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I. INTR~I)~cT10~ 

In this article all rings are commutative with unit, all modules are unitary. 
Given a ring A, its multiplicative group of units (i.e. invertible elements) is 
denoted by A*. 

The customary definition of a Euclidean ring is that it is a domain A 
together with a map F : A + N (the nonnegative integers) such that 

(1) I : p(a) for a, b E r3 - (0); 

(2) given a, b E -‘-I, b m;’ 0, there exist q and Y in ‘4 such that a = bq + Y 

and dr) < v(b). 

The main interest of a Euclidean ring .4 is that it is principal: given any 
nonzero idea1 b in ,4. take a nonzero element b in b with the smallest possible 
value for p(b); then, for any n E b, (2) h s ows that a = bq $ r with Y = 0, 
whence b generates b. In this proof, (I) h as not been used, and any well-ordered 
set TV could replace N as the range of v. This has already been noticed by 
Th. lLIotzkin [7]. On the other hand the hypothesis that A is a domain does 
not seem to be essential. 

We therefore give the following definition: 

DEFINITION I. Given a ring A, a Euclidean algorithm (or an algorithm) 

in A is a map p of A into a well-ordered set TV such that 

(E). Given a, b t A, b # 0, there exist q and Y in A such that a = bq + T and 

v(y) < dbl. 

We say that A is Euclidean if it admits an algorithm y, and, for precision’s sake, 
we then say that A is Euclidean for p 

In fact the proof that A is principal would work as well if W were a partially 
ordered set with descending chain condition. But we will see that this is not 
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an essential generalization (see Section 4, Prop. 11). On the other hand, I do 
not know whether, for domains, the passage from N to a well ordered set W 
enlarges the class of euclidean rings. 

After some easy preliminaries and examples, we will show, as already 
noticed by Th. Motzkin, that a Euclidean ring admits a smallest algorithm. 
In various cases this algorithm can be explicitly computed, but its structure 
seems to be rather complicated in general (e.g. for Z[ d/--2]). 

The determination of the imaginary quadratic fields for which the ring 
of integers is Euclidean is easy (see Section 5). For real ones, there might 
be fields for which this ring is Euclidean, but not for the norm. 

The case of the coordinate ring of an affine curve over any field can be 
completely treated if the genus is 0; furthermore the smallest algorithm 
is explicitly determined when the ground field is infinite. For this a strange 
theorem about finitely generated commutative subgroups of a linear group is 
needed. 

\I’e will see that many problems in the theory of cuclidean rings are open. 

2. ELEMENTARY PROPERTIES OF EUCLIDEAN RIKGS 

In what follows, ,4 is a Euclidean ring, ll’a well-ordered set, and F : L4 -+ IV 
an algorithm. 

PROPOSITION 1. For b E A, b # 0, we have y(b) > q(O), so that p(O) is 
the smallest element of y(A). 

By (E), we write 0 = hq + b, with I < v(b). We inductively define 
a sequence b, 6, ,..., 6, of elements of 4 by the following rule: if b, = 0 
we stop; if 6, # 0 we write 0 = 6, + b,+r with @,,r) < I. S’ince 
(rp(b,)) is a strictly decreasing sequence of elements of a well-ordered set, 
it must be finite. Hence there exists n ;-: 1 such that b, m= 0. Thus ~(0) 7:: 

dU < v(b). 

PROPOSITION 2. An element b E A such that y(b) is the smallest element of 
v(A) - ~(0) is a unit in A. 

By hypothesis we have b =f 0. For any a in 4, we have a = bq + Y with 
q(r) < F(b), whence Y -= 0. Therefore A -:= izb and b is a unit. 

PROPOSITION 3. Every ideal b of the Euclidean ring A is principal. 

0-c may assume b # (0). Then take, among the nonzero elements of 6, 
an element b with smallest value for p. For any a E 6, we write a = bq + Y 
with p(r) < v(b). Since r = a - bq E b, we necessarily have Y = 0, whence 
b = Aqb. 
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An algorithm CJI on an Euclidean ring A does not necessarily satisfy the 
divisibility condition (1) of Section 1. 

EXAMPLE 1. Let d == Z, y(n) == n 1 for n -/! 5, and ~(5) -== 13. For any 
n f 0 in 2 such that either ( n 1 < 5 or I n 1 z: 14, the representatives 
Y = 0, l,..., 1 n / - 1 of the classes mod n satisfy V,(Y) < y(n). For 
6 -: i n ) -:< 13 we replace the representative 5 by 5 - / n 1, which still 
satisfies ~(5 - ! n 1) < q(n). Hence (E) holds. But we have ~(5) > v( 10) 
and ~(5) > ~(-5) contradicting (1). 

However a Euclidean ring A admits algorithms satisfying (1). More 
precisely, 

PROPOSITION 4. If e, : d ---f W is an algorithm on an Euclidean ring A, 
then yl, dejined by ~~(0) =- ~(0) and p)r(a) = inf,,,,,-(,,, v(h) fog a z 0, 
is an algorithm such that 

(a) pl(ac) :- F1(a) fw ac # 0, 

(b) ql(ac) ~~7 pi(a) z# dac = Au, 

(c) q,,(a) :-:. v(a)for all a t A. 

In fact v1 is well defined since II” is well ordered. Properties (a) and (c) 
follow from the definition of pr , and also the “if” part of (b). For proving 
that qr is an algorithm, let us consider b 4~ 0 in A and a in A; by definition 
we have yr(b) = I for a suitable c in .d; by (E) we can write a bcq ~; r 
with F(Y) < I; thcreforc we have a re Y mod Ab and vr(r) :. F(V) < 
I := vr(b). Finally we prove the “only if” part of (b): if vi(ac) -m v,(u), 
we write a : acq + Y with pi(r) < ~~(a); since Y == a( I ~ cq), (a) implies 
that I’ em 0, whence z3ac z3a. Q.E.D. 

COROLLARY 1. If y1 is as in Prop. 4, and if u is a unit A, then p(u) is 
the smallest element /3 of q(rl) - ~(0) (converse to Prop. 2) 

By Proposition 2, there exists a unit u’ with value p. Since u is an associate 
of u’, it has also value /? by (b). 

Remark. The conclusion of Corollary I does not necessarily hold in 
general. Take A = Z, v(n) --y 1 n 1 for n f 1, ~(1) 2: 2 (use 0 and ~ 1 as 
representatives mod 2). 

