
LECTURE ON SHIMURA CURVES 6: SPECIAL POINTS AND
CANONICAL MODELS

PETE L. CLARK

1. Introduction

As mentioned several times in class, the arithmetic of quaternionic Shimura va-
rieties is strongly controlled by the behavior of the class of CM points (just as
in the case of modular curves). Just as for elliptic curves, if o is an order in an
imaginary quadratic field K, one has a notion of a QM-surface with o-CM. Namely,
let ι : O ↪→ A be a QM structure on an abelian surface (we are still working over
C). We then have the notion of the QM-endomorphism ring and endomorphism
algebra of A: EndQM(A) is equal to the set of O-equivariant endomorphisms of A:
i.e., the set of endomorphisms α of A such that for all x ∈ O, ι(x)α = αι(x). In
other words, EndQM(A) is the centralizer of O in End(A). By our classification of
endomorphism algebras of abelian surfaces, there are essentially two possibilities:
either Z or an order in an imaginary quadratic field.

Conversely, if o is an order in an imaginary quadratic field, we can ask for the
set of all QM surfaces A in S(O) whose QM-endomorphism ring is o. This is called
the o-CM locus. In the elliptic curve case, the o-CM locus is always in bijection
with the Picard group of o, and moreover the locus forms a single orbit under the
Galois group of K, with Galois group isomorphic to Pic(o) (i.e., the ring class field
of o). Moreover the set of CM points is dense on the j-line, for the Zariski topology
and even for the C-analytic topology. 1

Here we want to understand the o-CM locus on a quaternionic Shimura curve
(F = Q).

2. Embeddings of quadratic orders into quaternion orders

Let B/K be a quaternion algebra over a number field. Recall that a quadratic
extension L/K can be embedded in B if and only if it is a splitting field for B, i.e.,
B ⊗K L ∼= M2(L).

Theorem 1. (Hasse) The quadratic subfields L/K of B are precisely those for
which for every prime v of K for which Bv := B ⊗K Kv is a division algebra (i.e.,
v is ramified in B), Lv := L⊗K Kv is a field.

Remark: When K = Q this says: if B is definite, L is quadratic imaginary, and
every prime p dividing the discriminant D of B is nonsplit in L. In particular the
set of quadratic splitting fields is infinite, of density (in a natural sense) equal to

1The CM points are not dense in the p-adic analytic topology: I have had occasion to exploit
this fact in my own work.
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2−N , where N is the number of ramified places of B.

(Sketch proof: The criterion is obviously necessary. Its sufficiency follows from
the functoriality of the exact sequence relating the Brauer group of a global field
to the Brauer groups of its completions.)

This gives a necessary condition on embedding an order o of an imaginary qua-
dratic field K into a given order O of an indefinite rational quaternion algebra B
of discriminant D: there must exist a field embedding ι : K ↪→ B.

Suppose we have an order o of K and an order O of B and a field embedding ι as
above. We say that this embedding optimally embeds o into O if o = ι−1(O∩ ι(L)):
in other words, it embeds o into O and does not embed any strictly larger quadratic
order.

Our problem for this section is to classify the optimal embeddings of o into O.
By the Noether-Skolem theorem, any two embeddings of K into B are conjugate
by an element of B. Let N(O) be the normalizer of O in B×/Q×: then N(O) acts
on the set of optimal embeddings. For G a subgroup of N(O), we write vG(o,O)
for the number of G-orbits of optimal embeddings, and we will write

v(o,O) = vO×(o,O).

As we shall see, this number is finite and can be computed by a local and local-
global calculation similar to the one performed for class numbers and type numbers.

This time we will just give a summary of the results. Detailed proofs can be
found in Vignéras’ book.

Definition: Let K be a local field with uniformizer π, and let L/K be an étale
quadratic algebra (in other words, L/K is either K ⊕ K or a separable field ex-
tension). The Eichler symbol ( o

π ) is defined as follows: if o is not the maximal
quadratic order or if L = K⊕K, it is 1. Otherwise, it is −1 if L/K is unramified
and 0 if L/K is ramified.

Theorem 2. (Optimal embedding theorem, split local case) Let K be a local field,
L/K an étale quadratic algebra, o an order of L and O ⊂ M2(K) an order.
a) If O is maximal, v(o,O) = 1.
b) If O is a level π-Eichler order, then v(o,O) = 1 + ( o

π ). In particular, we can
embed o in O unless o is maximal and L/K is unramified.

