
LECTURES ON SHIMURA CURVES 3: MORE FUCHSIAN
GROUPS

PETE L. CLARK

1. Automorphisms of uniformized algebraic curves

Just as the complex uniformization of elliptic curves was a powerful tool in un-
derstanding their structure, the same holds for algebraic curves of higher genus
uniformized by Fuchsian groups.

Let Γ be a Fuchsian group of the first kind, and let

N(Γ) = {m ∈ PSL2(R) | m−1Γm = Γ}
be its normalizer in PSL2(R).

Proposition 1. N(Γ) is itself a Fuchsian group, and Γ has finite index in N(Γ).

Proof: Since Γ is necessarily nonabelian, that N(Γ) is Fuchsian was shown in the
last set of notes. Moreover, we have µ(Γ\H) = µ(N(Γ)\H) · [N(Γ) : Γ]. Since the
left hand side is finite and the volume of every fundamental region is positive, we
conclude that the index must be finite.

Proposition 2. Let Y (Γ) = Γ\H be the affine algebraic curve associated to Γ. We
have a canonical injection ι : N(Γ)/Γ ↪→ Aut(Y (Γ)). If Γ is of hyperbolic type, ι is
an isomorphism.

Proof: Writing Y (Γ) = Γ\H, it is natural to ask (as we did in the “parabolic” case
C/Λ) which elements σ ∈ PSL2(R) = Aut(H) descend to give automorphisms of
Y (Γ). The condition we need is clearly that for all z ∈ H and γ ∈ Γ, there exists
γ′ ∈ Γ such that

σ(γz) = γ′(σz).
Of course this holds for all z ⇐⇒ σγ = γ′σ; in other words the condition is that
σΓσ−1 = Γ, i.e., that σ ∈ N(Γ). This defines a natural action of N(Γ) on Y (Γ) by
automorphisms, and it is easy to see that its kernel is Γ itself.

Now, if Γ is of hyperbolic type, then H → Γ\H is the universal covering map,
and by covering space theory, all automorphisms of Y (Γ) lift to the universal cover.

Exercise 3.X: Suppose that Γ is a Fuchsian group (of the first kind) without el-
liptic points, but with cusps. Does the conclusion of the previous proposition hold?
Discuss. (Hint: the proof does go through, but is of less use. Why?)

Corollary 3. The automorphism group of a complex algebraic curve of genus at
least 2 is finite.

Proof: By the uniformization theorem, all such curves are of the form Γ\H, where
Γ is a group of hyperbolic type.
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In fact we can do much better.

Theorem 4. (Hurwitz) The automorphism group of a complex algebraic curve of
genus g ≥ 2 is at most 84(g − 1).

Proof: Write X = Γ\H for a Fuchsian group Γ of hyperbolic type. By Equation
XX we have vol(Γ) = 4π(g − 1). Then

#Aut(X) = [N(Γ) : Γ] =
vol(Γ)

vol(N(Γ))
≤ 4π(g − 1)

π/21
,

where the last inequality is by Exercise XX. The result follows.

Remark: By an application of the “Lefschetz principle” one gets the same result for
a curve defined over any field of characteristic zero. It is possible to prove purely
algebraically that a curve of genus ≥ 2 over any field has a finite automorphism
group. (In fact one can show this for all varieties of general type, i.e., for which
some positive multiple of the canonical bundle gives a birational embedding; for
algebraic curves, this is equivalent to g ≥ 2.) However, the bound of 84(g− 1) does
not hold in characteristic p (at least, not for all p). This is another example of the
apparent indispensability of analytic methods in algebraic geometry.

Remark: Assuming the finiteness of the automorphism group, it is possible to
prove the bound 84(g − 1) using the Riemann-Hurwitz formula.1

Problem: Fix any genus g ≥ 2. Then, there exists a number P = P (g) such
that if k is an algebraically closed field of characteristic zero or of characteristic
greater than P (g), then for any smooth projective curve C/k, Aut(C) ≤ 84(g− 1).
Can this be proved by model-theoretic means?

