
LECTURES ON SHIMURA CURVES 9: QUATERNION ORDERS

PETE L. CLARK

1. Orders and ideals in quaternion algebras

Our task here is to recall part of the theory of orders and ideals in quaternion alge-
bras. Some of the theory makes sense in the context of B/K a quaternion algebra
over a field K which is the quotient field of a Dedekind ring R. For our purposes
K will always be a number field, or the completion of a number field at a finite
prime, and R will be the ring of integers of K. (Nevertheless, we shall see that in
the global case, the most important distinguishing feature of B is its non/splitting
at the infinite places.)

Definition: An element x ∈ B is said to be integral (with respect to R) if its
(reduced) characteristic polynomial T 2 − t(x)T + n(x) has R-coefficients. This is
consistent with the notion of integrality from commutative algebra: i.e., it would
be equivalent to require R[x] to be a finitely generated R-module. Indeed, R[x] is
a commutative R-algebra, so we have not yet left the realm of commutative algebra.

Rather, what differs from the commutative case is that the set of integral ele-
ments of H need not form a ring.

Example 1: Take B = M2(Q) and consider the matrices

X =
[

1
2 3
1
4

1
2

]
, Y =

[
0 1

5
5 0

]
.

Then X and Y are integral elements but neither X + Y nor XY are integral.1

As we shall soon see, this makes the theory of quaternion orders signficantly more
complicated than in the commutative case.

First we give a long list of definitions.

Definition: An ideal of H is just an R-submodule I of B such that the natural
map I ⊗R K → B is an isomorphism. (In other words, it is the analogue of a frac-
tional ideal in the commutative case.) An ideal is said to be integral if it consists
of integral elements. An order O is an ideal which is a subring.

Exercise 1: Show that an order is an integral ideal.

An maximal order is (of course) an order which is not properly contained in any
other order, and an Eichler order is an order which can be written as the interseec-
tion of two maximal orders.

1I “found” this example in my thesis, but it must come originally from Vigneras’ book.
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Note that since the set of all integral elements is (in general) not an order of B,
something must be said about why orders exist at all.

Lemma 1. Any integral element x of H lies in an order, hence in some maximal
order.

Proof: If x ∈ R ⊂ K · 1, then it will lie in all orders, so it suffices to handle the
case where x is not in R. In this case, K(x) = L is a quadratic extension in which
o = R[x] is an R-order.2 Thus we can write x = a+

√
c for a, c ∈ R, and it is clearly

enough to construct a maximal order containing x :=
√

c. Let y be an R-integral
Noether-Skolem element: i.e., such that y−1xy = x. (Note that the choice of such a
y is unique up to a scalar from K, and we can take it to be integral just by clearing
the denominator.) As we have already seen, the R-submodule generated by x and
y is R + Rx + Ry + Rxy: in particular, it is an R-order. There is no reason for it
to be maximal, but by Zorn’s Lemma every order is contained in a maximal order.
(Shortly we will give a better proof of this last step.)

Another way of proving the lemma would exploit the relationship between ideals
and orders. Namely, if I ⊂ B is an ideal, we define its left and right orders

O`(I) = {h ∈ B | hI ⊂ I},
Or(I) = {h ∈ B | Ih ⊂ I}.

Note that these are orders, not necessarily equal. An ideal is two-sided if O`(I) =
Or(I). Exercise 2: For an ideal I, the following are equivalent:
a) I is contained in O`(I) and Or(I).
b) II ⊂ I.
c) I is an integral ideal.

An ideal I is principal if there exists an h ∈ B such that I = O`(I)b = bOd(I).

If I and J are two-sided ideals, the product IJ is defined in the usual way as
finite sums ij. This is an ideal.

Moreover, for a two-sided ideal I we can define

I−1 := {h ∈ B | IhI ⊂ I}.
It is easy to see that we have the containments

II−1 ⊂ O`(I), I−1I ⊂ Or(I).

