, whose proof essentially goes back to Gauss and thus
predates the abstract ring concept, whether a formal power series ring over a UFD
must be a UFD was a perplexing problem to 20th century algebraists and remained
open for many years. Some special cases were known relatively early on.

Theorem 30. (Rückert [Rü33], Krull [Kr37]) Let k be a field, and let n be a
positive integer. Then k[[t1, . . . , tn]] is a UFD.

A significant generalization was proved by Buchsbaum and Samuel, independently,
in 1961. We define the height of a prime ideal p in a ring R to be the supremum
of all non-negative integers n such that there exists a strictly ascending chain of
prime ideals p0 ( p1 ( . . . ( pn = p. In a domain R, a prime ideal has height 0 iff
it is the zero ideal. A Noetherian domain R is regular if for every maximal ideal
m of R, the height of m is equal to the dimension of m/m2 as a vector space over
the field R/m.

Theorem 31. ([Bu61], [Sa61]) If R is a regular UFD, then so is R[[t]].

In the same 1961 paper, Samuel also provided the first example of a UFD R for
which R[[t]] is not a UFD [Sa61, §4].

One may also ask for analogues of Theorem 29, i.e., about formal power series in
countably infinitely many indeterminates. Let k be a field. There is more than one
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reasonable way to define such a domain. One the one hand, one could simply take
the “union” (formally, direct limit) of finite formal power series rings k[[t1, . . . , tn]]
under the evident inclusion maps. In any element of this ring, only finitely many
indeterminates appear. However, it is useful also to consider a larger ring, in which
the elements are infinite formal k-linear combinations of monomials ti1 · · · tin . Let
us call this latter domain k[[t1, . . . , tn, . . .]].

In fact, we have seen this domain before: it is isomorphic to the Dirichlet ring Dk
of functions f : Z+ → k with pointwise addition and convolution product. To see
this, we use unique factorization in Z! Namely, write enumerate the prime numbers
{pi}∞i=1 and write n ∈ Z+ as n =

∏∞
i=1 p

ai
i , where ai ∈ Z+ and ai = 0 for all

sufficiently large i. Then the map which sends f ∈ Dk to the formal power series∑
n∈Z+ f(n)

∏∞
i=1 t

ai
i gives an isomorphism from Dk to k[[t1, . . . , tn, . . .]]. In 1959,

E.D. Cashwell and C.J. Everett used Theorem 30 to prove the following result. A
key part of their proof was later simplified by C.F. Martin, who pointed out the
applicability of König’s Infinity Lemma.

Theorem 32. ([CE59], [Mar71]) a) For any field k, the ring of formal power series
k[[t1, . . . , tn, . . .]] is a UFD.
b) In particular, the ring DC = {f : Z+ → C} of airthmetic functions is a UFD.

In almost any first number theory course one studies unique factorization and also
arithmetic functions, including the Dirichlet ring structure (which e.g. leads to an
immediate proof of the Möbius Inversion Formula). That arithmetic functions are
themselves an example of unique factorization is however a very striking result that
does not seem to be well-known to most students or practitioners of number theory.
I must confess, however, that as a working number theorist I know of no particular
application of Theorem 32. I would be interested to learn of one!

6. Greatest common divisors

We recall the definition of a greatest common divisor of two elements a and b in an
arbitrary domain R. It is an element d of R which is a common divisor of a and b
(i.e., d | a and d | b) such that for all e in R with e | a and e | b, we have e | d.

Of course it is not clear that such elements must exist. A GCD-domain is a
domain in which any two elements admit at least one greatest common divisor.

Remark 6.1: Let R be any integral domain.
a) If a = 0 and b = 0, then 0 is a greatest common divisor of a and b.
b) If a is arbitrary and b = 0, then a is a greatest common divisor of a and b.
c) If a is a unit and b is arbitrary, then 1 is a greatest common divisor of a and b.

The uniqueness of greatest common divisors is easier to sort out:

Lemma 33. Let R be an integral domain, a, b ∈ R, and suppose d is a greatest
common divisor of a and b. Then an element x of R is a greatest common divisor
of a and b iff x ∼ d, i.e., iff x = ud for some unit u ∈ R×.

Proof. Let d and d′ be greatest common divisors of a and b. Then d | a and d | b,
so d | d′, and similarly d′ | d. It follows that d ∼ d′. Conversely, since associate
elements have exactly the same divisibility relations, it is clear that any associate
of a greatest common divisor is again a greatest common divisor. �
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Example 6.1: For two nonzero integers a and b, there are two greatest common
divisors: d and −d. In Z it is conventional to mean by gcd(a, b) the unique positive
greatest common divisor. However, in a general domain it is convenient to abuse
notation slightly by writing gcd(a, b) for any greatest common divisor of a and b,
i.e., we tolerate ambiguity up to associate elements.

Proposition 34. Let R be a GCD-domain, a, b, c ∈ R; put d = gcd(a, b). Then:
a) gcd(ab, ac) = a gcd(b, c).
b) gcd(ad ,

b
d ) = 1.

c) If gcd(a, b) = gcd(a, c) = 1, then gcd(a, bc) = 1.

Proof. a) Let x = gcd(ab, ac). Then a | ab and a | ac so a |x: say ay = x. Since
x | ab and x | ac, y | b and y | c, so y | gcd(b, c). If z | b and z | c, then az | ab
and az | ac, so az | x = ay and z | y. Therefore gcd(b, c) = y = 1

a gcd(ab, ac). Part
b) follows immediately. As for part c): suppose gcd(a, b) = gcd(a, c) = 1, and let t
divide a and bc. Then t divides ab and bc so t | gcd(ab, bc) = b gcd(a, c) = b. So t
divides gcd(a, b) = 1. �

Proposition 35. A GCD-domain is integrally closed in its fraction field.

Proof: Let R be a GCD-domain with fraction field K, and let α be an element of
K which satisfies a relation of the form αn+an−1α

n−1 + ldots+a1α+a0 = 0 with
a0, . . . , an−1 ∈ R. We may write α = r

s with r, s ∈ R, and we may also assume
– and this is the crux! – that gcd(r, s) = 1. (Take any representation of α as
a quotient of two elements of R, and divide numerator and denominator by their
gcd.) Then we need only substitute in α = r

s and clear denominators to get

rn + san−1r
n−1 + . . .+ sn−1a1r + sna0 = 0,

or
rn = −s

(
an−1r

n−1 + an−2sr
n−2 + . . .+ sn−1a0

)
,

so s | rn. Since gcd(r, s) = 1, Proposition 34c) implies gcd(rn, s) = 1. Thus s is a
unit, so α = r

s ∈ R.

Proposition 36. A unique factorization domain is a GCD-domain.

Proof. This is an immediate generalization of the usual arguments for R = Z. By
Remark 6.1, we know that in any domain, the GCD of a and b necessarily exists
except possibly when both a and b are nonzero nonunits. Then, let x1, . . . , xr be
the set of pairwise nonassociate irreducibles such that any irreducible divisor of
either a or b is associate to some xi; we may then write

a = xa11 · · ·xarr , b = xb11 · · ·xbrr ,
with ai, bi ∈ N. Then

d = x
min(a1,b1)
1 · · ·xmin(ar,br)

r

is a greatest common divisor of a and b. �

Propositions 35 and 36 imply that a UFD is integrally closed.

Proposition 37. A GCD-domain is an EL-domain.

Proof. Suppose x is irreducible and x | yz. Assume, for a contradiction, that x - y
and x - z. Then gcd(x, y) = gcd(x, z) = 1, and by Proposition 34c), gcd(x, yz) = 1,
which contradicts x | yz. �
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Corollary 38. A factorization domain is a UFD iff it is a GCD-domain.

Proof. Let R be a factorization domain. Assume first that R is a UFD. Then R is
a GCD-domain by Proposition 36. Conversely, assume that R is a GCD-domain.
Then it is an EL-domain by Proposition 37, and by Theorem 22 a factorization
domain which is an EL-domain is a UFD. �

7. GCDs versus LCMs

The definition of GCDs in a domain has an evident analogue for least common mul-
tiples. Namely, if a and b are elements of a domain R, a least common multiple
of a and b is an element l such that for all m ∈ R with a | m and b | m then l | m.

Many of the properties of GCD’s carry over immediately to LCM’s. For instance,
if l is an LCM of a and b, then l′ ∈ R is an LCM of a and b iff l′ is associate to l.

