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Abstract. We show that there exist genus one curves of every index over the
rational numbers, answering affirmatively a question of Lang and Tate. The
proof is “elementary” in the sense that it does not assume the finiteness of any
Shafarevich-Tate group. On the other hand, using Kolyvagin’s construction of
a rational elliptic curve whose Mordell-Weil and Shafarevich-Tate groups are
both trivial, we show that there are infinitely many genus one curves of every
index over every number field.

1. Introduction

Let C/K be a genus one curve over a field K. There are two numerical invariants
which quantify, in different ways, the extent to which C fails to have a K-rational
point. The index of C is the least degree of a field extension L/K such that C
has an L-rational point; equivalently, it is the least positive degree of a K-rational
divisor on C. The period of C is the order of the cohomology class corresponding
to C in the Weil-Châtelet group H1(K, Jac(C)); equivalently, it is the least positive
degree of a K-rational divisor class on C. It is well known (e.g. [6]) that the period
divides the index and that the two quantities have the same prime divisors.

When K is a number field, the index can strictly exceed the period [2], [4]. This is
in a sense unfortunate, because while the index is of more geometric interest, it is
the period which is directly addressed by the machinery of Galois cohomology. For
example, it is an old theorem of Shafarevich-Cassels [3, § 27] that for any elliptic
curve E over a number field K and any integer n > 1, there are infinitely many
classes in the Weil-Châtelet group H1(K, E) of period n.

With regard to the index, almost fifty years ago Lang and Tate [6] asked the
much more modest question of whether there are genus one curves of every index
over Q. They were able to show that if E/K is an elliptic curve over a number field

with a K-rational torsion point of order n, then H1(K, E) contains infinitely many
classes of index n. In view of the uniform boundedness of torsion on elliptic curves,
this does not get us very far. Only recently has substantial progress been made: in
[10], Stein showed that for any number field K there are infinitely many genus one
curves over K of index equal to any number not divisible by 8.

The following theorem and its corollary give a complete answer to the question
of Lang and Tate.

Theorem 1. Let E/K be an elliptic curve over a number field with E(K) = 0. For

every positive integer n, there exists an element η ∈ H1(K, E) of index n.
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It is known (e.g. [8]) that there are infinitely many rational elliptic curves with
trivial Mordell-Weil group. Thus:

Corollary 2. For every positive integer n there are infinitely many genus one
curves C/Q of index n.

We want to emphasize that Theorem 1 does not require the finiteness of any
Shafarevich-Tate group. This is to be contrasted with the following results:

Theorem 3. Let E/K be an elliptic curve with E(K) = 0 and X(K, E) = 0. Then
for every number field L/K and every positive integer n, there are infinitely many
elements of H1(L, E) of index n.

Luckily for us, some examples of elliptic curves E/Q satisfying the hypotheses of
Theorem 3 can be found in a paper of Kolyvagin [5, Theorem H]: taking in his
notation D = −7, we get an elliptic curve E/Q with minimal Weierstrass equation

y2 + y = x3 − 49x − 86 (1813B1 in Cremona’s tables) with E(Q) = X(Q, E) = 0.
Thus we get the following, our main result:

Corollary 4. There are innfinitely many genus one curves of every index over
every number field.

In Section 2 we set the stage with some preliminary results on a subset of H1(K, E)
on which the equality of period and index is guaranteed. Readers familiar with the
Heegner point Euler system will recognize these classes as the (vastly simpler) ana-
logue of classes constructed by Kolyvagin. In Section 3 we give the proofs of Theo-
rems 1 and 3, and in Section 4 we make some brief final remarks on generalizations
and comparisons with Stein’s work.

2. The Kolyvagin set

For a number field K, we denote by ΣK the set of all places of K.

Let E/K be an elliptic curve over a number field and v ∈ ΣK . We define Kv(K, E)

to be the subset of H1(K, E) consisting of classes η whose local restriction to each
v′ 6= v is zero. We define the Kolyvagin set

K(K, E) =
⋃

v∈ΣK

Kv(K, E) ⊂ H1(K, E).

The following proposition merely records for future reference some elementary prop-
erties of the Kolyvagin set. The reader will have no difficulty supplying the proof.