We would very much like these inclusions to be equalities: if so, we would feel
justified in calling I−1 the inverse of I. Note that a principal ideal is invertible.
Later we will introduce the notino of a locally principal ideal, which is also easily
seen to be invertible. For our purposes here (ideals of Eichler orders of local and
global fields), all ideals will be locally principal, hence invertible. Ideal classes: we
say two ideals I, J are equivalent on the left if I = hJ for some h ∈ B. If O is an
order, we define the set Pic`(O) of left-ideal classes of O: this is the set of ideals
with right order O modulo equivalence on the left. (This is the correct way to do

2We will use upper case caligraphic letters to denote orders of H and lowercase gothic lettters
to denote orders of quadratic subalgebras of H.
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it, since modifying an ideal on the left does not change its right order.) Of course
there is a similar definition Picr(O) f of right-classes of left O-ideals. This does not
give anything new, since the map I 7→ I−1 induces a bijection Pic`(O) → Picr(O).

Two orders are said to be of the same type if they are conjugate by an element
b ∈ B×.

Linked orders: We say that two orders O and O′ are linked if there exists an
ideal I whose left order is O and whose right order is O′. This is an equivalence
relation, and we will speak of linkage classes of orders. As an example, the maxi-
mal orders lie in a single linkage class (since, if O and O′ are any two orders, put
I := O · O′ and O ⊂ O`(I) and O′ ⊂ Or(I); if O and O′ are maximal, we must
have equality).

Lemma 2. Linked orders have the same number of (left or right) ideal classes.

Proof: Suppose O and O′ are linked by I. We define a map from the set of left
O-ideals to the set of right O′-ideals by J 7→ J−1I. The map P 7→ IP−1 gives
an inverse. Moreover, the map descends to ideal classes, since Jh 7→ (Jh)−1I =
h−1J−1I.

Definition: The class number of B (with respect to R) is # Pic`(O), where O is any
maximal order. Note that the preceding lemma ensures that this is well-defined.
The type number of B is the number of conjugacy classes of maximal orders of B.

Lemma 3. The following are equivalent:
a) Two orders O and O′ are of the same type.
b) There exists a principal ideal I linking O and O′.

Corollary 4. If the class number of B is one, its type number is one.

Proof: Since any two maximal orders are linked by some ideal, this follows imme-
diately from the lemma.

Exercise X: Show that, in general, the type number is less than or equal to the
class number.

Our goal here is to compute class numbers and type numbers for quaternion al-
gebras over p-adic fields and over number fields.

1.1. Discriminants. One aspect of the theory of orders and ideals which works
just as nicely in the commutative case (thank goodness) is the discriminant. Let I
be an ideal of B. We define n(I) to be the fractional R-ideal generated by reduced
norms of elements of I. For an order O, we define as usual the different D(O), as
the fractional ideal which is the inverse of the dual O? of O for the trace form:

O? := {x ∈ B |t(xO) ⊂ R}.
We can define the discriminant ∆(O) as the norm of the different ideal.

Discriminants can be computed using the following two useful facts:
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(i) ifO is a free R-module with basis vi, then ∆(O)2 is the principal ideal R(det(t(vivj));
(ii) ∆ can be computed locally on R. Remark: Note that we computed the dis-
criminant using the reduced norm and the reduced trace. This is really a reduced
discriminant in the following sense: the associated (norm) form on O is a quater-
nary quadratic form over the ring R. The discriminant of this quadratic form in the
usual sense (i.e., the determinant of a matrix representation) is easily seen to be a
square, and our discriminant is its square root. (So in particular, the squareclass
of the discriminant of an order does depend on the order.)

Proposition 5. Let O ⊂ O′ be orders of B. Then ∆(O′) ⊂ ∆(O), with equality
iff O′ = O.

Exercise 2: Prove it.

Note that this gives a much more reasonable explanation for why every order is
contained in a maximal order: R is a Noetherian ring!

Example 2: Take B = M2(K) and O = M2(R). Taking the obvious standard
basis of O, we compute immediately that the discriminant ideal of O is R itself,
which implies that M2(R) is a maximal order. (Stop and convince yourself that it
is never the unique maximal order.)