Proposition 39. Let a and b be elements in a domain R. Then lcm(a, b) exists iff
the ideal (a) ∩ (b) is principal, in which case the set of all LCM’s of a and b is the
set of all generators of (a) ∩ (b).

Proof. This is straightforward and left to the reader. �

LCM’s exist in any UFD: if

a = xa11 · · ·xarr , b = xb11 · · ·xbrr ,
with ai, bi ∈ N. Then

l = x
max(a1,b1)
1 · · ·xmax(ar,br)

r

is a greatest common divisor of a and b. Now the simple identity

∀a, b ∈ N,min(a, b) + max(a, b) = a+ b

implies that for a, b in any UFD R we have

gcd(a, b) lcm(a, b) ∼ ab.
This identity further suggests that the existence of either one of gcd(a, b), lcm(a, b)
implies the existence of the other. However, this turns out only to be half correct!

Theorem 40. For a, b in a domain R, the following are equivalent:
(i) lcm(a, b) exists.
(ii) For all r ∈ R \ {0}, gcd(ra, rb) exists.

Proof. Step 1: i) =⇒ (ii). Suppose that there exists a least common multiple of a
and b, say l. We claim that d := ab

l is a greatest common divisor of a and b. (Note
that since ab is a common divisor of a and b, l | ab, so indeed d ∈ R.) Indeed,
suppose that e | a and e | b. Then since ab

e is a common multiple of a and b, we

must have l | abe and this implies e | abl . Thus d is a GCD of a and b.
Step 2: Suppose that for r ∈ R \ {0} and a, b ∈ R, gcd(ra, rb) exists. Then we

claim that gcd(a, b) exists and gcd(ra, rb) = r gcd(a, b). Put g := gcd(ra,rb)
r , which

is clearly an element of D. Since gcd(ra, rb) divides ra and rb, g divides a and b.
Conversely, if e | a and e | b, then re | ra and re | rb so er | gcd(ra, rb) and e | g.
Step 3: We claim that if l := lcm(a, b) exists then so does lcm(ra, rb) for all
r ∈ R \ {0}. First note that rl is a common multiple of ra and rb. Now suppose m
is a common multiple of ra and rb, say m = xra = yrb = r(xa − yb). Thus r | m
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and a | mr , b | mr . So l | mr and rl | m. Thus lcm(ra, rb) = r lcm(a, b).
Step 4: (ii) =⇒ (i). We may assume that a and b are nonzero, since the other
cases are trivial. Suppose gcd(ra, rb) exists for all r ∈ R \ {0}. We claim that
l := ab

gcd(a,b) is an LCM of a and b. Clearly l is a common multiple of a and b. Now

suppose that m is a common multiple of a and b. Then ab divides both ma and mb,
so ab | gcd(ma,mb). By Step 2, gcd(ma,mb) = m gcd(a, b). Thus ab

gcd(a,b) | m. �

Theorem 41. (Khurana [Kh03, Thm. 4]) Let d ≥ 3 be an integer such that d+ 1
is not prime, and write d + 1 = pk for a prime number p and k ≥ 2. Then in the
domain R = Z[

√
−d], the elements p and 1 +

√
−d have a GCD but no LCM.

Proof. Step 1: We claim that p is irreducible as an element of R. Indeed, if it were
reducible, then by the multiplicativity of the norm map N(a + b

√
−d) = a2 + dp2

we could write it as p = αβ, with

p2 = N(p) = N(αβ) = N(α)N(β),

and, since α, β are nonunits, N(α), N(β) > 1. But then N(α) = N(β) = p, i.e.,
there would be a, b ∈ Z such that a2 + db2 = p. But this is not possible: either
ab = 0, in which the left hand side is a perfect square, or a2 + db2 ≥ d+ 1 > p.
Step 2: gcd(p, 1 +

√
−d) = 1. Indeed, since 1

p + 1
p

√
−d 6∈ R, p - 1 +

√
−d.

Step 3: We claim that kp and k(1+
√
−d) do not have a GCD. Indeed, by Step 2 of

the proof of Theorem 40, if any GCD exists then k is a GCD. Then, since 1 +
√
−d

divides both (1−
√
−d)(1 +

√
−d) = 1 + d = kp and k(1 +

√
−d), 1 +

√
−d divides

gcd(kp, k(1 +
√
−d) = k, i.e., there exist a, b ∈ Z such that

k = (1 +
√
−d)(a+ b

√
−d) = (a− db) + (a+ b)

√
−d,

i.e., a = −b and k = a − db = a + da = a(1 + d) and d + 1 | k, contradicting the
fact that 1 < k < d+ 1.
Step 4: Finally, it follows from Theorem 40 that lcm(p, 1+

√
−d) does not exist. �

Khurana produces similar examples even when d + 1 is prime, which implies that
for no d ≥ 3 is Rd = Z[

√
−d] a GCD-domain. (In fact, since (Rd,+) ∼= Z2, Rd

is an abstract number ring and hence Noetherian, so the notions of EL-domain,
GCD-domain and UFD are all equivalent.) Let us give an independent proof:

Theorem 42. For no d ≥ 3 is Rd = Z[
√
−d] an EL-domain.

Proof. As in the proof of Theorem 41 above, the easy observation that the equation
a2 + db2 = 2 has no integral solutions implies that the element 2 is irreducible in
Rd. Now, since (quite trivially) −d is a square modulo 2, there exists x ∈ Z such
that 2 | x2 + d = (x +

√
−d)(x −

√
−d). But now, if Rd were an EL-domain, the

irreducible element 2 would be prime and hence Euclid’s Lemma would apply to
show that 2 | x±

√
−d, i.e., that x

2 + 1
2

√
−d ∈ Rd, a clear contradiction ( 1

2 6∈ Z!). �

Note that Theorem 40 has the following immediate consequence:

Corollary 43. (Cohn, [Coh68, Thm. 2.1]) For an integral domain R, TFAE:
(i) Any two elements of R have a greatest common divisor.
(ii) Any two elements of R have a least common multiple.

Thus we need not define an “LCM-domain”: these are precisely the GCD domains.
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Once again these concepts can be pithily reexpressed in terms of Prin(R) and
G(R). For x, y ∈ R•, gcd(x, y), if it exists, is a well-defined element in Prin(R), its
meet x∧y. Similarly, in Prin(R) lcm(x, y) is the join x∨y. Thus Theorem 43 says
that a domain is a GCD-domain iff Prin(R) is a lattice iff it is a meet semi-lattice
iff it is a join semi-lattice.

8. More on Principal Ideal Domains

8.1. PID implies UFD.

Theorem 44. (Bézout’s Lemma) Let a and b be elements in a PID R. Then
d = gcd(a, b) exists and moreover can be expressed as a linear combination of a and
b: there exist x, y ∈ R such that

ax+ by = d.

Proof. The ideal 〈x, y〉 = {xa+yb | x, y ∈ R} is by assumption principal, i.e., equal
to (d) for some d ∈ R. As in the case R = Z, we see easily that d is a greatest
common divisor of a and b: it is a common divisor since x, y ∈ 〈x, y〉 = (d), and if
e | a, e | b, then e | ax+ by. But ax+ by = d, so e | d. �

Corollary 45. Every PID is a UFD.

Proof. Once again contemplation of the proof of FTA carries us straight through.
Namely, a PID is Noetherian and hence satisfies ACCP. By Bézout’s Lemma, a
PID is a GCD-domain, so we can carry out Euclid’s proof of Euclid’s Lemma in
this context. In fact this is not necessary, since we have already seen that Euclid’s
Lemma holds in any GCD-domain: Proposition 37. Finally, we apply the “classical”
Theorem 21 to deduce that every PID is a UFD. �

8.2. Bézout Domains.

In the distinguished tradition of giving a name to any property that appears as
a conclusion of a theorem, we define a Bézout domain to be an integral domain
in which the gcd of any two elements exists and may be expressed as a linear com-
bination of them. In particular, a Bézout domain is a GCD-domain.

It is easy to see that a domain is a Bézout domain iff every finitely generated
ideal is principal. In particular, a Noetherian Bézout domain is a PID. In fact this
only begins to describe the yearning that a Bézout domain has to be a PID: much
weaker finiteness conditions suffice.

Theorem 46. For a Bézout domain R, the following are equivalent:
(i) R is a PID.
(ii) R is Noetherian.
(iii) R is a UFD.
(iv) R is an ACCP domain.
(v) R is a factorization domain.