COROLLARY 2. Assume that the well-ordered set iV’ contains N as an initial 
segment, and that the Euclidean ring A is a domain. Let (~t~),,~~ be the set of all 
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normalized valuations of A (corresponding to the prime elements of A). Then, 
for any algorithm y on A, zL’e have 

44 2 1 + c %I(4 forany x f OinA. (2.1) PEP 
We may replace v by y1 as in Prop. 4, since T(X) > vi(~) for any x in A. 

Now, if x’ is a strict multiple of x, we have vr(x’) > pi. Then (2.1) is proved 
by induction on C v~(x), the starting case C v~(x) = 0 being the case of 
a unit x for which y(x) $ 1. 

3. EXAMPLES OF EUCLIDEAN RINGS. STABILITY PROPERTIES 

It is well known that Z is Euclidean for the algorithm q(n) = / n /, and 
that the polynomial ring k[X] (k: a field) is Euclidean for y(P(X)) = 
1 + dO(P(X)); notice that, if k is algebraically closed, we then have y(P(X)) = 
I -I-- C V.(P(X)) (cf. Sec. 2, Cor. 2 to Prop. 4). 

PROPOSITION 5. A principal ideal domain with a jinite number of maximal 
ideals, Apl ,..., Ap, is Euclidean for the algorithm 

y(x) = 1 $- i Vi(X) (x # O), q(O) = 0, 
i=l 

(where vi denotes the normalized p,-adic valuation of A). 
Let b be any nonzero element of A and x an element of AlAb. IVe have 

to find a representative x of x in A such that p)(x) < F(b). For X = 0 we take 
x =-~ 0. For x f 0, let x’ be any representative of x. There exist indices i 

such that vi(x’) < vi(b) (otherwise x’ E Ab and X = 0); for such an index i, we 
have vi(x) = vJx’) < vi(b) for every representative x of x. For an index j 
such that v,(x’) > v,(b), we can write X’ = zjb mod A~:+‘J(~) with .zj E ‘4 
well defined mod Apj . The Chinese remainder theorem [S] provides us with 
an element x of A such that z = 1 - xj mod Ap, for all such indic:es j. 
Then x = x’ + bz is a representative of x and is congruent to b mod ilpymvj(b). 
Hence uj(x) = v,(b) for all these indices j. Since vi(x) < vi(b) for the other 
indices i, we get C,“_, V,(X) < C,“=, vi(b), whence q(x) < p(b). Q.E.D. 

COROLLARY. The ring of a discrete valuation v is Euclidean for v(x) = 

1 + V(X)(X f 0). 

PROPOSITION 6. A product of a Jinite number of Euclidean rings is euclidean. 
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By induction we are reduced to the case of a product of two factors, 
A = A, x A,. Let Ai be Euclidean for yi : 4, - Wi (i := 1, 2). Let 
1%” = WI x Wz lexicographically ordered ((01~ , a2) < (,8, , /$) means either 
01~ < p1 , or 01~ = p1 and 01~ < /3J. Call W the “ordinal sum” of two copies 
of W’ : this is a well-ordered set together with order-preserving injections 
h’, h” : L6’ + W such that h’(h) < h”(p) for all A, p E W’. \I’e define 
v : A, X A, + Was follows (x1 E il, , .x2 E B,): 

(i) If none or both of x1 , x2 arc 0, v(xl , x2) -= h’((cpl(x,), &.Q))), 

(ii) If just one of X1 , .X2 is 0, 4% 1 4 = ~f(h(4~ P&J)). 

We now show that q~ is an algorithm on A, x: -4, . Consider b :: (6, , b,) _, 0 
in -41 x A,, and a = (a,, a2) t A, x .$. We try to write a = bq ~~ Y with 

P,(Y) < P(b). 
Suppose first that b, # 0, b, + 0 and write ai = bigi + vi with I < q;(b;) 

for i 1, 2. If none or both of y1 , Ye are 0, we have 

dyr 1 ~2) = h’((dyA dyd) (: h’((db,), cPz(be))) = db) 

so that we may take Y = (fl , r.,), y 2: (yl , qz). If y1 = 0 and r2 -71 0 we write 

a,-b,(q,~l)+b,,a,=~b,q,-ty,, and take Y = (b, , YJ, q = (ql ~- 1, q2); 
then F(Y) = h’((p,(b,), y2(y2))) < h’((q,(b,), db,))) = q(b). The case y1 f 0, 
Ye -= 0 is treated in a similar wav. 

Suppose now that 0, = 0, b, -f 0. If a, % 0, we write a2 == b,q, ; rT with 
yp f 0 (this is possible if we exclude the trivial case in which A, is the zero 
ring); taking Y =~ (al , YJ and 4 ~~~ (0, q2), we then have y(y) E h’(W), 
v(b) E h”(W), whence g)(y) < p(b). If a1 = 0, we write a, = b,q, -f~ I’~ with 
y,(r,) < va(b2), and take P -mm (0, Ye), q (0, qa); then 

dy) = Wd4, F&A)) i Jf((dO)> d4)) 1. v,(b) 

The case b, f 0, b, = 0 is treated in a similar way QED. 

Remarks. (I) A principal ideal ring is known to be a finite product of 
principal ideal domains and of principal ideal rings with a unique and 
nilpotent maximal ideal Ap (1 1, Chap. IV, Sec. 15, Thm. 33). Every nonzero 
element x of such a ring can be written as x ~~‘(2) u (U : a unit), where Z(X) 
is uniquely determined by x, so that 1 -f Z(X) is an algorithm (as in Prop. 5), 
and the corresponding ring is Euclidean. Thus the question as to whether 

. . 
a prmclpal ideal ring is Euclidean boils down to the same question for 
principal ideal domains. This might explain why euclidean rings with 
zero-divisors did not receive much attention. 

(2). The use of transfinite valued algorithms, as in the proof of Prop. 6, 
is unavoidable in the case .4 == Z x Z. In fact, we more generally notice: 
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(I;). If iz is Euclidean for cp, if A * ’ ji .t 1s nz e and ;f n is an ordinary inreger, 
then A, = @({n}) is finite. 

Proof. By induction on 11, A,’ = A,, v . . . u A,_, is finite; if v(b) = n 
/In’ - z4/Ab is surjective. Using Prop. 13 of Section 5, we see that the ideal Ab 
can take only a finite number of values. Hence the element b also since .4* 
is finite. 

This being so, suppose that 9 : Z x Z + N is an algorithm, and set 
q((l, 0)) = n. Then, as above in (F), iz,’ = A, u . . . V A,_, is finite and 
A,’ + (Z x Z)/((l, 0)) is surjective. This is impossible since this last ring, 
isomorphic to Z, is infinite. 