Proposition 5. Let E/K be an elliptic curve over a number field.
a) X(K, E) ⊂ K(K, E).
b) For any v and any positive integer n, Kv(K, E)[n] is a finite group.
c) If η ∈ K(K, E) and c ∈ Z, then cη ∈ K(K, E).

The next result is the key observation about Kolyvagin classes that we will use to
prove the main results of the paper.

Proposition 6. Let C/K be a genus one curve over a number field whose cor-
responding class η lies in K(K, Jac(C)). Then every rational divisor class on C
admits a rational divisor. In particular, the period and index of η are equal.
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First proof: This follows rather formally from the existence of O’Neil’s period-
index obstruction map [9]. Namely, for any elliptic curve E/K defined over a field
of characteristic zero and positive integer n, there exists a map

∆ : H1(K, E[n]) → Br(K)[n],

functorial in K, and satisfying the following properties: a) a class η ∈ H1(K, E)[n]
has index dividing n if and only if there exists some Kummer lift of η to ξ ∈
H1(K, E[n]) such that ∆(ξ) = 0; b) if η = 0 then every Kummer lift ξ of η has
∆(ξ) = 0. So let η ∈ K(K, E) have period n, let ξ be any lift of η to H1(K, E[n])
and consider ∆(ξ) ∈ Br(K)[n]. Since for all v′ 6= v, η|v′ = 0, by b) above we have
that ∆(ξ)|v′ = 0 in Br(Kv′). By virtue of the reciprocity law in the Brauer group
of a number field, we have that ∆(ξ) = 0, so η has index dividing n, hence index n.

Second proof: Let V/K be any (smooth, projective geometrically irreducible) va-
riety over any field K. Taking low-degree terms in the Leray spectral sequence
associated to the étale sheaf Gm on Spec K we get [1, Ch. IX] an exact sequence

0 → Pic(V/K) → Pic(V/K)gK
δ
→ Br(K)

γ
→ Br(V )

which is functorial in K. Thus the obstruction δ to a rational divisor class being
represented by a rational divisor is an element of the Brauer group of the base
field K. Moreover, a K-rational point P : Spec K → V would induce a map
Br(P ) : Br(V ) → Br(K) such that γ◦Br(P ) = 1Br(V ), and it follows that V (K) 6= ∅
implies δ ≡ 0. If now K is a number field and V is any variety which has rational
points at every completion except possibly one, then the above reciprocity law
argument gives us that δ ≡ 0 on V .

3. The proofs of Theorem 1 and Theorem 3

We begin with the following routine result, whose proof we include for completeness.

Lemma 7. Let E/K be an elliptic curve over a number field and n be any pos-
itive integer. If v ∈ ΣK is any finite place splitting completely in K(E[n]), then
H1(Kv, E) has an element of exact order n.

Proof: By a seminal theorem of Tate [7, Cor. I.3.4], the finite abelian groups
H1(Kv, E)[n] and E(Kv)/nE(Kv) are in duality, so it suffices to see that the latter
group contains an element of exact order n when E has full n-torsion over Kv. By
the structure theory for compact v-adic Lie groups,

E(Kv) ∼= ZN
` ⊕ Z/(d1) ⊕ Z/(d1d2)

for some positive integers N, d1, d2; here ` is the residue characteristic of Kv. If
E has full n-torsion over Kv, then n | d1d2, so that any generator of Z/(d1d2) has
exact order n in E(K)/nE(K).

We now give the proof of Theorem 1, so let E/K be an elliptic curve with E(K) = 0.
By primary decomposition for period and index of a cohomology class (e.g. [10,
Prop. 2.5]), it suffices to find classes of period and index equal to any prime power,
say n = pa. There are two cases to consider.

Case 1: X(K, E) contains an element η of exact order pa. Then by Proposi-
tions 5 and 6, η has index pa.
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Case 2: X(K, E)[p∞] = X(K, E)[pa−1] is a finite group. By [7, I.6.26(b)], when-
ever the p-primary torsion of the Shafarevich-Tate group of an abelian variety A
defined over a number field K is a finite group (i.e., conjecturally always!) there is
an exact sequence

0 → X(K, A)[p∞] → H1(K, A)[p∞] →
⊕

v∈ΣK

H1(Kv, A)[p∞] → (A∨(K)∧)∗ → 0,

where the three operations on the last term are, respectively, abelian variety dual,
pro−p completion, and Pontrjagin dual. But since we’ve assumed E(K) = 0, this
gives a surjection

(1) H1(K, E)[p∞] →
⊕

v

H1(Kv, E)[p∞] → 0.