Theorem 3. (Optimal embedding theorem, nonsplit local case) Let K be a local
field, L/K an étale quadratic algbra, B/K the (unique) division quaternion algebra,
O the maximal order. If o = OL is the maximal order, v(o,O) = 1 − ( o

π ). If o is
not maximal, v(s,O) = 0.

As one might expect, the global formula takes into account the local formulas,
together with a contribution from the class number of o.

Theorem 4. (Optimal embedding theorem, global case) Let B/K be a ntd quater-
nion algebra over a number field K, and assume there exists a unique conjugacy
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class of Eichler orders of level N ; let O be one such order. Then

v(o,O) = h(o)
∏
v

v(ov,Ov),

where the product extends over all finite places of K. Here h(o) = # Pic(o) is the
class number of o.

Corollary 5. Take K = Q and let O be an Eichler order of squarefree level N in
a quaternion algebra of discriminant D (D = 1 is permitted!). Let o be an order in
the imaginary quadratic field of discriminant δ. Then

v(o,O) = h(o)
∏

d | D

(1− (
−δ

p
))

∏

q | N

(1 + (
−δ

p
)).

3. Special points on Shimura curves

We return momentarily to a context not considered since the early part of the
course. Namely, let F be a totally real field of degree g over Q, and let B/F be a
quaternion algebra of type (1, g − 1), i.e., split at exactly one infinite place of F .
Let D be the discriminant of B, i.e., the product of all the finite ramified primes.
Let O be a maximal order of B and let Γ = Γ(B,O) be the group of units of O of
reduced norm 1 Let X = X(O) = Γ\H be the corresponding Riemann surface. So
X is either the j-line (if F = Q, B ∼= M2(Q)) or a compact Riemann surface. Note
that this construction does, in general, depend upon the choice of O, however in a
controllable way:

Exercise: Let hB be class number appearing in Eichler’s Theorem, i.e., the de-
gree of the ray class extension of F corresponding to the modulus ∞2 · · ·∞g (the
ramified infinite places of B). Show that as O ranges over all maximal orders of
B, one obtains at most hB pairwise nonisomorphic C-algebraic curves X(O). Is it
obvious that this number of isomorphism classes is exactly hB?2

It will be slightly more convenient for us to work with discrete subgroups of GL2(R)+;
we then get the corresponding Fuchsian group by taking the image in PSL2(R) =
PGL2(R)+. One often denotes the former group by Γ̃ and the latter by Γ; for sim-
plicity of notation, we will (except in the immediately following discussion) not dis-
tinguish between them. This is almost harmless, except that if Γ̃′ ⊂ Γ̃ ⊂ GL2(R)+,
the index [Γ̃ : Γ̃′] will either be equal to [Γ : Γ′] or 2[Γ : Γ′] (the latter occurs iff
−1 ∈ Γ \ Γ′).

Now let N be an integral ideal of F . We define a the principal congruence subgroup
Γ(N ) ⊂ Γ as the set of all γ ∈ Γ such that γ − 1 ∈ NO. Notice that we have not
assumed that N and D are coprime, so that these groups are cofinal in the system

2It is not obvious to me, but on the other hand I believe it to be true (at least when there
are no elliptic points), so I allow for the possibility that it is obvious to you! But the point
of the question is: hB is the number of B×/Q× conjugacy classes of Gamma(B,O), whereas
for isomorphism of the corresponding Riemann surfaces we should be looking at PGL2(R)+-
conjugacy classes. Moreover, if Γ has elliptic elements, it is conceivable that the Riemann surfaces
are (noncanonically) isomorphic even if the corresponding Fuchsian Γ(O), Γ(O′) are nonconjugate.
A later draft of these notes may contain a more complete discussion.
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of all congruence subgroups of Γ.

Exercise: Suppose that N is prime to the discriminant D of B.
a) Compute the index [Γ : Γ(N )] (interpreted in either sense as above).
b) Show that Γ(N ) is normal in Γ and compute the quotient.

We put X(N ) = Γ(N )\H.

Now let K/F be an imaginary quadratic extension (hence a CM field of degree
2g), and let o be an order in K. Consider as before the set of optimal embeddings
of o into O modulo O×-conjugacy, of cardinality v(o,O). Since O is maximal,
v(o,O) > 0 if and only if L is a splitting field for B (i.e., if and only if L/K is
nonsplit at every prime v dividing the discriminant D of B).

