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1. Introduction

In classical algebraic number theory one embeds a number field into the cartesian
product of its completions at its archimedean absolute values. This embedding is
very useful in the proofs of several fundamental theorems. However, it was noticed
by Chevalley and Weil that the situation was improved somewhat if the number
field is embedded in the cartesian product of its completions at all of its absolute
values. With a few additional restrictions, these objects are known as the adeles,
and the units of this ring are called the ideles.

When considering the adeles and ideles, it is their topology as much as their
algebraic structure that is of interest. Many important results in number theory
translate into simple statements about the topologies of the adeles and ideles. For
example, the finiteness of the ideal class group and the Dirichlet unit theorem are
equivalent to a certain quotient of the ideles being compact and discrete.

We will begin by reviewing the construction of local fields, first algebraically and
then topologically. We will then prove the basic global results combining all of the
local data, namely the product formula and the approximation theorem. Next we
will define the adeles and the ideles and prove their basic topological properties.
We will then define the idele class group, and relate it to the usual ideal class
group. We will conclude with proofs of the finiteness of the ideal class group and
the Dirichlet unit theorem, using idelic methods.

I have tried in this paper to emphasize the topological details in these construc-
tions, and hopefully have not ignored any important points. We will assume some
familiarity with number fields, at the level of [3, Chapter 1], [4, Chapters 1-3] or [8,
Chapter 1].

We fix the following notation throughout this paper: we let k be a number field
(that is, a finite extension of Q) of degree n over Q. We let ok be the ring of integers
of k. If p is a prime ideal of ok with p ∩ Z = (p), we write ep for the ramification
degree and fp for the inertial degree of p over p. That is, ep is the largest power of
p dividing pok, and fp is the degree of the residue field extension ok/p over Z/(p).
If the prime p is clear from context, then we will just write e = ep and f = fp.

Part 1. Classical Algebraic Number Theory

2. Local Fields : Algebraic Description

Recall that the local ring op ⊆ k is a discrete valuation ring. Let π be a uni-
formizing element of op; that is, π generates the unique non-zero prime ideal pop

of op. Then any α ∈ k∗ can be written as α = uπm for a unique integer m and
some unit u of o∗p. We say that this m is the p-adic valuation vp(α) of α. Setting
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vp(0) =∞, we have defined a discrete valuation

v = vp : k → Z ∪ {∞},

which is easily checked to satisfy the usual properties of a discrete valuation:

(1) vp(αβ) = vp(α) + vp(β) for all α, β ∈ k;
(2) vp(α+ β) ≥ min{vp(α), vp(β)} for all α, β ∈ k;
(3) vp(α) =∞ if and only if α = 0.

We use the standard conventions for arithmetic with ∞, including ∞ · 0 = ∞. op

is precisely the set of elements of k with nonnegative valuation; the units o∗p are
precisely the elements of k∗ with valuation 0. We also have

op/pop = (ok/p)pok/p
= (ok/p)(0) = ok/p

since ok/p is already a field.
Note that p = uπe for some unit u ∈ o∗p, so that

vp(p) = e,

where e is the ramification degree of p.
We will now construct the completion of op. Let Am = op/(πm). Then we have

natural maps

ϕm : Am → Am−1

given by simply considering a residue class modulo πm modulo πm−1. The Am
form an inverse system, and we define the p-adic integers ov to be the inverse limit
of the Am. That is, ov is the subset of elements (a1, a2, . . .) of the infinite product

∞∏
m=1

Am

such that

ϕm(am) = am−1

for all m. It is easy to see that if (am) and (bm) lie in ov, then so do (am + bm) and
(ambm), so ov inherits a ring structure from

∏∞
m=1Am.

Note that we have natural inclusions

ok ↪→ op ↪→ ov

given by sending α ∈ op to (ᾱ, ᾱ, . . .) ∈ ov. These are clearly ring homomorphisms,
so ok and op, are naturally subrings of ov.

We would like to have a better way to think of elements of ov. To do this, first
fix representatives 0 = c0, . . . , cpf−1 ∈ op of the residue classes in the finite field
op/(π) ∼= ok/p. (In the case where op/(π) = Fp we have the standard representatives
0, 1, . . . , p − 1, but in general there are no such obvious choices.) Now, take any
element a = (am) of ov. There is then a unique ci0 such that

a1 ≡ ci0 (mod π).

Next consider a − ci0 = (am − ci0) ∈ ov, The first coordinate of a − ci0 will be 0,
and thus divisible by π. It follows from the compatibility of the (am − ci0) under
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the ϕm that each am − ci0 is then divisible by π. Thus, we can write

a− ci0 = (am − ci0)

= (πa′m)

= π(a′m)

= πa′

for some a′ = (a′m) in ov. Repeating this procedure, we can write

a′ − ci1 = πa′′

for some unique ci1 and some a′′ ∈ ov.
Continuing this and combining all of the terms, we have

a = ci0 + (a− ci0)

= ci0 + πa′

= ci0 + π (ci1 + (a′ − ci1))

= ci0 + ci1π + π
(
π(ci2 + (a′′ − ci2))

)
= ci0 + ci1π + ci2π

2 + · · ·
for some uniquely determined ci0 , ci1 , ci2 , . . ., each chosen from our fixed set of
representatives. Further, it is clear that any such expression

∞∑
m=0

cimπ
m

corresponds to some a = (am) ∈ ov by setting

am ≡ ci0 + ci1π + · · ·+ cim−1π
m−1 (mod πm).

Thus, we can think of the elements of ov as some sort of infinite power series in the
uniformizing element π, with coefficients chosen from representatives of the finite
field op/(π) = ok/p. We will think of the cim as the digits of x ∈ ov.

Writing elements of ov in this form, it is now clear how to extend our discrete
valuation vp to ov: given any element

a = ci0 + ci1π + ci2π
2 + · · ·

of ov, we define vp(a) = m, where πm is the first power of π with a non-zero
coefficient. It is easy to see that vp agrees with our original discrete valuation on
the image of op in ov, and that it still satisfies the axioms of a discrete valuation.
Therefore, ov is a discrete valuation ring. The maximal ideal pv of ov is generated
by any element of valuation 1; for example, our original uniformizer π. Thus,
pv = pov. Further, it is clear from our expansion of elements of ov in terms of π
that

ov/pv ∼= op/pop
∼= ok/p,

so that all of the residue fields coincide.
The units o∗v of ov are precisely those elements of ov of valuation 0, and the

non-units p are precisely those elements of ov divisible by π. Since any element of
ov can be written as uπm for some u ∈ o∗v and some nonnegative integer n, the field
of fractions of ov is obtained simply by inverting π. We write kv for this field; then
we have

kv = ov[π−1].
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Therefore, elements x of kv have the form

x =
∞∑

m=m0

cimπ
m

for some integer m0. If we require that cim0
6= 0, then m0 is just vp(x).