Proof. We have just mentioned that (i) ⇐⇒ (ii). That (i) =⇒ (iii) is Corollary
45. As we well know, for any domain R, (iii) =⇒ (iv) =⇒ (v). (v) =⇒ (iii):
A Bézout domain is a GCD-domain is an EL-domain, so a Bézout factorization
domain is a UFD by Theorem 21. Thus (iii) ⇐⇒ (iv) ⇐⇒ (v). (iv) =⇒ (ii):
assume that R is not Noetherian. Then it admits an ideal I which is not finitely



FACTORIZATION IN INTEGRAL DOMAINS 27

generated, which we can use to build an infinite strictly ascending chain of finitely
generated ideals I1 ( I2 ( . . . ( I. But since R is Bézout, each Ii is principal,
contradicting ACCP. �

Recall that a commutative ring is local if it has a unique maximal ideal. This
happens iff the nonunits of R form an ideal iff they form a commutative group.

Theorem 47. For an integral domain R, the following are equivalent:
(i) R is a valuation ring.
(ii) R is a local Bézout domain.

Proof. Let R be a valuation ring. Let x, y ∈ R \R×. Clearly −x,−y are nonunits.
Moreover, we have either x | y or y | x, so that x + y is divisible by at least one
of the nonunits x and y and is thus not a unit. So R is a local ring. Now let
I = 〈x1, . . . , xn〉 be a finitely generated ideal of R. Since Prin(R) is totally ordered,
there exists at least one i such that in the divisibility ordering, xi ≤ xj for all
1 ≤ j ≤ n, i.e., xi | xj . Thus I = 〈xi〉. So R is a Bézout domain.

Conversely, let R be a local Bézout domain, and let x, y ∈ R•. Put d = gcd(x, y),
x′ = x

d and y′ = y
d . Then x′ and y′ are relatively prime elements of a Bézout domain,

so there exist a, b ∈ R such that x′a+ y′b = 1, i.e., R = 〈x′, y′〉. But in a local ring
any collection of nonunits generate a proper ideal, so that at least one of x′ and y′

must be a unit, i.e., x | y or y | x. �

Corollary 48. Let R be a domain such that the group of divisibility G(R) is isomor-
phic, as a partially ordered commutative group, to the integers Z with the standard
ordering. Then R is a local PID.

Proof. SinceG(R) is totally ordered, R is a valuation ring. Moreover, since Prin(R) ∼=
(N,≤) is well-ordered, R satisfies ACCP. Applying Theorem 46 and Theorem 47,
we conclude that R is a local PID. �

A PID with a unique maximal ideal is called a discrete valuation ring (or DVR).
Excepting only fields, DVR’s have the simplest structure of all integral domains.
Therefore a recurrent technique in commutative algebra is to, somehow, study more
complicated domains by reducing to the case of DVRs. We will see an important
instance of this in §11.2.

On the other hand, we saw in §4 that for any torsionfree commutative group Γ,
there exists an ordering on Γ and a valuation ring R with G(R) ∼= Γ, and that so
long as Γ is not cyclic, R is not an ACCP domain. Thus non-Noetherian Bézout
domains exist in abundance.

There are also non-Noetherian Bézout domains with infinitely many maximal
ideals. Two striking examples of such are the ring Z of algebraic integers [Ka70,
Thm. 102] and the ring of entire functions on the complex plane [Hel40].

8.3. Dedekind-Hasse norms.

We wish to give a criterion for an integral domain to be a PID which is due to
R. Dedekind and (later, but independently) H. Hasse. In fact, the Dedekind-Hasse
criterion is in terms of a multiplicative norm N on R which satisfies one additional
property.
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First, consider any multiplicative norm N : R → N on an integral domain R.
We assert that because of the multiplicativity, there is a unique extension of N to
a function from the fraction field, K, of R to the non-negative rational numbers
such that N(xy) = N(x)N(y) for all x, y ∈ K. Indeed, since axiom (MN2) implies
N(1) = 1, we must have N( 1

y ) = 1
N(y) and thus

N

(
x

y

)
=
N(x)

N(y)
.

Since a given element of K has many different representations as a quotient of
elements of R, we must check that the definition of N is independent of this repre-
sentation, but this is easy: if x1

y1
= x2

y2
, then x1y2 = x2y1, so

N(x1)N(y2) = N(x1y2) = N(x2y1) = N(x2)N(y1),

and, since y1, y2 6= 0 implies N(y1), N(y2) 6= 0, we may divide in Q to get

N(x1)

N(y1)
=
N(x2)

N(y2)
.

For example, the usual absolute value z 7→ |z| on Z extends multiplicatively to the
usual absolute value on Q.

From now on, we will assume without comment that a multiplicative norm has
its domain extended to the fraction field F of R as above.

A multiplicative norm N : F → Q on the fraction field of an integral domain
R is a Dedekind-Hasse norm (c.f. [Has28]) if it satisifes the following property:

(HN) For all x ∈ F \R, there exist a, b ∈ R such that 0 < N(ax− b) < 1.

Example 8.1: The usual absolute value on Z is a Dedekind-Hasse norm. Indeed,
for any rational number x which is not an integer, we can take a = 1 and take b to
be bxc, the greatest integer less than or equal to x. Then 0 < x− b < 1.

Theorem 49. (Hasse, [Has28]) For an integral domain R, TFAE:
(i) R admits a Dedekind-Hasse norm.
(ii) R is a PID.

Proof. (i) =⇒ (ii): Let N be a Dedekind-Hasse norm on R, and let I be a nonzero
ideal of R. Then I contains elements of positive norm. Let d ∈ I be an element
whose norm is positive and is minimal among all elements of I. We wish to show
that I = (d). So let i be any element of I and put x := i

d . If d | i then x ∈ R, so
assume for a contradiction that x ∈ F \R. Then by assumption there exist a, b ∈ R
such that

0 < N

(
ai

d
− b
)
< 1.

Multiplying through by d we get

0 < N(ai− bd) < N(d).

So ai− bd ∈ I has norm positive and smaller than N(d), contradiction!
(ii) =⇒ (i): Suppose R is a PID. By Corollary 45, R is a UFD, and thus by
Lemma 24 R admits a multiplicative norm, say N . Let K be the fraction field of
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the UFD R. Then any x ∈ K \ R can be written as x = p
q , where p, q ∈ R \ {0},

gcd(p, q) = 1 and q is a nonunit, so N(q) > 1. Now, applying Proposition 45, we
can find elements a, b′ in R such that ap + b′q = 1. Taking b = −b′, we have
ap− bq = 1. Dividing through by q we get ax− b = 1

q , so

0 < N(ax− b) = N(
1

q
) =

1

N(q)
< 1.

�

Here is an application (a familiar one, but recast in slightly different language).

Proposition 50. Let F be any field. Then the polynomial ring F [t] is a PID.

Proof. Every nonzero polynomial P (t) = ant
n + . . . + a0 has a degree deg(P ) ,

which is the largest n ∈ N such that an 6= 0. Let us agree that the 0 polynomial has
degree −∞. It is easy to check that deg(PQ) = deg(P ) + deg(Q). Thus the degree
is very much like a norm, only instead of being multiplicative, it is multiplicative-to-
additive. That can be remedied, however: put N(P ) = 2degP , with the convention
that N(0) = 2−∞ = 0. One easily checks that N is a Dedekind-Hasse norm. �

8.4. Euclidean norms.

A multiplicative norm N on a domain R is Euclidean if for any a, b ∈ R with
b 6= 0, there exist q, r ∈ R such that a = qb+ r and N(r) < N(b).

Proposition 51. Any Euclidean norm is a Hasse norm.

Proof. Let x = a
b ∈ F \ R. Since the norm is Euclidean, there exist q, r ∈ R with

N(r) < N(b), and then x− q = a
b − (ab −

r
b ) = r

b , so

0 < N(x− q) = N
(r
b

)
< 1.

�

We repackage this result in a form which will be most convenient in number-
theoretic applications:

Proposition 52. Let R be an integral domain with fraction field K. Suppose that
R has a multiplicative norm N with the property that for all x ∈ K \R there exists
y ∈ R with N(x− y) < 1. Then R is a PID.

