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I wish to describe the foundations and some basic aspects of the theory of factoriza-
tion in integral domains. The issue of uniqueness of factorization is the beginning
of a systematic study of number theory, and it also plays a key role in the study
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of hypersurfaces and divisors in algebraic geometry. Moreover, the subject has a
richness which makes its study inherently rewarding.

Nevertheless it is rare to find a satisfactory treatment of factorization in a text
at the advanced undergraduate or basic graduate level. So, while teaching an
undergraduate/basic graduate number theory course, I wrote up some notes on
factorization. The temptation to do the subject justice caused the notes to expand
to their present form.

However unflattering it may be, I must compare this article to two classic surveys
written by two masters of the subject: a 1968 article of P. Samuel [S68] and a 1973
article of P.M. Cohn [C73], both published in the American Mathematical Monthly.
Samuel’s article contains a beautiful discussion of the algebraic-geometric meaning
of unique factorization whereas much of Cohn’s article discusses the case of factor-
ization in non-commutative rings. My goal here is to present a more comprehensive
(and thus overall more elementary) discussion as well as to emphasize connections
to number theory and highlight the utility of “norm functions” of various sorts.

By convention, all rings are commutative with a multiplicative identity. Let us
agree to exclude from consideration the zero ring, which has a single element 1 = 0.
We will almost entirely be concerned with commutative rings without nonzero di-
visors of zero, which we call “integral domains” or just “domains”.

Introduction

Any nonzero integer has both positive and negative divisors. Our definition of
factorization must be sufficiently refined so as to not count such factorizations as

3 = (−1) · (−3)

as nontrivial. Any integer is divisible not just by 1 but also by −1. Moreover,
in any integral domain, every element x is divisible by every unit u of the ring.
Indeed, the definition of a unit is an element which has a multiplicative inverse –
say, u′, such that uu′ = 1 – and then x = u · (u′x) for all x. Thus the first key
observation is to regard a factorization x = yz as “trivial” if one of y or z is a unit.

We say a nonzero, nonunit element x of R is irreducible if has only trivial factor-
izations: that is, if x = yz, then one of y or z is a unit. (Note that it cannot be the
case that both y and z are units, for then x would itself be a unit.)

Example 0.1: The irreducible elements of Z are ±p, where p is a prime number.1

Example 0.2: In Q, or in any field, there are no irreducible elements, because
every nonzero element is a unit.

Let a be any nonzero nonunit in an integral domain R. An irreducible fac-
torization (or just a factorization) of a is an expression

a = x1 · · ·xn,

1The reader may be wondering why we don’t simply call irreducible elements “primes”. The
important but subtle answer is given in §3.3.
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where each xi is irreducible. In other words, a factorization is an expression of a
nonzero nonunit as a product of irreducible elements.

1. Norm functions

An interesting link between number theory and algebra is afforded by the study
of “norm functions” on rings, namely on functions N : R → N. Many rings of
number-theoretic interest – e.g, the ring ZK of integers in any number field K
– come endowed with natural norm functions. On the other hand, many abstract
algebraic properties of commutative rings turn out to be equivalent to the existence
of a norm function with various properties.

1.1. Weak multiplicative norms and multiplicative norms.

We say a function N : R → N is a weak multiplicative norm if it satisfies:

(MN1) N(0) = 0, N(R \ {0}) ⊂ Z+; and
(MN2) For all x, y ∈ R, N(xy) = N(x)N(y).

Proposition 1. Let N : R → N be a weak multiplicative norm on the ring R.
Then for any unit a ∈ R, N(a) = 1.

Proof. We have N(1) = N(1 · 1) = N(1) ·N(1), and since N(1) 6= 0,2 we must have
N(1) = 1. Similarly, if a is a unit, there exists b ∈ R such that ab = 1 and then
1 = N(1) = N(ab) = N(a)N(b), which implies N(a) = N(b) = 1. �

For any ring R, define N0 : R → N by N0(0) = 0, N0(R \ {0}) = 1.

We say that a weak multiplicative norm N : R → N is a multiplicative norm if
it satisfies the converse of Proposition 1, i.e.,

(MN3) x ∈ R, N(x) = 1 =⇒ x ∈ R×.

Proposition 2. Let R be a commutative ring.
a) R is an integral domain iff N0 is a weak multiplicative norm.
b) If R admits any weak multiplicative norm, it is an integral domain.
c) The map N0 is a multiplicative norm on R iff R is a field, in which case it is
the unique weak multiplicative norm on R.

The proof is straightforward and we leave it to the reader.

1.2. Abstract number rings.

Consider the following condition on a commutative ring R:

(FN) For all nonzero ideals I of R, #R/I < ∞.

For a ring R satisfying (FN), we can define an ideal norm function: N((0)) = 0
and for any I 6= (0), N(I) = #R/I. This gives rise to a norm function on ele-
ments in the above sense simply by defining N(a) = N((a)), i.e., as the norm of
the principal ideal (a) = {ra | r ∈ R}.

2Here we use that 1 6= 0 in R.
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Proposition 3. For a ring R satisfying (FN), exactly one of the following holds:
(i) N(R) = {0, 1}. Then R is a field, and N is a multiplicative norm.
(ii) {0, 1} ( N(R) and N(R) is finite. Then R is a finite ring which is not a
domain, and N is not a weak multiplicative norm.
(iii) {0, 1} ( N(R) and N(R) is infinite. Then R is an infinite integral domain
which is not a field, and N is a multiplicative norm.

Proof. Step 0: Since 0 6= 1, we always have {0, 1} ⊂ N(R). Moreover, N(x) =
1 ⇐⇒ xR = R ⇐⇒ x ∈ R×, so N is a weak multiplicative norm on R iff it is
a multiplicative norm. If R is a field, then by Proposition we have N(R) = {0, 1}.
Henceforth we assume that R is not a field.
Step 1: We claim that if R is not an integral domain, then R is a finite ring. Indeed,
let 0 6= a be a zero divisor, so I = {r ∈ R | ra = 0} is a nonzero ideal of R. Consider
the map a• : R → R, r 7→ ar; this is an endomorphism of the underlying additive
group (R,+). The image of a• is the principal ideal aR and its kernel is I, so

R/I ∼= aR.

By hypothesis, R/I is finite, so aR is finite. Moreover, since aR is a nonzero ideal
of R, R/aR is finite. But we have a short exact sequence

0 → aR → R → R/aR,

which shows that R itself is finite.
Step 2: If R is finite, then N(R) is finite, and there exist x, y ∈ R \ {0} such that
xy = 0. In particular 0 = N(xy) 6= N(x)N(y), so N is not weakly multiplicative.
Step 3: We claim that if R is an infinite domain which is not a field, then N(R)
is infinite. Indeed, in such a ring R, there exists a ∈ R which is neither zero nor
a unit. Then for all n ∈ Z+, (an+1) ( (an) – otherwise an+1 | an, so that there
exists x ∈ R with an+1x = an, or an(ax − 1) = 0 so a = 0 or a ∈ R×. It follows
easily that N(a) < N(a2) < . . ..
Step 4: We claim that if R is a domain then N is a multiplicative norm. For this
it is enough to verify (MN2) for x, y 6= 0. Consider the quotient homomorphism
R/(xy) → R/(x). This map is surjective, and its kernel is (x)/(xy). Moreover,
since y is not a zero divisor, multiplication by y gives an isomorphism of R-modules
ϕy : R → yR. Since ϕy(xR) = xyR, passing to the quotient gives R/x ∼= yR/xyR,
and this shows N(xy) = N(x)N(y). �

An abstract number ring is an infinite ring satisfying (FN) which is not a field.

Example 1.1: Any domain R whose additive group (R,+) is isomorphic to Zd

for some d ∈ Z+ satisfies (FN) and therefore is an abstract number ring. To see
this, observe that it is enough to verify the finiteness of R/I for the principal ideal
I generated by any nonzero element α of R. Now the elements 1, α, α2, . . . , αn, . . .
cannot all be linearly independent over Z, so choose the least positive integer n
such that there exist integers a0, . . . , an, not all 0, with anαn + . . . + a1α + a0 = 0.
If a0 = 0, then since R is a domain and α 6= 0, we could divide through to get a
linear dependence relation of smaller degree. So a0 6= 0. Rewriting the equation as

−a0 = α(anαn−1 + . . . + a1),
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we see that the ideal αR contains the nonzero integer a0. We have a quotient map
R/a0R → R/αR. As an abelian group, R/a0R ∼= Zd/a0Zd ∼= (Z/a0Z)d. In partic-
ular it is finite, hence so is its homomorphic image R/αR.

Example 1.2: Let K/Q is any field extension of finite degree d, and ZK is the
ring of all elements α ∈ K which satisfy some monic polynomial relation αn +
an−1α

n−1 + . . . + a1α + a0 = 0. It is then a basic fact (perhaps the first non-
trivial result, in fact) of algebraic number theory that (ZK ,+) ∼= Zd, so ZK is an
abstract number ring and hence comes equipped with a standard multiplicative
norm, N(α) = #(ZK/αZK).