Now, through the completion at the unique split place ∞1, we have an embed-
ding B× ↪→ GL2(R) hence a natural action of B× on H±. In particular, we have
an action of B+ on H. Under this embedding, an element x ∈ F× maps to the
scalar matrix diag(∞1(x),∞1(x)), hence acts trivially on H.

For τ ∈ H, let Gτ denote its stabilizer in B× (which is necessarily a subgroup
of B+).

Lemma 6. Let ι : L → B be an embedding of a CM quadratic extension of K.
Then ι(L×) ⊂ B+. There exists a unique τ ∈ H which is the common fixed point
of all elements of ι(L×).

Exercise: Prove it! (Hint: ι(L×) consists of commuting elliptic elements of PSL2(R)!)

The (unique) point τ corresponding to the embedding ι : L → B is called an
L-special point of H. For our fixed O, there is a unique order o of L which is
optimally embedded into O via L, namely o = ι−1(O ∩ ι(L×)) ∪ {0}. We say that
the point τ is o-special.

Lemma 7. A point τ ∈ H is L-special if and only if Gτ ∪ {0} is a CM field L
inside B. If τ is not special, Gτ = F×.

Exercise: Prove it.

It follows that the set of special points is countably infinite.

Now we look at image of the special points on the Shimura curve X.

Lemma 8. Let τ1, τ2 be two special points on H, and let ϕ : H → Γ\H be the
uniformization map. Then ϕ(τ1) = ϕ(τ2) if and only if they are o-special for the
same o, and the embeddings ι1, ι2 are conjugate by an element of O×.

Exercise: Prove it.

Corollary 9. For every order o in a CM quadratic extension L/K, there exist
v(o,O) o-special points on X. This number is positive if and only if L splits B.
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Let us write ∞ = ∞1 · · ·∞g viewed as a modulus for F (in the sense of classfield
theory in the non-adelic formulation). For an ideal N of F , let F (N ) be the ray-
class field corresponding to the modulus N · ∞, i.e., the group of fractional ideals
prime to N modulo ideals whose generators are totally positive and congruent to
1 modulo N . (To be sure, when F = Q and N = N , F (N ) = Q(ζN ).)

We would be justified in calling the following result the “Fundamental Theorem
of Shimura Curves”; certainly it explains the nomenclature.

Theorem 10. (Shimura) Consider the Riemann surface Γ(N )\H.
a) There exists a smooth projective curve V defined over F (N ) and an isomorphism
ϕ : Γ(N )\H → V (C).
b) Let τ ∈ H be an o-special point, where o is the maximal order in the CM quadratic
extension L/F . Then the compositum of the field of moduli F (ϕ(τ)) and L is the
N -ray class field of L, i.e., the group of fractional o-ideals prime to N modulo
principal ideals whose generator is congruent to 1 modulo N o.
c) The curve V/F (N ) is uniquely determined by the conditions of a) and b).

Remark: More generally, let o be any order of L whose conductor is prime to N ,
and let τ be an o-special point. Then the field L(ϕ(τ)) is (I believe) the N -ring
class field of L, whose definition is identical to the one given in part b) for the
maximal order.

The following discussion is preparation for the explicit reciprocity law. In the
following discussion we shall assume that the narrow class number of F is equal to
1. Let o be a maximal order in a CM extension L/F . Put G = Gal(L1/L) = Pic(o)
be the Galois group of the Hilbert class field of L. We will give an explicit action
of G on the set v(o,O) of O×-conjugacy classes of optimal embeddings ι : o ↪→ O.
Namely, for σ ∈ G, let a ∈ L×(A) be an idele corresponding to σ under the Artin
map, i.e., such that (a, L1/L) = σ. As discussed before, applying a to O coordi-
natewise gives us a left O-ideal I. But since the class number is 1, this ideal is
principal, so of the form ασO for some ασ ∈ B× of positive norm. (In fact, because
σ has finite order, necessarily α ∈ O.)

Theorem 11. (Shimura reciprocity law) The element σ ∈ G = Pic(o) sends the
optimal embedding ι : o → O with corresponding special point z to the optimal
embedding ια = α−1 ◦ ι ◦ α, with corresponding special point α−1z.