Invoking Lemma 7, let v ∈ ΣK be such that H1(Kv, E) contains an element ηv of
exact order pa. By (1), there exists a global class η which is locally trivial at every
v′ 6= v and is locally equal to η`, so that η ∈ K(K, E). By Proposition 6, any such
η has index equal to its period.

The only remaining question is what the period of η is. However, certainly the
period of η is of the form c · pa for some positive integer c; then the class cη has
exact period pa. By Proposition 5c), cη is still a Kolyvagin class, so also has index
pa, as desired. This completes the proof of Theorem 1.

We turn now the setting of Theorem 3, which is a sort of degenerate case of Theo-
rem 1. Indeed, under the hypothesis that X(K, E) = 0, the global duality relation
becomes:

H1(K, E)
∼
→

⊕

v∈ΣK

H1(Kv, E).

It follows that the order of a Kolyvagin class is always equal to the order of its
nontrivial local restriction. We finish, appropriately enough, by recalling a result
of Lang and Tate [6, Cor. 1, p. 676]: if E/Kv

is an elliptic curve over a v-adic
field with good reduction and pa is prime to the order of the residue field, then an
element of H1(Kv, E) of period pa also has index pa and moreover is split by a local
extension field Lw/Kv if and only if pa divides the ramification index e(Lw/Kv).
Thus if in Lemma 7 we choose our place v to be of good reduction for E, unramified
in L and prime to p (which excludes only finitely many places), we find that the
class η|L has the property that ηLw

has index at least pa. On the other hand since η
has index pa, certainly η|L has index at most pa, so η|L has period and index both
equal to pa. Since we can perform this construction for each v in a set of positive
density, we get infinitely many such classes, completing the proof of Theorem 3.

4. Some final thoughts

There is work in progress of Stein and his students [11] whose goal is to verify
the full conjecture of Birch and Swinnerton-Dyer for all rational elliptic curves of
conductor at most 1000 and analytic rank at most one. This work in particular
gives many other examples of rational elliptic curves satisfying the hypotheses of
Theorem 3. In fact there are close relations between [10], [11] and the present paper.
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In order see the connection, we first note that the argument used to establish
Theorem 3 readily gives the following variant:

Theorem 8. Let E/K be an elliptic curve over a number field whose Mordell-Weil
group has rank zero. Suppose moreover that X(K, E) is finite. Then, for any n
prime to N = #E(K) ·#X(K, E) and any number field L/K, there exist infinitely
many genus one curves C/L of index n.

Theorem 8 should be compared with Theorem 3.1 and §4.1 in Stein’s paper [10],
wherein attention is focused on the the rational elliptic curve E = X0(17). The
calculations of [10, §5.1] showing that (in his notation) BK = 2 give a good ex-
ample of the techniques systemically employed in [11]: namely, they show that
X(Q, X0(17))[p] = 0 for all odd primes p. By a routine computation with the
2-Selmer group, one finds that X(Q, X0(17))[2] = 0. Thus X(Q, X0(17)) = 0, as
predicted by the conjecture of Birch and Swinnerton-Dyer. However the Mordell-
Weil group of E is not trivial – rather, X0(17)(Q) = Z/4Z – so by Theorem 8, for
all number fields K there are elements of H1(K, X0(17)) of every odd index.

Much more remains to be done on the index problem for genus one curves over
number fields. The obvious analogue for the index of the Shafarevich-Cassels the-
orem is the assertion that for any positive integer n > 1 and any elliptic curve E
over a number field K, there exist infinitely many classes in H1(K, E) with index
n. The case of n = 2 (“biconic curves”) and arbitrary E and K can be handled
using the methods of [4] together with the theory of explicit 2-descent; this is the
subject of work in progress of the present author. The general case may well require
a deeper understanding of n-descent than we currently possess.
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