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1. Prologue: GLN , PGLN , SLN , PSLN

Let R be any commutative ring. Then by GLN (R) we mean the group of all
N × N matrices M with entries in R, and which are invertible: det(M) ∈ R×.
The determininant map gives a homomorphism of groups which is easily seen to be
surjective: defining the kernel to be SLN (R), we get an extension of groups

The center Z of GLN (R) consists of the scalar matrices R× · IN , so as a group
isomorphic to R×. By definition, PGLN (R) = GLN (R)/Z. The determinant map
factors through to give a surjective homomorphism PGLN (R) → R×/ det(Z) =
R×/R×2, whose kernel we call PSLN (R). We summarize the situation with the
following diagram:

1 → µN (R) → Z ∼= R× → R×N → 1.

1 → SLN (R) → GLN (R) → R× → 1.

1 → PSLN (R) → PGLN (R) → R×/R×N → 1,

where µN (R) = R×[N ] are the elements r of R such that rN = 1.

Now matter what R is, PSLN (R) is an interesting group: when R = Fq is a finite
field of cardinality at least 4, PSLN (Fq) is a finite simple group. When R = R or
C, we get a simple Lie group. (Better yet: take R = Z, Z[

√
2], Z[

√−1], . . .)

Remarks: When K = C, then (since every complex number is an Nth power),
we have PSLN (C) = PGLN (C). When K = R and N is odd, we have SLN (R) =
PSLN (R) = PGLN (R). When N is even, PSLN (R) = SLN (R)/{±1} has index 2
in PGLN (R).

We now specialize to the case R = K is a field. Then PGLN (K) acts by automor-
phisms on PN−1

/K . Namely, viewing this projective space as the space of elements
[x1, . . . , xN ] ∈ AN

/K not all of whose coordinates are zero modulo scalars, there is
an evident action of GLN (K) which descends to PGLN (K) (since scalar matrices
do not change the equivalence class). A basic result is that PGLN (K) is in fact
the full group of automorphisms of PN−1/K as an algebraic variety.

When N = 2 we are asking for the automorphism group of the rational func-
tion field K(z), and we can give an alternate description of this as the group of
functions az+b

cz+d , where ad − bc 6= 0 (the group law is composition of functions),
which is evidently isomorphic to PGL2(K).
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So in particular PSL2(C) = PGL2(C) acts on CP1 (“the Riemann sphere”) by
linear fractional transformations, and the analogous statement for R would seem
to be that PGL(R) acts on RP1, which we may view as the equator of the sphere.

However, for any complex matrix g =
[

a b
c d

]
∈ GL2(C), we have

det(g) · =(z) = =(g(z)) · |cz + d|2,
so that (as we saw before), it happens to be the case that elements of PGL+

2 (R) =
PSL2(R) preserve H.

In other words, the theory of subgroups of PSL2(R) acting on H is a construc-
tion of mixed algebraic and analytic character. It seems useful to keep this in
mind, especially to appreciate later analogies with the p-adic situation.

2. Introduction: Ode to the upper halfplane

A Fuchsian group is a discrete group Γ of holomorphic transformations of H. Thus
Γ\H is a Riemann surface. If Γ is “of the first kind,” then Γ\H can be given the
structure of a complex algebraic curve (which may or may not be complete).

Before we get into the study of Fuchsian groups, we should reflect upon the rôle
of the upper half plane, an object which – for once! – admits a definition which is
perhaps too elementary to reveal its true importance.

I. Recall that H = GL2(R)/C× = SL2(R)/O(2) = PSL2(R)/SO(2). This is much
more structural definition: SL2(R) is a real Lie group, and SO(2) ∼= S1 is a maxi-
mal compact subgroup. In fact it is the unique maximal compact subgroup up to
conjugacy: it is the point stabilizer of i ∈ H, and its conjugates are the stabilizers
of other points. Thus H can be viewed the parameter space of maximal compact
subgroups of SL2(R).