Example 3: Take K = Q, B = 〈−1, −1〉. As we’ve just recalled, the Hilbert
symbol representation determines an integral basis O = Z[1, i, j, ij], and one cal-
culates that the dsicriminant of O is 4Z, which is of course not a maximal ideal of
Z. Indeed, a maximal order containing it is O′ = Z[1, i, j, 1+i+j+ij

2 ] (here one must
check that this is actually an order, although this is certainly a well known classical
fact), with discriminant 2Z. This is a maximal order, and it is no accident that its
discriminant agrees with the discriminant of B in the sense of Brauer groups (i.e.,
the product of the ramified finite primes).

The determination of class and type numbers of maximal orders in a quaternion
algebra over a number field K proceeds by a familiar two-step process. Step 1 is to
understand what happens at every completion of K. Step 2 is to figure out how the
local results fit together to give a global result, namely what (if any) obstructions
intervene. We will discuss the two steps in the next two sections.

2. Local case

Let K = Kv be a p-adic field, and let B/K be a quaternion algebra. There are only
two cases: either B ∼= M2(K), or it is the unique division quaternion algebra. We
will recall some results in each case. We will for the most part not give proofs. Such
proofs can be found in Vignéras’ book. On the other hand, many of these results
are “so reasonable” that providing the proofs would probably be good exercises for
the reader.

Recall R = OK . Write π for a uniformizing element of K.

2.1. Split case. Let V/K be a two-dimensional vector space, so we are interested
in studying ideals and orders in B = End(V ).
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Proposition 6. a) The maximal orders of End(V ) are the rings End(L), where L
is a complete R-lattice of V .
b) The ideals of these maximal orders are all of the form Hom(L,M), where L and
M are complete R-lattices of V .

Theorem 7. a) All maximal orders of M2(K) are conjugate to M2(R).
b) The two-sided ideals of M2(R) form a cyclic group generated by the prime ideal
P = M2(R)π = πM2(R).

c) The integral left M2(R)-ideals are the distinct ideals M2(R)
[

πn r
0 πm

]
, where

n and m are non-negative integers and r runs through a set of coset representatives
of R/πmR in R.

Let O = End(L), O′ = End(M) be two maximal orders of V).Ifx, y ∈ K×, note
that End(Lx) = Ø, End(My) = O′, so that the maximal order depends upon the
lattice only up to homothety.

Exercise: a) Show that, conversely, if End(L) = End(M) for two lattices in V ,
then L and M are homothetic. (Suggestion: the discussion of the following para-
graph is helpful here.)
b) Conclude that the set of maximal orders in a split quaternion algebra over a
p-adic field K is in bijection to the homogeneous space GL2(K)/Stab(M2(OK)) =
GL2(K)/K×GL2(OK) = PGL2(K)/PGL2(OK).

If L and M are any two lattices, the theory of elementary divisors gives us a basis
(f1, f2) of L such that for some integers a, b, (πaf1, π

bf2) is a basis for M . The
integer |b− a| is independent of the scaling, so we may define the distance between
two maximal orders O,O′ to be this quantity |b− a|. As an example, the distance

between M2(R) and
[

R πnR
πnR R

]
is n. We define an Eichler order of local level

n to be an order obtained by intersecting two maximal orders of distance n.

Lemma 8. Let O be an order of M2(K). The following are equivalent:
a) There exists a unique pair of maximal orders O1, O2 such that O = O1 ∩ O2.
b) O is an Eichler order.
c) there exists a unique non-negative integer n such that O is conjugate to

On :=
[

R R
πnR R

]
.

Exercise: a) Consider the graph whose vertices are the maximal orders of M2(K)
and such that two vertices are connected by a (single) edge if and only if the two
maximal orders have distance one. Show that this graph is the homogeneous tree of
order q + 1 (where q is the cardinality of the residue field of K), called the Bruhat-
Tits tree of PGL2(K).

Exercise: Show that the discriminant of a level n Eichler order is (πn). (Here
we may view a maximal order as an Eichler order of level 0.)
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Let us summarize: for the split quaternion algebra over a p-adic field, there ex-
ist infinitely many maximal orders but they are all conjugate (i.e., the type number
is 1); the class number is equal to 1 (i.e., every left ideal for a maximal order is
principal); and the only invariant necessary to classify conjugacy classes of Eichler
orders is the level, which can be any positive integer.

