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1. The Dvir-Alon-Tao Theorem

Let F be a field and n ∈ Z+. A subset S ⊂ Fn is a Kakeya set if for every line Fv
in V , S contains some translate ℓa,v := a+ Fv. The general Kakeya problem is to
show that Kakeya sets are in some sense(s) “large.” Here we shall be concerned only
with the case of F = Fq a finite field of cardinality q. We can then interpret large
simply in terms of the cardinality |S|.1 Perhaps because of the analogy to F = R
as a “limit as q → ∞”, all known work has focused on bounds for fixed n and large q.

LetK(n, q) denote the minimum cardinality of a Kakeya set in Fn
q . ClearlyK(n, q) ≤

|Fn
q | = qn; but what about lower bounds? In 1999 T. Wolff showed [Wol99]

K(2, q) ≥ (q + 1)q

2

and for all n ∈ Z+,

K(n, q) ≫n qn/2+1.

Recently Z. Dvir showed [Dvi08] that for all ϵ > 0, |S| ≫n,ϵ q
n−ϵ. Remarkably, N.

Alon and T. Tao were able to refine his argument to arrive at the following:

Theorem 1.1. (Dvir-Alon-Tao, 2008) For all n and q we have

K(n, q) ≥
(
q + n− 1

n

)
.

Proof. Suppose there is a Kakeya set S ⊂ Fn
q with |S| <

(
q+n−1

n

)
.

Recall that the dimension of the Fq-vector space of polynmials of degree at

most d in n variables is
(
d+n
n

)
. On the other hand, the dimension of the space

of all functions f : S → Fq is |S|, so under our hypothesis on #S, there is a a
(not necessarily homogeneous) nonzero polynomial g(t) of degree at most q − 1

vanishing on S. Write g(t) =
∑q−1

i=0 gi(t), where each gi is homogenous of degree i.
By the Kakeya property, for any y ∈ Fn

q there exists a ∈ Fn
q such that P (a+ ty) is a

univariate polynomial of degree at most q−1 with at least q zeros, thus P (a+ty) =
0 ∈ Fq[t]. In particular the coefficient of tq−1 (i.e., the leading coefficient) in

P (a+ ty) = P0(a+ ty) + . . .+ Pq−1(a+ ty)

must be zero, but the coefficient of tq−1 is precisely Pq−1(y). Thus Pq−1 vanishes
on all of Fn

q . Since its total degree q − 1, it is a reduced polynomial in the sense
of [ChWar] and therefore it must be the zero polynomial. Similarly we find that

1A Kakeya set over an infinite field must be infinite, so the problem is fundamentally more

sophisticated. The most studied case is F = R, where “large” refers to any of several different
kinds of fractal dimension.
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Pq−1, . . . , P1 are all identically zero, so P is constant. Since P vanishes at all points
of the Kakeya set S, we conclude P (t) is the zero polynomial, a contradiction! �
Note that this precisely recovers Wolff’s bound when n = 2. In general it gives
K(n, q) ≍n qn, which is remarkably tight. Still, one can always ask for more: for
n = 2 and odd q, work of X. Faber [Fab07] and J. Cooper [Coo06] gives

(q + 1)q

2
+

5q

14
− 1

14
≤ K(2, q) ≤ (q + 1)q

2
+

q − 1

2
.

Apparently the upper bound is believed to be sharp.2

2. Travaux de Dvir

Zeev Dvir’s original proof, while still very simple and elegant, is (obviously!) more
complicated than the proof of Theorem 1.1 above. On the other hand, I find the
original proof to be more interesting, especially because it is “more geometric.” In
this section we describe Dvir’s proof.

2.1. Preliminaries.

First, Dvir considers a slightly more general problem: roughly he considers subsets
of Fn

q which contain sufficiently many points on some translate of sufficiently many

lines. More precisely: for δ, γ ∈ R+, a subset S ⊂ Fn
q is a (δ, γ)-Kakeya set if there

exists a subset L ⊂ V of size at least δqn such that for v ∈ L, there is a line ℓ in V
in direction v such that |ℓ ∩ S| ≥ γq. Thus a Kakeya set is a (1, 1)-Kakeya set.

Theorem 2.1. (Dvir, 2008) Let S ⊂ Fn
q be a (δ, γ)-Kakeya set. Then

|K| ≥
(
d+ n− 1

n− 1

)
,

where
d = ⌊qmin{δ, γ}⌋ − 2.

From this he deduces

Corollary 2.2. (Dvir) For n ∈ Z+ and ϵ > 0, there exists Cn,ϵ ∈ R+ such that

K(n, q) ≥ Cn,ϵq
n−ϵ.

At first glance, the deduction of Corollary 2.2 from Theorem 2.1 is surprising,
since the most obvious application of Theorem 2.1 – i.e., taking (δ, γ) = (1, 1) –
gives (only) K(n, q) ≫n qn−1. But Dvir cleverly takes advantage of the following
“multiplicative” property of Kakeya sets over any field:

Lemma 2.3. Let V be a finite dimensional vector space over any field F and let S ⊂
V be a Kakeya set. For any r ∈ Z+, the Cartesian product Sr = {(s1, . . . , sr) | si ∈
S} is a Kakeya set in V r.