PROPOSITION 7. Let A be a Euclidean domain, and S C A a multiplicati~ely 
closed set (such that 0 & S). Then S-IA is Euclidean. 

Let v be an algorithm on 9 such that y E .4s, y + 0 implies q(x) < p(y) 
(Sec. 2, Prop. 4). By saturating S, we may assume it is generated by :some 
prime elements of A and by the units. Then every element x of S-rkl can 
be written as x = (s/t) .x’ with s, t E S and x’ E d prime to all elements of S; 
then x’ is uniquely determined up to units by X. We set P’(X) :: v(x’) and 
show that y’ is an algorithm on ,?“A. 

First w-e note that, for s, s’ E S and x E SIA, we have p’(s) = ~(1) and 
~‘(ss/s’) = p’(x). Consider a, b E S1&4 with b + 0, and write b =: (s/t) b’ 
as above. Since the prime ideals of A containing b’ are all maximal, the 
canonical map A/Ah’ --f S-lA/S-lAb is an isomorphism. Thus there exists 
a’ E -4 such that (t/s)a = a’(mod . SmlAb), whence a zz (s/t) a’ (mod S-I-Ab). 
We can write a’ -= b’q + r with y, r E ,4 and v(u) < p(b’). Therefore 
a -I (s/t)r (mod S-lAb), and we have p)‘((s,/t)r) r: p’(y) 5-1 p)(v) < v(b’) = v(b). 

PROPOSITION 8. If A is a Euclidean ring, therl .-1’ = 24[[X]][Xm1] is 
Euclidean. 

Let q be an algorithm on A. The elements of A’ are power series 

Cn>no a,X~f(a,L E A) with, possibly, a finite number of terms with negative 
exponents. For s E A’, s f 0, let a(s) be the coefficient of the lowest degree 
term of s, s = a(s) X* + a,,,X*?l + ... . We set 9;‘(s) -- p)(a(s)) v’(O) -y= p(O), 
and prove that y’ is an algorithm. Consider s E A’, s -# 0 so that 
s :-= a(s) Xa + ... with a(s) # 0. For each f = a(t) X4 + ... in A’ we write 
u(t) _ a(s)b + c with b, c E 4, p(c) < p(a(s)), and set t’ = t - bXfl-‘s = 
cXd + higher degree terms. If c f 0, we stop since v’(t’) = p(c) < v(a(s)) = 
p’(s). If c L= 0 we similarly construct t” = t’ - b’Xa-=s (p’ = order of t’), 
and so on. If the process stops after a finite number of steps, we get 
a t(,l) = t mod A’s such that p’(tcrL)) < y’(s). Otherwise the infinite sum 
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u = bXBpa + l~‘lE“-~ + ... + b(“)Xfl(“)-h + ... makes sense (the sequence 
(,W”)) being strictly increasing), and we have t == us + 0 with evidently 

do) < T’(S). Q.E.D. 

4. THE SMALLEST ALGORITHM 

Two algorithms T : iz - IV, 9)‘ : A --f IV’ on a ring A are said to be 
isomorphic if there exists an order-isomorphism h : v(A) -v’(A) such that 
y’ = h 3 y. Isomorphic algorithms have obviously the same properties. 
Thus, since all well-ordered sets with cardinal -.< card(A) are order iso- 
morphic to initial segments of any well ordered set TV such that card(W) > 
card(i2), all the algorithms on the ring A may be construed to take their values 
in the fixed ordered set W’. For precision sake, we may assume that W is an 
ordinal, with elements customarily denoted by 0, 1, 2, 3 ,..., w, w $- l,..., 2w,... 

PROPOSITION 9. If q~~ : A ---F W is any nonempty family of algorithms 
on an Euclidean ying A, then y = inf,?,, is also an algorithm. 

Consider a, b E A, b :# 0. Since FV is well ordered, there exists an index a 
such that v(b) = y,(b). We can write a = bq + Y with q, T E iz and 
TV < v),(b). Then V(Y) :< TV < v&b) == rp(b), proving that cp is an 
algorithm. 

Proposition 9 shows that the Euclidean ring A admits a smallest algorithm tI 
(i.e. the infimum of all algorithms). By Prop. 4(c) of Section 2, 0 enjoys the 
properties described in Prop. 4 and in its corollaries. Moreover we have 

O(X) = 0 G x = 0, (Prop. 1); (4-l ) 
B(X) :p I u x is a unit, (Prop. 2 and Cor. 1. to Prop. 4). (4.2) 

PRoPosI,rIo~ 10. Let 6’ : A + W be the smallest algorithm on an Euclidean 
ring A. For 01 E W set iz, = {x E A 1 0(x) S< a!$ and A,’ : {x E A / B(x) < ~1. 
Then A, is the union of (0) and the set of all b E iz such that the canonical map 
A,’ + AjAb is surjective (i.e. representatives of the classes mod Ab can be 
found in iz,‘). 

If b E A, , and if a + Ab(a E A) is any class mod Ab, then, by writing 
a = bq + Y, we find a representative Y of this class such that B(Y) < B(b) <. 01, 
i.e. Y E A,‘. Conversely consider b # 0 such that A,’ + A/Ah is surjective, 
and suppose that B(b) > 0~. Now define 8x : A - W by B,(b) = 01 and 
0,(x) = B(X) for x :# 6. I claim that e1 is an algorithm: in fact for the relations 
a = bq + Y in which b acts as the divisor, we know that each class a + Ab 
has a representative r E A,’ i.e. such that e,(y) < 01 = B,(b); on the other hand, 
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in a relation a = cq + b in which b acts as a remainder, we have 
H,(b) = 01 < d(6) < 8(c) = e,(c). This contradicts the fact that 0 is, the 
smallest algorithm. Therefore 0(b) -< 01. Q.E.D. 

Proposition 10 shows that the smallest algorithm can be constructed by 
tvansfinite induction, since the set /I,’ determines il,, in a simple way. 

~,XAMPLE. B(s) = 2 means that iZjL?lx admits a system of representa.tives 
made of 0 and of units. Such an s is necessarily a prime element of A (every 
nonzcro element of A/Ax being invertible, i3/il.v is a field). 

The transfinite construction described in Prop. 10 may be performed in 
any ring. More precisely, 

The transfinite construction. Let .-l be a ‘ing, and W an ordinal such that 
card(rl) < card( IV). II-e set ,3,, : {O). Folov 01 > 0 in It’, we define A’, by 
tvansfinite induction as follozos: the set A.,’ ~-== vi, CCn .;I, is already de$ned and -4, 
is the union of {OS and of the set of all b t -4 such that A,’ + srl/Ab is surjective. 