Since k is the field of fractions of op, and op embeds in ov, k must embed in kv.

3. Local Fields : Topological Description

We remain in the situation of the preceding section; that is, we have a number
field k and a prime p of the ring of integers ok lying over a prime p of Z, and we let
v = vp be the corresponding discrete valuation on k. In this section we will give a
topological description of the completion kv, in terms of the valuation vp.

First, observe that the valuation v induces a norm ‖·‖v on k by

‖α‖v= p−fv(α).

(We could have set ‖α‖v= cv(α) for any real constant c between 0 and 1; it does not
matter for the purposes of this section. However, the choice c = p−f is necessary for
the product formula of Section 4. For the moment, note that the residue class ring
op/(α) has size 1/ ‖α‖v, so this choice of c has at least something recommending
it.) It follows immediately from the axioms of a discrete valuation that ‖·‖v satisfies
the axioms of a norm :

(1) ‖αβ ‖v=‖α‖v‖β ‖v for all α, β ∈ k;
(2) ‖α+ β ‖v≤‖α‖v + ‖β ‖v for all α, β ∈ k.

In fact, ‖·‖v satisfies the stronger axiom

(3) ‖α+ β ‖v≤ min{‖α‖v, ‖β ‖v} for all α, β ∈ k.

For this reason we call ‖·‖v a non-archimedean norm.
We can now in the usual way use ‖·‖v to give us a metric on k, defined by

dv(α, β) =‖α− β ‖v .

This then gives us a topology on k. One can now define the completion of k with
respect to v to be the usual completion of a metric space, in terms of equivalence
classes of Cauchy sequences. This in fact gives rise to exactly the field kv we
constructed in Section 2. We will not go through the construction here; for a
detailed exposition of it, see [2, Chapter 1, Section 4]. We will instead show that our
algebraically constructed field of Section 2 has the necessary topological properties.

Note that we can use the discrete valuation on our field kv of Section 2 to define
a metric on it, which will agree with the metric defined above on the subfield k.
We will show that under this topology kv is a complete, locally compact topological
ring, with compact subsets ov and o∗v.

Let us describe the basic open sets on kv; these are simply the open balls

B(x, r) = {y ∈ kv; ‖x− y‖v< r}.

First, note that since our metric takes on only a discrete set of values, for any r
there is some small ε so that

B(x, r) = B(x, r − ε),
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if ε is chosen small enough so that the metric does not take on any values between
r− ε and r. Thus every basic open set is also closed. (Of course, it does not follow
that every open set is also closed.)

Next, let us consider in more detail the open balls around 0 ∈ kv. It is enough
to consider the balls

B(0, p−fs)
for integral s, since these are the only values the metric takes. An element y of kv
satisfies ‖ y − 0 ‖v< p−fs if and only if vp(y) > s; that is, if and only if y has the
form

∞∑
m=s+1

cimπ
m.

Thus, the ball B(0, p−fs) consists precisely of those y which have coefficients 0
up to (and including) the coefficient of πs. In the same way, for any x ∈ kv, the
ball B(x, p−fs) consists of those y ∈ kv agreeing with x up to (and including) the
coefficient of πs.

In particular, we see that
ov = B(0, pf )

and
pv = B(0, 1)

are open and closed subsets of kv. Then

o∗v = ov − pv

is open and closed as well.
We can actually describe the induced topology on ov in a different way. Recall

that we defined ov to be a subset of an infinite product
∞∏
m=1

Am.

Each set Am is finite, and we give it the discrete topology. We then give
∏∞
m=1Am

the product topology, and ov the topology it inherits as a subspace.
Let us now try to describe the basic open sets in this topology. They have the

form
∞∏
m=1

Bm ∩ ov

where Bm is any subset of Am, and Bm = Am for all but finitely many m. Equiv-
alently, they are the sets of the form

(1)

(
m0∏
m=1

Bm ×
∏

m>m0

Am

)
∩ ov

for positive integers m0, where the Bm are any subsets of Am. Now, consider any
set U of the form (1), and pick any point x in it. It is then clear that

x ∈ B(x, p−f(m0−1)) ⊆ U,
so that U is open in the metric topology on ov.

Conversely, consider any open ball B(x, p−fs) in the metric topology. Such a set
is actually of the form (1), taking m0 = s+ 1 and the first s+ 1 Bm to be a single
point. We therefore have established:
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Proposition 3.1. The two topologies we have defined on ov are the same.
We are now ready to give the fundamental topological description of kv.

Theorem 3.2. kv is a locally compact, complete topological field, with compact
open and closed subsets ov and o∗v.

Proof. To say that kv is a topological field is to say that addition, negation, multi-
plication and inversion are all continuous maps. The proofs of these facts are nearly
identical to the proofs of the corresponding facts for the real numbers R; in fact,
the non-archimedean nature of our norm makes the proofs even easier.

Next we will show that ov is compact. This is easy, using our alternate description
of the topology on ov: each finite set Am is compact, so by the Tychonoff theorem,∏∞
m=1Am is compact. Thus it is enough to show that ov is closed as a subspace

of
∏∞
m=1Am. So take (am) /∈ ov. Then there is an m0 with ϕm0(am0) 6= am0−1.

Consider the set
{a1} × {a2} × · · · × {am0} ×

∏
m>m0

Am.

This is open in the product topology, and it is disjoint from ov since every point in
it has the same incompatible beginning. Thus, the complement of ov is open, so ov
is closed, and thus compact.

Since o∗v is a closed subset of the compact set ov, it is also compact. In fact,
every basic open subset of kv is compact, since we have a homeomorphism

ψ : B(x, p−fs)→ B(0, pf ) = ov

given by ψ(y) = π−s−1(y − x). (ψ is continuous since kv is a topological field, and
it is easy to see that it is bijective.) This shows that kv is locally compact. Finally,
since kv is locally compact, it is complete. �

Proposition 3.3. o∗v, ov and kv are the topological closures of o∗k, ok and k respec-
tively.