Reading Project: What new possibilities arise for Aut(C) when C is a genus g
algebraic curve defined over a field of characteristic p, when g À p? Note that
every curve in positive characteristic is the “good reduction” of some algebraic
curve of characteristic 0 (this follows, e.g., from the smoothness of the moduli
space of curves of genus g). How much of the automorphism group can be lifted?

2. Some modular curves

It would be perverse if we did not illustrate the preceding theory by discussing
certain classical modular curves, i.e., Riemann surfaces of the form Γ\H, where
Γ ⊂ PSL2(Z) is a congruence subgroup. In one’s daily (mathematical) life, it is
very convenient to have formulas for the genera, number of elliptic cycles, and num-
ber of cusps for X0(N), X1(N), X(N). Such formulas have of course long since
been worked out, and the complete story is rather complicated (especially if N is
divisible by 4 or 9). Here we will work out some representative special cases:

First, the signature of X(1) is (2, 3; 1), meaning that there exists a unique con-
jugacy class of elliptic points of order 2, (given by the matrix S of the previous

1In fact, if I am not mistaken, this formula appears for the first time in the same paper in
which Hurwitz proves the 84(g − 1) bound.
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notes), and a unique conjuacy class of elliptic points of order 3 (given by the ma-
trix T ). This follows from our geometric discussion of fundamental regions. We
invite the reader to find a more arithmetic proof.

Proposition 5. Let Γ′ ⊂ Γ be a subgroup of a Fuchsian group of finite index n. Let
CN a conjugacy class of order N elements of Γ, with representative elliptic point z.
a) There are at most n Γ′-inequivalent elliptic points in the Γ equivalence class of
z.
b) If Γ′ is normal in Γ, there is at most one.

Exercise 3.X: Prove it.

As an application of this result, we will determine the elliptic points of X(N) =
Γ(N)\H. In fact there are none, because neither S nor T is congruent to the iden-
tity matrix modulo any N ≥ 2.

Note also that the ramification index over every preimage of the elliptic point
√−1

is 2 (since 2 is the ramification degree of the entire uniformization map, and it is
“used up” since the preimages of the elliptic points are not elliptic); similarly the
ramification index at each preimage of

√−3 is 3. (Note that because the covering
is Galois, the ramification index does not depend upon the choice of preimage.)

As for the cusps, clearly there must be at least one Γ′-equivalence class of cusps
lying above each cusp of Γ. For PSL2(Z) there is of course one cusp. What we are
seeking then, is the number of Γ(N) orbits on P1(Q).

Lemma 6. Let a, b, c, d be integers such that (a, b) = (c, d) = 1, and [a b]t ≡ [c d]t

(mod N). Then there exists σ ∈ Γ(N) such that σ[a b]t = [c d]t.

Proof: . . .

Lemma 7. Let s = a
b and s′ = c

d be cusps of Γ(N), written in lowest terms as
above. Then s and s′ are equivalent under Γ(N) iff [a b]t = ±[c d]t.

Proof: . . .

Example: When N = p is an odd prime, there are p2−1
2 inequivalent cusps, so

the ramification index at ∞ is p. Note that this shows that PSL2(Fp) is generated
by elements x, y, z satisfying x2 = y3 = zp = xyz = 1. We can compute the genus
of X(p) using the Riemann-Hurwitz formula:

2g(X(p))−2 =
(p2 − 1)(p2 − p)

2(p− 1)
(2g(X(1))−2)+

(p2 − 1)(p2 − p)
2(p− 1)

·
(

1
2

+
2
3

+
p− 1

p

)
,

or

g(X(p)) = 1 +
(p2 − 1)(p− 6)

24
.