In fact this is a very general phenomenon: if G is any connected real Lie group,
it admits a unique up to conjugacy self-normalizing maximal compact subgroup
K. The quotient space G/K, which parameterizes the conjugacy class of K, is
homeomorphic to Rn for some n.

Example: Take G = SLn(R). Then a maximal compact subgroup is SO(n) –
the set of matrices A such that AtA = In of determinant 1. The quotient space is
of dimension n2 − 1 − (n(n−1)

2 ) = n2+n−2
2 . Note that this quantity is even when

n ≡ 1, 2 (mod 4) but is odd when n ≡ 0, 3 (mod 4).

Recall that the Lie group PSL2(R) admits a bi-invariant Riemannian metric g.
There is a natural identification of PSL2(R) with the unit tangent bundle to H,
and in this way g defines a Riemannian metric on H. Explicitly, we can take

ds =

√
dx2 + dy2

y
.

Under this metric, H becomes a complete Riemannian surface of constant negative
curvature, a hyperbolic plane H2.
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Theorem 1. PSL2(R) = Isom+(H, ds) is the group of orientation-preserving
isometries of H.

On the other hand, PSL2(R) acts on H by holomorphic automorphisms, and we
also have

Theorem 2. PSL2(R) = AutC(H) is the group of automorphisms of H as a com-
plex manifold.

There is a general philosophy (going back to Klein) that one should regard two
geometric structures as equivalent if their automorphism groups are the same. In
our day we recognize this as a principle of descent. In any case, it is a remarkable
property of H that its holomorphic and geometric automorphism groups are equiv-
alent.

Moreover, the quotient of a Lie group by a maximal compact subgroup, H is simply
connected (and indeed contractible). Recall that this almost determines its complex
structure uniquely, by the following important result.

Theorem 3. (Uniformization Theorem) Let Y be a connected Riemann surface.
a) Its universal cover Ỹ is naturally a Riemann surface.
b) We have Y = Π\Ỹ , where Π is a discrete group of fixed-point free holomorphic
automorphisms of Ỹ , isomorphic to the fundamental group π1(Y ).
c) There are, up to isomorphism, only three possibilities for Ỹ : CP1, C and H.

Remark: The first two parts of the theorem are rather straightforward (given the
basics of covering space theory); the content resides in the the third part.

It seems enlightening to compare H to CP1 and C.

CP1 does not uniformize any Riemann surface other than itself.

Exercise 2.1: Prove it. (I can think of at least four proofs: (i) using the fact that if
Y → X is a finite unramified covering map of degree n, then χ(X) = χ(Y )/n. (ii)
Using the Riemann-Hurwitz formula. (iii) Using the Lefschetz trace formula. (iv)
Using Luroth’s theorem on subfields of rational function fields.)

The holomorphic automorphism group of CP1 is PGL2(C) = PSL2(C), which
acts on CP1 by linear fractional transformations with complex coefficients. On
the other hand, CP1 admits a natural Riemannian metric ds (the one it inherits
from viewing it as the unit 2-sphere in R3) with constant positive curvature and
Isom+(CP1, ds) = SO(3). There is a natural inclusion

SO(3) ↪→ PSL2(C)

but the latter group (a noncompact 6 dimensional real manifold) is very much
larger than the former (a compact 3 dimensional real manifold). Thus not every
holomorphic map preserves the geometric structure. (On the other hand, PSL2(C)
is the group of orientation preserving isometries of H3, hyperbolic three space.)

On the other hand, CP1 is far from contractible, so is not such a promising candi-
date for uniformization.
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C on the other hand is contractible. It also has the structure of a Lie group,
so that the orbit of 0 under any discrete subgroup of holomorphic automorphisms
of C is actually a discrete subgroup H of C, so H ∼= Zd with 0 ≤ d ≤ 2. We have
seen the case d = 2 before: H is a lattice, and we can uniformize all elliptic curves
in this way. If H has rank 1, then C/H is isomorphic, as a complex Lie group, to
C×, or if you like, to a genus zero curve with two points removed. If H has rank
zero, then C/H = C = A1, a genus zero curve with one point removed.

