
DIVISOR CLASS GROUPS

PETE L. CLARK

1. Krull domains and class groups

In algebraic geometry one meets both the Picard group and the divisor class
group. In favorable situations these two groups coincide – especially, they coincide
for nonsingular algebraic varieties – but in general they are distinct and the dis-
tinction is of some importance in analyzing singularities.

We have already defined the Picard group of an arbitrary domain R. The definition
we gave was invertible fractional ideals modulo principal fractional ideals. We also
noted in passing that a nonzero R-submodule M of K is a fractional ideal exactly
when it is locally free of rank 1, and if I and J are fractional ideals, IJ ∼=R I ⊗R J .
In other words, the Picard group can equally well be interpreted as the group of
isomorphism classes of rank 1 locally free modules.1

In fact this definition extends naturally to the context of locally ringed spaces:
one has a notion of rank 1 locally free OX -modules, which again form a group under
tensor product. Note that in geometric discussions the preferred synonym for “rank
one locally free OX -module” is line bundle. As an example, if X is a nonsingular,
geometrically integral projective variety over a field k, then Pic(X) lies in a short
exact sequence

0 → Pic0(X) → Pic(X) → NS(X) → 0,

where Pic0(X) is the subgroup of line bundles which are “algebraically equivalent
to zero,” a geometric condition which we will not define here, and the quotient
NS(X), the Néron-Severi group, is a finitely generated abelian group. In fact
Pic0(X) can be endowed with the structure of a projective variety compatibly with
the group structure: i.e., it is an abelian variety, called the Picard variety of X.

In case X has dimension one – i.e., is an algebraic curve – Pic0(X) is called the
Jacobian of X. In this case it is decidedly more elementary to say what “alge-
braically equivalent” to zero means. In fact it means “degree zero.” This in turn
is best understood by thinking in terms of Weil divisors, i.e., as a motivation for
understanding the equality Pic(X) = Cl(X) of the Picard group with the divisor
class group that holds in this case.

We use this geometry as motivation (only) for the need to work with Pic and
Cl together. In the rest of these notes, we concentrate only on the case of integral
affine schemes, that is to say on integral domains. I say that a domain is normal

1If P is any property for modules over a commutative ring R, we say that a module is “locally

P” iff M⊗Rp has property P for all prime ideals p of R. Similarly for a property P of commutative

rings.
1
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if it is integrally closed in its quotient field.

In fact I know two different ways to define the class group of an integral domain
R. The first definition requires R to be Noetherian (but not necessarily normal),
whereas the second definition requires R to be a Krull domain. Exactly what a
Krull domain is we shall see shortly, but I will tell you now the following:

Proposition 1. (Facts about Krull domains)
a) A Krull domain is normal.
b) A normal Noetherian domain is a Krull domain.
c) A UFD is a Krull domain.
d) If A is a Krull domain, and R = A[{ti}i∈I ] is a polynomial ring in any (possibly
infinite) number of indeterminates, then R is a Krull domain.

Thus one can think of the notion of a Krull domain as a sort of well-calculated
relaxation of the Noetherian hypothesis on a normal Noetherian domain. Being
able to entertain non-Noetherian Krull domains is useful if you are, say, trying to
exhibit a Krull domain with any given ideal class group.

On the class of normal Noetherian domains these two constructions coincide. In
particular, the (natural globalization) of this construction associates an abelian
group Cl(X) to each normal algebraic variety and this is exactly the construction
of [Har, §II.6]. I must confess that I have not myself seen much literature on the
case of the class group of a non-integrally closed Noetherian domain, but I feel
confident that it is out there somewhere. In particular, some of the constructions
involving ideal theory of an order O in a number field would seem to have more
natural geometric explanations in terms of comparing Pic(O) to Cl(O).

