
LECTURES ON SHIMURA CURVES 4.5: A CRASH COURSE ON
LINEAR ALGEBRAIC GROUPS

PETE L. CLARK

It is an initially surprising fact how much of the geometry and arithmetic of Shimura
varieties (e.g., moduli spaces of abelian varieties) is governed by the theory of linear
algebraic groups. This is in some sense unfortunate, because the theory of alge-
braic groups (even over the complex numbers, and still more over a nonalgebraically
closed field like Q) is rich and complicated, containing for instance the entire theory
of Lie groups, Lie algebras and representations.

To acquire a real mastery of this material requires substantial quiet time with
a book such as [?]. The purpose of these notes is to acquaint the reader with the
basic outlines of this theory. What we give is somewhere between a language lesson
and a guided tour.

We will work over the context of a field K of characteristic zero. Some of the
results would still be valid by requiring K to be merely perfect (or even an arbi-
trary field), but the theory in positive characteristic has some crucial differences
that we do not want to discuss.

0.1. Definition of algebraic group. An algebraic group G/K is just an algebraic
K-variety together with morphisms m : G×G → G and i : G → G which satisfy the
usual group axioms. (There is an interpretation of this in terms of commutativity
of diagrams, corresponding to the notion of a “group object in a category.” Or
one can interpret this in terms of the functor of points: for any K-algebra A, the
induced maps m : G(A) × G(A) → G(A), i : G(A) → G(A) give a group law on
G(A), such that a homomorphism A → B of K-algebras induces a homomorphism
of groups G(A) → G(B).)

0.2. Weil restriction. Let L/K be a finite field extension,1 and suppose that
X/L is an algebraic variety. There is a canonical way to get from X an algerbraic
variety RL/K(X) defined over K, called the Weil restriction (or “restriction of
scalars”). Moreover, if X = G/L is an algebraic group (by far the most useful
special case), then it shall follow formally that RL/K(G) has the structure of an
algebraic K-group. Before giving the abstract definitions / constructions, let us
give a rough description of the process. Assume for simplicity that X/L is affine,
so is embedded in some affine space AN

/L as the zero locus of a collection of poly-
nomials Pi(X1, . . . , XN ) ∈ L[X1, . . . , XN ]. Suppose [L : K] = d. We may view
AN (L) = LN as an Nd-dimensional vector space over K. (In essence, then, the

1Note that, because of our running convention that K has characteristic 0, it goes without
saying that L/K is separable. The definition that we are about to give uses the separability. On
the other hand, it is possible to give a definition also in the purely inseparable case (which suffices
for the general case, by “dévissage.”) This is done in, e.g., Fried and Jarden’s Field Arithmetic.
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first step of the construction is to decree that RL/K(AN ) ∼= ANd
/K).) Choose a basis

α1, . . . , αd of L/K. Using this basis and the “change of variables” Xi =
∑d

i=1 αiYi,
we can regard each polynomial equation P (Xi) = 0 with L-coefficients as being
d polynomial equations with K-coefficients. The resulting system of polynomials
cuts out a closed subvariety of ANd

/K , and that variety is RL/K(X).

Example: RC/R(Gm). The affine ring for Gm/C is C[X1, X2]/(X1X2 − 1). Us-
ing the basis {1, i} for C/R, we write X1 = Y1 + iY2, X2 = Y3 + iY4. Then our
single relation X1X2 − 1 = 0 becomes

Y1Y3 − Y2Y4 − 1 = 0,

Y1Y4 + Y2Y3 = 0.

If we assume that Y1 6= 0, we can eliminate Y3 and Y4 and Y2 can be arbitrary.
If Y1 = 0, then we get 1 + Y2Y4 = 0, so again we can eliminate Y4 as long as
Y2 6= 0. In other words, the variety is isomorphic to the set of pairs of real numbers
(Y1, Y2) 6= (0, 0), or to C×. (We will not carry out a similar discussion for the equa-
tions of the group law, since that would carry us into the realm of Hopf algebras:
too far afield.)

Let us now give two abstract characterizations of RL/K(X).