The group of holomorphic automorphisms of C is C ./ C×, the semidrect product
of the translations by the complex linear maps. This is a nonabelian, but solvable,
subgroup of the full Mobius group PSL2(C). On the other hand C has the Euclid-
ean metric (zero curvature!), and its group of orientation preserving isometries is
C ./ SO(2). Observe that this is still smaller than the full group of holomorphic
automorphisms: homotheties do not preserve the metric.

Exercise 2.2: Notice that in all three cases we at least had an inclusion Isom+(Ỹ , ds) ↪→
AutC(Ỹ ). We could have shown this directly; how?

It follows (process of elimination!) that every compact Riemann surface of genus
at least 2 arises as the quotient of H by a discrete subgroup Γ which admits a
presentation

Π(g, 0) = 〈α1, . . . , αg, β1, . . . , βg |
g∏

i=1

[αi, βi] = 1〉.

Now suppose that Y is a Riemann surface obtained from a compact Riemann sur-
face of genus g ≥ 0 by removing n ≥ 0 points. (Equivalently, Y = C(C) for a
possibly affine algebraic curve C.)

Exercise 2.3:
a) Suppose n > 0. Show (or recall) that the fundamental group of Y is isomorphic
to

Π(g, n) = 〈α1, . . . , αg, β1, . . . , βg, γ1, . . . , γn |
g∏

i=1

[αi, βi] ·
n∏

j=1

γn = 1〉,

which is itself isomorphic to a free group on 2g + n− 1 generators.
b) Deduce that the universal cover of Y is P1C, A1C or H according to whether the
Euler characteristic χ(Y ) is positive, zero, or negative.

The notion of getting a Riemann surface from a Fuchsian group Γ by the construc-
tion Γ\H is, however, even more general than the above construction indicates. For
instance, we saw at the beginning of the course that PSL2(Z)\H ∼= A1; here the
quotient map J : H → A1 is clearly not a uniformization map in the above sense.
As we embark upon a a general study of Fuchsian groups and then try to wend our
way back to moduli of elliptic curves (and other things), this is a good example to
keep in mind: exactly what is preventing J from being a uniformization map, and
what is the modular interpretation of this?

Problem 2.1: Can one, in fact, obtain every complex algebraic curve as Γ\H for a
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suitable Fuchsian group Γ?

5groups (the triangle groups) whose quotient is P1. If you

3. Foundations of Fuchsian Groups

3.1. I. Topology. Definition: Let G be any group acting on a topological space
X.1 The action is said to be freely discontinuous if each point x ∈ X has a
neighborhood U such that the translates {gU}g∈G are pairwise disjoint.

Under such a circumstance, the map q : X → G\X is a (Galois) covering map.
In particular, q is a local homeomorphism, so that given a sheaf of functions F on
X, the pushed forward sheaf q∗F on G\X has stalk at q(P ) isomorphic to the stalk
of F at P ∈ X. (This is a fancy way of saying that any additional local structure
which X may have is inherited by G\X.)

This is a very nice state of affairs but is obviously too specialized for applications:
essentially, we must allow ramified coverings. The following definition identifies a
reasonable group action.

Definition: An action G on a space X is discontinuous at x ∈ X if there ex-
ists a neighborhood U of x such that the set {g ∈ G | gU ∩ U 6= ∅} is finite. An
action is discontinuous if it is discontinuous at every point of X.

There are several other natural definitions of properly discontinuous group actions
in the literature, and it is natural to wonder whether your favorite definition is
equivalent to the given one. We record some of the more useful equivalences.

Proposition 4. Let G be a locally compact group acting on a locally compact
metrizable space X. TFAE:
a) G acts discontinuously.
b) For all x in X, the orbit Gx is discrete, and the stabilizer Gx is finite.
c) Given any compact subset K ⊂ X and any x ∈ X, the set of G(x,K) = {g ∈
G | gx ∈ K} is finite.

