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GALOIS GROUPS VIA ATKIN-LEHNER TWISTS
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(Communicated by Ken Ono)

Abstract. Using Serre’s proposed complement to Shih’s Theorem, we obtain
PSL2(Fp) as a Galois group over Q for at least 614 new primes p. Assum-
ing that rational elliptic curves with odd analytic rank have positive rank, we
obtain Galois realizations for 3

8
of the primes that were not covered by previ-

ous results; it would also suffice to assume a certain (plausible, and perhaps
tractable) conjecture concerning class numbers of quadratic fields. The key
issue is to understand rational points on Atkin-Lehner twists of X0(N). In an
appendix, we explore the existence of local points on these curves.

1. Introduction

The notorious Inverse Galois Problem asks for which finite groups G there exists
a Galois extension L/Q with Gal(L/Q) ∼= G (for short, “G occurs over Q”). The
optimistic guess that every finite group occurs over Q is natural for at least two
reasons. First, by a famous theorem of Hilbert, it is enough to realize G as the
Galois group of a regular extension L/Q(t). Now for any field K, one says that a
finite group G occurs regularly over K if it is the Galois group of a regular extension
L/K(t), and there are many fields – e.g., C, R, Qp, . . ., – over which every finite
group is known to occur regularly.

There is also the lure of inductive reasoning: it is known that many finite groups
– e.g., solvable, symmetric and alternating groups – occur as Galois groups over Q

(and, of course, no finite groups have been shown not to occur!). Still, the progress
towards realizing all groups has been anything but steady: some of the “simplest”
simple groups are still not known to occur. Consider, for instance, the family of
groups PSL2(Fp) as p ranges over prime numbers.

Over thirty years ago, Shih showed that PSL2(Fp) occurs regularly over Q if
for some N ∈ {2, 3, 7}, the Kronecker symbol (N

p ) is equal to −1 [9]. Later, Malle
showed that ( 5

p ) = −1 is also sufficient for PSL2(Fp) to occur regularly over Q [4].
Note that these two results leave a density 1

16 set of primes unaccounted for. To
the best of my knowledge, no further occurrences of PSL2(Fp) over Q, regular or
otherwise, have been established.

In 1988, Serre proposed a method of extending Shih’s Theorem to realize new
groups PSL2(Fp) over Q. This method is discussed in his book Topics in Galois
Theory [11]. Referring to a calculation of Elkies, Serre remarks that the method
works to realize PSL2(F47) over Q; notice that p = 47 is covered by Malle’s result
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but not by Shih’s. Strangely, no additional examples of the method are given or
asked for.

In this paper, we analyze Serre’s method and show that it works to give real-
izations of PSL2(Fp) over Q for many primes p not obtainable by any previous
result.

2. Analysis of Serre’s method

Serre’s approach [11, §5.4] begins with the following formulation of Shih’s The-
orem.

Theorem 1 ([9, Theorem 8]). Let p∗ = (−1)
p−1
2 p, and let N ∈ Z+ be such that

(N
p ) = −1. Let C(N, p) be the curve obtained by twisting the modular curve X0(N)

using the Atkin-Lehner involution wN ∈ Aut(X0(N)) and the quadratic extension
Q(

√
p∗)/Q. Then there is a regular Galois covering Y → C(N, p), defined over Q,

with Galois group PSL2(Fp).

In the case that C(N, p) ∼= P1, this means precisely that PSL2(Fp) occurs reg-
ularly over Q. This occurs for all p when N ∈ {2, 3, 7}, and we recover our
earlier statement of Shih’s Theorem. More generally, when C(N, p)(Q) �= ∅, there
remains the possibility of finding an irreducible specialization. Indeed, we have the
following.

Theorem 2 (Serre). With hypotheses as above, if C(N, p)(Q) is infinite, then
there are infinitely many linearly disjoint Galois extensions L/Q with Galois group
G ∼= PSL2(Fp).

In other words, whereas Shih’s Theorem says that it suffices for C(N, p) ∼= P1,
Theorem 2 says that it also suffices for C(N, p) to be an elliptic curve of positive
rank.

X0(N) has genus one for N ∈ {11, 14, 15, 17, 19, 20, 21, 24, 27, 32, 36, 49},
so in order to realize PSL2(Fp) for primes p not covered by the results of Shih and
Malle, the values of N to consider are 11, 17 and 19.