1.3. Dirichlet rings.

Let R be a ring. The Dirichlet ring DR is a ring whose elements are the functions
f : Z+ → R. We define addition pointwise, i.e.,

(f + g)(n) := f(n) + g(n),

whereas multiplication is given by the convolution product

(f ∗ g)(n) =
∑

d1d2=n

f(d1)g(d2).

When R = R or C, this is often called the ring of arithmetic functions. We suggest
that the reader who is unfamiliar with this construction take a few minutes to
convince herself that it gives a well-defined ring (especially, that the product is
associative, and that the multiplicative identity is e : 1 7→ 1, n > 1 7→ 0).

Theorem 4. A ring R is an integral domain iff DR is an integral domain.

Proof. The map R ↪→ DR which sends r to the function which carries 1 to r
and every other positive integer to 0 embeds R as a subring of DR. So if DR is
a domain, certainly R is. Conversely, by Proposition 1.2 it suffices to construct
a weak multiplicative norm function on DR. The function N which sends the 0
function to 0 and any other function f to the least n such that f(n) 6= 0 is easily
checked to be a weak multiplicative norm. �

Remark 1.1: Let R be a domain. Then the weak multiplicative norm N constructed
on DR above is a multiplicative norm if and only if R is a field.

2. Factorization domains

Let us say that a domain R is a factorization domain (for short, FD) if every
nonzero nonunit element has a factorization into irreducibles.3

Example 2.1: A field is trivially a FD: it has no nonzero nonunits.

Example 2.2: Part a) of the fundamental theorem of arithmetic asserts that Z
is a FD. The proof was an easy “minimal counterexample” argument.

We wish to give sufficient conditions for a domain R to be a FD. In practice,
most domains one encounters in algebra and number theory are FDs, so we are

3The term atomic domain is used by specialists in the area, but is not so familiar to a general
mathematical audience. Our chosen terminology seems more transparent.
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looking for conditions which are widely applicable. In fact we will give two differ-
ent sets of conditions. The first is fundamentally number-theoretic in spirit and can
be viewed as a generalization of Example 2.2 in that it relies on the well-ordering
of the positive integers. The second is quite general and abstract algebraic in nature.

As for the first condition, the idea is extremely simple: factorization ought to
be a process of decomposing more complex objects into simpler ones. If to every
nonzero element a of R we can assign a positive integer “complexity” C(a) such
that in any nontrivial factorization a = bc – i.e., with b and c nonunits – we have
1 ≤ C(b), C(c) < C(a) – then factorizations lower the complexity so that eventu-
ally the process must terminate.

In particular any multiplicative norm on R satisfies this key property, so:

Proposition 5. A ring admitting a multiplicative norm is a factorization domain.

Proof. Let N be a multiplicative norm on te ring R. Suppose for a contradiction
that the set of nonzero nonunits in R which do not admit irreducible factorizations
is nonempty. Then, among all such elements x there exists one with N(x) minimal.
Such an x certainly is not irreducible, so it can be factored as x = yz, with both
y, z nonunits. Then N(x) = N(y)N(z) ∈ Z+ and N(y), N(z) > 1, so that we
must have N(y), N(z) < N(x). But y and z, having smaller norms than x, each
have irreducible factorizations, say y = y1 · · · yr and z = z1 · · · zs. Then x =
y1 · · · yrz1 · · · zs is an irreducible factorization of x. �

Now for the second condition. In a domain R, we say that an element a properly
divides an element b if b = xa and x is not a unit. This condition is equivalent
to a | b but b - a and also to (a) ) (b). We say that a domain R satisfies condition
ACCP if there does not exist an infinite sequence of elements {ai}∞i=1 of R such
that for all i, ai+1 properly divides ai.

Example 2.3: The integers satisfy ACCP: indeed if the integer a properly divides
the integer b, then |a| < |b|, so an infinite sequence of proper divisors would, again,
contradict the well-ordering of the natural numbers.

Remark 2.1: Any ring R which admits a multiplicative norm satisfies ACCP: if
a properly divides b, N(a) properly divides N(b) and hence 0 ≤ N(a) < N(b).

Proposition 6. For a commutative ring R, the following are equivalent:
(i) There are no ascending sequences (a1) ( (a2) ( . . . of principal ideals in R.
(ii) Any nonempty set F of principal ideals of R has a maximal element. In other
words, there exists a principal ideal I ∈ F which is not properly contained in any
other principal ideal in F .
(iii) There is no sequence {ai}∞i=1 in R with ai+1 properly dividing ai for all i ≥ 1.

The argument of (i) ⇐⇒ (ii) comes up many times in this subject, so for efficiency
of future use we isolate it in a more abstract form.

Lemma 7. Let (S,≤) be a partially ordered set. The following are equivalent:
(i) There are no infinite sequences

(1) s1 < s2 < . . . < sn < . . .
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of elements in S.
(ii) Any nonempty subset F of S has a maximal element, i.e., there exists x ∈ F
such that if y ∈ F and x ≤ y then y = x.

Proof. It is easier (and, of course, sufficient) to prove that (i) fails iff (ii) fails.
Indeed, if (i) fails, then there exists an infinite sequence as in (1) above, and then
F = {si}∞i=1 is a nonempty subset of S without a maximal element. Conversely, if
(ii) fails, let F be a nonempty subset of S without maximal elements. Since it is
nonempty, there exists s1 ∈ F . Since s1 is not maximal, there exists s2 ∈ F with
s1 < s2. Continuing in this way, we build an infinite sequence as in (1). �

Proof of Proposition 6: We see that (i) ⇐⇒ (ii) by applying Lemma 7 to the
partially ordered set of principal ideals of R, with (a) ≤ (b) iff (a) ⊂ (b). (i) ⇐⇒
(iii) is immediate, since an infinite sequence {ai}∞i=1 with ai+1 properly dividing ai

yields an infinite strictly ascending sequence of principal ideals (a1) ( (a2) ( . . .,
and conversely. �

Proposition 8. A principal ideal domain satisfies ACCP.

Proof. Let R be a principal ideal domain, and suppose for a contradiction that
there exists a sequence {ai}∞i=1 in R such that (a1) ( (a2) ( . . .. Put I =

⋃∞
i=1(ai).

By assumption I is principal, say I = (a). One the one hand we have (a) ⊃ (ai) for
all i, but on the other hand, the element a must lie in (aN ) for some N and hence
also aN+k for all k ≥ 0. We conclude that (aN ) = (aN+1) = . . ., contradiction. �

Proposition 9. An integral domain satisfying ACCP is a factorization domain.

First Proof : Let S′ be the set of all nonzero nonunit elements of R which cannot be
factored into irreducibles. Assume, for a contradiction, that S′ is nonempty. Then
the corresponding set

S = {(x) | x ∈ S′}
of principal ideals generated by elements of S′ is also nonempty. By ACCP and
Remark 1, there exists a maximal element (x) of S. Now just follow your nose:
by definition of x, it is not irreducible, so can be written as x = yz with y and
z nonunits. This means that the principal ideals (y) and (z) each strictly con-
tain the principal ideal (x), so by the assumed maximality of (x), both y and z
can be factored into irreducibles: y = y1 · · · yr, z = z1 · · · zs, so (as usual!) we get
x = y1 · · · yrz1 · · · zs so x has an irreducible factorization after all, contradiction. �

Second Proof (for Roy Smith): We take a more direct approach. Let x be a nonzero
nonunit element. We claim first that there exists a divisor y of x such that y is irre-
ducible. Certainly this holds if x is irreducible, so assume that x = y1z1 with both y
and z1 properly dividing x. If y1 is irreducible again our claim holds, so assume that
y1 = y2z2 with y2 strictly dividing y1, and thus x = y2z1z2 with (x) ( (y1) ( (y2).
Continuing in this way – i.e., replacing yn by yn+1zn+1 with yn+1, zn+1 properly
dividing yn if yn is irreducible – we would get an infinite strictly ascending chain
(y1) ( (y2) ( . . . of principal ideals, contrary to our assumption. So this cannot be
the case, i.e., for some n, yn is an irreducible divisor of x.

Thus we have shown that any nonzero nonunit, reducible element x of R can be
“partially factored” in the sense that it can be written as x = a1y1 with a1 irre-
ducible and y1 a nonzero nonunit. If y is irreducible, we have completely factored
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x; if not, the above claim can be applied to y, getting x = a1a2y2 with (y2) ( (y1).
Now we argue as above: if this process never terminated, we would produce an in-
finite strictly ascending chain (y1) ( (y2) ( . . . contradicting ACCP; therefore for
some n we must have x = a1 · · · anyn with yn ∈ R×, and thus x = a1 · · · an−1(ynan)
is an irreducible factorization of x. �

3. A deeper look at factorization domains

3.1. A non-factorization domain.

The ring Z of all algebraic integers is not a factorization domain. In fact, Z is in
sense as far from a factorization domain as possible: it has many nonzero nonunit
elements, but no irreducible elements! We briefly sketch an argument for this: first,
there exist nonzero nonunit elements of the ring, for instance the element 2. Its
multiplicative inverse in the fraction field Q (of all algebraic numbers) is 1

2 , and 1
2

is not an algebraic integer. Second, we claim that there are no irreducible elements
in Z. Namely, if x is any nonzero nonunit algebraic integer, then one can check
that

√
x is also a nonzero nonunit algebraic integer and x =

√
x
√

x.