Proof: c) =⇒ b): If for some x ∈ X, Gx were not discrete, then there would exist
a sequence of distinct elements gn ∈ G and y ∈ X such that gnx → y. But then for
every neighborhood U of Y , we’d have G(x,U) is infinite. Since by assumption y
has some neighborhood with compact closure, this contradicts condition c). More-
over, since {x} is compact, Gx is finite.
b) =⇒ c): If for some x and K, G(x,K) were infinite, then (using the assumption
of finiteness of the stabilizers), there exists a sequence of distinct elements gn of
g such that gnx has an accumulation point, contradicting the discreteness of the
orbit.
b) =⇒ a): For any point x ∈ X, there exists a ball B = Bε(x) such that
gx ∈ B =⇒ gx = x. Now let B1 = Bε/2(x). Then gB1 ∩B1 6= ∅ =⇒ gx = x, and
by assumption this is true for only finitely many g.

1It shall go without (further) comment that all such actions are continuous.
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a) =⇒ b): Suppose that for some x, Gx has a limit point y. Then any neigh-
borhood of y will meet infinitely many of its images under elements of g, a contra-
diction. Finally, discontinuity at x clearly implies the finiteness of the stabilizer Gx.

Remark: The group Homeo(X) of self-homeomorphisms of X has a natural (compact-
open) topology. It is quite clear that a group G ⊂ Homeo(X) which acts discontin-
uously on X is discrete: otherwise, there would exist a sequence of distinct elements
gn of G converging to the identity, so that for every point x in X, x is an accumu-
lation point of the orbit Gx.

One should ask: if G ⊂ Homeo(X) is a discrete group, must it act discontinu-
ously on X? The answer in general is negative.

Exercise 2.4: Let G ⊂ PSL2(R) be subgroup with at least one infinite orbit Gz.
Show that G does not act properly discontinuously on all of CP1.

The following definition refines these considerations.

Let H be a subgroup of PSL2(R). A point z ∈ CP1 is said to be a limit point of
H if there exists w ∈ CP1 and a sequence hn of distinct elements of H such that
hnw → z. The limit set Λ(H) ⊂ CP1 is the set of all limit points.

Exercise 2.5: Let H ⊂2 (R) and z ∈ CP1. Show that z ∈ Λ(H) ⇐⇒ H is
not discontinuous at z.

In light of this discussion, the following result is therefore a bit surprising.

Theorem 5. Let Γ be a subgroup of PSL2(R). The following are equivalent:
a) Γ is discrete.
b) Γ acts discontinuously on H.
c) Λ(Γ) is a closed subset of RP1.
A subgroup satisfying these equivalent conditions is called Fuchsian.

Proof: From the above discussion, it is clear that each of the other conditions im-
plies the discreteness of Γ (because, if Γ were not discrete, its limit set would be all
of CP1). We shall see in the next section that if Γ is discrete, its point stabilizers
are finite cyclic groups. Thus all that needs to be shown is that if Γ is discrete then
for all z ∈ H, Gz does not accumulate in H (although it may well have accumu-
lation points on the boundary). Also b) ⇐⇒ c) follows from the preceding exercise.

a) =⇒ b): By Proposition 4, it is enough to show that for every compact subset
K ⊂ H and every z ∈ H, Γ(z, K) is finite. Since Γ(z, K) = Γ ∩ PSL2(R)(z,K)
and Γ is discrete, it is enough to show that 2(R)(z,K) is compact. Indeed, we can
clearly show the same statement with SL2(R) instead.

In other words, we would like to show that the set E of matrices
[

a b
c d

]
with

ad − bc = 1 and az+b
cz+d ∈ K is a closed, bounded subset of R4. Consider the con-

tinuous map β : SL2(R) → H given by evaluation at z. Then E = β−1(K), so
evidently E is closed. To see boundedness, we may assume that WLOG K is the
subset {z = x + iy | m ≤ y ≤ M} for some m < M , since these are cofinal in the
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compact subsets of H. Then

|az + b

cz + d
| = =(z)

|cz + d|2 ≥ m,

so that we get the inequalities

|cz + d| ≤
√
=(z)
m

,

|az + b| ≤ M

√
=(z)
m

.