In order to be able to refer to one or the other of these two constructions I will
call the first construction – valid for any Noetherian domain R – the Chow class
group of R and the second construction – valid for any Krull domain – the Krull
class group of R. This is not standard terminology. In fact, the reader should
be warned that in the literature either Cl(R) or Pic(R) is often called just “the
class group of R,” even in situations when both Cl(R) and Pic(R) are defined and
unequal (as is the case for a nonmaximal order)! For instance, in Cox’s book he
speaks of “the class group of the quadratic order O(D)”, but really it is Pic(O(D)).

2. Preliminaries on localization at height one primes

In this section we collect some results on localization at height one primes, with
and without the Noetherian hypothesis. The reader may prefer to read on and look
back at this section only when needed.

We begin by recalling some basic facts about localization. First, one can recover
any integral domain by intersecting, in its fraction field, the localizations at all
maximal ideals:

Proposition 2. Let R be an integral domain with fraction field K. Then

R =
∩
m

Rm,

the intersection taking place over all maximal ideals m of R.
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Proof: [Rei, §8.7].

Second, Noetherianity is a “global to local” property:

Theorem 3. If a commutative ring R is Noetherian, and p is any prime ideal of
R, then the local ring Rp is Noetherian.

Proof: This should be familiar: the point is that every ideal I of Rp may be iden-
tified, under pullback I 7→ I ∩ R, with an ideal of R: the image is precisely the
set of ideals of R contained in p. If the partially ordered set of ideals of R satisfies
(ACC), then so of course does every subset.

Remark: A ring R (even a domain) such that Rp is Noetherian for each prime
p need not itself be Noetherian. In other words, it is not possible to check the
Noetherian condition locally. Not only is this not a problem – because the Hilbert
basis theorem and the fact that completions of Noetherian rings are Noetherian,
one is rarely sweating to show that a ring R is Noetherian – it makes sense, since
Noetherianity is in spirit a global property, sort of roughly analogous to compact-
ness (or better, paracompactness).

On the other hand, normality is truly a local property:

Theorem 4. For an integral domain R, TFAE:
(i) R is normal.
(ii) For every prime ideal p of R, the local ring Rp is normal.
(iii) For every maximal ideal m of R, the local ring Rm is normal.

Proof: [Rei, §8.7].

Theorem 5. For a Noetherian one-dimensional local domain R, TFAE:
(i) R is normal.
(ii) The maximal ideal of R is principal.
(iii) R is a PID.
(iv) R is a DVR.

Proof: [Rei, §8.4].

The situation in which all of these results apply is when R is normal, Noetherian
and one-dimensional, the latter meaning that each nonzero prime ideal is maximal.
Then R =

∩
0 ̸=p Rp, and each Rp is a DVR. This is of course the class of Dedekind

domains.

In a Dedekind domain we know that the fractional ideals form a group under mul-
tiplication, and moreover this group is the free abelian group

⊕
p Z[p] generated by

the nonzero prime ideals. Given any nonzero element f ∈ K×, we can factor the
principal fractional ideal fR into primes, getting an element

∑
p ordp(f)[p]. Mod-

ding out the group of all fractional ideals by the subgroup of principal fractional
ideals we get the class group of R.

This construction is at the same time prototypical for the Picard group construc-
tion and the class group construction. In a general domain R – in fact for any
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domain which is not a Dedekind domain – not every fractional ideal will be in-
vertible, so we modify the definition by taking specifically the group of invertible
fractional ideals and modding out by the subgroup of principal (hence necessarily
invertible) fractional ideals. By definition this gives Pic(R). If R is not a Dedekind
domain, then there will exist ideals – even invertible ideals – which do not factor
into primes. The analogue of factorization of an ideal into primes in a more general
ring is primary decomposition (which holds in any Noetherian ring); however it
is not clear to me how to use this analogy to define a class group.

The first key idea is that for a general domain R, we are interested not in lo-
calizations of arbitrary primes or at maximal primes, but at height one primes.
Recall A prime ideal p of an integral domain R is said to have height one if it is
nonzero and there does not exist any prime ideal q such that

0 ( q ( p.

