ALMOST SURE LIMIT SETS OF RANDOM SERIES

PETE L. CLARK

I would like to tell you about an easily stated problem which lies at the border
of geometry, probability and classical analysis. In the summer of 2005 two under-
graduates at McGill University worked in this general area, and were able to make
some progress. When posing the project to them I made a certain conjecture, and
(as expected) they did not get far enough in their eight week project to be able to
seriously work on it. Allow me to pass the conjecture along to you in the hope that
you might be able to do something with it!

Remarks for the close reader: this document is a set of lecture notes for a talk
I gave in the UGA VIGRE (Graduate Student) Seminar on September 30, 2008.
These notes give a slightly richer picture than I was able to present in the talk.
If you are interested in a more minimalistic presentation, I also have available a
separate “digression free” set of notes that I presented out for myself when giving
the talk — these are available on request.

Because not attributing results has become a pet peeve of mine, I have included
references for all of the important theorems discussed here, if possible to the original
paper and also to a more modern (and anglophone) treatment. If a result is stated
but no proof or attribution is given, it means that the proof is left to you, i.e.,
it is possible and not too difficult to give a proof without having any specialized
background (taking for granted the previous results). I especially recommend that
all but the most casual readers prove Theorem 8, since doing so will make clearer
the analogy between this theorem and Theorem 3.

1. REARRANGEMENTS

Suppose >, a, is a convergent real series. Recall the following question from
analysis: when is it permissible to rearrange the terms of the series? Here, by a re-
arrangement of the series we understand a new series of the form ) ay (), where
o : N — N is a permutation of the natural numbers, and by “permissible” we mean
that every rearrangement should converge to a common sum. Let us call a series
with this property unconditionally convergent, whereas a series which is conver-
gent but not unconditionally convergent will be called conditionally convergent.

A sufficient condition for unconditional convergence was provided by K. Weier-
strass. We say that a real series is absolutely convergent if ) |a,| < co. Then:

Theorem 1. Absolute convergence implies unconditional convergence.
The proof is immediate from the triangle inequality and the Cauchy criterion for

convergence. Accordingly, it holds not just for real series, but for series with values

Thanks to Douglas Zare for pointing out an inaccuracy in the statement of Theorem 8.
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in any Banach space (or even in any complete, normed abelian group).

The converse of this result for real series was established by Riemann.

Proposition 2. (Weak Riemann Theorem) A real series which is unconditionally
convergent is necessarily absolutely convergent. More precisely, if Y, an, is a con-
vergent real series with ), |an| = 0o, then there exists a divergent rearrangement.

But in fact, in 1852 Riemann proved a much more precise and striking result [Rie]:

Theorem 3. (Riemann Rearrangement Theorem) Let ), a, be a real series which
is convergent, but not absolutely convergent. For any extended real number L €
[—00,00], there exists a permutation o such that ) Gy — L.

As an aside, we mention that more is true: we may rearrange any conditionally
convergent series so as to be divergent, but with prescribed limiting behavior.

Theorem 4. Let Y a, be a conditionally convergent real series. Then, for any
two extended real numbers A < B € [—o0, ], there erists a permutation o of Z*
such that the limit set of the series ) ay(y) — i.c., the set of limit points of the
sequence of partial sums — is equal to [A, B].

For the proof, see e.g. [Rud].! Conversely:
Proposition 5. If a,, — 0, the limit set of > a, is connected.

Another mild strengthening comes from the observation that the hypothesis that
the original series ) a, be conditionally convergent is not really necessary. It
suffices for the series to be (i) nonabsolutely convergent and (ii) rearrangeably
convergent, i.e., for it to converge after some permutation. It is easy to check that
areal series ) a, is rearrangeably convergent iff a,, — 0 and either it is absolutely
convergent or both the series of positive and negative parts are divergent.

Thus we have solved the problem of determining the “rearrangement limit set”
of any series which is either absolutely convergent or rearrangeably conditionally
convergent. What about other series? The cases in which a,, — 0 but exactly
one of the positive and negative series diverges are trivial. Remarkably, from the
perspective of limit sets the case in which a,, does not tend to 0 is the most inter-
esting For instance the rearrangement limit set of ) (—1)" has a connection with
random walks and probability. More on this later!