Remark 3.1: It follows from the material of the previous section that any domain
which is not a factorization domain is a ring which admits a weak multiplicative
norm (e.g. the trivial norm N0) but no multiplicative norm. Thus Z gives a specific
example of such a domain. In fact the above argument gives more: because the only
positive integer which is an nth power for all n is 1, the only weak multiplicative
norm on Z is the trivial norm N0.

More generally, if R is any domain which is not a field and such that for all n ∈ Z+,
the map the nth power map x ∈ R 7→ xn is surjective, then R has nonzero nonunits
but no irreducible elements, so is not a factorization domain.

3.2. FD versus ACCP.

The merit of the second proof of Proposition 9 is that it shows that the ACCP
condition on a domain R shows that an irreducible factorization can be arrived at
via a finite number of “elementary factorizations” – i.e., replacement of a nonzero,
nonunit reducible element x with yz, where yz = x and y and z each properly
divide x. In fact it can be shown that the procedure of the second proof is unnec-
essarily careful: ACCP guarantees that any sequence of elementary factorizations
terminates in an irreducible factorization.

In a widely read 1968 paper [C68], the distinguished algebraist P.M. Cohn claimed
an affirmative answer to this question, however without giving any proof. Therefore
it caused a bit of a stir when, in 1974, Anne Grams proved the following result.

Theorem 10. There exist factorization domains which do not satisfy ACCP.

Proof. See [G74]. �
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3.3. ACC versus ACCP.

Many students of ring theory are less familiar with ACCP than with the following:

Proposition 11. For a ring R, the following conditions are equivalent:
(i) Every nonempty set S of ideals of R has a maximal element, i.e., an element
I ∈ S such that I is not properly contained in any other ideal J of S.
(ii) (ACC) In any infinite sequence of ideals

I1 ⊆ I2 ⊆ . . . ⊆ In ⊆ . . .

we have equality from some point onward: there exists N ∈ Z+ such that for all
k ≥ 0, IN+k = In.
(iii) Every ideal I of R is finitely generated: there exist finitely many elements
x1, . . . , xn in R such that

I = 〈x1, . . . , xn〉 = {r1x1 + . . . + rnxn | ri ∈ R}.

A ring satisfying these equivalent properties is caled Noetherian.

Proof. (i) ⇐⇒ (ii): For any nonempty family F of subsets of a given set R, the
condition that that any infinite sequence I1 ⊂ I2 ⊂ . . . of elements of F is equivalent
to the condition that every nonempty subset of F has a maximal element: if (i)
does not hold, then there exists a sequence I1 ( I2 ( I3 ( . . ., and then {In}∞n=1

has no maximal element. Conversely, if (ii) does not hold, then there exists I1 ∈ F ;
since I1 is not maximal, so there exists I2 ∈ F such that I2 ) I1, since I2 is not
maximal, there exists I3 ∈ F such that I3 ) I2: continuing in this way, we build
an infinite strictly ascending chain.
(ii) =⇒ (iii): If there exists an ideal I which is not finitely generated, then for
any x1 ∈ I, I1 := 〈x1〉 ( I. Since I1 is finitely generated and I is not, there exists
x2 ∈ I \ I1. Put I2 = 〈x1, x2〉, so I2 ⊂ I. Again, because I is not finitely generated,
there exists x3 ∈ I \I2. In this way we construct an infinite strictly ascending chain
I1 ( I2 ( I3 ( . . ., contradicting (ii).
(iii) =⇒ (ii): Let I1 ⊆ I2 ⊆ . . . be an infinite sequence of ideals. Then the union
I :=

⋃∞
i=1 Ii is again an ideal. By assumption, I is finitely generated, so there exist

x1, . . . , xn ∈ R with I = 〈x1, . . . , xn〉. But since I is the union of the Ii’s, for each
1 ≤ i ≤ n, there exists ki ∈ Z+ such that xi ∈ Iki

. Put k = max(k1, . . . , kn); then
x1, . . . , xn are all in Ik, so I = Ik, which forces Ik = Ik+1 = . . . = I. �

Proposition 12. A principal ideal domain is a Noetherian domain.

Proof. This is an immediate consequence of the definitions: a PID is a domain in
which each ideal can be generated by a single element, whereas a Noetherian ring
is one in which each ideal can be generated by finitely many elements. �

Noetherianity is justly regarded as the single most important condition on a ring.
This esteem comes in part from the large class of Noetherian rings:

Theorem 13. Let R be a Noetherian ring.
a) If I is any ideal of R, then the quotient R/I is Noetherian.
b) The polynomial ring R[t] is Noetherian.
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Part a) follows immediately from the inclusion preserving correspondence between
ideals of R/I and ideals of R containing I, whereas part b) is the celebrated Hilbert
basis theorem: see e.g. [AM69, Cor. 7.6], [L02, Thm IV.4.1].

Unlike ACC, the condition ACCP does not in general pass to quotient rings (even
quotient domains). Indeed, it will follow from Theorem 22 that a polynomial ring
Z[t] := Z[(ti)i∈J ] in any set J of indeterminates is an ACCP domain. But every
commutative ring is isomorphic to a quotient of some ring Z[t].

On the other hand, the analogue of Theorem 13b) for ACCP does hold:

Theorem 14. R be an ACCP domain. Then R[t] is also an ACCP domain.

Proof. In an infinite ascending chain (Pi) of principal ideals of R[t], deg(Pi) is a
descending chain of non-negative integers, so eventually stabilizes. Therefore for
sufficiently large n, we have Pn = anPn+1, where an ∈ R and (an+1) ⊃ (an).
Since R satisfies (ACCP) we have (an) = (an+1) for sufficiently large n, whence
(Pn) = (Pn+1) for sufficiently large n: R[t] satisfies (ACCP). �

4. Unique factorization domains

4.1. Associates.

In order to give a definition of a unique factorization domain, we must specify
when two different factorizations of the same nonzero nonunit x are to be regarded
as “equivalent.” In the case of factorizations of positive integers into prime num-
bers, we only had to worry about the ordering of the irreducible factors. Of course
we still wish to regard two factorizations into irreducibles differing only in the order
of the factors as equivalent, but there is more to say. For instance, in Z we have

18 = 2 · 3 · 3 = (2) · (−3) · (−3),

and several other choices for the sign besides. The correct generalization of this to
an arbitrary domain comes from the following observation: if x is an irreducible
element of R and u is a unit of R, then ux is also an irreducible element of R.
Similarly, by multiplying by units we can get many different equivalent-looking
factorizations, e.g.

a = x1 · · ·xr = (ux1) · · · (uxr−1) · (u1−rxr).

Thus we need a relation between elements which regards two elements as equivalent
iff they differ multiplicatively by a unit. In fact this is itself a well-defined relation:
its properties are recorded below.

Proposition 15. Let R be a domain, and let x, y ∈ R. The following are equivalent:
(i) x | y and y | x.
(ii) There exists a unit u ∈ R× such that y = ux.
(iii) We have an equality of principal ideals (x) = (y).
If x and y satisfy any (hence all) of the conditions above, we say that x and y are
associates and write x ∼ y.

The proof amounts to unwinding the definitions. We leave it to the reader.
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4.2. Unique factorization domains.

Finally, we can give the key definition. An integral domain R is a unique factor-
ization domain (UFD)4 if:

(UFD1) = (FD) Every nonzero nonunit admits an irreducible factorization; and

(UFD2) If a = x1 · · ·xr = y1 · · · ys are two irreducible factorizations of a, then
r = s, and there exists a permutation σ of {1, . . . , r} such that for all 1 ≤ i ≤ r,
xi ∼ yσ(i). That is, after reordering the elements we can pair off each irreducible
in the first factorization with an associate irreducible in the second factorization.

The condition (UFD2) is logically complex, and one may worry that it is diffi-
cult to verify it directly. Note however that this is exactly what was done in the
HLZ proof of unique factorization in Z. On the other hand – and also as is the case
for R = Z! – Euclid’s Lemma is a useful intermediate point.

We say an integral domain R is an EL-domain if for all irreducible elements
x of R, if x | ab, then x | a or x | b. Of course this immediately implies that if x is
irreducible and x divides a1 · · · an, then x | ai for some i.

Theorem 16. Let R be a factorization domain. Then R is a unique factorization
domain iff it is an EL-domain.

Proof. The argument that one uses in elementary number theory to deduce the
fundamental theorem of arithmetic from Euclid’s Lemma (and conversely) carries
over without essential change to this context. For completeness, we give the details.

Suppose first that R is a UFD, let f be an irreducible element, and suppose that
f | xy, so that zf = xy for some z ∈ R. Now factor both sides of the equation into
irreducibles. Since f appears in the left hand factorization, by uniqueness some
irreducible f ′ associate to f must appear in the right hand side, i.e., either f ′ | x
or f ′ | y. Since f and f ′ are associates, we conclude f | x or f | y.