Let us write Σ(R) for the set of height one prime ideals of R.2

Theorem 6. Let R be a normal Noetherian domain. Then

R =
∩

p∈Σ(R)

Rp.

In particular, every integrally closed Noetherian domain can be written as an inter-
section of DVR’s with common fraction field.

Proof: See [Rei, §8.10].
Proposition 7. Let R be a Noetherian domain and 0 ̸= x ∈ R. Then the set of
height one primes containing x is finite.

Proof: If p is a height one prime containing the nonzero element x, then certainly
p is a minimal element of the set of prime ideals containing (x), in other words it
is a minimal prime ideal of the Noetherian ring A/(x). But it is well-known that
a Noetherian ring has only finitely many minimal prime ideals. This is best seen
geometrically: if A is Noetherian, SpecA is a Noetherian topological space (open
subsets satisfy ACC) and such a space has only finitely many irreducible closed
subsets, which correspond to the minimal primes.

Corollary 8. Let R be a normal Noetherian domain. Then R is the intersection in
its fraction field K of all the DVR’s Rp obtained by localizing at height one primes,
and for each 0 ̸= f ∈ K, we have vp(f) = 0 for all but finitely many primes.

For a general normal domain, the inclusion R ⊂
∩

p∈Σ(R) Rp may be proper. More-

over, a nonzero element xmay be contained in infinitely many primes. This provides
motivation for the following definition, which isolates the class of domains for which
neither of these “pathologies” occur.

Definition: An integral domain R is a Krull domain if it satisfies:

(KD1) For each height one prime p, Rp is a DVR.

2A better notation for the general picture would be Σ(1)(R), denoting height one, with Σ(k)(R)

denoting height k ideals for any k ∈ N. But we are only interested in height one primes here, so
we simplify the notation.
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(KD2) R =
∩

p∈Σ(R) Rp; and

(KD3) For each 0 ̸= x ∈ R, the set of height one primes containing x is finite.

We immediately deduce:

Theorem 9. a) A Krull domain is normal.
b) A normal Noetherian domain is a Krull domain.

Proof: It is an easy exercise to show that if {Ri} is a family of normal domains
inside a common fraction field K, their intersection R =

∩
i Ri is normal: this gives

part a). Part b) follows immediately from Corollary 8.

Here is a useful equivalent definition of a Krull domain. We begin with a field
K and a family {vi}i∈I of discrete valuations on K satisfying the following “finite
character” property:

(FC) For x ∈ K× such that vi(x) ≥ 0 ∀i ∈ I, {i ∈ I | vi(x) > 0} is finite.

Then:

Theorem 10. Let K be a field and {vi}i∈I be a family of discrete valuations on
K satisfying (FC). Then

R = {x ∈ K | vi(x) ≥ 0 ∀i ∈ I}
is a Krull domain.

Proof: CITATION MISSING.

3. The Chow divisor class group of a Noetherian domain

Unsurprisingly, it is easiest to define the divisor class group for a domain R which
is both Noetherian and Krull, i.e., an integrally closed Noetherian domain, so it
seems best to begin with this case and then discuss what modifications must be
made when we weaken the hypotheses in either of the two above ways.

We define the divisor group Div(R) =
⊕

p Z[p], i.e., a free abelian group on
the set of height one prime ideals. In other words, an element of this group is a
formal sum

∑
p np[p] with each np ∈ Z and all but finitely many equal to 0. Such

a guy is called a divisor, or, for emphasis, a Weil divisor.

As in the case of the class group (Pic = Cl) of a Dedekind domain, the goal is
to associate to each f ∈ K× a certain divisor div(f). The subset Prin(R) =
{div(f) | f ∈ K×} will turn out to be a subgroup, the subgroup of principal
divisors, and we shall define

Cl(R) := Div(R)/Prin(R).