For example, one gets that X(7) has genus 3 and admits PSL2(F7) as a group of
automorphisms. Since this group has order 168 = 84(3− 1), by Hurwitz’s bound it
must be the full automorphism group of X(7). (Using the theory of triangle groups,
it can be shown that whenever p ≥ 7, Aut(X(p)) = PSL2(Fp).) This shows also
that N(Γ(7)) = Γ(1) (since it could not be any larger).
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Exercise 3.X:2 Let Γ ⊂ PSL2(Z) be a subgroup of index M , and let e2 (resp.
e3) denote the number of elliptic cycles of order 2 (resp. 3) for Γ. Let e∞ denote
the number of cusps of Γ. Let X(Γ) be the compactification of Γ\H (i.e., with
cusps added). Show that

g(X(Γ)) = 1 +
M

12
− e2

4
− e3

3
− e∞

2
.

Next we want to carry out a similar analysis of X0(N) for squarefree N3

Exercise 3.X: a) Suppose N = p. Show that Γ0(p) has two orbits on P1(Q), with
representatives given by 0 and ∞. (Hint: think p-adically.)
b) Show that, if N = p1 · · · pr is a product of distinct primes, Γ0(N) has 2r inequiv-
alent cusps.

Proposition 8. For Γ = Γ0(N) with squarefree N , we have

e2(N) =
∏

p | N

(1 + (
−4
p

)),

e3(N) =
∏

p | N

(1 + (
−3
p

)).

Proof: . . ..

Exercise 3.X: Give a more “natural” proof based upon the moduli interpretation of
X0(N) (and in particular on cyclic subgroups of elliptic curves with j = 0 or 1728).

Thus for squarefree N = p1 · · · pr we have

g(X0(N)) = 1 +
∏r

i=1(pi + 1)
12

−
∏

p | N (1 + (−4
p ))

4
−

∏
p | N (1 + (−3

p ))

3
− 2r−1.

In other words, the genus is roughly N
12 .

Let us now turn to the question of the automorphism group of X0(N); for simplicity,
we will consider the case N = p is prime.4 In this case, we can explicitly write down

a nontrivial element of N(Γ0(p)/Γ0(p); namely, the matrix wp = 1√
p

[
0 −1
p 0

]
.

Let us check it:
1
p

[
0 1
−p 0

] [
a b
pc d

] [
0 −1
p 0

]
=

[
d −c
−pb a

]
.

The induced automorphism on X0(p) clearly has order 2, and indeed, w2
p = p · I2.

Exercise 3.X: Show that wp has the following modular interpretation: given a pair
E1 and a degree p subgroup H, wp(E1,H) = (E1/H, H ′), where H ′ is the image in
E1/H of any other cyclic order p subgroup. Another way of saying this is: X0(p)

2Prop. 1.40 in Shimura’a book.
3This restriction is just for simplicity, although later in the course we will see that the behavior

of X0(N) as an arithmetic surface is much nicer in the case of squarefree level.
4In general, passing from the case of prime level to squarefree level will not result in qualitative

change. The adelic perspective makes this claim especially clear.
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parameterizes order p isogenies ϕ : E1 → E2. Then wp(ϕ) = ϕ∨ : E2 → E1, the
dual isogeny.

Exercise 3.X: Use the modular interpretation of wp to show: for p > 3, the wp

fixed points are in bijection with elliptic curves with CM by the maximal order of
Q(
√−p) together with – when −p ≡ 1 (mod 4) – the curves with Z[

√−p]-CM (i.e.,
the order of conductor 2).

Now a natural first reaction to this exciting development would be to look for
further elements of N(Γ0(p)/Γ0(p). In fact it can be shown5 that there are none:
this group has order 2. (More generally, if N is squarefree with r prime factors,
then N(Γ0(N))/Γ0(N) ∼= (Z/2Z)r. Can you find r independent involutions via a
modular intepretation as above?) Later in the course we will pursue the quater-
nionic analogue of this in more detail (and using adelic methods). Let us write (as
is traditional) Γ∗0(p) for 〈Γ0(p), wp〉.