Conversely, suppose R is a factorization domain, and x = f1 · · · fm = g1 · · · gn

are two irreducible factorizations of the same nonzero nonunit elment x of R. Then
f1 | g1 · · · gn so f1 | gj for some j. It is harmless to reorder the elements, so we may
as well assume that f1 | g1. But since g1 is irreducible, this means f1 and g1 are
associates, so g1 = u1f1. Therefore we may cancel f1’s to get f2 · · · fm = u1g2 · · · gn.
Proceeding in this way we get units u2, . . . , um such that gi = uifi for all i, and
thus 1 = u1 · · ·umgm+1 · · · gn, so that gm+1 · · · gn ∈ R×. But a product of nonunit
elements is never a unit, so that we must have m = n. Thus the factorization is
unique up to ordering of the factors and associates. �

More precisely, we have the following useful characterization of UFDs:

Theorem 17. For an integral domain R, the following are equivalent:
(i) R is a unique factorization domain.
(ii) R is an ACCP domain and is an EL-domain.
(iii) R is a factorization domain and an EL-domain.

4The term factorial domain is also commonly used, especially by continental mathematicians.
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Proof. (i) =⇒ (ii): suppose R is a UFD. By Theorem 16, R is an EL-domain.
Moreover, suppose R does not satisfy ACCP: (x1) ( (x2) ( . . .. Then x2 is a
nonzero nonunit. Since (x3) strictly contains x2, there exists a nonzero nonunit
y1 such that x2 = x3y1. Since x3 and y1 are both nonzero nonunits, they have
unique factorizations into irreducibles, which means that the unique factorization
of x2 into irreducibles has at least two irreducible factors. Similarly, there exists
a nonzero nonunit y2 such that x3 = x4y2, so x2 = x4y2y1, so that we now know
that the unique factorization of x2 into irreducibles has at least 3 irreducible fac-
tors. Proceeding in this way we can show that the unique factorization of xn into
irreducibles has at least n irreducible factors for any n ∈ Z+, which is absurd.
(ii) =⇒ (iii) by Proposition 9, whereas (iii) =⇒ (i) by Theorem 16. �

4.3. Prime elements.

Recall the notion of a prime ideal p in a ring R: this is a proper ideal such
that x, y ∈ R, xy ∈ p implies x ∈ p or y ∈ p.

Let us define a nonzero element x in a domain R to be a prime element if the
principal ideal (x) is a prime ideal. Unpacking this, we see that an element x is
prime iff x | ab implies x | a or x | b.

Lemma 18. a) In any domain R, a prime element is irreducible.
b) A domain R is an EL-domain exactly when all irreducible elements are prime.

Proof. a) If x = ab with a and b nonunits, then certainly x - a and x - b.
b) This is, of course, the definition of an EL-domain. �

In particular, since UFD =⇒ EL-domain, in any UFD there is no distinction to
be made between irreducible elements and prime elements. Conversely, a FD will
fail to be a UFD iff there exist irreducible elements which are not prime.

4.4. Norms on UFDs.

In this section we give a complete description of all weak multiplicative norms
(and also all multiplicative norms) on a UFD.

Let R be a UFD and N : R \N be a weak multiplicative norm. As for any domain,
if x and y are associate elements of R, y = ux for u ∈ R×, so

N(y) = N(ux) = N(u)N(x) = 1 ·N(x) = N(x).

Let P be the set of principal nonzero prime ideals of R. For each p ∈ P, choose
any generator πp. Put np := N(πp). This data completely determines N , since any
nonzero element x of R can be written in the form u

∏
p∈P π

xp
p with xp ∈ N and

xp = 0 for all but finitely many elements of P, and then we must have

(2) N(x) =
∏
p∈P

n
xp
p

Conversely, by assigning to each p ∈ P a positive integer np, we can define a
function N : R \ {0} → Z+ by

x = u
∏
p∈P

π
xp
p 7→ N(x) =

∏
p∈P

n
xp
p
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(and N(0) := 0, of course), then N is a weak multiplicative norm. This is easy to
check directly, but it may be to some readers’ taste to have the following conceptual
explanation: the set R\{0} under multiplication forms a commutative monoid, and
the set R× of units is a submonoid. Form the quotient monoid R̃ := (R\{0})/R×.5

Then weak multiplicative norms on R correspond simply to homomorphisms of
monoids N : R̃ → (Z+, ·). However, if R is a UFD, R̃ is simply the free commuta-
tive monoid on the set P of nonzero principal prime ideals. (Moreover, K̃ is simply
the free abelian group on the set P, which, again, may be a more familiar object.)
Thus we have simply used the universal property of free commutative monoids (or
free commutative groups).

For the weak multiplicative norm N = (np)p∈P to be a multiplicative norm, it
is necessary and sufficient that np > 1 for all p ∈ P.

It is natural to ask whether there is a characterization of UFDs in terms of the
existence of a multiplicative norm function of a certain type. The answer is af-
firmative and is due to C.S. Queen. We need the following notation: let R be a
domain with fraction field K, and let I be a nonzero ideal of R. We put

(R : I) = {x ∈ K | xI ⊂ R}
and

I = (R : (R : I)).
It is straightforward to check that I is an ideal of R which contains I.

Theorem 19. (Queen [Q96]) For a ring R, the following are equivalent:
(i) R is a UFD.
(ii) R admits a multiplicative norm N with the following additional property: for
all a, b ∈ R with a - b and b - a, there exists 0 6= c ∈ Ra + Rb with N(c) <
min(N(a), N(b)).

We shall content ourselves with the following remarks: first, the ideal Ra + Rb is
principal if and only if a and b admit a greatest common divisor in the sense of §6.
In §6 we will see that in a UFD this is always the case. Using this observation it
is easy to prove (i) =⇒ (ii): we can take the norm with np = 2 for all p ∈ P and
then the condition that a - b and b - a implies that their greatest common divisor c
properly divides both and therefore has strictly smaller norm.

Let us define a Queen norm to be a multiplicative norm satisfying the addi-
tional property of Theorem 19, so that Theorem 19 can be restated as: a ring is a
UFD iff it admits a Queen norm.

5. Polynomial rings over UFDs

Theorem 20. (Gauss) If R is a UFD, so is R[t].

Remark 5.1: The most common proof of Theorem 20 uses Gauss’ Lemma on prim-
itive polynomials. We will give a “lemmaless” proof which is modelled on the
Hasse-Lindemann-Zermelo proof of unique factorization in Z [H28] [L33] [Z34].

5If one is uncomfortable with quotients of monoids, one can simply view R̃ as a submonoid of
the quotient group K̃ := (K \ {0})/R×, where K is the fraction field of R.
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This argument, with minor variations, appears several times in the literature; it
seems that the first such instance is a paper of S. Borofsky [B50].

Proof. By Theorem 17, it suffices to show that R[t] is a factorization domain and
an EL-domain. By Theorem 14, since R is a FD, so is R[t]. Now, seeking a
contradiction, we suppose that R is an EL-domain but R[t] is not. Among the set
of all elements in R[t] admitting inequivalent irreducible factorizations, let p be one
of minimal degree. We may assume

p = f1 · · · fr = g1 · · · gs,

where for all i, j, (fi) 6= (gj) and

m = deg f1 ≥ deg f2 ≥ . . . ≥ deg fr,

n = deg g1 ≥ deg g2 ≥ . . . ≥ deg gs,

with n ≥ m > 0. Suppose the leading coefficient of f1 (resp. g1) is a (resp. b). Put

q = ap−bf1x
n−mg2 · · · gs = f1(af2 · · · fr−bxn−mg2 · · · gs) = (ag1−bf1x

n−m)g2 · · · gs.

Thus q = 0 implies ag1 = bf1x
n−m. If, however, q 6= 0, then

deg(ag1 − bf1x
n−m) < deg g1,

hence deg q < deg p and q has a unique factorization into irreducibles, certainly
including g2, · · · , gs and f1. But then f1 must be a factor of ag1 − bf1x

n−m and
thus also of ag1. Either way ag1 = f1h for some h ∈ R[t]. Since a is constant and f1

is irreducible, this implies h = ah2, so ag1 = f1ah2, or g1 = f1h2, contradiction. �

By induction, we deduce:

Corollary 21. Let R be a UFD and n ∈ Z+. Then R[t1, . . . , tn] is a UFD.

Theorem 22. Let R be a UFD and let S = R[t1, t2, . . .] be a polynomial ring over
R in infinitely many indeterminates. Then R is a non-Noetherian UFD.

Proof. We show S is non-Noetherian by exhibiting an infinite chain of ideals:

〈t1〉 ⊂ 〈t1, t2〉 ⊂ . . . ⊂ 〈t1, . . . , tn〉 ⊂ . . .

Suppose that for any n, tn+1 were an element of 〈t1, . . . , tn〉. In other words, there
exist polynomials P1, . . . , Pn such that

tn+1 = P1t1 + . . . + Pntn.

Setting t1 = . . . = t0 = 0, tn+1 = 1 gives 1 = 0 in R, a contradiction.