The boundedness of the vector [a, b, c, d] follows easily, and we’re done.

Remark: The moral here is that there is no general principle that guarantees
discreteness of a group of transformations implies the discontinuity of its action.
Indeed, given a discrete subgroup Γ ⊂ PSL2(C) = PGL2(C), one has no ad-
vance information about the structure of the limit set Λ(Γ). Instead one defines
Ω(Γ) = CP1 \Γ, so that Ω is an open subset of the Riemann sphere on which Γ acts
properly discontinuously. The only catch here is that Ω could be empty: indeed
this occurs for Γ = PSL2(Z[i]). A discrete subgroup Γ ⊂ PSL2(C) for which Λ(Γ)
is proper in CP1 is called a Kleinian group.

Example: Let us illustrate the above theory for cyclic subgroups Γ = 〈γ〉 of
PSL2(R).

Case 1: γ is elliptic. Then Γ is Fuchsian if and only if it is finite. If so, then
clearly Λ(Γ) = ∅.

Case 2: γ is parabolic. Then Γ is Fuchsian, and Λ(Γ) consists of a single ele-
ment on RP1; conversely, all points on RP1 arise this way.

Case 3: γ is hyperbolic. Then Γ is Fuchsian, and Λ(Γ) is a 2 element subset
of RP1; all such subsets arise.

Exercise 2.6: Work out the details of this example.

Exercise 2.7: What is the limit set of PSL2(Z)? (Hint: recall that the limit set is
closed!)

Definition: A Fuchsian group Γ is of the first kind if Λ(Γ) = RP1.

We will only have commerce here with Fuchsian groups “of the first kind.” On
the other hand, Fuchsian groups of the second kind are topologically interesting:
it turns out that if Λ(Γ) is a proper subset of RP1 whose cardinality is at least 3,
then it is a perfect nowhere dense subset, i.e., homeomorphic to the Cantor set (or,
if you like, to Zp).
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3.2. II. Geometry. Let us review some aspects of the equality H = H2, i.e., of
the upper halfplane endowed with the Riemannian metric

ds =

√
dx2 + dy2

y
.

As mentioned above, we have Isom+(mathbbH2) = PSL2(R).

Proposition 6. The geodesics on H2 are the semicircles orthogonal to the real axis
and the vertical lines (which we may view as the case of infinite radius).

Sketch proof: We shall not review the official definition of a geodesic in the
context of Riemannian geometry (they are solutions to a certain partial differential
equation). Recall that given an element of the unit tangent bundle of a Riemannian
manifold M (i.e., a point P on the manifold together with a unit vector v in the
tangent space of that point), there is an ε > 0 and a smooth function C : [0, ε) → M
such that C(0) = P , C ′(0) = v: less formally, we get a geodesic by starting at any
point and pushing off in any direction. The characteristic property of a geodesic
curve C is that given any point P on C, then there exists a neighborhood U of P
such that if Q ∈ C ∩ U , then the arc of C connecting P to Q has minimal length
among all paths from P to Q.

The image of a geodesic under an isometry of the manifold is (clearly) another
geodesic, and it is easy to see that the images of vertical lines under PSL2(R) yield
all semicircles orthogonal to the real axis, and also that these are “enough” curves:
i.e., each element of the unit tangent bundle lies on exactly one of them. Finally,
it is easy to see that vertical line segments are geodesics: since ds does not differ
from the Euclidean metric under change of x coordinate, the length of any path
from x + ia to x + ib is at least as long as the length of its projection onto this line
segment. Thus the minimal length is attained by the vertical line segment, namely

∫ 1

0

dy/dt

dy
dt = log(b/a).