8.5. Case Study I: Quadratic Rings.

Let d be an integer such that −d is not a square, and consider again the qua-
dratic ring Rd = Z[t]/(t2 + d) = Z[

√
−d] with fraction field Kd := Q(

√
−d). This

is an abstract number ring, so comes equipped with a canonical norm, in this case
equal to N(a + b

√
d) = |a2 − db2|. It is an easy exercise to show that this canoni-

cal norm is a Euclidean norm if d = −2,−1, 2, 3. Indeed, write a general element
of K = Q(

√
−d) as x = α +

√
−dβ, with α, β ∈ Q. Vhoose a, b ∈ Z such that

|α− a|, |β − b| ≤ 1
2 and put y = a+

√
−db. Then

N(x− y) = |(α− a)2 − d(β − b)2| < 1.

Thus each of the rings Z[
√

3],Z[
√

2],Z[
√
−1],Z[

√
−2] is a PID, hence also a UFD.

In contrast, if d ≥ 3, we saw above that Rd is not a PID. However, if d ≡ 3
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(mod 4), there is an excuse: Rd is not even integrally closed in its fraction field Kd.

Rather, the ring of integers ZKd
is Sd := Z[ 1+

√
−d

2 ]. Reasoning as above, it is not
hard to show that, for a positive integer d ≡ 3 (mod 4), the canonical norm on Sd
is Euclidean iff d = 3, 7, 11.

Consider now the case of d = 19. We claim that the standard norm N on
S19 = Z[ 1+

√
−19

2 ], while not Euclidean, is a Dedekind-Hasse norm, so that S19

is a PID. We follow [MRR88, Ex. 3.4]: for α, β ∈ S•19, we will find θ ∈ S19 such
that either

N(
β

α
− θ) < 1

or

N(
2β

α
− θ) < 1.

This will show that N is a Dedekind-Hasse norm. We may choose θ ∈ S19 such
that

β

α
− θ = a+ b

√
−19

with a, b ∈ Q, |a| ≤ 1
2 , |b| ≤ 1

4 .

Case 1: |b| ≤ 3
16 . Then N(βα − θ) ≤

235
256 < 1, okay.

Case 2: 3
16 < b ≤ 1

2 . Then we may choose θ′ ∈ S19 such that

2β

α
− θ = a′ + b′

√
−19

with |a′| ≤ 1
2 , |b′| ≤ 1

8 , so N( 2β
α − θ′) ≤ 35

64 < 1. In this case though we have

to contemplate the possibility that N( 2β
α − θ

′) = 0, i.e., that α - β but α | 2β.
However, the quotient ring S19/2S19 is a domain – recall that this is a finite ring
of order N(2) = 4, so this is easy to check – so that 2 is a prime element of S19. So
if αδ = 2β, so that either 2 | δ – in which case α | β – or 2 | α, in which case we

may work instead with α
2 and β

2 , so we are done by induction.

By similar means, it can be shown that the canonical norm on Sd is a Dedekind-
Hasse norm for d = 43, 67, 163. The following celebrated result, conjectured by
Gauss, says that we should look no farther among positive values of d.

Theorem 53. (Heegner-Baker-Stark [Hee52] [Ba67] [St67]) Let Kd = Q(
√
−d)

be an imaginary quadratic field. Then the ring of integers of Kd is a PID iff
d = 1, 2, 3, 7, 11, 19, 43, 67, 163.

The possibility remains that the rings ZKd
for d = 19, 43, 67, 163 are Euclidean

with respect to some other norm. Note that it is not at all obvious how to show
that a domain is not Euclidean with respect to any norm, except to show that it
is not a PID! The task is to find – as with Dedekind-Hasse and Queen norms –
some intrinsic property equivalent to, or at least implied by, the existence of any
Euclidean norm. T. Motzkin did just thus in a brilliant 1949 paper [Mo49]. We will
not describe his conditions explicitly, but only record the following consequence.

Theorem 54. (Motzkin [Mo49]) For d = 19, 43, 67, 163, the quadratic ring Sd =

Z[ 1+
√
−d

2 ] is a PID which is not Euclidean with respect to any norm.

Thus, for every imaginary quadratic field whose ring of integers is a PID, the
canonical norm is a Dedekind-Hasse norm. Was this just good fortune? Not at all.
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Theorem 55. Let R be an abstract number ring. Then R is a PID iff the canonical
norm is a Dedekind-Hasse norm.

Proof. If the canonical norm on R is a Dedekind-Hasse norm, then by Theorem 49
R is a PID. Conversely, suppose that R is a PID. Glancing back at Theorem 49,
we see that what we in fact showed is that any multiplicative norm on a PID is a
Dedekind-Hasse norm. QED! �

The moral seems to be as follows: the question of whether a domain admits a Eu-
clidean norm can be significantly more subtle than whether it is a PID. In fact,
even for the case of rings of integers of number fields, the state of affairs is more
intricate than the results presented so far would suggest.

First, we must mention that in contrast to imaginary quadratic fields, it is un-
proved but widely believed that there are infinitely many squarefree a > 0 such
that the ring of integers of Q(

√
a) is a PID. Moreover, restricting e.g. to prime

numbers a > 0, significant computational data (as well as a probabilistic heuristic
due to Cohen and Lenstra that we do not wish to discuss here) supports the belief
that a positive proportion of these rings are PIDs.

Theorem 56.
a) [BSD52] The real quadratic number fields for which the ring of integers is Eu-
clidean for the standard norm are precisely Q(

√
a) for

a ∈ {2, 3, 5, 6, 7, 11, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73}.

b) [W72] Suppose the Generalized Riemann Hypothesis holds, and let K be a number
field which is not an imaginary quadratic field. Then the ring of integers ZK of K
is a PID iff it admits a Euclidean norm.
c) [HM04] The conclusion of part b) holds unconditionally if K/Q is Galois and
[K : Q] ≥ 9.

The first unconditional example of a real quadratic field with a ring of integers which
is Euclidean but not Euclidean with respect to the standard norm was given by D.
Clark in 1994 [Cl94]. Clark explicitly (and with significant computer-assisted cal-

culations) constructs an “exotic” Euclidean norm on the ring of integers of Q(
√

69).

9. Localization

Throughout this section, R denotes an integral domain with fraction field K.

Our main goal in this section is to present a theorem of Nagata (Theorem 62).
One application is a second proof of the fact that if R is a UFD so is R[t].

9.1. Localization in domains.

If (M, ·) is a commutative monoid and S is a subset of M , define 〈S〉 to be the
submonoid generated by S. This can be described either as the intersection of all
submonoids of M which contain S, or more explicitly as the set of all finite products
x1 · · ·xn with xi ∈ S (including the empty product, so that always 1 ∈ 〈S〉).

Now let R be our domain with fraction field K, and let M be the monoid of
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nonzero elements of R under multiplication. A subset S of M is multiplicatively
closed (or just multiplicative) if S = 〈S〉. Moreover, a subset T of S is a set of
generators for S if 〈T 〉 = S.

For any subset S of R \ {0}, we define RS = R[{ 1
x | x ∈ S}], i.e., the subring

of the fraction field obtained by adjoining to R all the multiplicative inverses of
elements of R. We say that RS is the localization of R at S. It is easy to see
that RS = R〈S〉, so that it is no loss of generality to restrict to localizations of
multiplicatively closed sets. Note that we recover K itself as RR\{0}.

Theorem 57. Let R be a UFD and S a multiplicative subset. Then the localized
ring RS is again a UFD.

Proof. Let f = x
s be a nonzero nonunit of RS , with x ∈ R and s ∈ S. Then x is a

nonzero nonunit in the UFD R, so admits a factorization into prime elements

x =

n∏
i=1

πaii .

We may assume the ordering is such that πi ∈ S for 1 ≤ i ≤ m and πi ∈ R \ S for
m < i ≤ n. Then for 1 ≤ i ≤ m, πi ∈ R×S , whereas by Lemma X.X, for i > m, πi
remains prime in RS . Therefore

x

s
=

(∏m
i=1 π

ai
i

s

)
· πam+1

m+1 · · ·πann

expresses x
s as a unit times a product of prime elements. �

9.2. Saturated subsets.

A multiplicative subset S is saturated if for all x ∈ S and y ∈ R, if y | x then y ∈ S.
We define the saturation S of a multiplicatively closed subset S to be the inter-
section of all saturated multiplicatively closed subsets containing S; equivalently, S
is obtained from S simply by throwing in all nonzero divisors of all elements of S.
If x ∈ S and y | x, then ay = x for some a ∈ R, and then 1

y = a
ay = a · ( 1

x ). Thus

RS = RS , so that we may restrict attention to saturated multipicative sets.