By Theorem 17, to show that R is a UFD it suffices to show that it satisfies the as-
cending chain condition on principal ideals and Euclid’s Lemma. The first is almost
immediate: any nonzero element is a polynomial in a finite number of variables,
say P (t1, . . . , tn). Any divisor Q of P is again a polynomial in only the variables
t1, . . . , tn, so that an ascending chain (P ) ⊂ (P2) ⊂ . . . ⊂ (Pn) ⊂ . . . can be viewed
as an ascending chain in the UFD R[t1, . . . , tn], so it stabilizes since UFDs satisfy
ACCP. Finally, let P be an irreducible element in S. The EL-condition is equivalent
to the principal ideal (P ) being a prime ideal, which is equivalent to the quoteint
S/(P ) being an integral domain. But as above P is a polynomial in only finitely
many variables, say P (t1, . . . , tn) and if P (t1, . . . , tn) = X(t1, . . . , tn)Y (t1, . . . , tn)
with neither X nor Y a unit in R[t1, . . . , tn] then the factorization remains valid in
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the larger domain S, and since S× = R[t1, . . . , tn]× = R×, it remains a nontrivial
factorization (i.e., neither X nor Y is a unit in S). So P (t1, . . . , tn) is irreducible
in Rn := R[t1, . . . , tn]; since Rn is a UFD, the principal ideal PRn is prime. But

S/PS = Rn[tn+1, tn+2, . . .]/PRn[tn+1, tn+2, . . .] ∼= (Rn/PRn)[tn+1, tn+2, . . .].

Since (Rn/PRn)[tn+1, tn+2, . . .] is a domain, so is S/PS, so PS is a prime ideal. �

6. Greatest common divisors

We recall the definition of a greatest common divisor of two elements a and b in an
arbitrary domain R. It is an element d of R which is a common divisor of a and b
(i.e., d | a and d | b) such that for all e in R with e | a and e | b, we have e | d.

Of course it is not clear that such elements must exist. A GCD-domain is a
domain in whic any two elements admit at least one greatest common divisor.

Remark 6.1: Let R be any integral domain.
a) If a = 0 and b = 0, then 0 is a greatest common divisor of a and b.
b) If a is arbitrary and b = 0, then a is a greatest common divisor of a and b.
c) If a is a unit and b is arbitrary, then 1 is a greatest common divisor of a and b.

The uniqueness of greatest common divisors is easier to sort out:

Lemma 23. Let R be an integral domain, a, b ∈ R, and suppose d is a greatest
common divisor of a and b. Then an element x of R is a greatest common divisor
of a and b iff x ∼ d, i.e., iff x = ud for some unit u ∈ R×.

Proof. Let d and d′ be greatest common divisors of a and b. Then d | a and d | b,
so d | d′, and similarly d′ | d. It follows that d ∼ d′. Conversely, since associate
elements have exactly the same divisibility relations, it is clear that any associate
of a greatest common divisor is again a greatest common divisor. �

Example 6.1: For two nonzero integers a and b, there are two greatest common
divisors: d and −d. In Z it is conventional to mean by gcd(a, b) the unique positive
greatest common divisor. However, in a general domain it is convenient to abuse
notation slightly by writing gcd(a, b) for any greatest common divisor of a and b,
i.e., we tolerate ambiguity up to associate elements.

Proposition 24. Let R be a GCD-domain, a, b, c ∈ R; put d = gcd(a, b). Then:
a) gcd(ab, ac) = a gcd(b, c).
b) gcd(a

d , b
d ) = 1.

c) If gcd(a, b) = gcd(a, c) = 1, then gcd(a, bc) = 1.

Proof. a) Let x = gcd(ab, ac). Then a | ab and a | ac so a |x: say ay = x. Since
x | ab and x | ac, y | b and y | c, so y | gcd(b, c). If z | b and z | c, then az | ab
and az | ac, so az | x = ay and z | y. Therefore gcd(b, c) = y = 1

a gcd(ab, ac). Part
b) follows immediately. As for part c): suppose gcd(a, b) = gcd(a, c) = 1, and let t
divide a and bc. Then t divides ab and bc so t | gcd(ab, bc) = b gcd(a, c) = b. So t
divides gcd(a, b) = 1. �

Proposition 25. A GCD-domain is integrally closed in its fraction field.

Proof: Let R be a GCD-domain with fraction field K, and let α be an element of
K which satisfies a relation of the form αn +an−1α

n−1 + ldots+a1α+a0 = 0 with
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a0, . . . , an−1 ∈ R. We may write α = r
s with r, s ∈ R, and we may also assume

– and this is the crux! – that gcd(r, s) = 1. (Take any representation of α as
a quotient of two elements of R, and divide numerator and denominator by their
gcd.) Then we need only substitute in α = r

s and clear denominators to get

rn + san−1r
n−1 + . . . + sn−1a1r + sna0 = 0,

or
rn = −s

(
an−1r

n−1 + an−2sr
n−2 + . . . + sn−1a0

)
,

so s | rn. Since gcd(r, s) = 1, Proposition 24c) implies gcd(rn, s) = 1. Thus s is a
unit, so α = r

s ∈ R.

Proposition 26. A unique factorization domain is a GCD-domain.

Proof. This is an immediate generalization of the usual arguments for R = Z. By
Remark 5.1, we know that GCD necessarily exists except possibly when both a and
b are nonzero nonunits. Then, let x1, . . . , xr be the set of pairwise nonassociate
irreducibles such that any irreducible divisor of either a or b is associate to some
xi; we may then write

a = xa1
1 · · ·xar

r , b = xb1
1 · · ·xbr

r ,

with ai, bi ∈ N. Then
d = x

min(a1,b1)
1 · · ·xmin(ar,br)

r

is a greatest common divisor of a and b. �

Propositions 25 and 26 imply that a UFD is integrally closed (c.f. §3.1).

Proposition 27. A GCD-domain is an EL-domain.

Proof. Suppose x is irreducible and x | yz. Assume, for a contradiction, that x - y
and x - z. Then gcd(x, y) = gcd(x, z) = 1, and by Proposition 24c), gcd(x, yz) = 1,
which contradicts x | yz. �

Corollary 28. A factorization domain is a UFD iff it is a GCD-domain.

Proof. Let R be a factorization domain. Assume first that R is a UFD. Then R is
a GCD-domain by Proposition 26. Conversely, assume that R is a GCD-domain.
Then it is an EL-domain by Proposition 27, and by Theorem 17 a factorization
domain which is an EL-domain is a UFD. �

7. GCDs versus LCMs

The definition of GCDs in a domain has an evident analogue for least common mul-
tiples. Namely, if a and b are elements of a domain R, a least common multiple
of a and b is an element l such that for all m ∈ R with a | m and b | m then l | m.

Many of the properties of GCD’s carry over immediately to LCM’s. For instance,
if l is an LCM of a and b, then l′ ∈ R is an LCM of a and b iff l′ is associate to l.

Proposition 29. Let a and b be elements in a domain R. Then lcm(a, b) exists iff
the ideal (a) ∩ (b) is principal, in which case the set of all LCM’s of a and b is the
set of all generators of (a) ∩ (b).

Proof. This is straightforward and left to the reader. �
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LCM’s exist in any UFD: if

a = xa1
1 · · ·xar

r , b = xb1
1 · · ·xbr

r ,

with ai, bi ∈ N. Then
l = x

max(a1,b1)
1 · · ·xmax(ar,br)

r

is a greatest common divisor of a and b. Now the simple identity

∀a, b ∈ N,min(a, b) + max(a, b) = a + b

implies that for a, b in any UFD R we have

gcd(a, b) lcm(a, b) ∼ ab.

This identity further suggests that the existence of either one of gcd(a, b), lcm(a, b)
implies the existence of the other. However, this turns out only to be half correct!

Theorem 30. (Khurana, [K03, Thm. 2]) For a, b in a domain R, TFAE:
(i) lcm(a, b) exists.
(ii) For all r ∈ R \ {0}, gcd(ra, rb) exists.

Proof. Step 1: i) =⇒ (ii). Suppose that there exists a least common multiple of a
and b, say l. We claim that d := ab

l is a greatest common divisor of a and b. (Note
that since ab is a common divisor of a and b, l | ab, so indeed d ∈ R.) Indeed,
suppose that e | a and e | b. Then since ab

e is a common multiple of a and b, we
must have l | ab

e and this implies e | ab
l . Thus d is a GCD of a and b.

Step 2: Suppose that for r ∈ R \ {0} and a, b ∈ R, gcd(ra, rb) exists. Then we
claim that gcd(a, b) exists and gcd(ra, rb) = r gcd(a, b). Put g := gcd(ra,rb)

r , which
is clearly an element of D. Since gcd(ra, rb) divides ra and rb, g divides a and b.
Conversely, if e | a and e | b, then re | ra and re | rb so er | gcd(ra, rb) and e | g.
Step 3: We claim that if l := lcm(a, b) exists then so does lcm(ra, rb) for all
r ∈ R \ {0}. First note that rl is a common multiple of ra and rb. Now suppose m
is a common multiple of ra and rb, say m = xra = yrb = r(xa − yb). Thus r | m
and a | m

r , b | m
r . So l | m

r and rl | m. Thus lcm(ra, rb) = r lcm(a, b).
Step 4: (ii) =⇒ (i). We may assume that a and b are nonzero, since the other
cases are trivial. Suppose gcd(ra, rb) exists for all r ∈ R \ {0}. We claim that
l := ab

gcd(a,b) is an LCM of a and b. Clearly l is a common multiple of a and b. Now
suppose that m is a common multiple of a and b. Then ab divides both ma and mb,
so ab | gcd(ma,mb). By Step 2, gcd(ma,mb) = m gcd(a, b). Thus ab

gcd(a,b) | m. �

Theorem 31. (Khurana, [K03, Thm. 4]) Let d ≥ 3 be an integer such that d + 1
is not prime, and write d + 1 = pk for a prime number p and k ≥ 2. Then in the
domain R = Z[

√
−d], the elements p and 1 +

√
−d have a GCD but no LCM.