(WR1): We will give the functor of points of RL/K(X) (which, by general nonsense –
“Yoneda lemma” – characterizes the variety RL/K(X) up to isomorphism, but does
not show that it exists): namely, for any K-algebra A, RL/K(X)(A) = X(A⊗K L).
In particular, RL/K(X)(K) = X(L). Note that this is what we saw in the preced-
ing example.

(WR2) We are defining a functor RL/K from the category of L-varieties to the
category of K-varieties. There is a more evident functor going in the other direc-
tion, namely extension of scalars: it is the functor which takes X/K to XL. Write
MorK(X, Y ) for the set of all K-morphisms from X to Y . Then the statement
is that Weil restriction and scalar extension are adjoint functors: let Y be any
K-variety. Then

MorL(Y/L, X) = MorK(Y,RL/K(X)).

Note that in the special case that Y = Spec K is a single point, this again says that
the L-valued points of X are the K-valued points of the scalar restriction.

(WR3) This description is helpful for proving that a variety satisfying (WR1) and
(WR2) exists, and is also enlightening about properties of the restriction over ex-
tension fields. Let M be the Galois closure of L/K, and G = Gal(M/K). For
σ ∈ G, let Xσ = XM ⊗σ M . (In other words, regarding X as being defined by a
set of polynomials with coefficients in M , Xσ is the variety obtained by applying
the automorphism σ to all the coefficients of the equations.) Put V =

∏
σ∈G Xσ.

Observe that by construction V has the agreeable property of being isomorphic to
each of its Galois conjugates V σ. In fact more is true: for each σ ∈ G, there is an
automorphism ψσ : V σ → V which satisfy the cocycle condition:

ψστ = ψσ ◦ σ(ψτ ).
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This is precisely Weil’s descent condition (which explains the name Weil restric-
tion!), so that Galois descent gives V the structure of a variety over K.

Exercise 1: Show that V = RL/K(X), defined according to (WR1) or (WR2).

A useful special case: suppose L/K is a Galois extension and X is a variety defined
over K. Then if we extend, restrict and extend again we

Exercise 2: Convince yourself that if G/L is an algebraic group, then it follows
from (WR1) or (WR2) that RL/K(G) has the structure of an algebraic group. get
RL/K(X/L)/L

∼= X/L
[L:K].

(The following exercise belongs in a much later set of notes, but I put it here
in case I forget to put it in later.)

Exercise 3: Let K = Q and L be a quadratic number field. Let E/L be an el-
liptic curve, and let A = RL/K(E), so A/Q is an abelian surface, which over L is
isomorphic to E × Eσ, where σ is the nontrivial automorphism of L/Q.
a) When is A Q-simple?
b) When is A of GL2-type?

0.3. Classification I: Chevalley decomposition. First, an algebraic group need
not be connected, but (as with any algebraic variety) it has only finitely many con-
nected components. The connected component G0 containing the identity element
is a normal finite index subgroup of G. Conversely, G/G0 can clearly be any finite
group at all, so in classification results it makes sense to assume that G is connected.

One basic fact about group varieties is that they are quasi-projective. In par-
ticular, an algebraic group is complete if and only if it is projective. A projective
algebraic group G/K is called an abelian variety. In some sense, these are the
algebraic groups that we are “really interested in”; we will describe them later in
more loving detail.

Example: For any positive integer N , the group GLN of invertible N × N ma-
trices with entries in K. This clearly makes GLN into an algebraic variety, namely
the quasi-affine variety given by the complement in AN2

of the vanishing of the
determinant map. In fact it is also an affine variety, and this is a standard trick
(namely to show that subset of an affine variety defined by the nonvanishing of a
single function is again an affine variety; in general, open subsets of affine varieties
need not be affine): by adding one more variable, we can realize the coordinate ring
of GLN as K[{Xij}i≤i, j≤N , Y ]/(det Xij · Y − 1).

Theorem 1. For an algebraic group G/K , the following are equivalent:
a) G is an affine K-variety.
b) There exists an embedding ϕ/K : G ↪→ GLN .