Example 9.1: Any saturated multiplicative subset of R contains R×. In partic-
ular, if R is a field the unique saturated multiplicative subset is R \ {0}.

Example 9.2: If p ⊂ R is a prime ideal, R \ p is a saturated multiplicative set.

Proposition 58. Let R be a domain and S ⊂ R a multiplicative set. Then the set
of units of RS is precisely the saturation of the multiplicative set S.

Proof. This is straightforward and left to the reader. �

Proposition 59. Let R be a domain, S a saturated multiplicative subset, and
f ∈ R \ S. If f is prime as an element of R, it is also prime as an element of RS.

Proof. Since f ∈ R \ S, by Proposition 58 f is not a unit in RS . Let α, β ∈ RS
be such that f | αβ in RS . So there exists γ ∈ RS such that γf = αβ; putting
α = x1

s1
, β = x2

s2
, γ = x3

s3
and clearing denominators, we get s1s2x3f = s3x1x2, so

f | r3x1x2. If f | s3, then since S is saturated, f ∈ S, contradiction. So, being
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prime, f divides x1 or x2 in R, hence a fortiori in RS and therefore it also divides
either x1

s1
or x2

s2
in RS , since these are associates to x1 and x2. �

9.3. Primal subsets.

We say that a saturated multiplicative subset S of R is primal if it is generated
by the units and by the prime elements of S.

Lemma 60. An irreducible element of a primal subset is prime.

Proof. Suppose S is primal and f ∈ S is irreducible. By definition, there exists a
unit u and prime elements π1, . . . , πn such that f = uπ1 · · ·πn. Since uπ1 is also
prime, we may as well assume that u = 1. Then, since f is irreducible, we must
have n = 1 and f = π1. �

Theorem 61. For a factorization domain R, the following are equivalent:
(i) Every saturated multiplicative subset of R is primal.
(ii) R is a UFD.

Proof. Since the set R× of units is trivially generated by the empty set of prime
elements, both conditions hold if R is a field, so let us now assume otherwise.

Assume (i). Then, since R is a factorization domain which is not a field, there
exists an irreducible element f of R. Let S be the saturated multiplicative subset
generated by S, which consists of all units of R together with all divisors of positive
powers fn of f . Since S is primal and strictly contains R×, there must exist a
prime element π which divides fn for some n. In other words, fn ∈ πR, and since
πR is prime, we must have that f = xπ for some x ∈ R. Since f is irreducible we
must have x ∈ R×, i.e., f ∼ π and is therefore a prime element. So R is an ACCP
domain and an EL-domain and hence a factorization domain by Theorem 22.

Assume (ii), let S be a saturated multiplicative subset of R, and suppose that
f ∈ S \ R×. Then f = uπa11 · · ·πann where the πi’s are prime elements. Since each
πi | f , πi ∈ S for all i. It follows that indeed S is generated by its prime elements
together with the units of R. �

Because of Theorem 61, it is no loss of generality to restate Theorem 57 as: the
localization of a UFD at a primal subset is again a UFD. The following elegant
result of Nagata may be viewed as a converse.

Theorem 62. (Nagata’s Criterion [Na57]) Let R be a factorization domain and
S ⊂ R a primal subset. If the localized domain RS is a UFD, then so is R.

Proof. By Theorem 22 it suffices to show that if f ∈ R is irreducible, f is prime.
Case 1: f 6∈ S, so f is not a unit in RS . Since RS is a UFD, it is enough to show
that f is irreducible in RS . So assume not: f = x1

s1
· x2

s2
with x1, x2 ∈ R \ S and

s1, s2 ∈ S. hen s1s2f = x1x2. By assumption, we may write s1 = up1 · · · pm and
s2 = vq1 · · · qn, where u, v ∈ R× and pi, qj are all prime elements of R. So p1 | x1x2;
since p1 is a prime, we must have either x1

p1
∈ R or x2

q2
∈ R. Similarly for all the

other pi’s and qj ’s, so that we can at each stage divide either the first or the second
factor on the right hand side by each prime element on the left hand side, without
leaving the ring R. Therefore we may write f = ( 1

uv )x1

t1
x2

t2
where t1, t2 are each

products of the primes pi and qj , hence elements of S, and also such that t1 | x1,
t2 | x2, i.e., the factorization takes place in R. Moreover, since xi ∈ R \ S and
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ti ∈ S, xi

ti
is not even a unit in RS , hence a fortiori not a unit in R. Therefore we

have exhibited a nontrivial factorization of f in R, contradiction.
Case 2: f ∈ S. Since S is primal, by Lemma 60 f is prime. �

Remark: If S is the saturation of a finitely generated multiplicative set, the hy-
pothesis that R is a factorization domain can be omitted.

Application: Let A be a UFD and consider the polynomial ring R = A[t]. Put
S = A \ {0}. As for any multiplicative subset of a UFD, S is generated by prime
elements. But moreover, since A[t]/(πA[t]) ∼= (A/πA)[t], every prime element π of
A remains prime in A[t], so viewing S as the multiplicative subset of A[t] consisting
of nonzero constant polynomials, it too is generated by prime elements. If F is
the fraction field of A, RS = (A[t])S = F [t] is a PID (Proposition 50) and hence a
UFD. Applying Nagata’s Criterion, we deduce once more that R = A[t] is a UFD.

9.4. Case study II: affine quadric cones.

Let k be a field of characteristic different from 2, and let f(x) = f(x1, . . . , xn) ∈
k[x1, . . . , xn] be a quadratic form, i.e., a homogeneous polynomial of degree
2 with k coefficients. We assume that f the associated bilinear form (x, y) 7→
1
2 (f(x+ y)− f(x)− f(y)) is nonsingular. Equivalently, by making an invertible lin-
ear change of variables every quadratic form can be diagonalized, and a quadratic
form is nonsingular iff it admits a diagonalization

(6) f(x) = a1x
2
1 + . . .+ anx

2
nwitha1, . . . , an ∈ k×.

We wish to study the affine quadric cone associated to f , namely Rf = k[x]/(f).
Note that if quadratic forms f and g are isometric – i.e., differ by an invertible
linear change of variables – then Rf ∼= Rg, so we assume if we like that f is in
diagonal form as in (6) above. If n ≥ 3 then every nonsingular diagonal quadratic
polynomial is irreducible, so Rf is a domain. If k is quadratically closed – i.e.,
admits no proper quadatic extension – then conversely any binary (n = 2) quadratic
form is reducible, so Rf is not a domain. (If f is not quadratically closed, there
exist irreducible binary quadratic forms, but we will not consider them here.)

Theorem 63. Let f = f(x1, . . . , xn) ∈ C[x1, . . . , xn] be a nonsingular quadratic
form. Then Rf = k[x]/(f) is a UFD iff n ≥ 5.

Proof. By the remarks above, Rf is a domain iff n ≥ 3, so we may certainly restrict
to this case. Because C is algebraically closed, every quadratic form in n ≥ 2
variables is isotropic, i.e., there exists 0 6= a ∈ kn such that f(a) = 0: indeed, the
first n − 1 coordinates of a may be chosen arbitrarily. By an elementary theorem
in the algebraic theory of quadratic forms [Lam05, Thm. I.3.4], we may make a
change of variables to bring f into the form:

f(x) = x1x2 + g(x3, . . . , xn).

Case 1: Suppose n = 3, so that

f(x) = x1x2 − ax2
3

for some a ∈ k×. In this case, to show that Rf is not a UFD it suffices to
show that the images x1, x2, x3 of x1, x2, x3 in Rf are nonassociate irreducibles,
for then x1x2 = ax3

2 exhibits a non-unique factorization! To establish this, regard
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k[x1, x2, x3] as a graded C-algebra in the usual way – with x1, x2, x3 each of degree
1 – so that the quotient Rf by the homogeneous ideal (f) inherits a grading. Since
x1 has degree 1, if it were reducible, it would factor as the product of a degree one
element c1x1 + c2x2 + x3x3 + (f) and a degree zero element r + (f), and thus

(rc1 − 1)x1 + rc2x2 + rc3x3 ∈ (f).