2. THE LEVY-STEINITZ THEOREM

Suppose now we consider series Y, a, with values in RY. Now what can be said
about absolute convergence, unconditional convergence and rearrangements?

We claim that again absolute convergence and unconditional convergence are equiv-
alent. Indeed, the forward implication is provided by Weierstrass’ theorem. Con-
versely, if for a vector valued series we have ) ||a,|| = oo, then there must exist
at least one i, 1 < i < N, such that the series of ith coordinates is not absolutely
convergent: > |(an);| = co. One might worry about this at first glance, because it
looks like we are comparing L? and L' convergence. But on the finite dimensional

1Or work it out yourself — it is not harder than Theorem 3.
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vector space RV any two norms differ by a multiplicative constant, which means
we shouldn’t be worrying (and also that all of these problems are completely inde-
pendent of the choice of norm on RY). So if the series is not absolutely convergent,
then neither is at least one of the component series, and choosing some permutation
o that makes the component series diverge certainly makes the entire vector-valued
series diverge.

As another aside, we remark that the finite-dimensionality of RY is crucial here:

Theorem 6. (Dvoretzky-Rogers, 1950 [DR]) Let (E,|| ||) be any infinite dimen-
sional Banach space. Then there exists a E-valued series )y, an which converges
unconditionally but nonabsolutely: i.e., for all permutations o, ) Gy con-
verges and has sum independent of o, while nevertheless ), ||an|| = oco.

But not so fast! We established the weak Riemann theorem in RY. But we are left
with the problem of the analogue of Riemann’s rearrangement theorem: what are
the possible limits of rearrangements of a given conditionally convergent series?

Half a second’s thought reveals that the most naive generalization — i.e., the re-
arrangement set of any nonabsolutely convergent series will be RY — is ridiculous.
For instance, take your favorite conditionally convergent real series —say » (:Llp)n
for some p € (0,1] — and view it as a series in RY whose final (N — 1)-coordinates
are all zero. Obviously since the partial sums of any rearrangement lie in the closed
subspace R x 0N ~!, the same must be true of any limit. Clearly the rearrangement

set of a series must lie in the linear subspace spanned by the coefficients!

Let 0 # v € RY be any nonzero vector. Using the natural inner product struc-
ture on RY we get an orthogonal projection of RY onto Ruv. In particular, for any
a, € RN write a? for this projection. Then the projected series >, an is a real se-
ries, and is the projection of the original series onto the line Rv. So we know that if
>, lab] < oo, this projected series is absolutely convergent, and no rearrangement
will affect the sum of the projection of the series onto Rv. Consider now the set

Vi={veR"| Z|a;’1| < 00}
Then we easily see:

(i) V1 is a linear subspace of RY.

(ii) The orthogonal projection of the series onto V; is absolutely convergent, and
thus the projection onto V; of each rearrangement is convergent with the same sum.
(iii) V1 is the largest subset of RY for which (ii) holds.

So any “rearrangeability” in the sum must come from the directions other than
V1. The issue is: to what extent is the converse true? For instance, a representa-
tive special case (to which the general case can in fact be reduced) is when V; = {0},
i.e., when the series is conditionally convergent “in every direction.” In this case we
can rearrange so as to make any one-dimensional projection converge to whatever
we want, but can we find a single rearrangement which simultaneously effects the
desired rearrangement on, say, each coordinate projection? In fact, yes:
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Theorem 7. (Lévy-Steinitz) Let {a,} be a convergent sequence in RN . Put
Vi={veRY | ) a)] < oo}
n

L:Zax.

Then the set of all limits of convergent rearrangements of > an is L+ Vi, where
Vit is the orthogonal complement of Vi in RY.

and

Remark: Again, this has an immediate generalization to rearrangeably convergent
RN -valued series. I leave it to you to write down the condition for a vector-valued
series to be rearrangeably convergent.

This result first appears in a 1905 paper of Paul Lévy [Lév]. In 1913 Ernst Steinitz
pointed out that Lévy’s argument was incomplete, and gave the first complete proof
[Ste]. More recent treatments may be found in a 1986 paper of I. Halperin [Hal]
and a 1987 Monthly article of P. Rosenthal [Ros]. None of these proofs are easy!

Note that one could ask for a “Rudinesque” refinement of this result: i.e., what
are the possible limit sets upon rearrangement? So far as I know this is an open
problem, but it is not the one I really want to talk about, so let’s press on.