Proof. Since we clearly have o∗k ⊆ o∗v, ok ⊆ ov and k ⊆ kv and the larger sets
are all closed, it is enough to show that any element of the larger set can be
arbitrarily closely approximated by an element of the smaller set. But this is clear;
for example, if we pick our representatives ci to all lie in ok (which we can do since
op/pop = ok/p), as well as π, then given x =

∑∞
m=0 cimπ

m ∈ ov, the sequence

(ci0 , ci0 + ci1π, ci0 + ci1π + ci2π
2, . . .)

of elements of ok converges to x. �

Note that since o∗k ⊆ o∗p ⊆ o∗v and ok ⊆ op ⊆ ov, we also have o∗p = o∗v and
op = ov.

4. Global Fields

We will now consider the description of k in terms of local data. Each prime
p gives rise to a valuation vp on k, and thus to a non-archimedean absolute value
‖·‖vp on k. We also have archimedean absolute values arising from the embeddings
of k in C. Precisely, if

σ : k ↪→ C

is an embedding, then we have an absolute value ‖·‖σ on k given by

‖α‖σ= |σ(α)|,
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where | · | is the usual absolute value on C.
Lemma 4.1. If σ1 and σ2 are two different embeddings of k into C and ‖α‖σ1=‖
α‖σ2 for all α ∈ k, then σ1 = σ2.

Proof. Pick α ∈ k such that k = Q(α). Set σi(α) = xi + yii. Then, since |σ1(α)| =
|σ2(α)|, we have

x2
1 + y2

1 = x2
2 + y2

2 .

Further,

|σ1(α+ 1)| = |σ2(α+ 1)|
|σ1(α) + 1| = |σ2(α) + 1|

|(x1 + 1) + y1i| = |(x2 + 1) + y2i|
x2

1 + 2x1 + 1 + y2
1 = x2

2 + 2x2 + 1 + y2
2 .

Combining these two equations, we have

2x1 + 1 = 2x2 + 1,

so that x1 = x2. Therefore y1 = ±y2, and since σ1 6= σ2 we must have y1 = −y2.
Since α generates k over Q, this implies that σ1 = σ2, as desired. �

Now, if σ is a real embedding of k (meaning that the image of σ lies in R),
then σ = σ, so we get exactly one absolute value from this embedding. If σ is
complex (meaning that the image of σ is strictly larger than R), then σ and σ are
distinct embeddings of k into C, giving rise to the same absolute value. Lemma 4.1
guarantees that this is the only situation in which this can happen. Thus, if k has
r1 real embeddings and r2 pairs of complex conjugate embeddings, then we have
r1 + 2r2 = n, but we get only r1 + r2 distinct absolute values.

We define the canonical set Mk of k to be the set of all of these absolute values
: one non-archimedean absolute value for each prime p (normalized as in Section
3), one archimedean absolute value for each real embedding and one archimedean
absolute value for each pair of complex conjugate embeddings. We denote by S∞ the
subset of Mk of archimedean valuations. These absolute values are all independent,
in the sense that they induce different topologies on k. We will prove this fact later,
while proving the approximation theorem.

To simplify notation, we will use v for both embeddings and valuations, so that
we can write ‖·‖v for any of the absolute values ofMk, not just the non-archimedean
ones. We will also say valuation even when we more properly mean absolute value;
in particular, we will often use v ∈Mk to mean ‖·‖v∈Mk.

Note that if v is a real embedding, then the (topological) completion kv of k with
respect to ‖ · ‖v is R, since Q ⊆ k ⊂ R, and the completion of Q is R. Similarly, if
v is a complex embedding, then the completion kv of k with respect to ‖ · ‖v is C.
If we let v1, . . . , vr1 be the real embeddings and vr1+1, vr1+1, . . . , vr1+r2 , vr1+r2 be
the complex embeddings of k, then, thinking of each C as R2, we have

r1+r2∏
i=1

kv =
r1∏
i=1

R×
r1+r2∏
i=r1+1

R
2 = R

n.

Since k embeds in each kv, k has a natural embedding in this Rn. It is this
embedding which is used classically.
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We will now prove the product formula, which is an important relation between
the absolute values in Mk. We will need a lemma.
Lemma 4.2. Let p1, . . . , pm be the primes of ok lying over p ∈ Z. Let v1, . . . , vm
be the corresponding valuations on k, and let v be the p-adic valuation on Q. Then
for any α ∈ k∗,

‖N(α)‖v=
m∏
i=1

‖α‖vi ,

where N is the norm from k to Q.

Proof. By unique factorization of fractional ideals we can write

(α) =
m∏
i=1

pnii × I
′

for some fractional ideal I ′ prime to p1, . . . , pm. Then ni = vi(α), so ‖α‖vi= p−fini ,
where fi is the inertial degree of pi over p. Therefore,

m∏
i=1

‖α‖vi= p−
∑m
i=1 fini .

Now, since the norm is multiplicative and N(pi) = pfi , we have

N(α) = p
∑m
i=1 fini ·N(I ′).

N(I ′) is prime to p, so this has p-adic absolute value

p−
∑m
i=1 fini ,

which proves the lemma. �

Note that if α ∈ k, then

N(α) =
∏

σ:k↪→C

|σ(α)| =
∏

v∈S∞,v real

‖α‖v ·
∏

v∈S∞,v complex

‖α‖2v .

If we define nv = 1 for v real (and also, for later use, for v non-archimedean) and
nv = 2 for v complex, then this takes the form

N(α) =
∏
v∈S∞

‖α‖nvv .

Theorem 4.3 (The Product Formula). For all α ∈ k∗,∏
v∈Mk

‖α‖nvv = 1.

(Note that this infinite product makes sense, since v(α) = 0 (and therefore ‖α‖v=
1) for all but finitely many v ∈Mk.)

Proof. We first prove this formula in the case k = Q. In this case it is enough to
check it for α = p a prime number, since both sides are multiplicative. But then
‖ α ‖vq= 1 for q 6= p, so the only two terms which contribute to the product are
‖ α ‖vp= 1/p and the standard absolute value |α| = p, which multiply to 1. This
proves the formula for k = Q.
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Now let k be any number field. Then∏
v∈Mk

‖α‖nvv =
∏

v∈Mk−S∞

‖α‖v ·
∏
v∈S∞

‖α‖nvv

=
∏
p

‖α‖vp ·N(α)

=
∏
p

∏
p|p

‖α‖vp ·N(α)

=
∏
p

‖N(α)‖vp ·N(α)

=
∏
v∈MQ

‖N(α)‖v

= 1

since we know the product formula for Q. �

We chose the normalization we did on the absolute values ‖ · ‖v in order to get
the product formula to work out.