So the key is to define div(f): in other words, for each height one prime p we wish
to associate in some reasonable way an integer, say, ordp(f), so that for fixed f all
but finitely many are 0. Well, all we have to do is localize at p: we get a ring Rp

which remains Noetherian, remains integrally closed, and is a domain in which the
height one prime p becomes the unique maximal ideal. In other words it is a one-
dimensional integrally closed Noetherian local ring, hence by Theorem 5 a DVR.
Therefore we can define ordp(f) to be the valuation of f in this discrete valuation
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ring. In other words, if pRp = (π) is the maximal ideal, then the fractional ideal
(f) is necessarily of the form (π)a for a unique integer a, and that’s the integer we
want. Notice that

(1) div(fg) = div(f) + div(g), div(1/f) = −div(f),

so that Prin(R) is at least a subgroup of the direct product
∏

p Z. It remains to
be shown that it is actually contained in the direct sum, i.e., that for each fixed f
we have ordp(f) = 0 for all but at most finitely many height one primes p. Just
writing f = x

y with x, y ∈ R and noting that ordp(f) = ordp(x) − ordp(y), we are

reduced to Corollary 8.

This completes the construction. We pause to remark that if R is a Dedekind
domain, then Div(R) is precisely the group of fractional R-ideals and Prin(R) is
the subgroup of principal fractional ideals, so Pic(R) = Cl(R) in this case. In other
words, it is indubitably correct and unambiguous to speak about “the class group”
of a Dedekind domain.

3.1. Chow class group of a Noetherian domain.

Now suppose R is a Noetherian domain – but not necessarily integrally closed
– with fraction field K. We define the group of Weil divisors, Div(R) exactly as
before: it is the free abelian group

⊕
p Z on the set of height one prime ideals.

Moreover, for f ∈ K× we again wish to define a divisor div(f). We wish it to say
the same formal properties as in the previous case, especially (1), so that the subset
Prin(R) = {div(f) | f ∈ K×} is a subgroup of Div(R), and again define

Cl(R) = Div(R)/Prin(R).

Again, it comes down to some (reasonable!) assignment p 7→ ordp(f) ∈ Z such that
all but finitely many are zero. Again we wish this integer to be a “local” invariant
of f in Rp. Here Rp will again be a one-dimensional Noetherian local ring, but it
need not be integrally closed, so not a DVR. In fact, as we have mentioned before,
since integral closure is a local property, if R itself is not integrally closed, at least
one Rp is guaranteed not to be a DVR. So the plot must thicken.

I don’t have any especially good way of motivating what one actually does, so
here goes: writing f = x

y with x, y ∈ R as usual, we define ordp(x) to be the

length of the Rp-module Rp/xRp; similarly for y, and we define

ordp(f) = ordp(x)− ordp(y).

Recall that the length of an R-module M is the length of a composition series for
M , i.e., given a sequence of R-submodules

0 = M0 ( M1 ( . . . ( Mℓ = M

such that each Mi/Mi−1 is simple (has no nonzero, proper submodules), we define
the length of M to be ℓ. Two concerns here are: (i) does every R-module admit at
least one composition series, and (ii) do any two composition series have the same
length? The answer to (i) is generally no, but there is a nice characterization: an
R-module M has a composition series iff it is both Noetherian and Artinian, i.e.,
satisfies both (ACC) and (DCC) on submodules. It is not too hard to show that
a quotient of a one-dimensional Noetherian domain by a nonzero principal ideal is
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both Artinian and Noetherian (e.g. [Liu, Lemma 7.1.26]). However, you should
certainly check that in the case that Rp is a DVR, for x ∈ R, the length of Rp/xRp

is exactly ordp(x) in the previous sense: this is easy and enlightening. As for (ii),
I hope you are not entirely surprised to hear as long as an R-module has finite
length, not only the length itself but the set of composition factors Mi/Mi−1 – un-
ordered, but taken with multiplicity – is independent of the choice of composition
series: this is module-theoretic analogue of the Jordan-Hölder theorem for finite
groups, and the proof is the same.