Theorem 3. Let N = 11 or 19. For all primes p, C(N, p)(Q) �= ∅, so C(N, p) can
be given the structure of a rational elliptic curve. More precisely, C(N, p) is the
quadratic twist of X0(N) by p∗. It follows that:

• For primes p ≡ 1 (mod 4), (N
p ) = −1 ⇐⇒ C(N, p) has odd analytic rank.

• For primes p ≡ −1 (mod 4), (N
p ) = −1 ⇐⇒ C(N, p) has even analytic rank.

Proof. Let σ denote the nontrivial element of Gal(Q(
√

p∗)/Q). Then C(N, p)(Q)
consists of those points P of C(N, p)(Q(

√
p∗)) for which wN (σ(P )) = P . In particu-

lar, any P ∈ X0(N)(Q) which is a fixed point of wN remains Q-rational on C(N, p).
For any squarefree N , let S1 (resp. S2) be the set of C-isomorphism classes of el-
liptic curves with CM by the maximal order of Q(

√
−N) (resp. by Z[

√
−N ]); these

sets are distinct if and only if −N ≡ 1 (mod 4). It is not hard to see that S1

and S2 each gives rise to a set of wN -fixed points – the Γ0(N) structure is given
by E[

√
−N ] – and that if N > 3, S1 ∪ S2 gives all the wN -fixed points (e.g., [6,

Prop. 3]). The set S1 (resp. S2) forms a complete Gal(Q/Q) orbit. So there are
Q-rational wN -fixed points exactly when Q(

√
−N) has class number 1, which is the

case for N = 11 and N = 19 (but not for N = 17).
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Thus, for N = 11 or 19, let O be the unique fixed point of wN that parame-
terizes an elliptic curve with Z[1+

√
−N

2 ]-CM, so that (X0(N), O) and (C(N, p), O)
are rational elliptic curves. Since the j-invariant of X0(N) is neither 0 nor 1728,
the group of automorphisms of (X0(N), O) is ±1, and it follows that under our
identifications we simply have wN = −1. In other words, the twist of X0(N) via
wN and Q(

√
p∗)/Q is just the quadratic twist by p∗ in the usual sense. Finally, the

sign of the functional equation for both X0(11) and X0(19) is +1, so the sign of
the functional equation for C(N, p) is χp∗(−N) = (−N

p ). The result follows. �

We get as an immediate consequence our main result:

Corollary 4. Assume that rational elliptic curves with odd analytic rank have
positive Mordell-Weil rank. Then for every p with p ≡ 1 (mod 4) and which is a
quadratic nonresidue either modulo 11 or modulo 19, PSL2(Fp) occurs infinitely
often as a Galois group over Q.

However, when N = 17 Serre’s method fails for local reasons:

Proposition 5. For every prime p such that
(

17
p

)
= −1, C(N, p)(Q17) = ∅.

Remark. The proof that follows is purely computational. More recently we have
found other approaches (see Corollary 10 and Theorem 11 in the Appendix).

Proof. For any squarefree N , the involution wN has at least one fixed point, so
that the quotient map X0(N) → X+

0 (N) := X0(N)/wN is always ramified. In
particular, when X0(N) has genus one, X+

0 (N) has genus zero, and in fact – since
X0(N) always has Q-rational cusps – X+

0 (N) ∼= P1. In particular, w17 gives a
hyperelliptic involution on X0(17), and Q(X0(17)) = Q(x, y), where y2 = P (x) for
some quartic polynomial P ∈ Q[x] and w : (x, y) �→ (x,−y). Explicit polynomials
have been computed by Elkies (unpublished) and González; by [3, p. 794], we may
take P (x) = x4 + 2x3 − 39x2 − 176x− 212. Thus C(17, p) is given by the equation

p∗y2 = x4 + 2x3 − 39x2 − 176x − 212.

The condition ( 17
p ) = −1 ensures that any two of the numbers p∗ differ (multiplica-

tively) by an element of Q×2
p , hence all such curves C(17, p) are Q17-isomorphic to

a single curve, say C(17, 5), and we are reduced to deciding whether this particular
hyperelliptic quartic curve has Q17-rational points.