Remark: The constructions of this section can be generalized in any number of
ways, i.e., to GLn(K) instead of GL2(K). Direct further questions to Gil Alon.

2.2. Nonsplit case. Now let B be the division quaternion algebra over a p-adic
field K. Things actually work out even more nicely in this case:

Proposition 9. The set of integral elements of B forms an order, which is neces-
sarily the unique maximal order of B.

Here the proof is rather interesting, and we will sketch it. Essentially, the idea is
to extend the discrete valuation v on K to a valuation on B. In fact we do this
in exactly the same way that one extends a valuation to a commutative extension:
namely, we define the map v : B× → Z by v(x) := v(n(x)). This gives a group ho-
momorphism which, when restricted to K, is precisely twice the original valuation.
On the other hand, v(

√
π) = 1, so the valuation is surjective onto Z.

Exercise: How do we know there is a square root of π in B? (Hint: An exten-
sion of local fields L/K induces a restriction map (L) → (K), or a map from
Q/Z→ Q/Z. What is this map?)

It is easy to see that this deserves to be called a valuation; namely it is multiplicative-
to-additive and satisfies v(x + y) ≥ inf(v(x), v(y)). (See Serre’s Corps Locaux for
more details.) Note that if x ∈ B \ K, then the valuation restricted to the qua-
dratic extension field L = K(x) is either the natural Z-valued valuation on L (if L
is ramified) or twice it (if L is unramified); in particular the set of integral elements
of B can be characterized as those having non-negative valuation. But clearly the
set of elements of B having non-negative valuation forms a ring; call it OB .

From this uniqueness, it follows that every integral ideal of OB is two-sided. In-
deed, there is a unique maximal ideal P , which is principal, consisting of (guess
what?) the elements of positive valauation, and the complete set of ideals is {Pi}i≥1.

Exercise: Show that the discriminant of the maximal order is (π).

Thus the class number and the type number is 1. Moreover, every Eichler order is
maximal.

3. Main results for orders over global fields

Let K be a number field, B/K a quaternion algebra, and let KB ⊂ K be the set
of elements which are non-negative at every ramified real place of B.

Theorem 10. We have KB = n(B). In particular, if B is split at every real place
of K, n(B) = K.
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Proof: As remarked several times in class, this is really a piece of the theory of
quadratic forms. It follows from (i) the (weak) Hasse principle for quadratic forms:
i.e., a qaudratic form q over a number field K represents an element a of K if
and only if for every place v of K, q ⊗ Kv represents a; and (ii) the fact that a
quadratic form of dimension at least 4 over a p-adic field is universal (i.e., reprsents
everything).

Theorem 11. Let H be the algebraic group of norm 1 elements of B (sometimes
called SL1(D) in the notes). Let S be a set of places of K containing at least
one Archimedean place. Write HS =

∏
v∈S H(Kv). Then, if HS is not compact,

H(K)HS is dense in H(A).

Proof: This is the strong approximation theorem applied to the group H (and not
for the first time!).

In practice we will want to apply this theorem with S being precisely the set of
Archimedean places, and in that case the noncompactness hypothesis is equivalent
to B being split at some infinite place (because SL2(R) is compact, whereas the
group of norm 1 elements in the Hamiltonian quaternions is homeomorphic to the
three-sphere). This gives us a fundamental dichotomy for quaternion algebras:

Definition: Say that a quaternion algebra B/K is not totally definite (or ntd)
if there exists a split Archimedean place; otherwise it is totally definite (td).3 Note
that if K is not totally real every qa is ntd (but in practice we will be interested
only in the totally real case, and especially in K = Q).

Localization: let I be an ideal in B. For each finite place v of K, we can as-
sociate the ideal Iv = I ⊗R Rv of Bv = B ⊗ Kv. Note that for all but finitely
many places v, Iv is an integral ideal of determinant 1, hence is a maximal order of
Bv

∼= M2(Kv).