We leave the verification of (1) as an (easy) exercise; finally, the argument that
div(f) ⊂

⊕
p Z is much the same as above: there are only finitely many primes

containing a nonzero element x ∈ R, and for any other prime p, xRp = Rp, so
Rp/xRp = 0, so has length 0.

Thus we have defined Cl(R) for an arbitrary Noetherian domain in a way which
agrees with Cl(R) in the special case in which R is integrally closed.

3.2. Pic(R) versus Cl(R). Comparison with Pic(R): I claim there is a canonical
homomorphism

Pic(R) → Cl(R),

which is generally not an isomorphism. We will first define a homomorphism from
the group I(R) of invertible fractional ideals of R to the group Div(R) and then
check that this factors through the quotient I(R)/Prin(R).

Recall that a fractional ideal I is invertible iff it is locally principal, so in partic-
ular for each height one prime p we have Ip = xpRp is a principal fractional ideal
in the local ring. Clearly then the map we want is

I 7→ (ordp xp) ∈ Div(R).

I leave it to you to check that this induces a homomorphism Pic(R) → Div(R).

We say that a ring R is locally factorial if for every maximal ideal m of R,
the local ring Rm is a UFD (aka a “factorial ring”). Now:

Theorem 11. (Comparison Theorem)
a) The map I(R) → Div(R) is an isomorphism if R is locally factorial.
b) A regular local ring is a UFD.
c) Therefore if R is regular – e.g., the coordinate ring of a nonsingular affine variety

– then Pic(R)
∼→ Cl(R).

Proof: See [Eis, p. 261].

In general, the map Pic(R) → Cl(R) need not be either injective or surjective.

3.3. Brief remarks on the geometric case.

In a similar way, on can define the class group can be generalized to any Noe-
therian integral scheme. In fact, if you know what all these words mean, the
construction should be clear. (Height one prime is synonymous with irreducible
closed subscheme of codimension one, but on the other hand, the height of a point
on a Noetherian scheme makes perfect sense: it is the height of the maximal ideal
in the the local ring at that point.) In particular, one can define Cl(X) for any
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algebraic variety.

Example: Suppose C is a nonsingular algebraic curve over a field k. Then the
height one prime ideals are what the ancients called “points” on the curve (now
we call them “closed points”).3 Therefore Div(C) is the free abelian group on the
points, just as in your algebraic geometry class. In full generality there is an ob-
vious homomorphism from any Weil divisor group to Z: we just add up all the
coefficients. This is called the degree map and the kernel is sometimes called
Div0 (of R or X or whatever). In the affine case, however, this is not very useful
because it does not interact well with the notion of a principal divisor: there will
be principal divisors of all possible degrees.

However, a nonzero element f of the function field k(C) of the curve can be
viewed as a finite map to the projective line so – as a finite map! – has a well-defined
degree d ∈ Z+ which is the inverse image of a given point, counted with suitable
multiplicities. (More precisely it’s the length of a certain module, but let’s skip
it...) By definition, div(f) = f−1(0)− f−1(∞); but both the first term (the divisor
of zeros) and the second term (the polar divisor) have degree d, so their difference
has degree 0. In other words, in the projective case we have Prin(C) ⊂ Div0(C),
so we get a short exact sequence

0 → Div0(C)/Prin(C) → Div(C)/Prin(C) → Z → 0.

The first term is precisely the Jacobian of C: it can be given the structure of an
abelian variety whose dimension is equal to the genus g of C, and here Z = NS(C),
so that a divisor on a curve is algebraically equivalent to 0 iff it has degree 0. As
in the affine case (i.e., Dedekind domains) it can be checked that Cl(C) = Pic(C).