It is clear that the sequence (-$JTtW is increasing. The ring A is Euclidean 
;sf this sequence exhausts the ring Lq. In this case the smallest algorithm B 
on .4 is defined by 

O(x) Iy E ll’ <~> s E A> ~ =I,‘. (4.3) 

Otherwise the sequence stops increasing before exhausting -4. At any rate 
we have 

,-f. -= (Oj., (4.4) 

if, - d, : il, - A,’ = set of units i2*, (4.5) 

il, - 23, =r 8, - -4,’ r- (b E =1 1 AjAb admits a system of representatives 
made of 0 and of units]. (4.6) 

The set -3, ~ ~2, may very well be empty (see the example of imaginary 
quadratic fields in Section 5); in this case iz is not euclidean, unless it is 
a field. 

EXAMPLES. (I) For A = 2, we have A,’ =m- 9, =- {-- 1, 0, + I] and 
this set contains three consecutive integers. Thus it provides representatives 
for the classes mod 2 and mod 3, so that A,’ = -4, = (-3, -2, - 1, 0, 1,2,3,). 
Here we have seven consecutive integers, so that A,’ = A, is the interval 
[--7, +7], consisting of 15 consecutive integers. An easy induction shows 
that the smallest algorithm 0 on Z is given by 

.9(n) =: number of binary digits of 1 n /. 
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(2) Let K be a field, and A the polynomial ring in one variable A = k[X]. 
Since A* = K* we have A,’ -= A, = k. Thus the elements of A, are 0 and 
the polynomials p such that k[X]/( p) IS a vector space of dimension & 1 over 
R; these are the polynomials of degree : < 1, and they form a two-dimensional 
vector space over 1~. By induction we see that A:2+I = A, is the n-dimensional 
vector space of polynomials with degree <n - 1. Therefore the snzaZZest 
algorithm 8 on k[X] is the usual algorithm 

@I) = 1 +- d”(q) (q f 0) 

(3) Let A be a principal ideal domain with a finite number of maximal 
ideals Api(i = I,..., n), and let vi be the normalized p,-adic valuation of A. 
It follows from Prop. 5 (Sec. 3) and Cor. 2 to Prop. 4 (Sec. 2) that the smallest 
algorithm 0 on A is given by 

O(x) = 1 + i Vi(X) (x + 0). 
i- ;, 

(4) Let A be a Euclidean domain, 8 its smallest algorithm, and S a 
multiplicative subset of ,4(0 $ S). The algorithm 0’ on S-lA deduced from 
0 as in Prop. 7 (Sec. 3) is not necessarily the smallest algorithm on SplA4. 
For example if A is Z and if S is the set of integers prime to 6, we have 
o’(4) = 3 < o’(9) = 4 (Example I), whereas, for the smallest algorithm 9 
on S-lZ, we have ~(4) == q(9) = 3. 

(5) If A is a Euclidean ring of integers in an imaginary quadratic number 
field, the sets A, of the transfinite construction are finite (since A* is finite; see 
(F) in Sec. 3, Remark 2), and can be explicitly determined one after another. 
I did it until n == 9 for A := Z[\‘q] and A = 2[&2], and these sets 
seem to be very irregular; for Z[t’3] their cardinalities are 1, 3, 9, 21, 35, 
61, 99, 153, 227, 327. 

We are now ready to show that algorithms with values in partially ordered 
sets with descending chain condition are not really needed. 

PROPOSITION 1 I. Let A be a ring, 7’ a partially ordered set with descending 
chain condition and y : i3 -+ T a mapping such that, giaen any a and b + 0 in A, 
there exist q, Y E A such that a = bq + Y and v(r) < v(b). Then A is Euclidean. 

Proof. Let (A,) be the transfinite construction on A and A’ = Ua d, . 
If A’ f A, choose b E A’ - A such that v(b) is minimal. Then T(V) < y(b) 
implies Y E A’, so that A’ + A/Ah is surjective. But this implies b E A’, 
a contradiction. Therefore A =: A’, and A is Euclidean. Q.E.D. 

If finite valued, the smallest algorithm satisfies an inequality. More generally, 
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PROPOSITION 12. Let A be a ring, (AJnEN the beginning of its tramfinite 

construction, and A’ = uIzO A, . We set e(x) = n for x E Anil - A, (thus 
e(unit) = 0, 0(O) = --I). If a, b are nonzero elements of A such that ab E A’, 
then a, b E A’ and e(ab) > 0(u) + B(b). 

For some n, A, --f A/Au6 is surjective, thus A, + A/Au is also surjective. 
This proves that a E A’, and similarly b E A’. 

For proving 0(ab) > e(a) + B(b), we fix 6, and suppose that there exist 
nonzero elements a of A such that B(ab) < e(a) + B(b). Among these elements 
we choose an a such that 

(1) The difference Q(ab) - e(a) takes its minimum value, say h; 

(2) Among the elements a’ such that B(a’b) - e(a’) = h, a ha:s the 
smallest value for 8. 

Notice that a is not a unit (otherwise e(ab) = 0(a) -+ B(b) = 0(b) is true). 
Then there exists a coset c + Au containing an element ~a E A’ such that 
0(x,) := 0(u) ~ 1 and that B(x) > 0(a) - 1 for every x E A,’ n (c + Au). 
Consider the coset cb + Aab. Since ab E A’, this coset contains an element 
y E ,4’ such that 0(y) < 0(ab), i.e. B(y) $; e(ab) - 1. We have y = xb with 
x E c + Au, whence x E A’ according to our first statement, i.e. 
x E A,’ n (C + Au). If 0(x) = 0(u) - 1, we have B(xb) - e(x) :< fl(ub) - 
1 - (e(a) - 1) = h, and this contradicts (2) since B(x) < e(a). Otherwise 
we have 0(x) :?; 0(a), whence B(rb) - Q(x) < 0(ab) - 1 ~ 0(a) : h - 1, in 
contradiction with (1). Thus e(ab) < B(a) f f?(b) is impossible. QED. 

5. DonM1i-s WITH FINITE RESIDUE FIELDS 

Let =Z be a noetherian one-dimensional domain (e.g. a Dedekind or 
a principal ideal domain) for which all the residue fields are finite. Then, 
if b is a nonzero ideal of A, it is well known that A/b is a finite ring. More 
generally we define the norm n(b) of an ideal b in a ring A as the cardinal 
number card(A/b); the norm n(b) of an element b E A is by definition n(,Ab). 
For b, 6’ E -4, b’ not a zero divisor, the isomorphism AjAb -+ Ab’/Abb’ 
shows that 

n(bb’) = n(b) b(b’). 