The preceding description is ‘a la Shimura. Deligne’s (essentially equivalent) adelic
formulation is as follows: let G = B× viewed as an algebraic group over Q. Let Uf

be a compact open subgroup of G(Af ). A cofinal system of such groups is given
by the U(N ), which at every place v prime to N is O×v , and for dividing N to
power exactly nv, we take the units u in Ov such that u− 1 ∈ πnv

v Ov (where πv is
a uniformizer of Fv). Then, as we discussed, the double coset space

Sh(B×, Uf ) = B×\H± ·B×(Af )/Uf

is isomorphic to a finite disjoint union of Riemann surfaces each isomorphic as
schemes to Γ(Uf )\H, where Γ(Uf ) = B ∩ Uf and the components are parameter-
ized by the class group G = Gal(F (N ·∞)/F ). Then we can say that Sh(B×, Uf )
has a canonical model over F itself such that the Galois action on the components
is given by G.
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In particular, this means that each component gets a canonical model over the field
trivializing this action, i.e., over F (N · ∞). The various components need not be
isomorphic to each other as complex algebraic curves. Each component Vi/F (N·∞)

is obtained from a fixed component V1/F (N·∞) by “extending scalars” by σi ∈ G:
Vi = V1 ⊗σi

C.

Remark: This theorem is not the last word on the arithmetic of the component
curves Vi. Namely, the field F (N ·∞) may, or may not, be a minimal field of defini-
tion for V1. For instance, when F = Q, N = p, the theorem gives a canonical model
for each of the (Z/pZ)× components of the modular curve over Q(ζp). However, it
can be shown that the Riemann surface X(p) can always be defined over Q, and
there are models which are (in a different sense!) canonical over Q(

√
p∗). Indeed,

the same holds for XD(p) (in fact, whenever F = Q), but not for a general totally
real field. As far as I know, the problem of computing the field of moduli of the
curve XD and its congruence coverings remains open in the general case.

We are not going to give a complete proof of the fundamental theorem, but we
shall make some comments. First, we separate out the cases F = Q (easy case)
and F 6= Q ((extremely) hard case).

In the easy case, we are much aided by the fact that X(N ) is a coarse moduli
space (even a fine moduli space, for sufficiently large N ) for the moduli problem
of QM-abelian surfaces with level N -structure. In particular, since this is a mod-
uli problem which can be formulated in the category of Q-schemes (since Q has
characteristic zero, there are no subtleties here, and we do not delve into the tech-
nical meaning of these terms), the uniqueness of the canonical model, if it exists,
comes for free (or from the Yoneda Lemma). Moreover, nowadays there are sim-
ilarly quite general techniques for showing the existence of moduli spaces (and in
fact, we will soon enough be stating the existence of integral canonical models for
Shimura curves without any justification), but let us say a little bit about Shimura’s
approach, which is valid for a much larger class of moduli varieties (namely for
PEL-type Shimura varieties). Essentially, the problem reduces to finding a caon-
ical Q-model for Siegel moduli spaces, or, to having a good understanding of the
field of moduli of a polarized abelian variety with level structure. Let (A,P ) be a
polarized abelian variety. Then (by a famous theorem of Lefschetz) 3P embeds A
into a projective space, so gives a point on some Chow variety. (Shimura interprets
the additional structure coming from the endomorphisms and the level structure
as giving a variety in some larger projective space, hence a point on some Chow
variety.) The assignment of a “Chow point” to a PEL-moduli space X/C gives a
morphism Φ from a PEL-type moduli space to a Chow variety V (which does come
with a canonical Q-rational model), in such a way that the field of moduli of a point
P ∈ X(C) is the field Q(ϕ(P )) generated by the coordinates of the Chow point.
If Q(V ) = Q(gi) is the function field of V , then putting fi = Φ∗(gi) = gi ◦ Φ, we
get a set of functions fi on X such that the field of moduli of a point P ∈ X(C) is
Q(fi(P )). Thus we take K = Q(fi) to be the canonical (birational) Q-model for X.
One still must check that K is a regular extension of Q (i.e., that Q is algebraically
closed in K); Shimura does this, and in so doing constructs a specific Q-rational
model for a PEL-type moduli variety.

Obviously no such general argument will establish the explicit reciprocity law.
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This is a generalization of the main results of the theory of complex multiplication
for elliptic curves to abelian surfaces which are isogenous to the square of a CM el-
liptic curve. Thus, to do justice to this argument we would have to carefully revisit
the theory of complex multiplication, which we shall not do here. (We remark how-
ever that there is a similar theory for abelian varieties with not-necessarily-isotypic
complex multiplication, developed by Shimura and Taniyama. This more general
theory is a prerequisite to the theory of special points on more general Shimura
varieties.)