Proof. Any line in V r is of the form F(v1, . . . , vr). By assumption, there exist
a1, . . . , ar ∈ V such that ai + Fvi ∈ S. Then (a1, . . . , ar) + F(v1, . . . , vr) ∈ Kr. �
Thus, knowing only K(n, q) ≥ Cnq

n−1, we may deduce Corollary 2.2: by Lemma

2.3, Kr ⊂ V r is a Kakeya set and thus |Kr| ≥ Crnq
rn−1, so |K| ≥ C

1
r
rnqn−

1
r .

2I am not aware of any more precise information, established or conjectural, on K(n, q) for
n > 2 (but what do I know?).



DVIR’S WORK ON THE FINITE FIELD KAKEYA PROBLEM 3

2.2. The Schwartz-Zippel Theorem.

The following treatment is taken from http://en.wikipedia.org/wiki/Schwartz-Zippel Lemma.

Theorem 2.4. Let F be any field, and let 0 ̸= f ∈ F [t1, . . . , tn] be a nonzero
polynomial of degree d. Let S be a finite subset of F . Then the probability that for
randomly chosen elements x1, . . . , xn ∈ S we have f(x1, . . . , xn) = 0 is at most d

|S| .

More precisely, put ZS(f) := {(x1, . . . , xn) ∈ Sn | f(x1, . . . , xn) = 0}. Then

|ZS(f)| ≤ d|S|n−1.

Proof. By induction on n. For n = 1, it simply says that a nonzero degree d
univariate polynomial over a field cannot have more than d roots. Assume true for
n− 1 variables and write

f(t1, . . . , tn) =
d∑

i=0

fi(t2, . . . , tn)t
i
1.

Since f is nonzero, so is some fi; choose the largest such index i. We have deg(fi) ≤
d−i. By our induction hypothesis, the probability that Pi(x1, . . . , xn) = 0 is at most
d−i
|S| . Now, if Pi(x2, . . . , xn) ̸= 0, then P (t1, x2, . . . , xn) is univariate of degree i. The

conditional probability that P (x1, . . . , xn) = 0 given that Pi(x2, . . . , xn) is not zero
is therefore at most i

|S| . Let us denote by A the event that P (x1, . . . , xn) = 0 and

by B the event that Pi(x2, . . . , xn) = 0. We therefore have

PrA = Pr(A ∩B) + Pr(A ∩Bc)

= Pr(A) Pr(B|A) + Pr(Bc) Pr(A|Bc)

≤ Pr(B) + Pr(A|Bc) ≤ d− i

|S|
+

i

|S|
=

d

|S|
.

�

Theorem 2.5. (J.T. Schwartz [Sch90], R. Zippel [Zip89]) Let 0 ̸= f ∈ Fq[t1, . . . , tn]
be a polynomial of degree at most d. Then the number of zeros of f is at most dqn−1.

Proof. In Theorem 2.4 take F = Fq, S = F . �

2.3. Proof of Theorem 2.1.

We suppose for a contradiction that S ⊂ Fn
q =: V is a (δ, γ)-Kakeya set with

|S| <
(
d+ n− 1

n− 1

)
.

Then the number of monomials in Fq[x1, . . . , xn] of degree d is larger than |S|, so
the total number of homogeneous polynomials of degree d is larger than the total
number of functions from Sn → Fq. Therefore there exist distinct polynomials
inducing the same function, and, taking their difference, a nonzero degree d homo-
geneous polynomial g ∈ Fq[t1, . . . , tn] vanishing identically on S. We wish to show
that such a g must have too many zeros to satisfy the Schwartz-Zippel theorem.

Let S̃ ⊂ C be the union of all lines passing through the origin which meet S
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in at least one point. In more geometric terms, if c : V \ 0 → PV is the usual
projectivization map, then

S̃ = c−1(c(S)).

Since g is homogeneous, we must also have that g vanishes at every point of S̃.

Let L ⊂ V be as in the definition of (δ, γ)-Kakeya set. Here is the key:

claim g vanishes identically on L.

sufficiency of claim Assuming the claim, g vanishes on at least δqn points.
This violates the Schwartz-Zippel bound if δqn > dqn−1, hence if d < δq, which is
indeed the case for the value d := ⌊qmin{δ, γ}⌋ = 2 appearing in the statement of
the theorem. So it suffices to prove the claim.

proof of claim Let 0 ̸= v ∈ L, so there exists a ∈ V such that ℓa,v = a + Fv
meets S in at least γq points. Thus, since d+ 2 ≤ γ · q, there exist d+ 2 elements
of x of F such that a + xv ∈ S. Obviously at most one of these is zero, so there
exist x1, . . . , xd+1 ∈ F× such that for all i, a+ xiv ∈ S. Therefore

wi := v +
1

ai
a ∈ S̃,

so g(wi) = 0 for all 1 ≤ i ≤ d+1. Thus the degree d polynomial g has more than d
zeros on the line ℓv,a and therefore is identically 0. In particular it vanishes on the
point v + 0a = v, establishing the claim and completing the proof of Theorem 2.1.

Comments: The most clever feature of this argument is the use of projectiviza-
tion to switch from the line ℓa,v to the “dual” line ℓv,a. Comparing with the proof
of Theorem 1.1 one sees this elegant use of homogeneous polynomials is exactly
where the estimates become worse: that some nonzero homogeneous polynomial of
degree at most d vanishes on S is a more stringent condition than without homo-
geneity. But the latter argument seems to give information about a projective
Nullstellensatz for low degree hypersurfaces over finite fields.
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