But the left hand side has degree 1, whereas all nonzero elements in (f) have degree
2 or higher, so r ∈ C[x]× and therefore the factorization is trivial. The irreducibility
of x2 and x3 is proved in the same way. If x1 ∼ x3 in Rf , then we may divide both
sides of x1x2 − ax3

2 by x1 and deduce that also x2 ∼ x3. But in the quotient ring
Rf/(x3), x3 maps to 0 and x1 and x2 do not, contradiction. So Rf is not a UFD.
Case 2: Suppose n = 4, so f(x) = x1x2 +g(x3, x4), where g(x3, x4) is a nonsingular
binary form. Here for the first time we use the full strength of the quadratic closure
of k: since k× = k×2, any two nonsingular quadratic forms in the same number of
variables are isometric, so we may assume WLOG that

f(x) = x1x2 − x3x4.

Now we argue exactly as in Case 1 above: in Rf , the images x1, x2, x3, x4 are all
non-associate irredcuble elements, so x1x2 = x3x4 is a non-unique factorization.
Case 3: n ≥ 5. Then n− 2 ≥ 3, so g is irreducible in the UFD C[x3, . . . , xn], hence
also in C[x2, x3, . . . , xn]. ThereforeRf/(x1) = C[x1, . . . , xn]/(x1, f) = C[x2, . . . , xn]/(g)
is a domain, i.e., x1 is a prime element. Moreover,

R[x1
−1] = C[x1, . . . , xn, x

−1
1 ]/(x1x2 − g)

∼= C[x1, . . . , xn, x
−1
1 ]/(x2 −

g

x1
) ∼= C[x1, x3, . . . , xn, x

−1
1 ]

is a localization of the UFD C[x1, x3, . . . , xn] hence a UFD. By Nagata’s Criterion
(Theorem 62), Rf itself is a UFD. �

Now let k be an arbitrary field of characteristic not 2 and f ∈ k[x1, . . . , xn] a
nonsingular quadratic form. Without changing the isomorphism class of Rq we may
diagonalize f ; moreover without changing the ideal (f) we may scale by any element
of k×, so without loss of generality we need only consider forms x2

1+a2x
2
2+. . .+anx

2
n.

Theorem 64. Let k be a field of characteristic different from 2 and f = x2
1 +

a2x
2
2 + . . .+ anx

2
n a nonsingular quadratic form over k. Put Rf = k[x]/(f).

a) If n ≤ 2 then Rf is not an integrally closed domain.
b) If n = 3, Rf is a UFD iff f is anistropic: ∀a ∈ kn, f(a) = 0 =⇒ a = 0.
c) (i) Suppose f = x2

1 − ax2
2 − bx2

3 − cx2
4. If a is a square in k, then Rf is a UFD

iff −bc is not a square in k.
(i) If none of a, b, c, −ab, −ac, −bc is a square in k, then Rf is a UFD iff −abc
is not a square.
d) If n ≥ 5, Rf is a UFD.

Remark: If f(x1, . . . , x4) s a diagonal quadratic form, we may permute and/or
rescale the coefficients so that either condition (i) or condition (ii) of part c) holds.

Proof. a) It is not hard to show that if n ≤ 2, Rf is never an integrally closed
domain. b) The proof of Theorem 63 goes through to show that if f is isotropic
(i.e., not anisotropic), Rf is not a UFD. The anisotropic case is due to Samuel
[Sa64]. Part c) is due to T. Ogoma [O74]. Part d) goes back at least to van der
Waerden [vdW39]. In [Na57], M. Nagata gives a short proof using Theorem 62. �
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It is also interesting to consider affine rings of inhomogeneous quadric hypersurfaces.
For instance, we state without proof the following result.

Theorem 65. For n ≥ 1, let Rn := R[t1, . . . , tn+1]/(t21 + . . .+ t2n+1−1) be the ring
of polynomial functions on the n-sphere Sn.
a) (Bouvier [Bou78]) If n ≥ 2, then Rn is a UFD.
b) (Trotter [T88]) R1 is isomorphic to the ring R[cos θ, sin θ] of real trigonometric
polynomials, in which (sin θ)(sin θ) = (1+cos θ)(1−cos θ)) is an explicit non-unique
factorization into irreducible elements. Hence R1 is not a UFD.

10. Characterizations of UFDs

Lemma 66. (Multiplicative avoidance) Let R be a commutative ring and S ⊂
(R \ {0}, ·) a multipicatively closed subset containing 1. Let IS be the set of ideals
of R which are disjoint from S. Then:
a) IS is nonempty.
b) Every element of IS is contained in a maximal element of IS.
c) Every maximal element of IS is prime.

Proof. a) (0) ∈ IS . b) Let I ∈ IS . Consider the subposet PI of IS consisting of
ideals which contain I. Since I ∈ PI , PI is nonempty; moreover, any chain in PI
has an upper bound, namely the union of all of its elements. Therefore by Zorn’s
Lemma, PI has a maximal element, which is clearly also a maximal element of IS .
c) Let I be a maximal element of IS ; suppose that x, y ∈ R are such that xy ∈ I.
If x is not in I, then 〈I, x〉 ) I and therefore contains an element s1 of S, say

s1 = i1 + ax.

Similarly, if y is not in I, then we get an element s2 of S of the form

s2 = i2 + by.

But then
s1s2 = i1i2 + (by)i1 + (ax)i2 + (ab)xy ∈ I ∩ S,

a contradiction. �

Theorem 67. (Kaplansky) An integral domain is a UFD iff every nonzero prime
ideal in R contains a prime element.

Proof. Suppose R is a UFD and 0 6= P is a prime ideal. Let x ∈ P be a nonzero
nonunit. Write

x = p1 · · · pr
a product of prime elements. Then x ∈ P implies pi ∈ P for some i, so (pi) ⊂ P .

Conversely, assume that each nonzero prime ideal of R contains a principal prime.
Let S be the set of units of R together with all products of prime elements. One
checks easily that S is a saturated multiplicative subset. We wish to show that
S = R \ {0}. Suppose then for a contradiction that there exists a nonzero nonunit
x ∈ R \ S. The saturation of S implies that S ∩ (x) = ∅, and then by Lemma 66
there exists a prime ideal P containing x and disjoint from S. But by hypothesis,
P contains a prime element p, contradicting its disjointness from S. �

Corollary 45 is an immediate consequence of Kaplansky’s Theorem. Moreover we
can derive a criterion for a UFD to a PID, as follows. Define the dimension of a
ring to be the supremum of all heights of prime ideals.
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Theorem 68. For a UFD R, the following are equivalent:
(i) R is a PID.
(ii) R has dimension one, i.e., every nonzero prime ideal is a maximal ideal.

Proof. (i) =⇒ (ii): Any integral domain which is not a field has nonzero prime
ideals so therefore dimension at least one. It suffices to show that in a PID every
nonzero prime ideal p is maximal. But if not, there exists a prime ideal q such that
p ( q. But every ideal is principal, so there exist p, q ∈ R such that p = (p) and
q = (q). Therefore p | q, but since q is a prime, and thus irreducible, element, p
must be associate to q, so that p = q, contradiction.

(ii) =⇒ (i): Suppose R is a UFD in which each nonzero prime ideal is maximal,
and let p be a nonzero prime ideal of R. By Theorem 67 p contains a prime element
p, so that we have a containment of prime ideals 0 6= (p) ⊂ (p). By hypothesis (p)
must be maximal, so (p) = p and p is principal. �

Corollary 69. An abstract number ring is a UFD iff it is a PID.

Proof. We claim that any abstract number ring R has dimension one; in view of
Theorem 68, this suffices. So let 0 6= p be a prime ideal of R. By definition, R/p is
a finite integral domain, and therefore a field, so p is in fact maximal. �

What about the case of dimension greater than one? The following is perhaps the
most natural and useful characterization of UFDs among Noetherian domains.

Theorem 70. A Noetherian domain is a UFD iff every height one prime is prin-
cipal.

Proof. This is a consequence of Krull’s Hauptidealsatz, which lies beyond the scope
of this article. See [Ei95, Cor. 10.6] or [Mat89, Thm. 20.1]. �

Theorem 70 is of basic importance in elementary algebraic geometry. Applied to
the polynomial ring R = k[t1, . . . , tn] over a field k, it states that any irreducible
hypersurface in affine n-space is the zero locus of a single polynomial equation.

11. The Class Group

Let me now draw the reader’s attention to a sobering fact. We have analyzed the
definition of UFD and found several “characterizations”, but nevertheless most of
what we have discussed is of relatively little use in determining whether a concretely
given integral domain (say of dimension greater than one) is a UFD. To an extent
we simply need to accept that being a UFD is a rather delicate and subtle property
– we hope our examples of quadratic rings and affine quadric surfaces have attested
to that.