3. SERIES WITH RANDOM SIGNS

Once we realize that what makes a nonabsolutely convergent real series convergent
is that (i) both the positive and negative parts diverge, and (ii) the positive and
negative contributions are ordered in such a way so that the net contribution is
“nearly balanced”, it is only a matter of time until we think of another “thing to
do” to a conditionally convergent series: instead of swapping the order of the terms,
why not change some of the signs?

In other words, given a conditionally convergent real series S = ) ay, let € =
(n)22, € B ={£1}* be a sign sequence, and consider instead the series

e(S) = Z €nln.

n
Certainly if S is absolutely convergent, then so will be €(S) for any sign sequence
€. It is equally clear that sign-changing may affect the sum — indeed, changing the
sign of exactly one nonzero term will certainly change the sum. With a little bit of
thought one can prove the following “Riemannesque theorem”:

Theorem 8. Let {a,} be a sequence of real numbers with a,, — 0 and Y~ |a,| =
0. For any extended real number L, there exists a sign sequence € such that

> €nan — L.

We could go to RY, but again, not so fast! There is a fascinating way to thicken
the plot. Suppose we start with a sequence {a,} of real numbers with a, — 0.
By the above theorem there exists at least one sign sequence e such that )" e,an,
converges. If >~ |a,| < oo, then every possible insertion of signs makes the series
converge. That’s boring, so assume that ) |a,| = co. Then there is also at least
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one sign sequence € such that ) €,a, diverges. But which is more likely?

We can answer this because the space B of sign sequences is endowed with a natural
probability measure p. This can be seen in many ways. The two ways I like best are:

(i) There is a natural probability measure on each factor space {£1}, and one
can endow any Cartesian product of probability spaces with a natural measure;

(ii) Observe that B is, with respect to the product topology, a compact abelian
group, so has a unique Haar measure, i.c., a translation-invariant measure.

Here the translation-invariance means that in our intuitive picture of the space
as a countably infinite sequence of indepenent coin flips, suppose we line up infin-
itely many coin-flipping machines each of which really can flip a coin with equal
probabilities heads and tails, and the machines come out of the factory with the
coin resting in the heads position. Then, before the flipping takes place, if some
interloper comes in and changes some of the coins to be lying tails up in the ma-
chine, this is not going to affect the probability of any event.

As a sample case, take a, = n—lp for p € R. When p > 1, the sequence is /!
convergent, so the probability of convergence is certainly 1. If p > 0, then the
general term does not tend to zero, so the convergence is impossible: probability
zero. It is very plausible that the function “probability of convergence of the p-
series with random signs” should be increasing as p ranges from 0 to 1. If we didn’t
know any better, maybe we would postulate some nice simple function interpolat-
ing between the endpoints: could it be that the probability of convergence is just p??

If you know some probability theory, you can see in advance that this guess is
wrong. For this, consider a special type of subset (“event”) of B called a tail set.
Namely, a subset S C B is a tail set iff for all z € B and any sign sequence € with
€y, = 1 for all sufficiently large n, then x € S iff e-x € S. In other words, if we take
any element and mess with it in any finite number of coordinates, then in so doing
we do not change whether the event is in S or not.

Aside: Using the group theory, a nice way to express this is via the subgroup
b of B consisting of all sign sequences with only finitely many negative sign se-
quences. This is none other than the infinite direct sum sitting inside the direct
product. Then a subset S is a tail subset iff it is invariant under b iff it is a union
of cosets of b.2

Indeed, for any fixed sequence {a,}, “Y", €nan, converges” is a tail event: changing
finitely many signs means changing finitely many terms which will, famously, not
affect the convergence or divergence. So the following is applicable here:

Theorem 9. (Kolmogorov 0-1 Law) Let S C B be any tail event. Then either
w(S) =0 or u(S) =1.

2Technical aside: from this description it is not hard to see that there are tail sets which are not
Borel measurable. Thus we should require that an “event” be an element of the Borel o-algebra.
In practice, all the tail events that are of interest are easily seen to be Borel measurable.
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In other words, the function which assigns to a p-series the probability of its con-
vergence with random signs is {0, 1}-valued, so cannot be everywhere continuous!
Intuitively one still hopes that it is monotone, so our next guess is that there is
some special, transitional value py € (0,1) such that for p < pg the probability of
convergence is 0 and for p > pg the probability of convergence is 1.