Proof. Step 1: We claim that p is irreducible as an element of R. Indeed, if it were
reducible, then by the multiplicativity of the norm map N(a + b

√
−d) = a2 + dp2

we could write it as p = αβ, with

p2 = N(p) = N(αβ) = N(α)N(β),

and, since α, β are nonunits, N(α), N(β) > 1. But then N(α) = N(β) = p, i.e.,
there would be a, b ∈ Z such that a2 + db2 = p. But this is not possible: either
ab = 0, in which the left hand side is a perfect square, or a2 + db2 ≥ d + 1 > p.
Step 2: gcd(p, 1 +

√
−d) = 1. Indeed, since 1

p + 1
p

√
−d 6∈ R, p - 1 +

√
−d.
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Step 3: We claim that kp and k(1+
√
−d) do not have a GCD. Indeed, by Step 2 of

the proof of Theorem 30, if any GCD exists then k is a GCD. Then, since 1+
√
−d

divides both (1−
√
−d)(1 +

√
−d) = 1 + d = kp and k(1 +

√
−d), 1 +

√
−d divides

gcd(kp, k(1 +
√
−d) = k, i.e., there exist a, b ∈ Z such that

k = (1 +
√
−d)(a + b

√
−d) = (a− db) + (a + b)

√
−d,

i.e., a = −b and k = a − db = a + da = a(1 + d) and d + 1 | k, contradicting the
fact that 1 < k < d + 1.
Step 4: Finally, it follows from Theorem 30 that lcm(p, 1+

√
−d) does not exist. �

Khurana produces similar examples even when d + 1 is prime, which implies that
for no d ≥ 3 is Rd = Z[

√
−d] a GCD-domain. (In fact, since (Rd,+) ∼= Z2, Rd

is an abstract number ring and hence Noetherian, so the notions of EL-domain,
GCD-domain and UFD are all equivalent.) Let us give an independent proof:

Theorem 32. For no d ≥ 3 is Rd = Z[
√
−d] an EL-domain.

Proof. As in the proof of Theorem 31 above, the easy observation that the equation
a2 + db2 = 2 has no integral solutions implies that the element 2 is irreducible in
Rd. Now, since (quite trivially) −d is a square modulo 2, there exists x ∈ Z such
that 2 | x2 + d = (x +

√
−d)(x −

√
−d). But now, if Rd were an EL-domain, the

irreducible element 2 would be prime and hence Euclid’s Lemma would apply to
show that 2 | x ±

√
−d, i.e., that x

2 + 1
2

√
−d ∈ Rd, which is a clear contradiction

( 1
2 is not an integer!). �

Note that Theorem 30 has the following immediate consequence:

Corollary 33. For an integral domain R, TFAE:
(i) Any two elements of R have a greatest common divisor.
(ii) Any two elements of R have a least common multiple.

In particular, there is no need to formally define an “LCM-domain”, because this
is equivalent to a GCD-domain.

8. More on Principal Ideal Domains

8.1. PID implies UFD.

Proposition 34. Let a and b be elements in a PID R. Then d = gcd(a, b) exists
and moreover can be expressed as a linear combination of a and b: there exist
x, y ∈ R such that

ax + by = d.

Proof. The ideal 〈x, y〉 = {xa+yb | x, y ∈ R} is by assumption principal, i.e., equal
to (d) for some d ∈ R. As in the case R = Z, we see easily that d is a greatest
common divisor of a and b: it is a common divisor since x, y ∈ 〈x, y〉 = (d), and if
e | a, e | b, then e | ax + by. But ax + by = d, so e | d. �

Corollary 35. Any principal ideal domain is a unique factorization domain.

Proof. We need only put together previously proved results. We know:
A PID is a Noetherian domain (Proposition 7)
A Noetherian domain is a Factorization Domain (Proposition 8).
A PID is a GCD-domain (Proposition 34).
A GCD-domain which is also a factorization domain is a UFD (Corollary 28). �
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8.2. Hasse norms.

We wish to give a criterion for an integral domain to be a PID which is due to
H. Hasse. In fact, Hasse’s criterion is in terms of a multiplicative norm N on R
which satisfies one additional property.

First, consider any multiplicative norm N : R → N on an integral domain R.
We assert that because of the multiplicativity, there is a unique extension of N to
a function from the fraction field, K, of R to the non-negative rational numbers
such that N(xy) = N(x)N(y) for all x, y ∈ K. Indeed, since axiom (MN2) implies
N(1) = 1, we must have N( 1

y ) = 1
N(y) and thus

N

(
x

y

)
=

N(x)
N(y)

.

Since a given element of K has many different representations as a quotient of
elements of R, we must check that the definition of N is independent of this repre-
sentation, but this is easy: if x1

y1
= x2

y2
, then x1y2 = x2y1, so

N(x1)N(y2) = N(x1y2) = N(x2y1) = N(x2)N(y1),

and, since y1, y2 6= 0 implies N(y1), N(y2) 6= 0, we may divide in Q to get

N(x1)
N(y1)

=
N(x2)
N(y2)

.

For example, the usual absolute value z 7→ |z| on Z extends multiplicatively to the
usual absolute value on Q.

From now on, we will assume without comment that a multiplicative norm has
its domain extended to the fraction field F of R as above.

Definition: A multiplicative norm N : F → Q on the fraction field of an inte-
gral domain R is a Hasse norm (c.f. [H28]) if it satisifes the following property:

(HN) For all x ∈ F \R, there exist a, b ∈ R such that 0 < N(ax− b) < 1.

Example 8.1: The usual absolute value on Q is a Hasse norm. Indeed, for any
rational number x which is not an integer, we can take a = 1 and take b to be bx〉,
the greatest integer less than or equal to x. Then 0 < x− b < 1.

Theorem 36. (Hasse, [H28]) For an integral domain R, TFAE:
(i) R admits a Hasse norm N .
(ii) R is a PID.

Proof. (i) =⇒ (ii): Let I be a nonzero ideal of R, so I contains elements of positive
norm. Let d ∈ I be an element whose norm is positive and is minimal among all
elements of I. We wish to show that I = (d). So let i be any element of I and put
x := i

d . If d | i then x ∈ R, so assume for a contradiction that x ∈ F \R. Then by
assumption there exist a, b ∈ R such that

0 < N

(
ai

d
− b

)
< 1.
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Multiplying through by d we get

0 < N(ai− bd) < N(d).

So ai− bd ∈ I has norm positive and smaller than N(d), contradiction!
(ii) =⇒ (i): Suppose R is a PID, and define the norm of x ∈ R as follows:
N(0) = 0, for any unit u, N(u) = 1; otherwise, if x = x1 · · ·xr is a product of r
irreducible elements (counting multiplicities), then put N(x) = 2r. It is immediate
from the uniqueness of factorization that N is a multiplicative norm, so it remains
to be seen that it is a Hasse norm. But any element x ∈ F \ R can be written as
x = p

q , where p, q ∈ R \ {0}, gcd(p, q) = 1 and q is a nonunit, so N(q) > 1. Now,
applying Proposition 34, we can find elements a, b′ in R such that ap + b′q = 1.
Taking b = −b′, we have ap− bq = 1. Dividing through by q we get ax− b = 1

q , so

0 < N(ax− b) = N(
1
q
) =

1
N(q)

< 1.

�

Here is an application (a familiar one, but recast in slightly different language).

Proposition 37. Let F be any field. Then the polynomial ring F [t] is a PID.

Proof. Every nonzero polynomial P (t) = antn + . . . + a0 has a degree deg(P ) ,
which is the largest n ∈ N such that an 6= 0. By convention, we decree that the 0
polynomial has degree −∞. It is easy to check that deg(PQ) = deg(P ) + deg(Q).
Thus the degree is very much like a norm, only instead of being multiplicative, it
is multiplicative-to-additive. That can be remedied, however: put N(P ) = 2deg P ,
with the convention that N(0) = 2−∞ = 0. We claim that N is a Hasse norm on
F [t]. Let’s check:

• N(P ) = 0 ⇐⇒ 2deg P = 0 ⇐⇒ P = 0.
• N(P ) = 1 iff 2deg P = 1 ⇐⇒ deg(P ) = 0 iff P is a nonzero constant polynomial.
These are indeed precisely the units of F [t].
• N(PQ) = 2deg(PQ) = 2deg P+deg Q = 2deg P 2deg Q = N(P )N(Q).
• Let x(t) = A(t)

B(t) be a rational function with B(t) not dividing A(t). Then by the
division algorithm for polynomials, we may write A(t) = Q(t)B(t) + R(t), where
deg R(t) < deg B(t), so

x(t) = Q(t) +
R(t)
B(t)

,

and thus

0 < N(x(t)−Q(t)) = N

(
R(t)
B(t)

)
< 1.