The Comparison Theorem (Theorem 11) also generalizes to Noetherian integral
schemes in a straightforward way. In particular, for any nonsingular Noetherian in-
tegral scheme X, one has a canonical isomorphism Pic(X) = Cl(X). This is often
summarized as an equality between Weil divisors and Cartier divisors, although
I will not go so far into geometry as to give the (sheaf-theoretic) definition of a
Cartier divisor here.

4. The class group of a Krull domain

If R is a Krull domain with quotient field K, it should be clear by now how to
define Cl(R): we define Div(R) to be the free abelian group on Σ(R), the set of
height one primes. For 0 ̸= f ∈ K, we define

div(f) =
∑
p

vp(f) [p],

Prin(R) = {div(f) | f ∈ K×} and Cl(R) = Div(R)/Prin(R). There is really noth-
ing further to say, since every nice property that we had to show in the case of a
Noetherian normal domain is built into the definition of a Krull domain!

We would however like to mention the following alternate construction of the class
group, which is more closely analogous to the construction of the Picard group in
that it is a group of equivalence classes of certain ideals modulo principal ideals.

3Actually, this is not quite true if k is not algebraically closed, but I don’t want to get into it.



DIVISOR CLASS GROUPS 9

5. Complete normalization

Definition: Let R ⊂ S be a ring extension. An element x ∈ R′ is almost integral
over R if there exists a finitely generated R-submodule M of S such that for all
n ∈ Z+, xn ∈ M .

Since x is integral over R ⇐⇒ R[x] is finite over R, indeed if x is integral over R
it is almost integral over R. Conversely, suppose x is almost integral over R and R
is Noetherian: then, since R[x] ⊂ M and M is finitely generated, so is R[x], so x is
integral over R.

Thus integral implies almost integral, and the two coincide for Noetherian rings.

For R ⊂ S, the complete normalization of R in S is the set of all elements
of S which are almost integral over R. We say a domain R is completely normal
if every element of the fraction field of R which is almost integral over R is already
an element of R.

Proposition 12. For an extension of domains R ⊂ S, the complete normalization
of R in S is a subring of S which is normal.

Proof: [LM, Prop. 4.18].

Warning: Unfortunately it need not hold that the complete normalization of a
domain in its fraction field is completely normal.

Theorem 13. The complete normalization of a domain R in its fraction field K
is the set of elements x ∈ K such that there exists 0 ̸= r ∈ R such that rxn ∈ R for
all n ∈ Z+.

Proof: [LM, Thm. 4.20].

6. Valuation rings

Theorem 14. Let R be an integral domain with fraction field K. The normaliza-
tion of R in K is the intersection of all (not necessarily discrete!) valuation rings
of K containing R.

Proof: [LM, Cor. 5.8].

A subgroup H of an ordered abelian group G is isolated if for each 0 ≤ x ∈ H and
0 ≤ y ∈ G, 0 ≤ y ≤ x implies y ∈ H.

If an ordered abelian group G has only a finite number of isolated subgroups,
the number of proper isolated subgroups is called the rank of G.

Proposition 15. A nonzero ordered abelian group has rank one iff there is an
order embedding from G into the additive group of the real numbers.

Proof: [LM, Prop. 5.15].

Theorem 16. Let v be a valuation on a field K with value group G and valuation
ring R. Then there is a bijective, order-reversing correspondence between isolated
subgroups of G and proper prime ideals of R.
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Proof: [LM, Thm. 5.17]. An immediate corollary is that the Krull dimension of a
valuation ring is equal to its rank.

Theorem 17. A valuation ring is completely normal iff it has rank at most one.

Proof: [LM, Thm. 5.19].

7. Prüfer Domains

Theorem 18. For an integral domain R, TFAE:
(i) Every nonzero finitely generated ideal is invertible (R is Prüfer).
(ii) Every nonzero ideal generated by two elements is invertible.
(iii) If for a finitely generated nonzero ideal A and arbitrary ideals B and C of R
we have AB = AC, then B = C.
(iv) For each prime ideal P of R, RP is a valuation ring.
(iv′) For each maximal ideal m of R, Rm is a valuation ring. (v) For all ideals
A,B,C of R, A(B ∩ C) = AB ∩AC.
(vi) For all ideals A,B of R, (A+B)(A ∩B) = AB.
(viii) If A ⊂ C are ideals of R, with C finitely generated, there exists an ideal B of
R such that A = BC.
(ix) For all ideals A,B,C of R with A,B finitely generated,

C : (A ∩B) = C : A+ C : B.