The word “norm” is justified by the following result: If A is an order of a 
number field K (i.e. a finite Z-algebra having K as a field of fractions), then, 
for b E A, b of 0, we have 

([lo, p. 62-631). 
n(b) = 1 Ai,,(b) I 
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PROPOSITION 13. In a ?zoetherian ring A, the number of ideals having 
a given jinite nom is finite. 

Let n be this norm. The number of isomorphism classes of rings with ~1 
elements being finite, it is sufficient to show that, if R is a given finite ring, 
the family (bJiEI of ideals bi C ,;Z with iljb; w R is finite. Let b = &, bi . 
\Ve have an injective homomorphism A/b + JJj iZjbi = RI. Sow let 
lllj(j ~~ I,..., Y) be the maximal ideals of R; set Qj .~~ card(R/nt;), and let s 
be an exponent such that (mi ,..., nt,.)” ~~ 0. Re then have, for every .X in R 

P(x) fJ (2” ~ x)” 0. (5.1) 
i -1 

This relation holds also for every x in ICI, whence for every element of 
B A/b. 

Now H is noetherian, and there is a manic polynomial P(X) over Z such 
that P(b) == 0 for every b E K. Since a nonzero polynomial has only a finite 
number of roots in an integral domain, we see that B/p is finite for every 
prime ideal p of B. In particular B/P is a field, p is maximal and B is Artinian. 
Since its residue fields arc finite, and since R has finite length, B is a finite 
rin g. The correspondence between the ideals of B I/b and the ideals of 
-4 containing b shows that the latter ones form a finite set. Hence the family 
(bJiEi is finite. Q.E.D. 

Given an Euclidean domain -4 with finite residue fields, one can ask whether 
the norm is an algorithm on .A. 

EsilnrrLrzs. (I) For ,2^ F Z, n(~) ,&. 1, so that the usual algorithm on Z 
is the norm. 

(2) Let k be a finite field with q elements; for any nonzero polynomial 
b E k[X] we have n(b) = qor”(r’), so that the norm in k[X] is isomorphic with 
the usual algorithm. 

(3) Let R be a principal ideal domain with a finite number of maximal 
ideals Apr ,..., Ape , such that /ljAp; is a finite field with qi elements. If 
z’~ denotes the normalized p,-adic valuation of .-I, we have 

Given b E A, b # 0, we have found in the proof of Prop. 5 (Sec. 3) representa- 
tives .X for the nonzero classes mod Ah such that vi(x) .. v,(b) for all i, one 
at least of the inequalities being strict. Thus n(s) < n(b) for such a rcpresenta- 
tive .x. so that the norm is an algorithm on il. 
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(4) Let iz be an Euclidean domain with finite residue fields, S a multi- 
plicative subset of A (0 $ S), and suppose that the norm n is an algorithm 
on A. We have seen in Prop. 7 (Sec. 3) that, if we write each x E S-IA, x f 0 
under the form x = (s/t) x’ with s, t E S and x’ E A prime to all elements (of S, 
then the mapping n’ defined by n’(x) = n(x’) is an algorithm on PA. Since 
A/&4x - S-lA/SplAx is an isomorphism, we see that the algorithm 71’ 
is actually the norm on S-IA. 

(5) When mathematicians have studied which rings of integers in 
number fields are Euclidean, they usually meant to find out whether these 
rings are Euclidean for the noym. This problem has been settled for quadratic 
fields, there are five imaginary quadratic fields Q(z/d), 

d = -1, -2, -3, -7, --II 

and sixteen real quadratic fields, 

d = 2, 3, 5, 6, 7, II, 13, 17, 19, 21, 29, 33, 37, 41, 57, 73 

for which the ring of all algebraic integers is Euclidean for the norm [5]. 
One can tackle the more general problem of finding out the number fields 

for which the ring of integers is Euclidean (for some algorithm, not necessarily 
the norm). The answer is quite simple for imaginary quadratic fields, due 
to the scarcity of units. 

PROPOSITION 14. The only imaginary quadratic $elds Q(z/-d) for 
which the ring A of integers is Euclidean are the ones for which d = 1,2, 3,7, 1 I. 
These rings are even Euclidean for the norm. 

Except for d = 1 and d = 3, the only units in A are +l and - 1. We 
exclude these two cases and we use the transfinite construction of Section 4, 
so that A, = {, 0, 1, - 1} (with the notation of this construction). Thus 
A, - A, consists of elements with norm 2 or 3. Now, for -d = 2 or 3 
(mod 4), we have A = Z + Z&d and the norm of x = a + b&d(a, b E Z) 
is a2 + b2d; the equation a2 + b2 = 2 or 3 has solutions only if d < 3. For 
d = 1 (mod 4) the ring of integers A is Z + ((1 + d--d)/2)Z, the equation 
to be solved in ordinary integers is (2a + b)2 + ab2 = 8 or 12, and has 
solutions only if d < 12, i.e. only if d = 7 or 11 (since -d = 1 (mod 4)). 
Thus, if A is Euclidean, A, - A, is nonempty, and the only possible vaJues 
for d are 2, 7, 11 (and also 1 and 3). But, in each five cases, A is known to be 
Euclidean for the norm. 

Remarks. (1) The fact that the ring of integers of Q(d-d) is known 
to be principal also for d = 19,43, 67, 163 gives examples of P. I. D’s which 
are not Euclidean for any algorithm (should one say “which ain’t Euclidean 
for no algorithm ?“). Other examples are given in Section 6. 

481/19/z-10 
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(2) One should not conclude from the proof of Prop. 14 that, if a ring A 
is not Euclidean, its transfinite construction stops with the units. In fact, 
in A = Z[z/lO], the elements 3 + 2~~10 and 9 + 22/10 generate prime 
ideals pi(i = 1, 2), of norms 31 and 41, for which the class of the fundamental 
unit 3 + \/lo of A generates the multiplicative group (A/pi)* (i.e. 3 + v”B 
is a primitive root mod p,). Thus the nonzero cosets mod pi are represented 
by units, and the elements 3 + 2\/‘10, 9 +~ 21/10 (and their associates) 
belong to the stage A, of the transfinite construction of *q. However Z[v’a] 
is surely not Euclidean, since it is not even principal (its class number is 2). 

Concerning real quadratic fields, the ones for which the ring of integers 
is Euclidean are not known. Even one does not know whether there exists 
such a field for which the ring of integers is Euclidean without being Euclidean 
for the norm (i.e. a field outside the above list of sixteen). 