As a general principle, one knows that all Diophantine problems over local fields
are decidable; in this case an analysis involving Hensel’s Lemma shows that (af-
ter ruling out rational points at infinity and projectivizing) it suffices to study a
corresponding congruence modulo 175. Thus in practice we will want computer
assistance. Luckily for us, the issue of local points on hyperelliptic quartics arises
in 2-descent, so that a relatively efficient algorithm for this – first described in
the early work of Birch and Swinnerton-Dyer – has been implemented in several
elliptic curve software packages. For instance, a query to John Cremona’s program
ratpoints results in the instantaneous response that C(17, 5) fails to have points
rational over Q17 (and indeed also over Q5). This completes the proof. �

3. Examples

Fix N ∈ {11, 19}. If p ≡ 1 (mod 4) is a prime satisfying (N
p ) = −1, then we

have seen that the analytic rank of C(N, p) is odd, so that it is, to say the least,
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widely believed that C(N, p) has infinitely many Q-rational points. In any given
case one can, in principle, verify this just by finding a rational point of infinite
order. Better yet: whenever the analytic rank is equal to 1, we know – thanks to
the work of Gross-Zagier and Kolyvagin – that the rank is equal to one. And it
is easy to check that the analytic rank is 1: one need only check that the special
value L′(C(N, p), 1) is nonzero, which is amenable to approximate computation.
Moreover, when the sign in the functional equation is −1, the prevailing wisdom is
that the analytic rank should be equal to 1 “most of the time”.

Indeed, among all primes p ≤ 3 × 105 for which

p ≡ 1 (mod 4),
(

2
p

)
=

(
3
p

)
=

(
5
p

)
=

(
7
p

)
= 1,

it is never the case that the analytic rank of either C(11, p) or C(19, p) is odd and
greater than one. This yields a list of 612 prime numbers – the smallest is p = 1009
– such that PSL2(Fp) newly occurs as a Galois group over Q.

On the other hand, when p ≡ −1 (mod 4), the analytic rank of C(N, p) is
noticeably less averse to being even and greater than zero.1 Elkies’ computation
of rank C(11, 47) = 2 is an example of this. Among p < 1000, C(11, p) also has
(apparent) analytic rank 2 for 103, 599, and 683. The phenomenon is robust enough
to persist upon enforcing the congruence conditions ( 2

p ) = ( 3
p ) = ( 5

p ) = ( 7
p ) = 1; for

(1) p = 4079, 5591, 6719, 10391, 19319, 24359, 26759,

either C(11, p) or C(19, p) has (apparent) analytic rank 2.

Example 1.

[51362438166007626829703 :−4948233782238353787199293 :5697234033382001683]

is a nontorsion point on the curve

C(11, 4079) : Y 2Z + Y Z2 = X3 − X2Z − 171928490XZ2 + 1571689994520Z3,

so PSL2(F4079) occurs as a Galois group over Q.

Example 2. [−99184162 : 21162527913 : 10648] is a nontorsion point on the curve

C(19, 5591) : Y 2Z + Y Z2 = X3 + X2Z − 291753289XZ2 + 2040511796399Z3,

so PSL2(F5591) occurs as a Galois group over Q.

On the basis of these computations, it seems reasonable to conjecture that
C(N, p) has positive rank for infinitely many primes p ≡ −1 (mod 4).

4. Some remarks

There is a large literature on the variation of ranks of elliptic curves in a family of
quadratic twists, but comparatively little has been said about the case of restricting
to twists by prime numbers. Worth mentioning in this regard is the work of Ono
and Skinner [7], which shows that for certain rational elliptic curves a positive
proportion of prime twists have rank zero. There is as yet no analogous result for
positive rank. Note however that Vatsal has shown that a positive proportion of all
quadratic twists of X0(19) has rank 1 [12]. His argument could be readily adapted
to the case of twists by primes in a given congruence class – and hence to give,

1At least apparently: approximate calculation can strongly suggest, but not prove, that an
elliptic curve has analytic rank ≥ 2.
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unconditionally, a new positive density set of primes p for which PSL2(Fp) occurs
over Q – provided we knew the following.

Conjecture 6. Fix coprime positive integers m and M , and let F (X) be the number
of primes satisfying p ≤ X, p ≡ m (mod M), and such that the class number of
Q(

√
−3p) is indivisible by 3. Then F (X) 
 X/ log X.

This conjecture may be within reach; by taking M = 4 and replacing Q(
√
−3p)

with Q(
√

p), we get a theorem of Belabas and Fouvry [1].
Professor Shih has made me aware of the relevance of his later paper [10] to the

present work. In particular, this note can be viewed as responding to [10, Remark
4]. What does not figure in [10] is the dichotomy between N = 11, 19 and N = 17
arising from the fact that the curves C(N, p) have Q-rational points in the former
case but not in the latter case. Deciding which Atkin-Lehner twists of X0(N)
have points rational over Q (or even over all of its completions) is an interesting
Diophantine problem which we address in the Appendix of this paper.