That b) =⇒ a) follows from the above discussion for GLN . The converse impli-
cation is nontrivial; see e.g. [?]
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Our first classification result says that linear algebraic groups and abelian vari-
eties are the bulding blocks for all algebraic groups.

Theorem 2. (Chevalley) Every algebraic group X/K admits a unique normal linear
algebraic subgroup G such that X/G is an abelian variety.

Remark: Chevalley’s original proof was very difficult, and the more difficult for
modern readers because it was couched in the language of algebraic geometry à la
Weil (i.e., no schemes). Recently Brian Conrad gave a modern proof [?], which is
still not easy.

We note (as does Conrad) that algebraic groups which are neither linear nor pro-
jective do arise naturally: as special fibers of Néron models of abelian varieties and
as Jacobians of singular algebraic curves.

0.4. Unipotent and solvable groups. Jordan decomposition: If g ∈ GLN (K),
then there exists a unique decomposition g = gsgu such that gs is semisimple (i.e.,
diagonalizable over K), gu is unipotent (every eigenvalue is 1), and gsgu = gugs.
Moreover, if G ⊂ GLN , H ⊂ GLM and f : G → H is a homomorphism of algebraic
groups, then f(g)s = f(gs) and f(gu) = f(g)u. In particular, it makes sense to say
that an element of an “abstract” affine algebraic group is unipotent or semisimple.

An algebraic group is unipotent if it consists entirely of unipotent elements. An
example is the group HN of N × N matices which are strictly upper triangular:
aij = 0 if i > j and aii = 1. Note that H2 is isomorphic to the additive group
Ga (i.e., the affine line endowed with its natural addition law) but HN is non-
commutative for any N ≥ 3. In fact any connected unipotent group is isomorphic
to a subgroup of HN for some N . Moreover, a connected unipotent algebraic group
admits a composition series each of whose composition factors is Ga.2

Solvable groups: Let G′ be the closure of the commutator subgroup [G,G]. By
repeating this process, we get a sequence of groups G′, G′′, . . .. If for some n the
nth iterated commutator subgroup of G is trivial, G is solvable. Over K, a solvable
group can be embedded into the group TN ⊂ GLN of upper triangular matrices
(this is the Lie-Kolchin theorem). Moreover, over K, a connected solvable group is
characterized by having a composition series whose factors are all Ga or Gm.

0.5. Tori. Tori: An algebraic group T/K is a (linear!) torus if TK
∼= Gn

m for some
K. Such an isomorphism need not exist over K; if it does, T is said to be K-split.

For any algebraic group G/K , one defines the character group X(G) = Hom(G,Gm).
When K is not equal to its algebraic closure, X(G) is endowed with a Galois module
structure under the usual (adjoint) action: for any σ ∈ GalK ,

σ(χ)(g) := σ(χ(σ−1g)).

This has the effect that the invariants X(G)GalK are precisely those homomor-
phisms G → Gm defined over K.

Tori are characterized among algebraic groups by the equality X(T ) ∼= Zdim G.

2This is false over an algebraically closed field of characteristic p.
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Thus the character of tori is (anti-)isomorphic to the category of Galois modules
whose underlying abelian group is free of finite rank. Better yet, there is an isogeny
category of tori where the objects are tori and the morphisms are the usual homo-
morphisms between tori (which form a free abelian group) tensored with Q. Thus,
the isogeny category of tori is anti-(isomorphic) to the category of finite-dimensional
(continuous) representations of GalK on Q-vector spaces. This is a semisimple cat-
egory (this is essentially Maschke’s theorem).

As an application of this: a torus T is anisotropic if X(T )GalK = 1, i.e., there are
no nontrivial characters defined over K. By duality, X(T )GalK defines a quotient
T ′ of T on which Galois acts trivially (i.e., T ′ is split). The kernel of the map
T → T ′ is an anisotropic torus, say Ta. Now the semisimplicity of the isogeny
category implies that T is isogenous to Ta×T ′, the product of an anisotropic torus
and a split torus.