Still, there is one more perspective we wish to give, which is useful both theo-
eretically and computationally. Let R be an integral domain. To fix ideas, let us
assume for now that it is Noetherian, so in particular a factorization domain. Are
there quantities that we may compute in order to determine whether R is a UFD?

Recall that a necessary condition for R to be a UFD is that it be integrally closed in
its fraction field. For a large class of domains – e.g. domains which are finitely gen-
erated over Z, over Q, or over Fp – algorithms have been implemented which check
whether R is integrally closed (and more generally, compute the integral closure).
So let us restrict our attention to integrally closed domains.
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11.1. The ideal class group of a Dedekind domain.

As usual, the simplest case is when R has dimension one. Then a Noetherian,
integrally closed domain of dimension one is a Dedekind domain, one of the best
studied classes of rings. These include, for instance, any integrally closed abstract
number ring. Dedekind domains have (indeed, are characterized by) many pleasant
properties. Among them is a unique factorization property – but at the level of
ideals, not elements. Namely, a domain is a Dedekind domain iff for every nonzero,
proper ideal I of R, there exist nonzero prime ideals p1, . . . , pr such that

I = p1 · · · pr.

(Because the ideals are assumed to be prime and not just unfactorable, the unique-
ness of the factorization follows exactly as in the classical case.) In other words, a
domain is Dedekind iff the monoid I(R) of nonzero ideals of R is a free commutative
monoid on the nonzero prime ideals. (The identity element is the improper ideal
R.) Now, inside I(R) we have Prin(R), the submonoid of principal ideals. Because
R is one-dimensional, it is a UFD iff it is a PID iff Prin(R) = I(R). This suggests
that we can quantify the failure of unique factorization in a Dedekind domain by
forming the quotient monoid

Cl(R) := I(R)/Prin(R).

More explicitly, we define a equivalence relation ∼ on I(R) by I ∼ J if there exist
(a), (b) ∈ Prin(R) such that (a)I = (b)J . This relation is compatible with the
monoid strcture on I(R), so the quotient is a monoid. For any domain R, the quo-
tient I(R)/Prin(R) is a monoid which is trivial iff R is a PID. But this works out
especially nicely for Dedekind domains: in fact a domain R is a Dedekind domain
iff I(R)/Prin(R) is a group, or in other words, that for any nonzero ideal I of R,
there exists a nonzero ideal J of R such that IJ is principal. The commutative
group Cl(R) is the ideal class group of the Dedekind domain R.

The class group of a Dedekind domain is an invariant of independent interest and
usefulness. Especially, in the case in which R is the ring of integers of a number
field K, number theorists write simply Cl(K) for Cl(ZK) out of sheer familiarity:
we have over over 100 years of experience studying these groups. For a number
field K, let ∆K be the discrminant of the ring of integers, i.e., the determinant of
the trace bilinear form (x, y) 7→ TrK/Q(xy) with respect to any Z-basis of ZK . Let
2r2 be the number of embeddings ι : K ↪→ C such that ι(K) is not contained in R.

Theorem 71. Let K be a number field.
a) (Dedekind) The ideal class group Cl(K) is a finite commutative group.
b) (Minkowski) Every class of Cl(K) may be represented by an ideal I with

||I|| ≤
√
|∆K |

(
4

π

)r2 n!

nn
.

Note that Lemma 4 shows that b) implies a) and also gives an effective algorithm
for computing Cl(K). This brings up the following:

Question 1. Let R be an abstract number ring. Must I(R)/Prin(R) be finite?
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Coming back to the case of rings of integers of number fields, Theorem 71 is a 19th
century result. Nowadays there are mathematical software packages which imple-
ment much faster algorithms to compute class groups of number fields. For instance,
I asked MAGMA to compute the class groups of Q(

√
−1000000000000000123) and

Q(
√

100055128505716009) and keep track of the time:

time(ClassGroup(QuadraticField(-1000000000000000123)));

It took 5.810 seconds to compute that the class group is isomorphic to Z/6Z ×
Z/25131282Z.

time(ClassGroup(QuadraticField(100055128505716009)));

It took 2.530 seconds to compute that the class group is trivial, i.e., that the ring of
integers R of Q(

√
100055128505716009) is a UFD. This software makes the meth-

ods of §8 involving explicit verification that the canonical norm is a Dedekind-Hasse
norm look quaint indeed.

11.2. The Picard group and the divisor class group.

Let R be an integral domain which is not a Dedekind domain. Then the monoid
I(R)/Prin(R) is not a group. Now there are (at least!) two ways to make a com-
mutative monoid M into a commutative group. The first is to take the group com-
pletion G(M). However, if M is not cancellative, the homomorphism M ↪→ G(M)
is not injective and could well be trivial: i.e., much information is lost. For in-
stance, let R be a non-maximal order in a number field K. Then it is known that
I(R)/Prin(R) is finite. But a finite cancellative commutative monoid is necessarily
a group! Thus for a nonmaximal order, I(R)/Prin(R) is never cancellative. The
other option is simply to restrict to the group of units M× of M , i.e., the invert-
ible elements. In our case this amounts to taking invertible ideals I of R modulo
principal ideals. By definition, this is the Picard group Pic(R) of R.

We note in passing that a nonzero ideal I of a domain R is invertible iff it is,
as an R-module, finitely generated, projective and of rank one. That is, I is invert-
ible iff the correspondening quasi-coherent sheaf Ĩ on the affine scheme SpecR is a
line bundle. Thus this is a special case of the Picard group PicX = H1(X,O×X)
of a scheme. Since one can always pullback line bundles, this suggests that the
Picard group should have pleasant functorial properties. And indeed, if R→ S is a
homomorphism of domains, then for every invertible ideal I of R, IS is an invertible
ideal of S: indeed, if J is such that IJ = (a), then JS is such that IS · JS = aS.

The Picard group of a domain R is certainly an important construction in alge-
bra and number theory. In particular, the Picard group of a nonmaximal order of
a quadratic field is intimately related to the study of binary quadratic forms over
Q: see [Cox89]. Recall however that we are interested in computing an algebraic
invariant of a Noetherian integrally closed domain that will tell us whether it is
a UFD. We have seen that in dimension one, PicR = ClR does what we want.
However, in dimension greater than one it turns out that a subtly different group
is the right one for the job.

Proposition 72. The ring D := C[x, y, z]/(xy − z2) is a Noetherian, integrally
closed domain with PicD = 0 which is not a UFD.
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Proof. (Sketch) By Theorem 63, D is not a UFD. As for the integrally closed
condition: a geometer would argue that D is singular only at the origin, so its
singular locus has codimension 2 > 1 and that D is a hypersurface, hence a local
complete intersection and that this implies “normality” (i.e., that D is integrally
closed) [Har77, Prop. II.8.3]. A more elementary algebraic argument can be given:
in [Sa58] it is proven that if k is a field, n is a positive integer not divisible by the
characteristic of n, f = f(x1, . . . , xn) ∈ k[x1, . . . , xn] has no irreducible factor of
multiplicity n or greater, then k[x1, . . . , xn, y]/(f − yn) is integrally closed. (See
also [Mat89, Example 4, p. 65] for a variant which also applies in our situation.)
A proof that PicD = 0 can be found in [Har77, Example II.6.11.3]. �

In fact the proof of Proposition 72 is best understood via some ideas that we are
about to introduce, so we will return to it later and be able to give a better (though
still not complete) explanation.

Let R be an integrally closed Noetherian domain with fraction field K, and let Σ
be the set of height one prime ideals of R. We define the divisor group Div(R) =⊕

p∈Σ Z to be the free commutative group on Σ. Also put Div+(R) =
⊕

p∈Σ N, the
subgroup of effective divisors. For each p ∈ Σ, the localization Rp is an integrally
closed one-dimensional local Noetherian domain, hence a discrete valuation ring
[Mat89, Thm. 11.2]. We have a canonical monoid homomorphism

R• ↪→ R•p → G(R•p)
∼→ Z

into a group Z, so it extends uniquely to a group homomorphism on the group
completion, say

ordp : K× → Z.
For f ∈ R•, we define the principal divisor

div f := ((vp)p∈Σ.