Next we will need some way to find elements of k satisfying certain local condi-
tions. The standard result along these lines is the approximation theorem. We will
prove it through a sequence of lemmas.
Lemma 4.4. For any distinct v1, v2 ∈ Mk, there exists α ∈ k with ‖α‖v1> 1 and
‖α‖v2< 1.

Proof. If both v1 and v2 are non-archimedean, say v1 = vp1 and v2 = vp2 , then pick
α ∈ p2−p1 and β ∈ p1−p2. (These must exist since p1 and p2 are maximal ideals.)
We must have ‖α‖v1≥ 1, ‖α‖v2< 1, ‖β ‖v1< 1 and ‖β ‖v2≥ 1. If ‖α‖v1 6= 1, then
α will work; if ‖β ‖v2 6= 1, then β−1 will work. If ‖α‖v1=‖β ‖v2= 1, then αβ−1 will
work.

If v1 is archimedean and v2 is non-archimedean, say v2 = vp, then any non-zero
element of p∩Z will work. In the opposite case, the inverse of any non-zero element
of p ∩ Z works.

This leaves the case where both v1 and v2 are archimedean. By Lemma 4.1 we
know that there is α ∈ k with ‖α‖v1 6=‖α‖v2 . Suppose that ‖α‖v1>‖α‖v2 . Pick
some rational number r in between. Then α/r will satisfy the conditions of the
lemma. If we have the opposite inequality, then r/α will work. �

Corollary 4.5. Any two distinct v1, v2 ∈Mk induce different topologies on k.

Proof. Note that for any absolute value ‖·‖v, the ball B(0, 1) is precisely the set of
α ∈ k with limm→∞ αm = 0. Thus B(0, 1) depends only on the topology, and not
on the metric. But by Lemma 4.4, Bv1(0, 1) and Bv2(0, 1) are different, so v1 and
v2 must induce different topologies. �

Lemma 4.6. Let v1, v2 be distinct elements of Mk. Suppose α ∈ k satisfies ‖α‖v1>
1 and ‖α‖v2< 1. Then the sequence

zm =
αm

1 + αm

converges to 1 with respect to v1 and converges to 0 with respect to v2.



10 TOM WESTON

Proof. This is intuitively quite clear, since the denominator is dominated by αm

with respect to v1 and by 1 with respect to v2. We will leave the details to the
reader. �

Lemma 4.7. For any distinct v1, v2, . . . , vs ∈Mk, there exists α ∈ k with ‖α‖v1> 1
and ‖α‖vi< 1 for i = 2, . . . , s.

Proof. We prove this by induction on s. The case s = 2 is Lemma 4.4. Now,
suppose we have α ∈ k with ‖ α ‖v1> 1 and ‖ α ‖vi< 1 for i = 2, . . . , s − 1. If
‖ α ‖vs< 1, then we are done. If ‖ α ‖vs= 1, then pick y ∈ k with ‖ y ‖v1> 1 and
‖ y ‖vs< 1. Then for large enough m, αmy will satisfy the necessary conditions,
since ‖αm ‖vi can be made arbitrarily small for i = 2, . . . , s− 1.

This leaves the case where ‖α‖vs> 1. By Lemma 4.6 the sequence

zm =
αm

1 + αm

will converge to 1 with respect to v1 and vs, and will converge to 0 with respect
to v2, . . . , vs−1. Using Lemma 4.4 to pick y ∈ k with ‖y ‖v1> 1 and ‖y ‖vs< 1, we
then see that for sufficiently large m the element zmy will satisfy the conditions of
the lemma. �

Theorem 4.8 (The Approximation Theorem). For any distinct v1, v2, . . . , vs ∈
Mk, α1, . . . , αs ∈ k and ε > 0 there exists α ∈ k satisfying

‖α− αi ‖vi< ε

for all i.

Proof. By Lemma 4.7 we can find yi ∈ k with ‖yi ‖vi> 1 and ‖yi ‖vj< 1 for j 6= i.
Then using Lemma 4.6 we can find z1, . . . , zs ∈ k with zi arbitrarily close to 1
with respect to vi and arbitrarily close to 0 with respect to vj , j 6= i. The element
α = z1α1 + · · ·+ zsαs will then satisfy the conditions of the theorem, since

‖α− αi ‖vi≤‖z1 ‖vi‖α1 ‖vi + · · ·+ ‖zi − 1‖vi‖αi ‖vi + · · ·+ ‖zs ‖vi‖αs ‖vi
which we can make arbitrarily small. �

Part 2. Adeles and Ideles

5. Adeles

We continue to let k be a number field of degree n over Q. Let Mk be its
canonical set of absolute values. In analogy with our embedding of k into Rn in
the previous section, we would like to embed k into the product of its completions
kv at all v ∈Mk. However, we need to restrict this product somewhat, in order to
respect the important property that any α ∈ k is a p-adic integer for all but finitely
many primes p of ok.

We will do this as follows: First, consider the usual direct product∏
v∈Mk

kv.

We define the adeles A to be the subset of this direct product consisting of a =
(av)v∈Mk

with av a p-adic integer for all but finitely many of the non-archimedean
valuations vp. (We do not impose any restriction on the components of av at
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archimedean valuations.) However, we do not give A the subspace topology; we
take as our basis of open sets sets of the form∏

v∈Mk

Uv

where Uv ⊆ kv is open in kv for all v ∈ Mk, and Uv = ov for all but finitely
many v ∈Mk. (We will always assume that in any such condition the archimedean
absolute values are included in the finite excluded set.) We can write such a set as

(2)
∏
v∈S

Uv ×
∏
v/∈S

ov

where S is some finite subset of Mk, which we take to include S∞, and each Uv is
an open subset of kv.
A is said to be the restricted direct product of the kv with respect to the ov.

A inherits a ring structure from the direct product, so that operations are done
componentwise.

Note that we can actually take our basis of open sets to be sets of the form (2)
with each Uv a basic open set of kv. The simplest such sets are the sets

AS =
∏
v∈S

kv ×
∏
v/∈S

ov,

where S is some finite subset of Mk containing S∞. The product
∏
v/∈S ov is a

product of compact sets, and thus compact by the Tychonoff theorem. AS is
therefore a finite product of locally compact sets, and thus is locally compact.
Since any x ∈ A certainly lies in some AS (take S to be the finite set of valuations
v at which x does not lie in ov), it follows that the space A is locally compact. This
would not be the case if we had given A the subspace topology.

