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Abstract. We compute the minimal cardinality of a covering (resp. an ir-
redundant covering) of a vector space over an arbitrary field by proper linear

subspaces. Analogues for affine linear subspaces are also given.

1. Linear coverings

Let V be a vector space over a field K. A linear covering of V is a collection
{Wi}i∈I of proper K-subspaces such that V =

⋃
i∈I Wi. A linear covering is irre-

dundant if for all J ( I,
⋃

i∈J Wi 6= V . Linear coverings exist iff dim V ≥ 2.

The linear covering number LC(V ) of a vector space V of dimension at least 2
is the least cardinality #I of a linear covering {Wi}i∈I of V . The irredundant
linear covering number ILC(V ) is the least cardinality of an irredundant linear
covering of V . Thus LC(V ) ≤ ILC(V ).

The main result of this note is a computation of LC(V ) and ILC(V ).

Main Theorem. Let V be a vector space over a field K, with dim V ≥ 2.
a) If at least one of dim V , #K is finite, then LC(V ) = #K + 1.
b) If dim V and #K are both infinite, then LC(V ) = ℵ0.
c) In all cases we have ILC(V ) = #K + 1.

Here is a counterintuitive consequence: the vector space R[t] of polynomials has a
countably infinite linear covering – indeed, for each n ∈ Z+, let Wn be the subspace
of polynomials of degree at most n. However any irredundant linear covering of
R[t] has cardinality #R+1 = 2ℵ0 . Redundant coverings can be much more efficient!

The fact that a finite-dimensional vector space over an infinite field cannot be
a finite union of proper linear subspaces is part of the mathematical folkore: the
problem and its solution appear many times in the literature. For instance problem
10707 in the American Mathematical Monthly is intermediate between this fact and
our main result. The editorial comments given on page 951 of the December 2000
issue of the Monthly give references to variants of this fact dating back to 1959.
Like many pieces of folklore, there seems to a be mild stigma against putting it in
standard texts; an exception is [2, Thm. 1.2].

There are two essentially different arguments that establish this fact. Upon
examination, each of these yields a stronger result, recorded as Theorem 4 and
Theorem 5 below. From these two results the Main Theorem follows easily.

The first two parts of the Main Theorem have appeared in the literature before
(but only very recently!): they were shown by A. Khare [1]. I found these results
independently in the summer of 2008. The computation of the irredundant linear
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covering number appears to be new. The proof of the Main Theorem is given in §2.
There is an analogous result for coverings of a vector space by affine linear sub-

spaces. This is stated in §3; we then briefly discuss what modifications must be
made in the proof of the Main Theorem to obtain this affine analogue.

2. Proof of the Main Theorem

First three simple lemmas, all consequences or special cases of the Main Theorem.

Lemma 1. (Quotient Principle) Let V and W be vector spaces over a field K with
dim V ≥ dim W ≥ 2. Then LC(V ) ≤ LC(W ) and ILC(V ) ≤ ILC(W ).

Proof. By standard linear algebra, the hypothesis implies that there is a surjective
linear map q : V → W . If {Wi}i∈I is a linear covering of W , then the complete
preimages {q−1(Wi)}i∈I give a linear covering of V . The preimage of an irredundant
covering is easily seen to be irredundant. �

Lemma 2. For any field K, the unique linear covering of K2 is the set of all lines
through the origin, of cardinality #K + 1. It is an irredundant covering.

Proof. The set of lines through the origin is a linear covering of K2. Conversely,
any nonzero v ∈ K2 lies on a unique line, so all lines are needed. The lines through
the origin are {y = αx | α ∈ K} and x = 0, so there are #K + 1 of them. �

Lemma 3. Let V be a vector space over a field K, with dim V ≥ 2. Then there
are at least #K + 1 hyperplanes – i.e., codimension one linear subspaces – in V .

Proof. When dim V = 2 there are exactly #K + 1 hyperplanes {Li}. In general,
take a surjective linear map q : V → K2; then {q−1(Li)} are hyperplanes in V . �

The exact number of hyperplanes in V is of course known, but not needed here.

Theorem 4. Let V be a finite dimensional vector space over a field K, and let
{Wi}i∈I be a linear covering of V . Then #I ≥ #K + 1.