Since Div(R) is defined to be the direct sum and not the direct product, for this
definition to make sense, we must have that for f ∈ R•, there are only finitely many
height one primes containing f . This is equivalent to the fact that the quotient ring
R/(f) has only finitely many minimal prime ideals. But since R is Noetherian, so
is R/(f) and indeed every Noetherian ring has only finitely many minimal primes.

The map div : R• → Div(R) is easily seen to be a homomorphism of commutative
monoids which factors through Prin(R). Moreover, since R is an integrally closed
Noetherian domain, we have R =

⋂
p∈ΣRp [Ei95, Cor. 11.4], it follows that div :

Prin(R)→ Div(R) is injective. Once again we get an induced homomorphism on the
group completion, div : G(R) → Div(R). Note that div−1(Div+(R)) = Prin(R).
Finally, we define the divisor class group

Cl(R) = Div(R)/ div(G(R)).

Theorem 73. Let R be an integrally closed Noetherian domain. TFAE:
(i) R is a UFD.
(ii) Div+(R) = Prin(R).
(iii) Cl(R) = 0.

Proof. (i) =⇒ (ii): By Theorem 67, every p ∈ Σ is principal, say p = (fp). It
is easy to see that div fp = [p]. Therefore the submonoid generated by effective

principal divisors is all of Div+(R).



FACTORIZATION IN INTEGRAL DOMAINS 41

(ii) =⇒ (iii): Cl(R) = Div(R)/G(R) is the group completion of the quotient
monoid Div+(R)/Prin(R), which we are assuming is trivial.
(iii) =⇒ (i): Let p ∈ Σ. Then there exists x ∈ K× such that p = div x. Since
p ∈ Div+(R), x ∈ R•, i.e., p = (x). By Theorem 67, R is a UFD. �

For any integrally closed Noetherian domain R, we define a homomorphism Φ :
PicR → ClR. To do this, let I be an invertible ideal of R and let p ∈ Σ. Then
IRp is an ideal in the DVR Rp, hence principal. Therefore we may define the p-
component of Φ(I) to be vp(IRp) ∈ N. As above, since R is Noetherian, we have
the p-component of I is equal to zero except for finitely many primes p. Thus we get
a monoid homomorphism from the monoid of invertible ideals to the divisor group.
Moreover, the divisor attached to a principal ideal (x) in this way is indeed div x.
Thus the homomorphism factors through a group homomorphism Φ : PicR→ ClR.

Theorem 74. Let R be an integrally closed Noetherian domain.
a) There exists a canonical injective group homomorphism Φ : PicR ↪→ ClR.
b) Φ is an isomorphism iff R is locally factorial, i.e., the localization of R at each
maximal ideal is a UFD.

Proof. See Theorems 11.8 and 11.10 of [Ei95]. We explain only the necessity of the
local factoriality condition in part b): PicR consists of locally principal ideals, so
is certainly trivial when R is a local domain. �

Example (D = C[x, y, z]/(xy − z2) revisited): Let p = 〈y, z〉 be the ideal of D
generated by the images of y and z. Then D/p = C[x], so p is a height one prime
of D and thus an element of DivD. In the DVR Dp, x is a unit and z is a uni-
formizer, so ordp(y) = 2. The element y does not lie in any other height one prime,
so div y = 2[p]. On the other hand, let m = 〈x, y, z〉 be the maximal ideal corre-
sponding to the origin. We claim that pDm is not principal. Indeed, m/m2 is a
3-dimensional C-vector space generated by the images of x, y, z, whereas p ⊂ m
and the image of p in m/m2 contains the images of x and y, so if pDm were principal
we would have dimC m/m2 = 2. Since D is integrally closed, by Theorem 74a) we
may use Φ to identify PicD with a subgroup of ClD; doing so, what we have shown
is that p is an order 2 element of Cl(D) \ Pic(D). A finer analysis – see [Sa64] or
[Har77, Example II.6.5.2] – shows that in fact Cl(D) = 〈p〉 = Z/2Z, and from this
we conclude that PicD = 0.

By far the most important application of Theorem 74b) is to regular domains.
We gave the formal definition in §5.2. Now we supplement it with the remark that
the coordinate ring R = k[V ] of an affine variety V over a perfect ground field k is
regular at a maximal ideal m iff V is nonsingular at the closed point corresponding
to m, and R itself is regular iff V is nonsingular at every closed point. The cel-
ebrated Auslander-Buchsbaum theorem [AB59] says that a regular local ring is a
UFD and thus a regular ring is locally factorial. Thus Theorem 74b) is the ana-
logue for affine integral Noetherian schemes of the equivalence of Cartier and Weil
divisors on a nonsingular variety.

It is possible to define the divisor class group of an arbitrary Noetherian domain.
Again we let DivR be the free abelian group on the set Σ of height one primes;
the integral closure was used only so that for all p ∈ Σ, Rp was a DVR and hence
there was a canonical monoid homomorphism vp : Rp → N. In the general case,
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if I is an invertible ideal of R and p is a height one prime, we may define the
component at p of I to be the length of the Rp-module Rp/IRp. In this way, to
every invertible ideal we associate an effective divisor. In particular, this works for
principal ideals and extends uniquely to a map on G(R), and we may once again
define ClR = DivR/G(R). Our assignment of an effective Weil divisor to each
effective Cartier divisor induces a homomorphism of groups PicR→ ClR which is
in general neither injective nor surjective.

11.3. Krull domains.

On the other hand, we know that a UFD is necessarily integrally closed and not
necessarily Noetherian, so for our purposes it would be more useful to keep the
integrally closed condition and weaken the Noetherian hypothesis. Abstracting the
properties that made the construction of ClR go through, we are led to the follow-
ing definition.

An integral domain R is a Krull domain if it satisfies the following properties:9

(KD1) For each height one prime ideal p, Rp is a DVR.
(KD2) R =

⋂
pRp, the intersection extending over the height one ideals.

(KD3) For each x ∈ R•, the set of height one primes containing x is finite.

These were precisely the properties that we needed to check that an integrally closed
Noetherian domain possesses in order to define the divisor class group DivR. Thus
the construction of DivR for a Krull domain is immediate.

Proposition 75. A Krull domain admits a multiplicative norm and is therefore
an ACCP domain.

Proof. Let R be a Krull domain. Define the degree map deg : DivR → Z to be
the unique homomorphism which sends [p] to 1 for each height one prime p. Then
the mapping 0 7→ 0, f ∈ R• 7→ 2deg(f)defines a multiplicative norm on R. �

So a domain admits a multiplicative norm if it is an abstract number ring or a
Krull domain (in particular, a Noetherian normal domain) and a domain which
admits a multiplicative norm is an ACCP domain. I don’t know much more than
this myself. It seems unlikely that every ACCP domain admits a multiplicative
norm, for instance because seemingly weaker properties also imply ACCP. Namely,
for any ordinal Ω, define an Ω-norm on a domain R to be a map N : R• → Ω such
that for all x, y ∈ R such that x properly divides y, N(x) < N(y). Evidently a
domain which admits an Ω-norm is an ACCP domain.

Question 2.
a) Is there a nice characterization of domains which admit a multiplicative norm?
b) For which ordinals Ω does the existence of an Ω-norm imply the existence of a
multiplicative norm?

9This is a slight rephrasing of the most standard definition: for the standard definition, which
involves a family of discrete valuations, see e.g. [LM71, §8.1]. The equivalence of our definition

with the standard one is [LM71, Exercise 8.3].
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Coming back to Krull domains: it seem that we have just defined our troubles away,
but in fact the class of Krull domains is remarkably natural and robust. We list
just a few striking properties.

Theorem 76.
a) [Na62] The integral closure of a Noetherian domain is a Krull domain.
b) [LM71, Thm. 8.19] If R is a Krull domain with fraction field K and L/K is a
finite degree field extension, then the integral closure of R in L is a Krull domain.
c) [Gi84] If R is a Krull domain, so are polynomial and formal power series rings
over R in any number of indeterminates.

The following result is our ultimate characterization of UFDs.

Theorem 77. [LM71, Thm. 8.31] A domain R is a UFD iff it is a Krull domain
with ClR = 0.

We have barely introduced the subject of the divisor class group of a Krull domain.
There are whole aspects of the theory that we have not even touched, notably an
alternate definition of ClR based on the important notion of divisorial ideals.
(For instance, this is closely related to the construction I 7→ I coming up in the
definition of a Queen norm.) For a much more systematic development of this
theory we recommend [Fo73] and [LM71].
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