The calculations of Section 3 have been extended, thanks to the help of Nick
Rogers: in particular, for all the primes p in (1), rankC(11, p) + rankC(19, p) > 0.
Conversely, after a wider search, we have still not been able to find any primes for
which either C(11, p) or C(19, p) has odd analytic rank ≥ 3. It has been suggested
to me by several people that it is “implausible” for, e.g., the ranks to be bounded
in a family of quadratic twists by prime numbers. In response to this, I would like
to say that I do not necessarily agree: although I am too far from being sufficiently
expert in this matter to have an opinion of my own, I was not able to find in the
literature any conjecture, heuristic or model (let alone any theorem) which would
rule out, e.g., the statement that rank C(19, p) = 1 for all primes p ≡ 1 (mod 4).
In any case, the phenomenon seems to be worthy of further investigation.

Appendix: Local points on C(N, p)

We suppose that N is squarefree and p is a prime number such that (N
p ) = −1.

The cusps of X0(N) are Q-rational but freely permuted by wN , so that if
Q(

√
−N) has class number greater than one, there are no “obvious” Q-rational

points on C(N, p). Indeed, Shih found that in certain cases C(N, p) fails to have
points even over certain completions of Q.

In this appendix we will begin a systematic study of the “deficient places” of
C(N, p), i.e., the primes � ≤ ∞ such that C(N, p)(Q�) = ∅. This is the special case
m = p∗ of a problem of Ellenberg [2, Problem A], which is concerned with twists
of X0(N) by wN and an arbitrary quadratic field Q(

√
m)/Q.

Proposition 7. C(N, p)(R) �= ∅.

Proof. Let O be the ring of integers of Q(
√
−N). Then E := C/O is an elliptic

curve over the complex numbers such that P = (E, E[
√
−N ]) gives a wN -fixed

point. But complex conjugation on C induces an antiholomorphic involution on
E, and it follows easily that j(E) ∈ R and that P ∈ X0(N)(R). Thus, every
Atkin-Lehner twist of X0(N) has R-rational points.

Recall that a (nonsingular, projective) curve C/Q�
is said to have good reduction

if there exists a smooth arithmetic surface C/Z�
with generic fiber isomorphic to

C. If C has positive genus, then it admits a unique minimal model C/Z�
, whose

smoothness is equivalent to the good reduction of C. On the other hand, there
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are only two curves of genus zero over Q�: P1 (which has good reduction), and
the twisted form corresponding to the unique division quaternion algebra over Ql

(which does not have good reduction). �
Proposition 8. Fix � prime to Np. Then C(N, p) has good reduction over Q�. In
particular, if X0(N) has genus at most one, C(N, p)(Q�) �= ∅.
Proof. When X0(N) has genus zero – i.e., when N ∈ {2, 3, 5, 6, 7, 10, 13} –
work of Shih gives a more precise result. Indeed, the genus zero curve C(N, p)/Q

is classified up to isomorphism by a quaternion algebra. By [9, Prop. 10], this
quaternion algebra is given by the Hilbert symbol 〈cN , p∗〉, where

c2 = c3 = 1, c5 = 125, c6 = 18, c7 = 49, c10 = 5, c13 = 13.

The genus zero case follows (after a small calculation, when � = 2).
Let us now assume that X0(N) has positive genus. By a well-known theorem

of Igusa, X0(N) has good reduction over Z�, so C(N, p)/Q(
√

p∗) has good reduction
at the places over �. Moreover � is unramified in Q(

√
p∗), so that C(N, p)/Q�

has
good reduction after an unramified base change. Since formation of the minimal
model commutes with unramified base change and smoothness can be checked on
geometric fibers, this means that the minimal model C(N, p)/Z�

is itself smooth.
Finally, if X0(N) has genus one, then, since every smooth curve of genus at

most one over the finite field F� has an �-rational point (e.g., by the Weil bounds),
C(N, p)(Q�) �= ∅ by Hensel’s Lemma. �

The next result is a generalization of [9, Prop. 10].

Theorem 9 (González). C(N, p)/Q admits a finite morphism to the genus zero
curve with corresponding quaternion algebra 〈cN , p∗〉, where cN = N

12
gcd(12,N−1) .