(x) For all ideals A,B,C of R, A ∩ (B + C) = A ∩B +A ∩ C.

Proof: [LM, Thm. 6.6, Cor. 6.7].

Let R be an integral domain with fraction field K. By an overring of R, we
mean a domain S intermediate between R and K: R ⊂ S ⊂ K.

Proposition 19. Let S be an overring of the domain R. TFAE: (i) T is a flat
R-algebra.
(ii) For all maximal ideals m of S, Sm = Rm∩R.
(iii) S =

∩
m Rp∩R, the intersection running over all maximal ideals of S.

Proof: [LM, Prop. 4.14].

Theorem 20. An integral domain is Prüfer iff every overring of R is flat.

Proof: [LM, Thm. 6.10].

Corollary 21. Every overring of a Prüfer domain is a Prüfer domain.

Proof: This follows immediately from the theorem.

Corollary 22. Let R be a Prüfer domain and S an overring. Let ∆ be the set of
all prime ideals p of R with pS ̸= S. Then

S =
∩
p∈∆

Rp.

Proof: [LM, Cor. 6.12].

Theorem 23. For an integral domain R, TFAE:
(i) R is Prüfer.
(ii) Every overring of R is normal.

Proof: [LM, Thm. 6.13].
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8. Divisorial ideals

For a fractional ideal I of a domain R, put

I∗ = (R : I) = {a ∈ K | aI ⊂ R}.

We always have I∗I ⊂ R, and equality holds iff I is invertible. In particular, for
any invertible ideal, I∗ is the inverse of I. I∗ is called4 the quasi-inverse of I.

Two fractional ideals I and J are quasi-equal if I∗ = J∗. Notice that two in-
vertible ideals are quasi-equal iff they are equal. In general, quasi-equality is an
equivalence relation on the set of fractional ideals: we write I ∼ J .

A divisor of R is an equivalence class of quasi-equal fractional ideals. for a frac-
tional ideal I, we write [I] for its divisor. LetD(R) denote the set of all divisors of R.

For any f ∈ K×, we define div(f) to be the class in D(R) of fR. Because principal
fractional ideals are invertible, div(f) = div(g) ⇐⇒ fR = gR.

Proposition 24. Two fractional ideals I and J are quasi-equal iff they are con-
tained in the same principal fractional ideals.

Proof: If f ∈ K×, then I ⊂ fR iff 1
f ∈ (R : I).

For a fractional ideal I, put I =
∩

I⊂fR fR. Notice I ⊃ I.

Proposition 25. I is a fractional ideal which is quasi-equal to I.

Proof: Since I contains I, it is evidently a nonzero R-submodule of K. If 0 ̸= x ∈ R
is such that xI ⊂ R, then I ⊂ 1

xR so R ⊂ 1
xR and thus xI ⊂ R, so I is a fractional

ideal. That it is quasi-equal to I is built into the definition.

Corollary 26. For a fractional ideal I, I is characterized as the unique fractional
ideal quasi-equal to I and containing all fractional ideals quasi-equal to I.

Proposition 27. For any fractional ideal I, I = (I∗)∗ = (R : (R : I)).

Now an important definition: We say a fractional ideal I is divisorial if I = I.

It follows from the above that any divisor has a unique divisorial representative, so
that we may identify D(R) with the set of divisorial fractional ideals.

The idea here is that D(R) is, in a rather general context, a substitute for the
group of invertible fractional ideals. Namely, we can define a multiplication opera-
tion on divisors: for fractional ideals I and J , put

[I] · [J ] := [IJ ].