The sets AS are actually closed as well; given any a /∈ AS , we must either
have av0 /∈ Uv0 for some v0 ∈ S, or else av0 /∈ ov0 for v0 /∈ S. In the first case
take a neighborhood of a with v0-component disjoint from Uv0 ; in the second,
take a neighborhood of a with v0-component disjoint from ov0 . This gives us a
neighborhood of a disjoint from AS , so AS is closed.

Proposition 5.1. The adeles A are a topological ring.

Proof. We will show that addition is continuous; negation and multiplication are
similar. So, let f : A× A → A be defined by f(a, b) = a+ b. Let U be some basic
open set of the form ∏

v∈S
B(cv, rv)×

∏
v/∈S

ov

where S is some finite subset of Mk containing S∞. We must show that f−1(U) is
open in A×A.

Pick (a, b) ∈ f−1(U). Then

‖av + bv − cv ‖v< rv

for all v ∈ S. Now, define sets U1, U2 ∈ A by

U1 =
∏
v∈S

B
(
av,

rv
4

)
×
∏
v/∈S

ov
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and
U2 =

∏
v∈S

B
(
bv,

rv
4

)
×
∏
v/∈S

ov.

Then U1 and U2 are both open in A, so U1×U2 is open in A×A. The v-component
of f(U1×U2) is just ov for v /∈ S, and is contained in B(av+bv, rv/2), which in turn
is contained in B(cv, rv), for v ∈ S. Thus (a, b) ∈ U1 × U2 ⊆ f−1(U). Therefore
f−1(U) is open, and f is continuous. �

Note that we have a natural embedding of k into A, sending each α ∈ k to the
vector (α, α, . . .) ∈ A. This is well-defined, since any α ∈ k is a p-adic integer for
all but finitely many primes p. We give k the subspace topology.
Proposition 5.2. k is embedded as a discrete subring of the adeles A.

Proof. k is a topological subring of A since we have given it the subspace topology.
It remains to show that it is discrete. We will show that 0 has a neighborhood
disjoint from k − {0}, and the general case follows by translation.

Define a set U =
∏
v∈Mk

Uv by taking Uv = ov for all non-archimedean v ∈Mk,
and Uv = B(0, 1/2) for all v ∈ S∞. Then U is a basic open neighborhood of 0.
Suppose there is a non-zero α ∈ U ∩ k. Then ‖α‖v≤ 1 for all non-archimedean v,
and ‖α‖v< 1/2 for all archimedean v. Thus,∏

v∈Mk

‖α‖nvv <
1
2
.

But this contradicts the product formula, since this product is always 1 for non-
zero α. Thus, U ∩ k = 0, which shows that {0} is open in k, and thus that k is
discrete. �

We also have embeddings of kv into A for each v ∈Mk given by sending x ∈ kv
to (0, . . . , x, . . .) ∈ A, with the x in the v-component.
Proposition 5.3. This embeds kv as a closed subring of A, and the topology kv
inherits as a subspace of A is just the usual topology on kv.

Proof. It is clear that kv inherits its usual topology, since Uv ×
∏
v′∈Mk,v′ 6=v ov′ is

open in A, and for any basic open set U of A (and thus for any open set of A),
U ∩ kv will be an open set of kv.

It remains to show that kv is closed in A. So take a ∈ A − kv. Then there is
some v′ 6= v with av′ 6= 0. The open set

B

(
av,
‖av ‖v

2

)
×

∏
v′′∈Mk−S∞,v′′ 6=v′

ov′′ ×
∏

v′′∈S∞

kv′′

will then be an open neighborhood of a disjoint from kv. Thus kv is closed in A. �

Note that the embedding kv ↪→ A induces an embedding k ↪→ A, inducing the
v-adic topology on k. Thus, in A we have copies of k with each of our topologies
from Mk, together with a copy of k with the discrete topology.

Of course, A is not an integral domain. The units A∗ are the elements a = (av)
with av ∈ k∗v for all v ∈Mk, and with av ∈ o∗v for all but finitely many v ∈Mk. (If
there are infinitely many av /∈ o∗v, then the inverse a−1 = (a−1

v ) is not an adele.)
Such an element is called an idele. Unfortunately, the ideles are not a topological
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(multiplicative) subgroup of A, since inversion is not continuous. We will leave the
demonstration of this to the reader.

Since k is an additive subgroup of A, it makes sense to consider the quotient A/k
as a topological group in the quotient topology. We will show that A/k is compact.
We will first need a lemma.
Lemma 5.4.

k +AS∞ = A,

in the sense that any adele can be written as a sum of an element of k and an
element in the basic open set AS∞ .

Proof. This means precisely that for any adele a, there is some α ∈ k such that
a− α ∈ ov for all non-archimedean v ∈Mk, since AS∞ is just the set∏

v∈S∞

kv ×
∏
v/∈S∞

ov.

We find such an α as follows: First, find an integer c ∈ Z such that ca ∈ ov for all
v /∈ S∞. We can do this since av ∈ ov for all but finitely many v /∈ S∞, so we can
just take some c highly divisible by the finitely many primes of Z lying under the
p with av /∈ ovp .

Let S be the set of primes of ok dividing cok; this is finite, but may be larger
than the set of primes with avp /∈ ovp , since more than one prime of ok can divide
p ∈ Z. Now, by the approximation theorem we can find α ∈ ok with

α ≡ cav (mod pm)

for all p ∈ S and some large m.
I claim that a − α/c satisfies the conditions of the lemma. First, if p /∈ S, then

c is in o∗v, so α/c ∈ ov and av − α/c will still be in ov. If p ∈ S, then so long as
we took m larger than the power of p dividing c, av − α/c will still be in ov. This
completes the proof. �

Theorem 5.5. The group A/k is compact.

Proof. First, recall that we had an embedding

k ↪→
∏
v∈S∞

kv = R
n.

Under this embedding the integers ok form a lattice. If α1, . . . , αn is a Z-basis for
ok, then the images of the αi in Rn will still be linearly independent. (This is
because the computation to check this is essentially just the computation of the
discriminant, which is non-zero; for details, see [9, Chapter 8].) This shows that
this lattice has rank n.

Let P ∈ Rn be a fundamental parallelotope for the lattice ok. Then, since the
lattice ok has the same rank as the dimension of the space Rn, P is bounded, and
therefore P is compact. Also, note that

AS∞ =
∏
v/∈S∞

ov × Rn.