Proof. See [8, Thm. 6.2]. The argument is analytic in nature: one constructs a
Γ0(N)-automorphic function G (which is a Hauptmodul when X0(N) has genus
zero) with Q-rational Fourier coefficients, and such that wN (G) = cN/G. To see
that this gives the theorem as we have stated it, apply the Exercise in [11, § 5.3]. �

Thus, if cN is not a norm from Q(
√

p∗), we deduce that C(N, p) has at least two
deficient places. In particular we get the following sharpening of Proposition 5.

Corollary 10. The deficient places of C(17, p) are precisely � = p and � = 17.

Proof. By Theorem 9, C(17, p) maps to the genus zero curve V with corresponding
quaternion algebra 〈173, p∗〉 ∼= 〈17, p∗〉. Since V (Q�) = ∅ for � = p and 17,
a fortiori the same holds for C(17, p). That there are no other deficient places
follows from Propositions 7 and 8. �
Theorem 11. Suppose N is prime. Then C(N, p)(QN) = ∅ ⇐⇒ N ≡ 1 (mod 4).

Proof. Because Q(
√
−2) and Q(

√
−3) have class number one, we may assume that

N ≥ 5. We shall apply the work of Mazur and Rapoport on the structure of the
minimal regular model for X0(N)/QN

[5] (especially relevant is the picture on [5, p.
177]). Recall that the special fiber M0(N)/Fp

of the coarse moduli space consists
of two rational curves intersecting tranversely along the supersingular points, with
each supersingular point on X(1)/FN

getting glued to its Galois conjugate under
the quadratic Frobenius map σ : FN2 → FN2 . The Atkin-Lehner involution wN

has the effect of interchanging the two branches, and the assumption that p∗ is a
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quadratic nonresidue modulo N – note that (N
p ) = (p∗

N ) – means that C(N, p) is the
generic fiber of an arithmetic surface M(N, p)/ZN

which is the twist of M0(N)/ZN

by σ. In particular, the only FN -rational points on the special fiber of M(N, p) are
the supersingular points, which are singular.

However, as alluded to above, M0(N)/ZN
is not necessarily a regular model of

X0(N)/QN
. More precisely, if N ≡ −1 (mod 3), then j = 0 must be blown up

twice leading to a chain of two rational curves; and similarly if N ≡ −1 (mod 4),
j = 1728 must be blown up once leading to a single rational curve. Now a similar
procedure can be performed on M(N, p)/ZN

to get a(n in fact minimal) regular
model of C(N, p)/QN

, which we shall denote by C(N, p)/ZN
; we need only keep

track of the effect of the twisted Gal(FN2/FN ) action on these rational curves. In
the j = 0 case, the Galois action interchanges the two rational curves, hence leads
to no new FN -rational points. However, in the j = 1728 case, the unique rational
curve is evidently stabilized by the Galois action, yielding a smooth FN -rational
curve of genus zero. But, as above, it is well known that every smooth genus zero
curve over a finite field is isomorphic to the projective line, giving N + 1 rational
points on the special fiber of FN . In summary, we have that a (minimal) regular
model for C(N, p) over ZN has FN -rational points if and only if N ≡ −1 (mod 4).
We are done by Hensel’s Lemma. �

Remark. The proof still goes through when N = 2 or N = 3. In each case there is a
unique supersingular point on the special fiber. The desingularization performed by
successive blowups of this point leads to a chain of 11 rational curves when N = 2
and 5 rational curves when N = 3. Since these numbers are odd, the Galois action
stabilizes the middle element of the chain.

Moreover, we have assumed N to be prime only for simplicity of exposition: for
any squarefree N and � dividing N , the argument gives a necessary and sufficient
condition for C(N, p)(Q�) = ∅; namely that (p∗

� ) = −1 and that there does not
exist a supersingular point on X0(N/�)/F�

whose automorphism group is divisible
by 4. We leave the task of converting this into an explicit congruence condition to
the interested reader.

Theorem 11 gives a third proof of Proposition 5. The relationship between Theo-
rems 9 and 11 (whose proofs seem very different) is interesting: neither encompasses
the other, although there is a substantial overlap: the implication ⇐= of Theorem
11 also follows from Theorem 9.

At present, I do not know whether there is a similarly simple necessary and
sufficient condition for C(N, p)(Qp) = ∅; whether there is ever a deficient prime �
not dividing Np; or whether C(N, p) can have no deficient places but still fail to
have Q-rational points.2
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