A possible candidate might be the ring A = Z[v’fi]. This is known 
to be principal. Its fundamental unit is 15 -+ 4x,%, whence its units have 
the form a + 6x114 with b even. The elements of the coset 1 i- \/I4 -{ 2‘4 
cannot thus be units, whence none of them can have a norm < N(2) == 4 
since 3 is not a norm in A (the ideal 3A is prime). This shows that i2 is not 
Euclidean for the norm. However I was able to show, by direct computation, 
that all elements of A up to norm 3 1 are in some A, of the transfinite construc- 
tion(in fact in 4,, the two last ones to be caught being 6 -+ 22/i;i, norm 20, 
in A, and 4, norm 16, in A,). Many more primes (of norms 43, 47, 67, 101, 
103, 107) are in ‘4,) i.e., the fundamental unit 15 + 4&4 is a primitive 
root modulo these elements. We are thus very close to the hard problem of 
getting some information about the set of primes modulo which a given 
element is a primitive root (there is a famous conjecture of E. Artin about the 
ordinary prime numbers for which 2 is a primitive root; set [3, introduction]). 

We mentioned, in the introduction, the following problem: Are transfinite 
valued algorithms really needed for Euclidean domains ? Since extremely 
nice Euclidean rings admit transfinite valued algorithms (e.g. p)(2j(2n + 1)) == 
Jo {- n + 1 in Z, for n > 0, w denoting the first transfinite ordinal), the 
problem should be stated as: given a Euclidean domain, is its smallest algo- 
rithm finite valued? I do not know the answer in general. However, 

PROPOSITION 15. In a l?uclidean domain A with j&e residue jields, the 
smallest algorithm 8 is finite valued. 

Proof. Otherwise there is an element b G A such that o(6) = w. Every 
coset c, + Ab admits a representative ri with B(rJ < W, i.e. 0(r,) = ni finite. 
By the hypothesis A/Ab is finite, thus rz = 1 + supi (ni) is an ordinary 
integer. By definition of the smallest algorithm, we thus have B(b) < n, 
a contradiction. Q.E.D. 
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6. 111~~s OF AFFINE CIJRVES 

Since the rings we are interested in are principal, and therefore integrally 
closed, we will restrict ourselves to normal affine curves. Such curves are 
obtained from complete (i.e., projective) normal curves by removing a finite 
number of points (“the points at infinity”). In a more algebraic way let R 
be a field, K a finitely generated extension of R with transcendence degree 1, 

and (z.&~P the set of all valuations of R that arc trivial on R; as is well known, 
these valuations are discrete, and we may suppose they are normalized. 
Let P = I u F be a partition of P in which I is finite nonempty, and let V, 
be the valuation ring of z’, ; then A = nWytF VE is the ring of an affine normal 
curve, and all such rings can be obtained in this way. For convenience’s 
sake, we assume that K is a regular extension of k, i.e. that K is separable over R 
and that k is algebraically closed in K; in particular flaEP V, = iz. For 
the reader’s convenience, we first recall or make explicit some more or less 
known results. 

It is well known that A is a Dedekind ring. To any fractionary ideal YI of A 
corresponds a divisor d(%) = xatF n(a) a: “at finite distance” (where 
n(a) = inf,,,, ~~(2)). The ideal BI is principal, say CLI =z Aa, iff the d:ivisor 
(a) = zEtP v,(a)ol of a in K is equal to cl(%) + (divisor at infinity), i.e. iff 
@I) is congruent to a principal divisor of K modulo a divisor at infinity. 
If we call D the group of all divisors of K (D = ZIP)), D, the group of divisors 
at finite distance (D, = ZF)), D, the group of divisors at infinity (0, == Z1) 
and Df the group of divisors of functions, we have thus seen that the class 
group C(A) of A is given by 

C(A) ‘v D/V& + 0,). (f-5.1) 

Now n, is a subgroup of the group n,, of divisors of degree 0, and 13,/D, 
is the Jacobian variety J of the complete curve C corresponding to K (more 
precisely, J denotes here the group of rational points over k of this Jacobian 
variety). Let 6 (resp. 6’) be the g.c.d. of the degrees of the divisors of K 
(resp. of the divisors at infinity); in other words82 (resp.6’2) is the image of D 
(resp. D,) by the degree map b ---f do@). Then D/(Df + D,) admits as quotient 
group the group D/(Do + D,) ‘v SZjS’Z which is a finite cyclic group. 
The corresponding subgroup is (Do + D,)/(D, + DI) and is clearly iso- 
morphic with Do/Do n (D, $ D,), i.e. with a quotient group of the Jacobian 
J. 1Ve thus have proved 

PROPOSITION 16. With the above notations, we have the exact seyuenc#o 

0 -+ Do/Do n (D, + D,) --t C(A) + SZpZ - 0 
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in which SZjS’Z is a $nite cyclic group, and D,lD, n (D, -I- I~,) is the quotient 
group of the Jacobian J by thefinitely generated subgroup (D,, n (D, + D,))/D, . 

This last group is the image in J of the divisors at infinity which have 
degree 0. 

It is 0 if there is only one valuation at infinity. 

COROLLARY. Suppose k algebraically closed. Then A is principal iff the genus 
g of C is 0. 

In fact we have S = 6’ = 1 since k is algebraically closed. Ifg = 0, we have 
j --- 0, whence ~(~4) =z 0. If g y 0, the Jacobian J is not a finitely generated 
group (e.g. it carries points of arbitrarily high order), whence 

Do/D, n (II, f D,) f 0. 

If k is not algebraically closed, it may happen that J is a finitely generated 
group (e.g. when k is finitely generated over the prime field, according to 
the Mordell-Weil-Severi-Neron theorem). Then the valuations at infinity 
of K may be chosen in such a way that A be principal (i.e. D, must contain 
a divisor of degree 6 and D, n D, must contain representatives of a finite set 
of generators of J). 

PROPOSITION 17. The group of units ,4* of i2 is the direct product of h* 
and of a free Abelian group of rank < card(L) - 1. 

In fact an element 3~’ of K” belongs to A* iff its divisor (x) is in D, , i.e. in 
D, n D, . Whence a homomorphism F of A* into D, n D, , which is a free 
group of rank card(l) - 1, and the kernel of q~ is k* since nnEP I’, =y 1~. 

PROPOSITION 18. Let K’ be an infinite field, L a finite dimensional vector- 
space over K, W a proper subspace of L and r a finitely generated Abelian 
subgroup of Aut(L). Then TW #L ( i.e. the transforms of W by the elements 
of T do not fill L). 