Now, given any a ∈ A, we first take α ∈ k such that a−α ∈ AS∞ . Next we take
some β ∈ ok such that

a− α− β ∈
∏
v/∈S∞

ov × P .
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We can do this since P is a fundamental domain for ok. Call this set Q. It is a
product of compact sets, and thus is compact. Therefore translation by the element
−(α + β) ∈ k takes a into a compact set. Therefore A/k = Q/(k ∩Q), which is a
quotient of a compact space and thus is compact. �

6. Ideles

Recall that we defined the ideles to be the units A∗ of the adele ring A. However,
as we observed, inversion is not continuous on A∗ with this topology. So A∗ is not
a topological group, at least when viewed as a subspace of A. To remedy this we
will give A∗ a different topology, which we can describe in two different ways.

The first is in analogy with the restricted direct product topology on A. We
define the ideles J to be the subset of the direct product∏

v∈Mk

k∗v

consisting of those elements for which all but finitely many components lie in
o∗v. That is, a = (av) ∈ J if and only if av ∈ o∗v for all but finitely many non-
archimedean valuations v. (Again, we impose no restriction on the values a takes
on at archimedean v.) Then, as sets, J is just the units A∗ of A. However, we take
for a basis of open sets of J the sets of the form∏

v∈Mk

Uv

where Uv ⊆ k∗v is open in k∗v , and Uv = o∗v for all but finitely many non-archimedean
valuations v. (We give k∗v the topology it inherits as a subspace of kv.) As with
the adeles, we can write such a set as

(3)
∏
v∈S

Uv ×
∏
v/∈S

o∗v

where S is some finite subset of Mk containing S∞, and Uv is open in k∗v for each
v ∈ S. As with the adeles, we can actually take our basis to consist of sets of the
form (3) with each Uv a basic open set of k∗v .

There is another way to define this topology. First, consider the product set
A×A, with the product topology. We then have a map

ϕ : J → A×A

given by ϕ(a) = (a, a−1). We claim that this is a topological embedding. It is clear
that ϕ is injective, so we must only show that it is bicontinuous.

First, note that if

U =

(∏
v∈S

Uv ×
∏
v/∈S

ov,
∏
v∈S

U ′v ×
∏
v/∈S

ov

)
is a basic open set in A× A (we can take the same set S in each factor simply by
taking some of the Uv and U ′v to be all of ov), then

U ∩ ϕ(J) =

(∏
v∈S

(
Uv ∩ (U ′v)

−1
)
×
∏
v/∈S

o∗v,
∏
v∈S

(
U−1
v ∩ (U ′v)

−1
)
×
∏
v/∈S

o∗v

)
.
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This is the image of ∏
v∈S

(
Uv ∩ (U ′v)

−1
)
×
∏
v/∈S

o∗v,

which is open in J since inversion is continuous in each k∗v . This implies immediately
that ϕ is bicontinuous.

With both of these descriptions of the topology on J in hand, it is now easy to
prove the basic facts about its topology. First, as with the adeles, we define sets

JS =
∏
v∈S

k∗v ×
∏
v/∈S

o∗v

where S is some finite subset of Mk containing S∞. Then JS is open and locally
compact, so J is locally compact. As in the adelic case, JS is also closed, as is easy
to see.
Proposition 6.1. J is a topological group.

Proof. Viewing J as embedded in A × A, it is clear that inversion is continuous,
since it is just the natural map reversing the order of the direct product. It is also
clear that multiplication is continuous, since the map from A×A×A×A given by

(a1, a2, a3, a4) 7→ (a1a3, a2a4)

is continuous, and this restricts to give precisely multiplication in J . �

We have natural embeddings k∗ ↪→ k∗v ↪→ J , along the v-component, and k∗ ↪→ J
along the diagonal. An element of k∗ viewed as an idele in this second way is called
a principal idele.
Proposition 6.2. k∗ is embedded along the diagonal in J as a discrete subgroup.

Proof. This is essentially the same as the proof for the adeles, taking neighborhoods
B(1, 1/2) for the archimedean valuations and using the product formula to derive
a contradiction about α− 1 for α ∈ k. �

Proposition 6.3. k∗v is embedded as a closed subgroup of J .

Proof. This again is essentially the same as the adelic case. �

Summarizing, we have shown that the ideles J are a locally compact topological
group, containing k∗ as a discrete subgroup along the diagonal, and in the v-adic
topology for each v inside of k∗v ↪→ J .

7. The Idele Class Group

The ideles possess two important natural homomorphisms into other multiplica-
tive groups. The first is a map

‖·‖ : J → R
+

defined by
‖a‖ =

∏
v∈Mk

‖av ‖nvv .

This makes sense, since for any idele a all but finitely many of the terms in the
product are 1. This map is also continuous; to show this, we must show that the
preimage of an open interval (b0, b1) ⊆ R+ is open in J . So take any a ∈ J with



16 TOM WESTON

‖ a ‖ ∈ (b0, b1). Pick one archimedean valuation v0, let S be the set of valuations
at which a is not in o∗v, and consider the open sets

Ur =
∏

v∈S,v 6=v0

B(av, 1)×
∏
v/∈S

o∗v ×B(av0 , r)

where we let r vary. Then these open sets contain a, and we can make r sufficiently
small to force ‖Ur ‖ to lie in (b0, b1). This shows that ‖· ‖ is continuous.

Since {1} is closed in R+, the kernel of ‖ · ‖ (which is just the preimage of {1})
is closed in J . We denote this by J0. Note that the product formula shows that
k∗ ⊆ J0, and is a discrete subgroup.

The second natural homomorphism is given as follows: Let I be the multiplica-
tive group of fractional ideals of k, and let P be the subgroup of principal ideals.
We define a map

J → I
by associating to a ∈ J the fractional ideal∏

vp∈Mk−S∞

pvp(av),

which we will denote (a). This is a fractional ideal, since only finitely many of
the vp(av) are non-zero. This is clearly surjective, with kernel JS∞ . Further, if
α ∈ k∗ ⊆ J , then (α) is just the usual principal ideal generated by α. Thus
(k∗) ⊆ P, so that we obtain an induced surjective homomorphism from J/k∗ to
the ideal class group I/P. We call J/k∗ the idele class group, and write it as C. It
contains the closed subgroup C0 = J0/k∗.

Since the kernel of the map J → I/P is k∗JS∞ , we have an isomorphism

J/k∗JS∞
∼= I/P.