One has the notion of a local property of ideals (resp. orders), namely a prop-
erty of I (resp. O) which can be checked on the localizations Iv.

Exercise: Show that the following properties of ideals and orders are local: be-
ing an order, being a maximal order, being an Eichler order, being an integral
ideal, being a two-sided ideal, the discriminant.

The fact that the discriminant can be computed locally leads to the following im-
portant facts:

Proposition 12. Let O be an Eichler order in a quaternion algebra over a number
field K. Then ∆(O) = N · D, where D is the squarefree product of the ramified
primes of B and N is coprime to B but otherwise arbitrary.

In particular, an order is maximal if and only if its discriminant is equal to the
Brauer group discriminant.

3The terminology n/td is ad hoc, but seems btter than Vignéras terminology: “B verifies (does
not verify) Eichler’s condition.”
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Adelization: Fix an ideal J of B of discriminant δ. For v not dividing δ, Jv is
a maximal order of the split quaternion algebra M2(Kv). We will call it the “stan-
dard lattice.”

Exercise 4: The map I 7→ (Iv) is injective, with image equal to systems of lo-
cal lattices which are standard at all but finitely many v’s.

Now let I be an ideal of B, and let g ∈ B×(A); in other words, g = (gv) is a
collection of local elements gv ∈ B×

v with the property that except for a finite set
of v, gv ∈ GL2(Rv). Consider the system (gvIv) of local lattices; except for a finite
set of v’s, gvIv = Iv. Thus by the preceding exercise, the system {gvIv determines
another ideal, and all such ideals arise in this way.

Remark: We could have worked with B×(Af ) instead of B×(A) and gotten the
same result. However, for certain constructions to come, we will want the larger
group. From this we can deduce a global - adelic dictionary. Fix O a level N
Eichler order of B, and put

O×A := (O ⊗ Ẑ)×.

Then the space O×A\B×(A) classifies left O-ideals. Indeed, take J = O, and to
every g = (gv) ∈ B×

A , we take I to be the ideal associated to the system Ivgv (note
that we have multiplied on the right!); this is still a left O-ideal. A local system
(gv) stabilizes O if and only if it stabilizes Ov for all v, i.e., if and only if it is an
element of O×v : done.

We write N(OA) for the normalizer of O×A in B×
A . Then we have the following

equivalences:

Proposition 13. Let O be a level N Eichler order in the quaternion algebra B
over the number field F . Then:
(a) Two sided O-ideals correspond to O×A\N(OA).
(b) Level N Eichler orders correspond to N(OA)\B×

A .
(c) Picr(O) corresponds to O×A\B×

A/B×
K .

(d) Types of level N Eichler orders correspond to N(OA)\B×
A/B×

K .

Exercise X: Prove it.

Part c) is especially interesting: it is the non-commutative analogue of the classfield
theoretic computation of the Picard group of an order o in a number field K:

Pic(o) = o×A\K×
A /K×.

In fact it is more than an analogy: let K×
B be the elements of K which are totally

positive at every ramified place of B; let (K) be the group of fractional ideals of
K, and let PH be the subgroup of principal ideals with generators in K×

B .

Define hB := #(K)/K×
B . if h denotes the class number of K and h+ the nar-

row class number, then we have h | hB | h+.

Theorem 14. (Eichler) Let B/K be a quaternion algebra which is not totally
definite, and let O be an Eichler order in B. Then the reduced norm map induces
a bijection n : Picr(O) → (K)/PH . In particular, hB is the class number of H.
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Proof: First note that the reduced norm map n : B× → K×, when evaluated at
the adelic points, induces a map B×

A → K×
A . This descends to a map

n : O×A\B×
A/BL → R×A\K×

A /KB .