Remark: Note that each “full” geodesic has infinite length. Recall that this means
that if we travel around the hyperbolic plane at bounded speed, we never reach the
boundary in finite time. One calls such a Riemannian manifold complete.

The following result is presented just for culture; we will not need it.

Corollary 7. The distance between two points z, w ∈ H is given by

d(z, w) = log
|z − w|+ |z − w|
|z − w| − |z − w| = log[w, z∗, z, w∗],

where

[z1, z2, z3, z4] =
(z1 − z2)(z3 − z4)
(z2 − z3)(z1 − z4)

is the cross ratio, and the geodesic joining z to w intersects ∂H at z∗ and w∗.

Proof: See [?, Theorem 1.2.5-6].

The Riemannian metric induces a volume form (or here, an area element), in this
case dµ = dxdy

y2 , which again must be invariant under PSL2(R) since the metric is.
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Definition: A hyperbolic polygon is a closed subset of H bounded by geodesic
segments. The intersection of such segments is called a vertex. Note that this
definition takes place in the extended hyperbolic plane: it is permissible for some
(or all) of the vertices to be on the boundary. (It is useful to draw sketches in the
unit disk model of the hyperbolic plane.)

Note that the fundamental equality Isom +(H2) = AutC(H) implies that there
is no notion of “similar figures” in hyperbolic geometry: any transformation which
preserves angles also preserves lengths! This may sound like a shortcoming but is
actually the source of a magnificent richness: the angle sum in a hyperbolic n-gon is
not predetermined, as in Euclidean geometry: rather, by pulling the vertices closer
or farther apart there is enough room to make polygons with arbitrarily small angle
sum. We illustrate with the following special case:

Theorem 8. (Gauss-Bonnet) For any 0 ≤ α, β, γ be three numbers such that
α + β + γ < π. Then there exists a unique (up to isometry) hyperbolic triangle ∆
with these angles, whose area is µ(∆) = π − α− β − γ.

Proof: [?, Theorem 1.4.2].

Remark: It is indeed possible to take α = β = γ = 0; for example, take the
region outside the unit circle and with |x| ≤ 1

2 . This region has hyperbolic area π.
(On the other hand, the interior of the unit semicircle has infinite hyperbolic area.)

3.3. III. Linear Algebra. Let γ = ±
[

a b
c d

]
be an element of PSL2(R). Put

T (γ) = |a + d|. We say γ is
elliptic if T (γ) < 2,
parabolic if T (γ) = 2,
hyperbolic if T (γ) > 2.

We will call a subgroup H ⊂ PSL2(R) of hyperbolic type if all its elements
are hyperbolic.

Note that the characteristic polynomial of a representative of γ in SL2(R) is

P (t) = t2 ± T (γ)t + 1,

with discriminant T (γ)2 − 4. Thus a hyperbolic element has distinct real eigenval-
ues, a parabolic element has a repeated real eigenvalue, and an elliptic element has
a conjugate pair of complex eigenvalues.

Exercise 2.8: Let 1 6= γ ∈ SL2(R).
We may view γ as an automorphism of H and of ∂H = RP1.
a) If γ is elliptic, show that it has a unique fixed point in H (and a conjugate fixed
point in H−).
b) If γ is parabolic, show that it has a unique fixed point in ∂H.
c) If γ is hyperbolic, show that it has two distinct fixed points in ∂H.

An element of H which is the fixed point of an elliptic element of Γ is called
an elliptic point, and an element of ∂H which is the fixed point of a hyperbolic
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element of Γ is called a hyperbolic point. An element z ∈ ∂H which is the fixed
point of a parabolic element is called a cusp.

Observe that every hyperbolic point or cusp for Γ is an element of the limit set
Λ(Γ).

One says that two elliptic points (resp. cusps) which are in the same Γ-orbit are
equivalent. An equivalence class of elliptic points is called an elliptic cycle; the
order of an elliptic cycle is the order of the stabilizer of any of its representative
elliptic points.