We have to check that this is well-defined on equivalence classes. To see this,
observe

(R : IJ) = ((R : I) : J) = ((R : I) : J) = ((R : J) : I) = ((R : J) : I) = (R : IJ).

4By some, at least – I do not find the terminology very appealing
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This gives D(R) the structure of a commutative monoid, with [R] as the identity
element. We write [I] ≤ [J ] if J ≤ I (note the order reversal!). This gives a partial
ordering which is compatible with the monoid structure in the following sense:

Proposition 28. For A,B,C fractional ideals of R, with [A] ≤ [B], [AC] ≤ [BC].

Proof: It suffices to show that BC ⊂ AC. By hypothesis we have J ⊂ I: that is,
(R : A) ⊂ (R : B). Then

(R : AC) = ((R : A) : C) ⊂ ((R : B) : C) = (R : BC),

so BC ⊂ AC.

In fact D(R) is a lattice ordered monoid: that means that it is a monoid,
endowed with a compatible partial order, which is a lattice: any two fractional
ideals have a unique greatest lower bound:

max([I], [J ]) = [I ∩ J ],

min([I], [J ]) = [I + J ].

Theorem 29. For a domain R, the monoid of divisors D(R) is a group iff R is
completely normal.

Proof: [LM, Thm. 8.7].

Corollary 30. If R is a Krull domain, D(R) is a lattice ordered group.

Proof: We know that a Krull domain is an intersection of DVR’s and that every
DVR is normal and Noetherian, hence completely normal. It is immediate to see
that the intersection of completely normal domains inside a common fraction field
is a completely normal domain, so Krull domains are completely normal.

Theorem 31. Let R be an integral domain which is not a field. TFAE:
(i) R is a Krull domain.
(ii) R is completely normal, and every nonempty set of divisorial integral ideals has
a maximal element.

Proof: [LM, Thm. 8.12].

This is an elegant generalization of the fact that a Noetherian domain is Krull
iff it is normal.

As one might expect, in a Krull domain the two divisor groups D(R) and Div(R)
are canonically isomorphic.

Namely, to each divisorial fractional ideal I and height one prime p, the local-
ization IRp is necessarily of the form (π)vp where (π) = pRp and vp is a unique
integer. In fact a nonzero prime ideal of R is divisorial iff it has height one. See
[LM, §V III.2] for proofs.

Thus one can equally well define the divisor class group Cl(R) of a Krull domain
as D(R)/Prin(R).
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Theorem 32. For an integral domain R, TFAE:
(i) R is a Krull domain with Cl(R) = 0.
(ii) R is a UFD.
(iii) R is a Krull domain and each divisorial ideal is principal.
(iv) R satisfies the ascending chain condition on principal ideals (ACCP) and each
irreducible element is prime.
(v) R satisfies (ACCP) and the intersection of two principal ideals is principal.

Proof: [LM, §V III.4].

Theorem 33. A ring is Dedekind iff it is a one-dimensional Krull domain.5

Proof: [ZSII, Thm. VI.27].

Theorem 34. (Approximation theorem for Krull domains) Let R be a Krull do-
main with fraction field K. Let p1, . . . , pk be a finite set of height one primes. Let
n1, . . . , nk ∈ Z. Then there exists an element f ∈ K such that:
(i) vpi(f) = ni, 1 ≤ i ≤ k.
(ii) vq(f) ≥ 0 for all q ̸= pi.

Theorem 35. Let R be a Noetherian domain. Then its normalization is a Krull
domain.

Remark: If R has dimension at most one, then the Krull-Akizuki theorem gives
a stronger result: the normalization is (of course normal and) Noetherian, i.e.,
a Dedekind domain. However, starting in dimension two the normalization of a
Noetherian ring need not be Noetherian! This gives another hint that the class of
Krull domains is for some purposes more natural than that of normal Noetherian
domains.
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