First we get rid of the case in which K is algebraic over a finite field. 
Then Aut(L) (considered as a matrix group) is a union of finite groups (namely 
the groups of matrices with entries in finite subfields of K), and all its elements 
are of finite order. Thus r is a torsion group, whence a finite group. Hence 
I’W is a finite union of proper subspaces, and does not fill L since K is infinite. 

T\‘e take a basis of L over K containing a basis of W (so that L = K”, 
IV =-: Kr’, p < n). Let (rs) be a finite system of generators of r, (a,,i.j)(ai,i,j) 
the matrices of ys and r;‘. We can then replace K by the sufield generated 
by the elements a,5,i,j, ai,i,j, thus assume that K is finitely generated otter 
the prime field. Then the Kroneckerian dimension of K is finite, and is >I 
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since we have excluded the case in which K is algebraic over a finite field. 
The subring A of K generated by the elements a,,i,j, al,i,j is not a field 
since, by a corollary of the Nullstellensatz, a finitely generated Z-algebra 
which is a field is a finite field ([12, Chap. V, Sec. 3, no. 4, Cor. 1 du Thm 31). 
If the Kroneckerian dimension d of K is ;‘-2, we can find a discrete valuation 
ring R of K containing A such that the residue field K’ of K has Kroneckerian 
dimension d - 1. The matrices of the elements of L’ being invertible over R, 
the relation TR’ = L, i.e. T’Kn = K”, would imply TR” =: R”. By the base 
change R --f K’ the image of rwould be a finitely generated Abelian subigroup 
r’ of aut(K’?&) such that T’K’P = K’“. By successive reductions, we may thus 
assume that K has Kroneckerian dimension I, i.e. is a number JieZd or a 
function field in one variable over a jkite field. 

\I’e then proceed by induction on dim(L). For dim(L) = 1, we have 
IV = CO}, whence rW = (0) #L. If L admits a nontrivial subspace L, :stable 
by r (i.e. PL, = L,), two cases may occur. If L, @ IV, L, n 11’ is a proper 
subspace of L, , and rW = L would imply r(L, n IV) = L, and contradict 
the induction hypothesis. If L, C IV, W/L, is a proper subspace of L/L, , 
r acts on L/L, , TIP’ = L would imply r(W/L,) = L/L, , again in contra- 
diction with the induction hypothesis. WTe are therefore reduced to the case 
in which L is a simple K[r]- mo u e, d 1 i.e. is isomorphic to a field K[:r]/m 
(m: a maximal ideal). In other words L may be viewed as a finite extension 
of K, and r as a finitely generated subgroup of the multiplicative group L*. 
We will use the following remark: 

(R) We may replace W by cuPI’ for any 01 EL* (and keep the same 1‘) 

(In fact rw = L implies rffw = dw = 0lL = L). 
i%‘e first tackle the case in which L is separable over K. We may enlarge W 

and suppose it is a hyperplane. Since the bilinear form Tr(.y . y) on L is 
nondegenerate, IV is defined by an equation of the form Tr(ax) = 0 (a EL*). 
Replacing IV by aplW (by (R)) we may assume that W is defined by the 
equation Tr(x) = 0. Let (rs) be a finite generating system of r. For almost 
all valuations w ofL we have w(rJ = w(y;‘) = 0, for every s, whence w(y) = 0 
for every y E r. On the other hand, if we call L’ the Galois closure of L 
over K, the equipartition of the “Frobenius elements” in the Galois group 
of L’ over K show that this element is the identity for infinitely many valua- 
tions of L, i.e. that infinitely many valuations of K are completely decomposed 
in L’, whence also in L. Thus there exists a completely decomposed valuation 
v of K such that, for all the extensions wr ,..., w,, (n == dim(L)) of n to L, 
we have zcJr> = {O}. iYow, if we call ur ,..., on the distinct K-isomorphisms 
of L in L’, and w any fixed extension of v to L’, we have We = w o oi and 
Tr(.y) = ur(~) + ... + UJX) for any x EL. Now the approximation theorem 
provides us with an element y of L such that the values w,(y) are all distinct. 



Suppose that L = TM’. Then we can write 3’ :m ys with y E r and s E 11; 
i.e. Tr(.v) or -+ ... ~+ a,(a) = 0. This implies that for two distinct 
indices i, j, vve have w(a,(.v)) =: w(u,(x)), i.e. W,(X) = wj(s). Since zc,(y) ~- 
zej(y) = 0 and zu,(y) f- a,(y), the relation 4’ == yzc leads to a contradiction. 
Thus L J TIC’ in the separable case. 

In the general case, let L,. be the separable closure of K in L. Since every 
element of L has a power in L,, , r,ir n L, is a torsion group, whence a finite 
group. Let 6, ,..., S, t r be representatives of the classes module r i? L,, . 
Suppose that L =: rI1’. Then every x EL,? may be written as s - ySjzu with 
y E r n L, , w E IV and a suitable j; here Sj~j t 6,W n L, . By using (R) we 
may assume that all the 6,I1)- n L,\ are proper subspaces of L, : in fact take 
a t L such that a $6,W for evcryj; then L, C S,ap’ CV would imply 1 t a l6, If, 
i.e. u E S,I17. Thus each 6,11’ n L, is a hyperplane in L,- . Let Ff be a fixed 
hyperplane in L,$ . Since L,” acts transitively on the set of hyperplanes of L, 
(note that Hom,(L, , K) is a one-dimensional vector space over L,J, we can 
write SjlP n L,- = ol,H with 01~ EL,?*. Let I” be the subgroup ofL,* generated 
by r n L, and the aj . We then have L,, pz FH, in contradiction with the 
result proved in the separable case. QED. 

I am indebted to P. Deligne for the idea of using the equipartition of the 
Frobenius elements. 

COROLLARY. If K’ is a proper extension of an in$nite$eld K, then the group 
KIT/K* is not jkitely generated. 

The case of a transcendental extension is clear (there are infinitely many 
irreducible manic polynomials in K[S]). Thus we may suppose that K’ is 
finite algebraic. Representatives in K’* of a finite generating set of K’*,‘K* 
generate a subgroup r of K’* such that K’ = TK. 

The fact that, for an infinite field K, the multiplicative group K* and the 
additive group K are finitely generated, is true and very easy to prove. 

Remark. The fact that infinitely many valuations of a field K are totally 
decomposed in a finite separable extension is also proved by Nagata in [9]. 
The above corollary has been proved by A. Brandis [4], who also uses 
Cebotarev density theorem. 