In summary, if you have an excellent grasp of the theory of complex multipli-
cation and moduli of polarized abelian varieties, proving the fundamental theorem
for F = Q is not wildly difficult. Since, indeed, it was Shimura (partially in collab-
oration with Taniyama) who developed both of these theories, it was rather easy
for him to prove Theorem 10 when F = Q. In contrast, the proof of the theorem
for F 6= Q took Shimura many more years. The barest outline of the proof is as
follows: for each CM field L with v(oL,O) > 0, one constructs a canonical model
over L for a different Shimura variety W (L): it corresponds to choosing a reductive
group (of unitary type) whose associated semisimple subgroup is SL1(B) but is
itself not B×. The variety W (L) is itself of PEL-type so has a canonical model by
a proof along the lines of above. In particular, the reciprocity law holds for the ac-
tion of the Hilbert class group of L on a set of oL-CM points of W (L). In this way,
X(N ) gets a canonical model over L(N ), the N -ray class field of L (because the
identity component of a Shimura variety depends only on the associated semisimple
group, which is the same for V as for W (L)). This is not good enough: we want a
canonical model over the N -ray class field of F . What Shimura shows is that the
infinitely many different canonical models over the various L(N )’s glue together
to give a unique model over F (N ). In the proof of this, the explicit reciprocity
law at the special points plays a critical role, giving us, roughly speaking, glueing
data. It is not an easy argument: indeed, Deligne found the argument perplexing
enough (he called these canonical models “modèles étranges”) to warrant the devel-
opment of a different approach, exploiting more systematically the “functoriality”
between Shimura varieties (i.e., each Shimura variety is defined in terms of a (suit-
able) reductive group GQ; a homomorphism G → G′ of reductive groups leads to
a morphism of Shimura varieties). Deligne’s work extends and simplifies Shimura’s
work, but it is still too difficult for us to discuss here.

4. A bit of Atkin-Lehner theory

In the case F = Q, one can also give an explicit action of the Atkin-Lehner
group NO/O× ∼= ∏

p | D Z/2Z of XD (this is the group of modular automorphisms
of XD; it plays an extremely important role in the arithmetic of the Shimura curves
and the corresponding abelian surfaces, but for lack of time we have not yet found
an opportunity to discuss it formally). It can be described as follows: for every pos-
itive integer d | D, there exists an element wd ∈ O of reduced norm d. Conjugation
by wd normalizes O, and w2

d centralizes O×, so we get an involutory automorphism
of ΓD(1)\H. When d = D, we can explicitly take wD to be an element whose
square is −D, since the quadratic order Z[

√−D] can always be embedded in B.
Since W is trivial iff D = 1, its action is exactly what distinguishes the nonsplit
case from the classical case, and explains the fact that the o-CM points need not
form a single orbit. Indeed, fix an imaginary quadratic field K which splits B, and
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let W ′ be the subgroup of W generated by the wp’s for primes p which are inert in
K. (Since K splits B, the only other possibility is that p ramifies in K.) Then it
can be shown that W ′ × Pic(oK) acts simply transitively on v(o,O).

Exercise: Fix a d | D. Since wd has positive reduced norm, it acts on H.
a) Show that the abelian surfaces Aτ and Awdτ are isomorphic as C-tori. (Hint:
wd can be viewed as an element of GL2(C) which carries one lattice to the other.)
b) Nevertheless, if d 6= 1, wd does not act trivially on XD: why not? (Hint: wd

acts also on the quaternionic structure ι : O ↪→ Aτ via its conjugation action on O.)

It follows that a given abelian surface A admitting an O-QM structure, will in
general admit several nonisomorphic QM structures corresponding to its conju-
gates under the action of the Atkin-Lehner group. Recall that the QM structure
determined a principal polarization on A, so that by conjugating the QM structure,
the associated polarization may, or may not, change. It turns out that, except for
a finite set of points, the subgroup H of W preserving the principal polarization on
Aτ ∈ XD is independent of τ . Important work of V. Rotger describes this subgroup
H. It turns out that #H = 2 or 4: wD ∈ H always, and whether or not there is
an additional element depends on a rather subtle invariant of O together with the
element µ such that µ2 = −D that we chose long ago in order to get a positive
involution on B. We do not state the precise condition here. However, we can
already derive many important consequences:

Define XD+ = XD/wD, and XD
H = XD/H. There is a natural morphism XD →

A2,1 from the Shimura curve into the two-dimensional Siegel modular variety ob-
tained by taking a triple (A, ι, P ) and forgetting the quaternionic struture: (A, ι, P ) 7→
(A,P ).