Moreover, the right hand side is the adelic version of the group (K)/K×
B (i.e., global

class field theory says the two groups are canonically isomorphic). It remains to
be seen that the map is injective and surjective. The surjectivity is easy: at every
place v of K except a ramified infinite place, we have n(B×

v ) = K×
v , and at every

finite place we have n(O×v ) = R×v . Moreover, at every infinite place v, by O×v we
mean B×

v and by R×v we mean K×. So no problem.
For the injectivity, we need the Strong Approximation Theorem: recall that B1

/K ,
the elements of B of reduced norm 1, is a simply connected semisimple algebraic
group over K. Let S be the set of Archimedean places of K. The Strong Approxima-
tion Theorem,4 as discussed earlier in the course, says that if B1

S :=
∏

v∈S B1(Kv)
is not compact, then B1(K)B1

S is dense in B1
A. Now, since O×A is an open subgroup

of B×
A containing B1

S , we necessarily have B1
A ⊂ O×AB×

K . This proves the injectivity
and completes the proof of Eichler’s theorem.

Corollary 15. Let F be a totally real field and B/F a quaternion algebra over F
which is ntd (not totally definite).
a) If F has narrow class number 1, then all level N Eichler orders of B are conju-
gate, and every (left or right) ideal of an Eichler order is principal.
b) If B is totally indefinite, the same conclusion holds when F has class number
one.

Remarks:
(i) One can say much more about the relationship between the type number and
the class number in the ntd case: see Vignéras book. In my thesis, I recorded
the following striking result recorded: right h = Picr(O) for the class number of
the Eichler order O, t for the type number, and h2 for the number of classes of
two-sided O-ideals. Then h = th2. One can ask for an interpretation of h2 as
the cardinality of a subgroup of (K)/PH corresponding under Eichler’s theorem to
classes of two-sided ideals. The subgroup in question is the one generated by: (a)
squares of ideals of R = oK , (b) prime ideals ramifying in H, and (c) prime ideals
dividing the level N to an odd power. From this one gets the following

Corollary 16. If hB = #(K)/PH is odd, there is a unique conjugacy class of
Eichler order of any given level.

Thus, when hB is odd, one can speak of “the Shimura curve X∆
0 (N ), i.e., the

quotient of H by the order Γ(B,O) where O is an Eichler order of level N . (In
particular, we can and do speak this way when K = Q!)

(ii) These theorems are highly relevant to the determination of the set of connected
components of

V (O) = O×\(H±)g ×B×(Af )/O(Ẑ×),

4Actually we stated the Strong Approximation Theorem only for algebraic groups over Q. You
can either (i) believe that it holds verbatim over an arbitrary number field K, or (ii) deduce the
theorem for K fro the theorem for Q by a Weil restriction argument: your choice.
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although we will not have time to return to this issue in this course.

(iii) Although it is very tempting to make life simpler by taking hB = 1, the
general case contains some very interesting mathematics. Indeed, suppose that O
and O′ are two Eichler orders of the same level N but not of the same type (i.e., not
conjugate by an element of B×). Then the two Shimura curves associated to O and
O′ are non-isomorphic (there is an argument to be made here about normalizers of
arithmetic groups inside real Lie groups; the statement of the theorem will appear
in the notes on arithmetic groups). We can choose B so that O and O′ have no
elliptic points, in which case the Riemannian metric on H descends to S(O) and
S(O′): these are compact Riemannian surfaces: in particular, there is a laplace
operator ∆ whose eigenvalues form the spectrum. It has long been an important
problem in Riemannian geometry to construct isospectral but non-isometric Rie-
mannian manifolds. It turns out that the isospectrality of S(O) and S(O′) can be
interpreted in terms of the arithmetic of the quaternion orders (having the same
number of conjugacy classes with any given characteristic polynomial, or some-
thing much like that). By studying arithmetic of Eichler orders in sufficient detail,
Vignéras was able to show that there exist arbitrarily large sets of Eichler orders
of level N (for suitable N , F and B) such that the corresponding Shimura curves
are mutually isospectral but pairwise non-isometric. This was the first example of
a pair of isospectral non-isometric Riemannian surfaces!

(iv) The corollary (and hence Eichler’s theorem) fails dramatically for totally defi-
nite quaternion algebras: the class number of a totally definite quaternion algebra
over Q of discriminant D goes to infinity with D. These definite quaternion alge-
bras will arise in our story as well: they are intimately related to elliptic curves and
modular forms.