�

8.3. Euclidean norms.

A multiplicative norm N on a domain R is Euclidean if for any a, b ∈ R with
b 6= 0, there exist q, r ∈ R such that a = qb + r and N(r) < N(b).

Proposition 38. Any Euclidean norm is a Hasse norm.
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Proof. Let x = a
b ∈ F \ R. Since the norm is Euclidean, there exist q, r ∈ R with

N(r) < N(b), and then x− q = a
b − (a

b −
r
b ) = r

b , so

0 < N(x− q) = N
(r

b

)
< 1.

�

We repackage this result in a form which will be most convenient in number-
theoretic applications:

Proposition 39. Let R be an integral domain with fraction field K. Suppose that
R has a multiplicative norm N with the property that for all x ∈ K \R there exists
y ∈ R with N(x− y) < 1. Then R is a PID.

In the literature, one generally calls a Euclidean domain an integral domain for
which there exists a Euclidean norm (although the precise definition of a Euclidean
norm can be varied somewhat without changing the class of rings one gets: for
instance, the multiplicativity is not essential). The advantage of a Euclidean norm
is that, as in Proposition 39, it is especially straightforward to check whether a
given norm is Euclidean. The advantage of a general Hasse norm is that, as we saw,
every PID is guaranteed to have one, whereas in general a PID need not admit any
Euclidean norm, and whether it does turns out to be a much more subtle question
than whether it is a PID. Thus it may be that the notion of a Euclidean domain is
given undue prominence in most expositions of the theory of factorization.

9. Localization

Throughout this section, R denotes an integral domain with fraction field K.

The idea of “localizing” a domain by adjoining the multiplicative inverses of some
of its elements is simple and useful, but for some reason it seems to be deferred
until a full-fledged graduate course in commutative algebra, where it appears as a
special case of a more general construction, in which the possibility of zero divisors
causes some additional complications. It seems to me that the construction of the
fraction field of an integral domain should be a mainstay of undergraduate algebra
– it requires no more and no less than an understanding of the construction of the
construction of the rational numbers as equivalence classes of pairs of integers –
and from there localization ought to be a relatively easy sell.

Perhaps localization is absent in most introductory algebra courses because stan-
dard treatments of localization make heavy use of ideal-theoretic language. How-
ever, as usual in our study of factorization in domains, we can go a long way by
considering only principal ideals.

Our main goal in this section is to give a complete presentation of a theorem of
Nagata (Theorem 45), which is justly admired by the experts but seems not to be
well enough known. An immediate application is a striking second proof of the fact
that if R is a UFD so is R[t].

9.1. Localization in domains.

If (M, ·) is a commutative monoid and S is a subset of M , define 〈S〉 to be the
submonoid generated by S. This can be described either as the intersection of all
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submonoids of M which contain S, or more explicitly as the set of all finite products
x1 · · ·xn with xi ∈ S (including the empty product, so that always 1 ∈ 〈S〉).

Now let R be our domain with fraction field K, and let M be the monoid of
nonzero elements of R under multiplication. A subset S of M is multiplicatively
closed (or just multiplicative) if S = 〈S〉. Moreover, a subset T of S is a set of
generators for S if 〈T 〉 = S.

For any subset S of R \ {0}, we define RS = R[{ 1
x | x ∈ S}], i.e., the subring

of the fraction field obtained by adjoining to R all the multiplicative inverses of
elements of R. We say that RS is the localization of R at S. It is easy to see
that RS = R〈S〉, so that it is no loss of generality to restrict to localizations of
multiplicatively closed sets. Note that we recover K itself as RR\{0}.

Theorem 40. Let R be a UFD and S a multiplicative subset. Then the localized
ring RS is again a UFD.

Proof. Let f = x
s be a nonzero nonunit of RS , with x ∈ R and s ∈ S. Then x is a

nonzero nonunit in the UFD R, so admits a factorization into prime elements

x =
n∏

i=1

πai
i .

We may assume the ordering is such that πi ∈ S for 1 ≤ i ≤ m and πi ∈ R \ S for
m < i ≤ n. Then for 1 ≤ i ≤ m, πi ∈ R×

S , whereas by Lemma X.X, for i > m, πi

remains prime in RS . Therefore

x

s
=

(∏m
i=1 πai

i

s

)
· πam+1

m+1 · · ·πan
n

expresses x
s as a unit times a product of prime elements. �

9.2. Saturated subsets.

A multiplicative subset S is saturated if for all x ∈ S and y ∈ R, if y | x then y ∈ S.
We define the saturation S of a multiplicatively closed subset S to be the inter-
section of all saturated multiplicatively closed subsets containing S; equivalently, S
is obtained from S simply by throwing in all nonzero divisors of all elements of S.
If x ∈ S and y | x, then ay = x for some a ∈ R, and then 1

y = a
ay = a · ( 1

x ). Thus
RS = RS , so that we may restrict attention to saturated multipicative sets.

Example 9.1: Any saturated multiplicative subset of R contains R×. In partic-
ular, if R is a field the unique saturated multiplicative subset is R \ {0}.

Example 9.2: If p ⊂ R is a prime ideal, R \ p is a saturated multiplicative set.

Proposition 41. Let R be a domain and S ⊂ R a multiplicative set. Then the set
of units of RS is precisely the saturation of the multiplicative set S.

Proof. This is straightforward and left to the reader. �

Proposition 42. Let R be a domain, S a saturated multiplicative subset, and
f ∈ R \ S. If f is prime as an element of R, it is also prime as an element of RS.
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Proof. Since f ∈ R \ S, by Proposition 41 f is not a unit in RS . Let α, β ∈ RS

be such that f | αβ in RS . So there exists γ ∈ RS such that γf = αβ; putting
α = x1

s1
, β = x2

s2
, γ = x3

s3
and clearing denominators, we get s1s2x3f = s3x1x2, so

f | r3x1x2. If f | s3, then since S is saturated, f ∈ S, contradiction. So, being
prime, f divides x1 or x2 in R, hence a fortiori in RS and therefore it also divides
either x1

s1
or x2

s2
in RS , since these are associates to x1 and x2. �

9.3. Primal subsets.

We say that a saturated multiplicative subset S of R is primal if it is generated
by the units and by the prime elements of S.

Lemma 43. An irreducible element of a primal subset is prime.

Proof. Suppose S is primal and f ∈ S is irreducible. By definition, there exists a
unit u and prime elements π1, . . . , πn such that f = uπ1 · · ·πn. Since uπ1 is also
prime, we may as well assume that u = 1. Then, since f is irreducible, we must
have n = 1 and f = π1. �

Theorem 44. For a factorization domain R, the following are equivalent:
(i) Every saturated multiplicative subset of R is primal.
(ii) R is a UFD.

Proof. Since the set R× of units is trivially generated by the empty set of prime
elements, both conditions hold if R is a field, so let us now assume otherwise.

Assume (i). Then, since R is a factorization domain which is not a field, there
exists an irreducible element f of R. Let S be the saturated multiplicative subset
generated by S, which consists of all units of R together with all divisors of positive
powers fn of f . Since S is primal and strictly contains R×, there must exist a
prime element π which divides fn for some n. In other words, fn ∈ πR, and since
πR is prime, we must have that f = xπ for some x ∈ R. Since f is irreducible we
must have x ∈ R×, i.e., f ∼ π and is therefore a prime element. So R is an ACCP
domain and an EL-domain and hence a factorization domain by Theorem 17.

Assume (ii), let S be a saturated multiplicative subset of R, and suppose that
f ∈ S \ R×. Then f = uπa1

1 · · ·πan
n where the πi’s are prime elements. Since each

πi | f , πi ∈ S for all i. It follows that indeed S is generated by its prime elements
together with the units of R. �

Because of Theorem 44, it is no loss of generality to restate Theorem 40 as: the
localization of a UFD at a primal subset is again a UFD. The following elegant
result of Nagata may be viewed as a converse.

Theorem 45. (Nagata [N57]) Let R be a factorization domain and S ⊂ R a primal
subset. If the localized domain RS is a UFD, then so is R.

Proof. By Theorem 17 it suffices to show that if f ∈ R is irreducible, f is prime.
Case 1: f 6∈ S, so f is not a unit in RS . Since RS is a UFD, it is enough to show
that f is irreducible in RS . So assume not: f = x1

s1
· x2

s2
with x1, x2 ∈ R \ S and

s1, s2 ∈ S. hen s1s2f = x1x2. By assumption, we may write s1 = up1 · · · pm and
s2 = vq1 · · · qn, where u, v ∈ R× and pi, qj are all prime elements of R. So p1 | x1x2;
since p1 is a prime, we must have either x1

p1
∈ R or x2

q2
∈ R. Similarly for all the

other pi’s and qj ’s, so that we can at each stage divide either the first or the second
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factor on the right hand side by each prime element on the left hand side, without
leaving the ring R. Therefore we may write f = ( 1

uv )x1
t1

x2
t2

where t1, t2 are each
products of the primes pi and qj , hence elements of S, and also such that t1 | x1,
t2 | x2, i.e., the factorization takes place in R. Moreover, since xi ∈ R \ S and
ti ∈ S, xi

ti
is not even a unit in RS , hence a fortiori not a unit in R. Therefore we

have exhibited a nontrivial factorization of f in R, contradiction.
Case 2: f ∈ S. Since S is primal, by Lemma 43 f is prime. �

Remark: If S is the saturation of a finitely generated multiplicative set, the hy-
pothesis that R is a factorization domain can be omitted.