Theorem 12. (Rotger) The forgetful map XD → A2,1 factors through to an em-
bedding XD/H → A2,1.

Since #H ≥ 2, Shimura curves are never canonically embedded inside the Siegel
moduli space. (In fact the same holds for Hilbert modular varieties: the canonical
forgetful map factors through a finite group of modular automorphisms.)

Because #H ≤ 4 and #W can be arbitrarily large, we immediately get abelian
surfaces with many distinct principal polarizations. However, this is not the right
quantity to count: in general, there can be infinitely many distinct principal po-
larizations on an abelian variety. But this can only occur if A has an infinite
automorphism group (as our QM surfaces do). More precisely, say that two polar-
izations P, P ′ on an abelian variety are conjugate if there exists an automorphism
α of P such that α∗P ′ = P .3 An important theorem of Narasimhan-Nori says that
the number of conjugacy classes of principal polarizations (or indeed polarizations
of any given type D = (d1, . . . , dg)) on an abelian variety A is finite. To say more
is a very interesting problem.

Coming back to our situation, our first thought may be that the W -orbit of a

3It is more standard to call such polarizations “isomorphic”, but this terminology is unappeal-
ing to me.
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point τ ∈ XD consists of a single conjugacy class of polarizations, but this is not
necessarily the case: the automorphisms wd lie in the normalizer of O×, not O×
itself. Moreover, there may be other polarizations on Aτ . The precise answer is as
follows:

Theorem 13. (Rotger) Let A/C be an abelian surface with End(A) ∼= O, a maximal
order in a quaternion algebra of discriminant D. Then the number of conjugacy
classes of principal polarizations of A is h′(−D)+h′(−4D)

2 , where by h′(b) denotes the
class number of the quadratic order of discriminant b or 0 if there is no such order.

It can be shown that if K is a field of characteristic 0 and (A, P )/K is a princi-
pally polarized abelian surface such that EndC(A) ∼= O is a maximal order in an
indefinite rational quaternion algebra B, then there exists an O-QM structure on
A inducing the polarization P . In other words, every principal polarization on a
QM surface is compatible with some QM structure. Because of this, we can make
the following definition. Definition: A potentially quaternionic abelian surface
A/K (K a field of characteristic 0) is a principally polarized abelian surface (A,P )
together with an embedding O ↪→ EndC(A).

Every potentially quaternionic abelian surface A/K induces a point x ∈ XD
H (K).

In particular, every PQM abelian surface acquires its QM over an abelian extension
of K isomorphic to Z/2Z or Z/2Z× Z/2Z.

Warning: Not every K-rational point on XD
H (K) is induced by a PQM abelian

surface. There is an obstruction, in general nontrivial, for such an abelian surface
to be defined over its field of moduli. However, one could show that there do not
exist any O-PQM abelian surfaces A/K by showing that XD

H (K) = ∅.

Rotger and Dieulefait have also showed that if A/Q is a PQM abelian surface of
GL2-type, then #H = 4 and the QM is defined over an imaginary quadratic exten-
sion K = Q(

√−m)/Q. Assuming Serre’s conjecture (again, this seems like a good
idea), A corresponds to a modular form f with Fourier field F = Q(

√
d) End0

Q(A);
taking σ to be the nontrivial automorphism of F , there must exist an extra twist:
L(fσ) = L(χ)L(f), where χ is a quadratic Dirichlet character cutting out the field
extension K, and B is the quaternion algebra (d,−m).

In particular, it is very interesting to study the locus XD+(Q), because if it is
empty, then there are no modular O-PQM abelian surfaces A/Q. It is natural to
conjecture that the latter holds for all but finitely many D.

However, determing the set XD+(Q) is very difficult:

Proposition 14. Whenever there exists a class number one CM field K splitting
D, there exists some oK-CM point on XD which becomes Q-rational on XD+.

Conversely, if we choose D so that none of the (finitely many!) CM quadratic fields
of class number at most 2 split B, then Shimura’s reciprocity law immediately im-
plies that there are no Q-rational CM points on XD+. It is reasonable to conjecture
that, except possibly for finitely many counterexamples, the only Q-rational points
on XD+ are the CM points. However, this is a very difficult problem. For instance:
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Theorem 15. (Clark) For all p ≤ ∞, XD+(Qp) 6= ∅.