Proof. Since every proper subspace is contained in a hyperplane, it suffices to con-
sider hyperplane coverings. We go by induction on d, the case d = 2 being Lemma
2. Assume the result for (d − 1)-dimensional spaces and, seeking a contradiction,
that we have a linear covering {Wi}i∈I of Kd with #I < #K + 1. By Lemma 3,
there is a hyperplane W which is not equal to Wi for any i ∈ I. Then {Wi∩W}i∈I is
a covering of W ∼= Kd−1 by at most #I < #K + 1 hyperplanes, contradiction. �

Theorem 5. Let V be a vector space over a field K, and let {Wi}i∈I be an irre-
dundant linear covering of V . Then #I ≥ #K + 1.

Proof. Let {Wi}i∈I be an irredundant linear covering of V . Choose one of the
subspaces in the covering, say W•. By irredundancy, there exists u ∈ W• \

⋃
i 6=•Wi;

certainly there exists v ∈ V \ W•. Consider the affine line ` = {tu + v | t ∈ K};
evidently #` = #K. If w = tu + v ∈ ` ∩W•, then v = w− tu ∈ W•, contradiction.
Further, if for any i 6= • we had #(` ∩ Wi) ≥ 2, then we would have ` ⊂ Wi and
thus also the K-span of ` is contained in Wi, so then u = (2u + v)− (u + v) ∈ Wi,
contradiction. It follows that #` = #K ≤ #(I \ {•}). �
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Proof of the Main Theorem:

Theorem 5 is part c) of the Main Theorem. So it suffices to compute LC(V ).
Case 1: Suppose 2 ≤ dim V < ℵ0. By Theorem 4 we have LC(V ) ≥ #K + 1,
whereas by Lemma 1 and Lemma 2 we have LC(V ) ≤ LC(K2) = #K + 1.
Case 2: Suppose dim V ≥ ℵ0 and K is finite. Then LC(V ) ≤ LC(K2) = #K + 1 <
ℵ0. Suppose that V had a linear covering {Wi}n

i=1 with n < #K +1. Then, since n
is finite, we may obtain an irredundant subcovering simply by removing redundant
subspaces one at a time, until we get an irredundant covering by m ≤ n < #K + 1
subspaces, contradicting Theorem 5.
Case 3: Suppose dim V and #K are both infinite. Consider W =

⊕∞
i=1 K, a

vector space of dimension ℵ0. For n ∈ Z+, put Wn :=
⊕n

i=1 K. Then {Wn}∞n=1

gives a covering of W of cardinality ℵ0. Since dim V ≥ dim W , by Lemma 4 we
have LC(V ) ≤ ℵ0. Thus it remains to show that V does not admit a finite linear
covering. But once again, if V admitted a finite linear covering it would admit a
finite irredundant linear covering, contradicting Theorem 5.

3. Affine Covering Numbers

An affine covering {Ai}i∈I of a vector space V is a covering by translates of
proper linear subspaces. An affine covering is irredundant if no proper subset gives
a covering. Irredundant affine coverings exist iff dim V ≥ 1. The affine covering
number AC(V ) (resp. the irredundant affine covering number IAC(V )) is
the least cardinality of an affine covering (resp. an irredundant affine covering).

Theorem 6. Let V be a vector space over a field K, with dim V ≥ 1.
a) If min(dim V,#K) is finite, then AC(V ) = #K.
b) If dim V and #K are both infinite, then AC(V ) = ℵ0.
c) We have IAC(V ) = #K.

The proof of the Main Theorem goes through with minor modifications. Lemma 1
holds verbatim. The following self-evident result is the analogue of Lemma 2.

Lemma 7. For any field K, the unique affine covering of K1 is the set of all points
of K, of cardinality #K. It is an irredundant covering.

Combining these two results we get the analogue of Lemma 3, in which #K + 1
is replaced by #K. To prove the analogue of Theorem 4, note that for two two
codimension one affine subspaces W1, W2 of a vector space V , then W1 ∩ W2 is
either empty or is a codimension one affine subspace in each Wi. In the proof of
the analogue of Theorem 5 we use the line ` = {(1− t)u + tv | t ∈ K}.
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