Application: Let A be a UFD and consider the polynomial ring R = A[t]. Put
S = A \ {0}. As for any multiplicative subset of a UFD, S is generated by prime
elements. But moreover, since A[t]/(πA[t]) ∼= (A/πA)[t], every prime element π of
A remains prime in A[t], so viewing S as the multiplicative subset of A[t] consisting
of nonzero constant polynomials, it too is generated by prime elements. But if F
is the fraction field of A, RS = (A[t])S = F [t] which is, by Proposition 37 above, a
PID and hence a UFD. Nagata’s theorem applied to R and S now tells us (again)
that R = A[t] is a UFD.

Nagata himself used Theorem 45 to study affine quadric surfaces.

Theorem 46. (Nagata, [N57]) Let k be a field of characteristic different from 2,
and let a1, . . . , an ∈ k×. If n ≥ 5, k[t1, . . . , tn]/(a1x

2
1 + . . . + anx2

n) is a UFD.

The condition n ≥ 5 is sharp, since the ring k[t1, t2, t3, t4]/(t1t2−t3t4) is not a UFD:
the images t1, . . . , t4 of t1, . . . , t4 in R can be seen to be nonassociate irreducible
elements, so t1t2 = t3t4 gives distinct factorizations into irreducibles.6

There are many other interesting results on factoriality and class groups of quadric
surfaces, which are unfortunately beyond the scope of our ambitions. But we cannot
resist mentioning the following:

Theorem 47. For n ≥ 1, let Rn := R[t1, . . . , tn+1]/(t21 + . . .+ t2n+1−1) be the ring
of polynomial functions on the n-sphere Sn.
a) If n ≥ 2, then Rn is a UFD.
b) R1 is isomorphic to the ring R[cos θ, sin θ] of real trigonometric polynomials, in
which (sin θ)(sin θ) = (1 + cos θ)(1− cos θ)) is an explicit non-unique factorization
into irreducible elements. Hence R1 is not a UFD.

For further results on such rings see [S64], [S68], [O74], [B78], [R86].

9.4. Localized norms.

Let R be a UFD, S ⊂ R a multiplicative subset, and N a multiplicative norm
on a UFD R. Earlier we saw that N extends uniquely to a multiplicative function
K× → Q>0, so in particular we have a multiplicative function N : RS → Q>0.
However, this is not a norm because (as long as S contains at least one nonunit)
it is not Z-valued on RS . However, this can easily be remedied: we may assume

6The details can be found in the wikipedia article on UFDs.
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without loss of generality that S is saturated, and then by Theorem 44, S is gener-
ated as a multiplicative set by the units of R together with the prime elements PS

of S. Using the classification of multiplicative norms given in §4.4, it follows there
is a unique multiplicative norm NS on RS such that

• If π is a prime element of PS , NS(π) = 1;
• If π is a prime element of R \ PS , NS(π) = N(π).

One can then easily check the following:

Proposition 48.
Let R be a UFD, S a multiplicative subset, and N a multiplicative norm on R.
a) If N is a Queen norm on R, NS is a Queen norm on RS.
b) If N is a Hasse norm on R, NS is a Hasse norm on RS.
Thus any localization of a UFD is a UFD, and any localization of a PID is a PID.

To be sure, these facts are straightforward to prove directly. We saw this above for
a UFD; for a PID it suffices to verify that if I is any ideal of RS , then any generator
of the principal ideal I ∩R is also a generator of I. Nevertheless the fact that they
can also be proved using norm considerations seems interesting.

10. Kaplansky’s Characterization of UFDs

Lemma 49. (Multiplicative avoidance) Let R be a commutative ring and S ⊂
(R \ {0}, ·) a multipicatively closed subset containing 1. Let IS be the set of ideals
of R which are disjoint from S. Then:
a) IS is nonempty.
b) Every element of IS is contained in a maximal element of IS.
c) Every maximal element of IS is prime.

Proof. a) (0) ∈ IS . b) Let I ∈ IS . Consider the subposet PI of IS consisting of
ideals which contain I. Since I ∈ PI , PI is nonempty; moreover, any chain in PI

has an upper bound, namely the union of all of its elements. Therefore by Zorn’s
Lemma, PI has a maximal element, which is clearly also a maximal element of IS .
c) Let I be a maximal element of IS ; suppose that x, y ∈ R are such that xy ∈ I.
If x is not in I, then 〈I, x〉 ) I and therefore contains an element s1 of S, say

s1 = i1 + ax.

Similarly, if y is not in I, then we get an element s2 of S of the form

s2 = i2 + by.

But then
s1s2 = i1i2 + (by)i1 + (ax)i2 + (ab)xy ∈ I ∩ S,

a contradiction. �

Theorem 50. (Kaplansky) An integral domain is a UFD iff every nonzero prime
ideal in R contains a prime element.

Proof. Suppose R is a UFD and 0 6= P is a prime ideal. Let x ∈ P be a nonzero
nonunit. Write

x = p1 · · · pr
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a product of prime elements. Then x ∈ P implies pi ∈ P for some i, so (pi) ⊂ P .
Conversely, assume that each nonzero prime ideal of R contains a principal prime.

Let S be the set of units of R together with all products of prime elements. One
checks easily that S is a saturated multiplicative subset. We wish to show that
S = R \ {0}. Suppose then for a contradiction that there exists a nonzero nonunit
x ∈ R \ S. The saturation of S implies that S ∩ (x) = ∅, and then by Lemma 49
there exists a prime ideal P containing x and disjoint from S. But by hypothesis,
P contains a prime element p, contradicting its disjointness from S. �

Notice that Corollary 35, that every PID is a UFD, is an immediate consequence of
Kaplansky’s Theorem. Moreover we can derive a criterion for a UFD to a PID, as
follows. We define the height of a prime ideal p in a ring R to be the supremum of
all non-negative integers n such that there exists a strictly ascending chain of prime
ideals p0 ( p1 ( . . . ( pn = p. In a domain R, a prime ideal has height 0 iff it is
the zero ideal. Moreover we define the dimension of a ring to be the supremum
of all heights of prime ideals.

Theorem 51. For a UFD R, the following are equivalent:
(i) R is a PID.
(ii) R has dimension one, i.e., every nonzero prime ideal is a maximal ideal.

Proof. (i) =⇒ (ii): Any integral domain which is not a field has nonzero prime
ideals so therefore dimension at least one. It suffices to show that in a PID every
nonzero prime ideal p is maximal. But if not, there exists a prime ideal q such that
p ( q. But every ideal is principal, so there exist p, q ∈ R such that p = (p) and
q = (q). Therefore p | q, but since q is a prime, and thus irreducible, element, p
must be associate to q, so that p = q, contradiction.

(ii) =⇒ (i): Suppose R is a UFD in which each nonzero prime ideal is maximal,
and let p be a nonzero prime ideal of R. By Theorem 50 p contains a prime element
p, so that we have a containment of prime ideals 0 6= (p) ⊂ (p). By hypothesis (p)
must be maximal, so (p) = p and p is principal. �

Corollary 52. An abstract number ring is a UFD iff it is a PID.

Proof. We claim that any abstract number ring R has dimension one; in view of
Theorem 51, this suffices. So let 0 6= p be a prime ideal of R. By definition, R/p is
a finite integral domain, and therefore a field, so p is in fact maximal. �

11. Some additional topics

Some topics that did not make it into this draft but may still deserve a place:

1. The Cashwell-Everett theorem: if R is a field, the Dirichlet ring DR is a UFD.

2. A proof that the ring of integers of Q(
√
−19) is not Euclidean for any norm.

3. A proof that the standard norm on Q(
√
−19) is a Hasse norm.

4. Standard-Euclidean quadratic fields versus known and conjectured results about
class number one number fields being Euclidean with respect to some norm.

5. Examples to show: the localization of an ACCP domain need not be ACCP; a
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polynomial ring over a FD need not be a FD.

6. Integral closure of UFDs; compatibility under localization.

7. A discussion of divisorial ideals.

8. A discussion of Krull domains, including the characterization as the domains
which are completely integrally closed and satisfy ACC on divisorial ideals. In par-
ticular a Noetherian normal domain is Krull.

9. A characterization of UFDs as Krull domains with trivial class group.

10. The theorem Cl(R[t]) = Cl(R).

11. More discussion of the group of divisibility K×/R× of a domain.

12. Factorization issues recast in the language of commutative monoids.

Finally, two questions that are (to the best of my nonexpert knowledge) open:

Q1: Is there a nice characterization of rings R which admit a multiplicative norm?
This class contains: UFDs (and half-factorial domains, which we did not discuss
and do not plan to) and abstract number rings and is contained in ACCP. That
leaves a lot of room: e.g. does every Dedekind domain admit a multiplicative norm?

Q2: For which of the other class number one imaginary quadratic fields is the
standard norm a Hasse norm? What is known about other class number one fields?
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