Thus we have expressed the ideal class group as a quotient of the ideles.
We can generalize this construction somewhat. For any finite subset S of Mk

containing S∞, we will call
kS = JS ∩ k∗

the S-units of k. It is clear that this coincides with the usual notion of S-units,
which are those elements of k∗ which are units in each ov for v /∈ S. kS∞ is just the
global units o∗k. Since k∗ is a discrete subgroup of J , kS is a discrete subgroup of
JS . We call the quotient JS/kS the group of S-idele classes, and denote it by CS .
We set J0

S = JS ∩ J0, and C0
S = J0

S/kS .
For each such S, we have a natural inclusion

CS ↪→ C

embedding CS as an open and closed subgroup of C, since JS is open and closed
in J . Similarly, the natural inclusion

C0
S ↪→ C0

embeds C0
S as an open and closed subgroup of C0.

We return to the ideal map defined above. We had a surjective map

C → I/P

with kernel CS∞ . Even if we restrict this map to C0 it is still surjective, since if
I is a fractional ideal and a an idele with (a) = I, we can modify a at one of the
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archimedean valuations to get some a′ ∈ J0 with (a′) = I. The kernel of this map
is just C0

S∞
, so we have an isomorphism

C0/C0
S∞
∼= I/P.

We must now show that C0 is compact and discrete. This will turn out to
be equivalent to the finiteness of the ideal class group of k and the Dirichlet unit
theorem. We will first need a stronger approximation theorem, which we will prove
in the next section.

8. Another Approximation Theorem

In order to prove the compactness of the idele class group we will need to exhibit
elements of k satisfying conditions at all v ∈ Mk. The approximation theorem is
not strong enough to deal with this situation, so we will need to prove a new result.

Given any idele a, we define the set L(a) ⊆ k to be the set of all α ∈ k satisfying

‖α‖v ≤ ‖av ‖v
for all v ∈ Mk. We write λ(a) for the order of L(a). We wish to show if ‖ a ‖ is
sufficiently large, then L(a) is non-zero.

First, note that for any α ∈ k∗ L(a) and L(αa) are in canonical bijection, by

x 7→ αx.

Thus, λ(a) = λ(αa).
Theorem 8.1. Let k be a number field. Then there is a constant c0, depending
only on k, such that for any idele a,

λ(a) ≥ c0 ‖a‖ .

Proof. Let n be the degree of k over Q, and pick an integral basis ω1, . . . , ωn for
ok. Set

c1 = n sup
v∈S∞,i

{‖ωi ‖v}.

Now, by the approximation theorem we can find α ∈ k∗ satisfying
c1
‖a‖v

≤ α ≤ 2c1
‖a‖v

for all v ∈ S∞. We can also pick an integer m ∈ Z such that

‖mαa‖v≤ 1

for all v ∈Mk−S∞, by taking m highly divisible by the prime numbers correspond-
ing to the finitely many valuations v for which ‖αa ‖v > 1. Now, for all v ∈ S∞,
we have

mc1 ≤ ‖mαa‖v ≤ 2mc1.
Since λ(mαa) = λ(a) and ‖mαa‖=‖a‖, we may replace a by mαa. This allows us
to assume that

‖a‖v ≤ 1
for all v ∈Mk − S∞, and that there is some rational integer m for which

mc1 ≤‖a‖v≤ 2mc1
for all v ∈ S∞.

Now, let Λ be the set of elements of ok of the form

b1ω1 + · · ·+ bnωn
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with bi ∈ Z and 0 ≤ bi ≤ m. Then Λ contains (m + 1)n > mn elements. Now, by
our normalization above, the fractional ideal (a) associated to the idele a is actually
an ideal, so it makes sense to consider the quotient map

ok → ok/(a).

The image has size N(a), so there must be a subset Λ′ ⊆ Λ containing at least

mn

N(a)

elements of Λ, all mapping to the same class in ok/(a).
Fix some x ∈ Λ′, and pick any other y ∈ Λ′. Then

x ≡ y (mod (a)),

so that

‖x− y‖v≤‖av ‖v
for all non-archimedean valuations v. If v is an archimedean valuation, then

‖x− y‖v = ‖bx1ω1 + · · ·+ bxnωn − by1ω1 − · · · − bynωn ‖v
= ‖(bx1 − by1)ω1 + · · ·+ (bxn − byn)ωn ‖v
≤ m ‖ω1 ‖v + · · ·+m ‖ωn ‖v
≤ mc1
≤ ‖av ‖v .

Thus x− y ∈ L(a). Therefore,

λ(a) ≥ mn

N(a)
.

However, we also have

mn ≥ 2−nc−n1

∏
v∈S∞

‖av ‖nvv .

Finally, since

‖a‖ =
∏

v∈Mk−S∞

‖av ‖v ·
∏
v∈S∞

‖av ‖nvv = N(a)−1
∏
v∈S∞

‖av ‖nvv ,

we have

λ(a) ≥ 2−nc−n1 ‖a‖ .

This proves the theorem, with c0 = 2−nc−n1 . �

In fact, it is possible to get a much more precise statement. If we let r1 be the
number of real embeddings of k, r2 the number of complex embeddings of k and
Dk the absolute value of the discriminant of k, then

λ(a) ≈ 2r1(2π)r2√
Dk

‖a‖ .

See [3, Chapter 5, Section 2, Theorem 1].
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9. The Compactness of the Idele Class Group

We are now in a position to prove the compactness of the idele class group. We
will need a lemma. Throughout this section we let c0 be the constant of Theo-
rem 8.1.
Lemma 9.1. Let a be an idele with ‖ a ‖≥ 2/c0. Then there exists α ∈ k∗ such
that

1 ≤ ‖αav ‖v ≤ ‖a‖
for all v ∈Mk.

Proof. By Theorem 8.1 there is some non-zero β in L(a). This β satisfies ‖β ‖v ≤ ‖
av ‖v for all v, so if we set α = β−1, then

1 ≤ ‖αav ‖v
for all v ∈Mk. Also, we have

‖αav ‖v=
∏
v′∈Mk

‖αav ‖v∏
v′∈Mk,v′ 6=v ‖αav ‖v

≤ ‖a‖
1

= ‖a‖,

which completes the proof. �

Theorem 9.2. C0 is compact.

Proof. Let ψ : J → R
+ be defined by ψ(a) =‖ a ‖ . For any α ∈ k∗ we have

ψ(α) = 1, so we get a well defined map

ψ : C → R+.

The kernel of this map is C0. Now, note that for any ρ ∈ R+, ψ−1(ρ) is homeomor-
phic to C0. To see this, let aρ be any idele with ‖aρ ‖= ρ. (We can always find such
an aρ by adjusting the archimedean valuations.) Then we have ψ−1(ρ) = aρC

0,
and this is a homeomorphism since J is a topological group. Thus, it will suffice to
show that ψ−1(ρ) is compact for some ρ ∈ R+.