In fact, this turns out to be the case:

Theorem 10. (Rademacher-Paley-Zygmund, [Kac]) Let {a,} be any real sequence.
The following are equivalent:

(i) The probability that ), €nay converges is 1.

(11) The probability that ), €nay is bounded is 1.

(iii) Y, a% < oo.

Applying this to the case of a,, = nl—p, we see that when we put random signs into
the p-series, it converges with probability 0 iff p < % and with probability 1 iff p > %

Note that we did not make the assumption that a, — 0. Indeed an interesting
case is a, = 1: we then get Zn €n, the one-dimensional random walk. This
sequence is not £?-convergent, so according to the theorem, with probability 1 the
partial sums are unbounded. Because of the fundamental symmetry between + and
—, the probability that the sum is unbounded above is certainly the same as the
probability that the sum is unbounded below. Each of these is a tail event, so by
the 0 — 1 Law their probabilities are either both 0 or both 1. But if they were both
0, then the probability that the series would be unbounded would be 0 — which
we just saw was not the case — so rather with probability 1 the partial sums are
unbounded both above and below. A moment’s thought gives:

Corollary 11. (Recurrence of the one-dimensional random walk) With probability
1, the limit set of the random walk is 7 = 400 U Z.

A similar argument shows the following:

Corollary 12. Suppose {a,} is a real sequence with a,, — 0 and > a? = oc.
Then, with probability 1, the limit set of ), enay is the entire real line.

4. AND ON TO n DIMENSIONS?

The RPZ theorem holds verbatim in RV3 — and, in fact, for series with values in
any Hilbert space — as long as we replace a2 with ||a,||?, i.e., the fundamental
dichotomy is whether the sequence is 2 convergent or not (which, notice, is weaker
than ¢! convergence, a.k.a. absolute convergence). Especially, if our vector-valued
sequence is not in £2, then with probability 1 it is unbounded.

But again, in R!, assuming a,, — 0 we showed more: if the sequence is in £,
its is almost surely convergent, in other words its limit set is almost surely a single
(finite) point. On the other hand if it is not in ¢? its limit set is almost surely the
entire real line. I find it remarkable that no intermediate behavior is possible: why
shouldn’t the probability 1 limit set be something like a closed interval of bounded
nonzero length, or an infinite ray?

3In fact, it is easy to reduce to the case of N =1 as we did in the Weak Riemann Theorem.
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So finally, here is the question I am interested in: let {a,} be a sequence in R for
which a,, — 0. By RPZ, if the sequence is £?-convergent, the limit set of > €,ay, is
almost surely a single finite point. But what if the sequence is ¢2-divergent? What
is the almost sure behavior of the limit set?

Let me say a few words to make you believe that this question is sensible and
rigorous. If we start with any given series and change finitely many signs, then
this has the effect of translating the sequence of partial sums by a fixed vector.
Any statement about the limit set which is translation-invariant is therefore sus-
ceptible to the 0 — 1 Law and must occur with probability 0 or 1. An example
of a translation-invariant statement about the limit set is that it is unbounded,
and indeed RPZ assures that if > ||a,||* = oo this will be the case with probabil-
ity 1. Another translation invariant statement would be if the limit set is all of RN .4

Is this then what we are going to guess, that the limit set is almost surely all
of RN? Of course not. As before, if all of the a,’s lie in some fixed linear subspace
V, then any limit point of any > €,a, will also have to lie in V.

So probably we should, as above, consider projections, right? As above, for any
0 # v € RY, it makes sense to speak of the £ convergence of the projected series
a’, and it is easy to see that there is a unique maximal subspace V; of RY such
that >, [lay?]| < oo, i.e., the projection onto Va is £2-convergent. By RPZ applied
inside the subspace V5, with probability 1 the limit set of this projection is a single
finite point. The question is about the converse. But in view of the Lévy-Steinitz

theorem I find the following irresistible:

Conjecture. Let {a,} be a sequence in RY with a,, — 0. Put

Vo={veRY | Y [lap][* < oo}

Then, with probability 1, the limit set of ), enan is a translate of Vit

As above, a special case which should be sufficient is: suppose that the series is
£2-divergent in every direction. Then with probability 1 its limit set is all of RV,

Can you prove this? (Or disprove it?) Let me know!
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