WC now consider curves of genus 0. Since the canonical divisors of the 
function field K have then degree -2, the g.c.d. S of the degrees of the 
divisors is either I or 2. Let C be an affine normal curve with function field K, 
and A be the ring of C. For a E -4, a =/- 0, we define the degree of a as being 
the dimension of A/Aa over the ground field iz; notation do(a). 

PROPOSITION 19. Let A be the ring of an afine normal curve C of genus 0 
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(a) Suppose that S = 1. Then the following assertions are equivalent: 

(i) The g.c.d. 6’ of th e d egrees of the divisors at infinity is 1; 

(ii) A is principal; 

(iii) A is Euclidean for the degree (more precisely for 

B(x) = 1 + [A/Ax : k], x f 0). 

(b) Suppose that S = 2. Then A is principal t# S’ = 2. Furthermore, 
A is never Euclidean. 

Since the Jacobian variety J is 0, the exact sequence of Prop. 6 show:5 that 
C(A) is isomorphic with SZjS’Z. This p roves the equivalence of (i) and (ii) 
in (a), and the first statement in (b). W e now prove that (i) and (ii) imply (iii), 
and this will take care of (a). Consider a E A, a # 0 and set d = (do(a). 
Hypothesis (i) shows the existence of a divisor b at infinity with degree d - 1. 
As usual, set L(b) = {X E K 1 (x) 2 -b}. By Riemann-Roth’s theorem, 
L(b) is a vector space of dimension d over k. Since the elements ofL(b) have 
no poles at finite distance, we have L(b) C iz. Furthermore, for x EL(b), 
x f 0, the part at finite distance of the divisor (x) is positive and its degree 
is -<do(b) = d - 1; in other words we have do(x) < d - 1. Consider now 
the k-linear mapping q~ : L(b) --f A + A/Au; for x # 0, T(X) = 0 means 
that x E Aa and implies that do(x) > do(a) = d; we have just seen it is 
impossible, whence F is injective. Since the vector spaces L(b) and .4/,4a 
have the same finite dimension d, y is surjective, so that each class mod i2a 
admits a representative Y EL(b) and we have do(r) < d - 1 < d = d”(a). 
In other words A is euclidean for the degree and (a) is proved. 

Let us now prove the second statement in (b). Chevalley’s theorem about 
finite fields being C, implies that a curve of genus 0 over a finite field k carries 
a rational point over k. Thus the hypothesis S = 2 implies that k is infinite. 
It also implies that the residue fields of A are proper extensions of k. If A were 
Euclidean, it would contain at least a prime element b such that the re:sidue 
classes mod Ab can be represented by 0 or units (Sec. 4); in other words 
r2* - (A/Ah)* would be surjective. Since A*/k* is a finitely generated group 
(Prop. 17), this would imply that (A/Ab)*/k* is finitely generated and 
contradict corollary to Prop. 18. Therefore A cannot be Euclidean. Q.E.D. 

Part of Prop. 19 had been obtained by J. V. Armitage [l, 21. 

PROPOSITION 20. As above let A be the ring of an a&&e normal curve C 
of genus 0, with S = 6’ = 1. Suppose that the ground field k is infinite. Then 
the smallest algorithm 9 on A is q.(x) = 1 + [A/Ax : k] (i.e. is the degree). 
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\Ve already know that 19(x) =: 1 + [A/Ax : k] is an algorithm on ,-1 
(Prop. 19). Thus v(x) << 0(x). Suppose that v f 19, and let n be the smallest 
integer for which there exists b E A with v(b) :m:: n and 8(b) > n. Since both 
B(x) = 1 and y(x) == 1 mean that x is a unit, we have n > 2. For any ,x L 0 
such that I&S) < n, we have d :- [A/4x : k] == v(x) - I < n - 1. Then 
the “part of infinity” of the divisor (b) has degree -d, so that there exists 
a divisor ‘?I at infinity of degree n - 2 such that (b) I.- ---‘?I, i.e. such that 
b cL(‘zI). Now, if PI, denotes a fixed divisor of degree II - 2 at infinity, 
91, ~ BI is a principal divisor with zeros and poles at infinity, i.e. the divisor 
of a unit u E A*. In other words L(BI) =- uL(BI,), so that the set of all x t =3 
such that p)(x) < n is A*L(%,). Since i2” _ I’k%“, where r is a free Abelian 
group of finite rank, the above set is G5(?I,). Kow L(PI,) is a vector 
space of dimension n - 1 over k, whereas A/Ah has, by hypothesis, 
a dimension >x n ~ 1. Let I” and L’ be the images of r and L(\zI,) in A/Ah. 
The fact that y(b) = n means that A”L(‘21,) ---f A/Ah is surjective, i.e., that 
24/Ab = FL’. Since k is infinite, since L’ is a proper subspace of AjAb, and 
since the group r’ is finitely generated, this contradicts Prop. 18. QED. 

Remarks. (1) As was pointed out to me by Professor Robert MacRac, 
the method used for proving (b) in Prop. 19 shows that, if C is an affine curve 
without rational points over an infinite field k, then k[C] cannot be Euclidean. 
As noticed by him, this conclusion holds also if C has only a finite number 
of rational points over k: remove these points from C by localizing k[C] 
with respect to a suitable element, and apply Prop. 7 (Sec. 2). 

(2) When k is a finite field, it has been proved by H. Hasse and his 
students that any nonconstant element of k(C) is a primitive root modulo 
infinitely many primes [6]. Thus, if A ~:~m k[C] is principal (this can be achieved 
for any function field k(C) by sending enough points at infinity), infinitely 
many (prime) elements of A belong to the stage A, of the transfinite construc- 
tion. Does this make A Euclidean? 

At any rate, in genus 0 (in which case A is Euclidean by Prop. 19(a)), 
the smallest algorithm 0 on A may very well be distinct from the degree 
(which, in this case, is an algorithm isomorphic to the norm). For example, 
let A = F,[X, X-l]. The units are the elements aXi, a E k*, J’ E Z. For a 
polynomial P(X) E F,[X] prime to X and of degree n, the relation Q(P(X)) = 2 
means that P(X) is irreducible and that the class x of X in F,[X]/(P(X)) N F,n 
generates the multiplicative group F$ modulo F,*. Since F$/F,* is a 
cyclic group of order (4” - l)/(q - l), there are (q - l)p{(q” - l)/(q - l)} 
such elements in F,* (p: Euler function). The number of corresponding 
polynomials P(X) is thus (q - l)“/n ~((4% - l)/(q - 1)). This gives some infor- 
mation about the set A, . It would be interesting to describe the transfinite 
construction for A and its smallest algorithm, even in the simple case q = 2. 
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