Fix some ρ with ρ > 2/c0, and pick some a ∈ ψ−1(ρ). Then by Lemma 9.1 there
is some αa ∈ k∗ with

1 ≤ ‖αaav ‖v ≤ ρ
for all v ∈ Mk. However, since a non-archimedean valuation vp takes on no values
between 1 and Np, and only finitely many primes p have Np ≤ ρ, we must have

‖αaav ‖vp= 1

for all but finitely many primes p, independent of a. Thus there is some finite set
S of valuations (including S∞) such that

1 ≤‖αaav ‖v ≤ ρ, v ∈ S
‖αaav ‖v = 1, v /∈ S.

Define
T =

∏
v∈S

(
B(0, ρ)−B(0, 1)

)
×
∏
v/∈S

o∗v.

Then by the Tychonoff theorem T is compact, since each factor is. Further, by
what we have shown above, T maps onto ψ−1(ρ) under the quotient map

J → C.
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(This is because we can always modify an element of ψ−1(ρ) by an element of k∗ to
get it in T .) The image of T is compact, so ψ−1(ρ) is a closed subset of a compact
space, and thus compact. This completes the proof. �

Corollary 9.3. C0
S is compact for any finite set S containing S∞.

Proof. C0
S is a closed subset of the compact space C0, and thus is compact. �

10. Applications to Algebraic Number Theory

The finiteness of the ideal class group is now an immediate corollary of everything
we have done.
Theorem 10.1. For any number field k, the ideal class group I/P is finite.

Proof. Recall that we had a group isomorphism

C0/C0
S∞
∼= I/P.

The space C0/C0
S∞

is a quotient of a compact space, and thus compact. Also, C0
S∞

is an open subgroup of C0, so this quotient is also discrete. (This is because each
coset of C0

S∞
, which become points in C0/C0

S∞
, is open.) Thus, the space C0/C0

S∞
is compact and discrete, and thus finite. Therefore I/P is finite as well. �

The Dirichlet unit theorem will require a preliminary result.
Lemma 10.2. Any discrete subgroup Λ of Rs is free abelian, of rank dimRΛ. (Here
RΛ is the R-vector space spanned by Λ.)

Proof. We prove this by induction on the dimension of dimRΛ. If dimRΛ = 1,
then, since Λ is discrete, there must be some λ ∈ Λ closest to 0. It is then clear
that Λ = Zλ, since otherwise we could construct an element of Λ closer to 0 than
λ.

Now, suppose dim Λ = m. Let λ1, . . . , λm be a R-basis for RΛ. If Λ0 is the
subgroup of Λ spanned by λ1, . . . , λm−1, then by the induction hypothesis

Λ0 = Zλ1 ⊕ · · · ⊕ Zλm−1.

Now, consider the set Λ′ of λ ∈ Λ of the form

λ = a1λ1 + · · ·+ amλm,

with 0 ≤ ai < 1 for i = 1, . . . ,m − 1, and 0 ≤ am ≤ 1. (We do not require that
the ai be integers.) This is a bounded subset of a discrete set, so it is finite. Pick
λ′ ∈ Λ′ with minimal non-zero coefficient of λm, say

λ′ = a′1λ1 + · · ·+ a′mλm.

Now, if λ is any element of Λ, then we can find some integer t such that the
coefficient am of λm in λ− tλ′ satisfies 0 ≤ am < a′m. We can then further modify
λ − tλ′ by some λ0 ∈ Λ0 to get λ − tλ′ − λ0 ∈ Λ′. But since a′m was the minimal
non-zero coefficient of λm in Λ′, we must have am = 0. This implies that

λ− tλ′ − λ0 = 0,

which, together with linear independence, shows that

Λ = Zλ1 ⊕ · · · ⊕ Zλm,
as desired. �
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Theorem 10.3 (Dirichlet Unit Theorem). For any set finite set S ∈Mk of size s,
containing S∞, the S-units kS have rank s− 1.

Proof. Let v1, . . . , vs be the elements of S, ordered so that vs is archimedean. We
define a group homomorphism

log : JS → Rs

by
log(a) = (log ‖av1 ‖

nv1
v1 , . . . , log ‖avs ‖

nvs
vs ).

This is continuous since it is continuous in each coordinate. Since any a ∈ J0
S has

‖a‖= 1, and ‖av ‖v= 1 for v /∈ S, the image of J0
S under this mapping lies in the

hyperplane
x1 + · · ·+ xs = 0,

where x1, . . . , xs are the usual coordinates on Rs. Call this hyperplane H. Note
that J0

S generates H over R, since log(J0
S) contains the s− 1 linearly independent

vectors
(c1, 0, 0, . . . , 0,−c1)
(0, c2, 0, . . . , 0,−c2)

...
(0, 0, 0, . . . , cs−1,−cs−1),

where the ci are some non-zero constants depending on vi.
Now, consider the S-units kS = k∗ ∩ J0

S . The set log(kS) is in fact discrete.
To see this, note that the elements of log(kS) in any bounded region of Rs have
bounded archimedean absolute values, which in turn bounds the coefficients of the
polynomials of these elements over Z. Since the degree is bounded by [k : Q], there
are only finitely many such polynomials having bounded coefficients. Therefore
only finitely many elements of k can map into any bounded region of Rs, so log(kS)
is discrete. Thus, by Lemma 10.2, log(kS) is a free abelian group. Note that the
kernel of log |kS is just the roots of unity of k (since any algebraic integer which
always has archimedean absolute value 1 is a root of unity, by an argument similar
to the one just given), so it will be enough to show that log(kS) has rank s− 1.

Let W be the subspace of H generated by log(kS). Then we have an induced
continuous homomorphism

log : J0
S/kS = C0

S → H/W.

The image of this map generates H/W as an R-vector space, since J0
S generates

H. The image is also the image of the compact set C0
S , and thus compact. But if

H/W is non-trivial it has no non-trivial compact subgroups (it is just Rn for some
n), so we must have H/W = 0, and H = W . Thus log(kS) generates all of H, so
it has rank s− 1. �

Corollary 10.4. The group of global units of a number field k is isomorphic to

W × Zr1+r2−1,

where W is the subgroup of roots of unity, r1 is the number of real embeddings of k
and r2 is the number of complex embeddings of k.

Proof. We simply take S = S∞ in the preceding theorem. �
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