Now the question is: is Γ∗0(p)/Γ0(p) = Z/2Z equal to the full automorphism group
of X0(p)? The answer is clearly negative when the genus is zero – i.e., when
p ∈ {2, 3, 7, 13} – or one – when p ∈ {11, 17, 19} – because the full automor-
phism groups of these Riemann surfaces are infinite. On the other hand, when the
genus is at least two, perhaps this is the case. For small values of p, it is possible
to write down explicit equations for X0(p) and thus to explicitly compute the au-
tomorphism group. For instance, one can check in this way that the genus 2 curve
X0(23) has automorphism group of order 2.

However, consider now the case of X0(37), again of genus 2. Being a genus 2 curve,
X0(37) must be hyperelliptic, meaning there exists an involution ι on X0(37) whose
quotient is P1 (or equivalently, a degree 2 map X0(37) → P1). By the Riemann-
Hurwitz formula, the number of branch points – which are precisely the ι-fixed
points – must be 6. However, by Exercise 3.X, the number of fixed points of w37 is
equal to the class number of Q(

√−37), or XX. We conclude that w37 6= ι. In fact
the automorphism group here is (Z/2Z)×.

What is amazing is that for any p 6= 37 such that X0(p) has genus at least 2,
the automorphism group of X0(p) is generated by the Atkin-Lehner involution.
This is a theorem of Ogg.

Before leaving this cast of characters, let us make a further remark. The group
Γ∗0(p) is not contained in PSL2(Z) (in some sense it is our first explicit, nontrivial
example of such a Fuchsian group), it is merely commensurable with it:

Definition: Two subgroup H1, H2 of a group G are commensurable if for i = 1, 2,
[Hi : H1 ∩H2] < ∞.

Unlikely though it may sound, one defines the commensurator Comm(Γ) of a
Fuchsian group Γ as the set of all σ ∈ PSL2(R) such that σ−1Γσ is commensurable
with Γ. In particular, the commensurator contains the normalizer, but note that wp

5I think this result is due to Lehner and Newman.
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does not normalize all of PSL2(Z). It is easy to see that the group 〈PSL2(Z), wp〉
generated by PSL2(Z) and all the wp’s is an infinite extension of PSL2(Z). This
infinitude is the key to a good theory of Hecke operators (which we shall, alas, not
discuss) and in fact a characteristic property of the arithmeticity of PSL2(Z).

3. Triangle groups

Let m1, m2, m3 be three positive integers such that 1
m1

+ 1
m2

+ 1
m3

< 1. As we
mentioned earlier, there exists a hyperbolic triangle, unique up to isometry, with
angles π

mi
for 1 ≤ i ≤ 3. Such a triangle, say T = T (m1,m2,m3) is easily seen

to be a fundamental domain for the group generated by reflections Ri through the
three sides of T . The Ri’s are orientation-reversing isometries of H and are thus
not conformal. But there exists an index 2 subgroup of conformal isometries, and
no more than a moment’s thought shows that it is generated by the three elements
ri = Rj ◦Rk where we take (i, j, k) cycling around modulo 3. Note that ri, being the
composition of reflections through lines meeting at an angle of π/mi, is a rotation
through the ith vertex by an angle of 2pi/mi. Let

∆ = ∆(m1,m2,m3) = 〈r1, r2, r3〉.
A fundamental domain for ∆ is obtained by reflecting T through any one of its
sides. In particular, ∆ acts without limit points on H so is a Fuchsian group.
The Riemann surface ∆\H is obtained by pairing two sets of adjacent sides on a
quadrilateral lying entirely inH, so that the quotient surface has no hyperbolic side-
pairing elements and genus zero, so has signature (0; m1, m2, m3; 0). Conversely, it
is not too hard to see that ∆ is, up to conjugacy, the unique Fuchsian group with
this signature.

List maximal triangle groups. . .