Example: Let L/K be a finite field extension of degree n, and let T = RL/K(Gm/L).
It follows from (WR3) that T is a torus which splits over M , the Galois closure of
L/K. (In fact, since M is the minimal field extension of K for which M⊗K L ∼= Ln),
M is the minimal splitting field for T . Let g = Gal(M/K) and h = Gal(M/L).
Then the character group X(T ) is, as a Z[g]-module, isomorphic to Z[g/h]. Note
that the norm map N : L× → K× can be viewed as a K-rational character of T .
Let R1

L/K(Gm) be the kernel of this map. On characters, the norm map corresponds
to the map Z → Z[g/h] given by 1 7→ ι =

∑
σh, the augmentation ideal. Because

the g-action is the natural permutation action on the coset space, it is easy to see
that this is in fact the largest submodule on which g acts trivially. In other words,
R1

L/K(Gm) is the maximal anisotropic subtorus of T .

Exercise 4: Let T/R be an algebraic torus. Show that T is isogenous to R1
C/R(Gm)a×

Gb
m for some non-negative integers a and b. What is the corresponding result for

classification up to isomorphism?

0.6. Semisimple and reductive groups. From now on, all our algebraic groups
will be linear and connected.

Definition: The radical R(G) of an algebraic group G/K is the maximal con-
nected, solvable, normal subgroup of G.

Definition: The unipotent radical Ru(G) of an algebraic group G/K is the max-
imal connected, solvable, normal subgroup of G.

Note that because unipotent groups are solvable, Ru(G) ⊂ R(G).

We say that a group is semisimple if R(G) = 0 and reductive if Ru(G) = 0.

Remark: Because R(G) and Ru(G) are unique, an easy Galois descent implies
that R(G/K)/K = R(GK) and similarly for the unipotent radical. In particular, an
algebraic group over K is semisimple (resp. reductive) if and only if its extension
to K is.
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Theorem 3. Let G/K be reductive.
a) R(G) = Z(G)0 is an algebraic torus.
b) G′ = [G,G] is semisimple.
c) G = G′R(G) with G′ · r(G) finite.

In other words, the only difference between a reductive group and a semisimple
group is that a reductive group may have a nontrivial center, which must be an
algebraic torus.

Theorem 4. (Mostow) Let G be a linear algebraic group. Then there exists a
reductive subgroup H of G, such that G is the semidirect product of Ru(G) and H.
The group H is unique up to conjugacy.

Remark: The above semidirect product decomposition is referred to as the “Levi
decomposition,” and the group H is often referred to as “the Levi.”

Example: If G is a commutative linear group, the Levi Decomposition gives G =
U × T , the direct product of a unipotent group and a torus.

0.7. Maximal tori. Any two maximal tori in a linear algebraic group G are conju-
gate. The rank of G is the dimension of a maximal torus. However, for arithmetic
purposes, one also needs to consider the dimension of a maximal K-split torus of
G, which is called the K-rank of G. (Moreover, G is said to be split if its rank
equals its K-rank.) An algebraic group is said to be anistropic if it has K-rank 0.

Example: GLN is a reductive but not semisimple, since its center is Gm, the scalar
matrices. A maximal torus is given by the diagonal matrices, which are isomorphic
to GN

m. Thus GLN is split, with rank equals K-rank equals N . Its derived sub-
group is SLN , which is semisimple, split and of rank equals K-rank equals N − 1,
as the restriction of a maximal torus of GLN to SLN gives a maximal torus of SLN .

Example: Let B/K be a simple algebra, and let G = B×. It is not hard to
see that G can be viewed as a linear algebraic group over K. By Wedderburn’s
theorem, we have M ∼= Mn(D) where D/K is a division algebra, so G = GLn(D).

Exercise 5: a) Show that G/K is a reductive group.

b) There exists a K-rational character N : B× → K×, the “reduced norm.” How
is it defined? (Hint for both cases: Pass to the algebraic closure.)

We will write SLN (D) for the kernel of the character N of the preceding exer-
cise.

Proposition 5. The K-rank of SLN (D) is equal to N − 1. In particular, SL1(D)
is anisotropic over K.

Exercise 6: Prove it.

Further examples (to be written later): SP2n, GSp2n, O(n), O(p, q), U(p, q), . . ..
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