Given a hyperbolic element γ, there is a unique half-circle in H with boundary
points two fixed points, called the axis of γ.

Exercise 2.9: a) Show that a hyperbolic element is conjugate to
[

λ 0
0 1/λ

]
with

a uniquely determined λ.

b) Show that any parabolic element is conjugate to ±
[

1 1
0 1

]
.

c) Show that an elliptic element is conjugate to
[

cos θ − sin θ
sin θ cos θ

]
for a unique

θ ∈ [0, 2π).

Exercise 2.10: a) Show that PSL2(R) acts doubly transitively on ∂H. (That is,
given any two ordered pairs of distinct points (P1, P2), (Q1, Q2) of ∂H, there exists
γ ∈ PSL2(R) such that γPi = Qi for i = 1, 2.
b) Does PSL2(R) act doubly transitively on H? (Hint: Is there a geometric invari-
ant that must be preserved?)

Proposition 9. The set of elliptic points for a fixed Fuchsian group Γ does not
accumulate in H.

Proof: Suppose {zn}∞n=1 is a sequence of distinct elliptic points converging to some
w ∈ H. Because of XXX, there exists a neighborhood U of w such that

γU ∩ U 6= ∅ =⇒ γ(w) = w.

For sufficiently large n, zn ∈ U and zn 6= w, and there exists γ ∈ Γ such that
γ(zn) = zn. Then γU ∩ U 6= ∅, so that γw = w. But this means that γ has two
distinct fixed points in H, a contradiction.

3.4. IV. Group theory.

Proposition 10. Two nonidentity elements of PSL2(R) commute if and only if
they have the same fixed point set.

Proof: If αβ = βα, then α preserves the fixed point set of β. If we suppose that α
is parabolic, it is conjugate to z 7→ z± 1, so its centralizer consists of parabolic ele-
ments with cusp ∞, i.e., z 7→ z+λ for λ ∈ R. If α is elliptic, then again all elements
of PSL2(R) which preserve the fixed point set must also fix the unique element of
the fixed point set lying in H, so that β lies in the abelian group αSO(2)α−1. Fi-
nally, if α(z) = λz is hyperbolic, the fact that the centralizer is Gm(R) follows from
a direct calculation.
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Note that what we actually showed was that the centralizer in PSL2(R) of a hyper-
bolic / parabolic / elliptic element consists of all hyperbolic / parabolic / elliptic
elements with the same fixed point set.

Corollary 11. Let Γ be a Fuchsian group all of whose nonidentity elements have
the same fixed point set. Then Γ is cyclic.

Proof: Using the previous result, this reduces to the fact that discrete subgroups
of SO(2), R× and R are cyclic.

In particular every abelian Fuchsian group is cyclic.

Theorem 12. Let Γ be a nonabelian Fuchsian group. Then it normalizer N(Γ) in
PSL2(R) is a Fuchsian group.

Proof: Suppose that N(Γ) is not discrete. Then there exists a sequence of distinct
elements Ti ∈ N(Γ) such that Ti → 1. For S ∈ Γ \ {1}, TiST−1

i → S, and since
Γ is discrete we have TiST−1

i = S for all sufficiently large i. Now choosing two
arbitary elements S, S′ we get that they have the same fixed point set as Ti for all
sufficiently large i, and hence that they commute with each other, contradiction.

3.5. V. Riemann surfaces.

Proposition 13. Let Γ be a Fuchsian group. Then Y (Γ) := Γ\Y has, in a canon-
ical way, the structure of a Riemann surface.

Proof: Let E ⊂ H be the locus of fixed points of elliptic elements of Γ. By the
above material, we know that E is a discrete (possibly empty) subset of H. On
the complement Y \ E , Γ acts freely discontinuously, so passage to the quotient
gives an unramified (normal) covering with group Γ. In particular the map is a
local homeomorphism, so it is clear how to endow the quotient with a complex
structure: formally speaking, near any point P on the quotient, a function element
ϕ is decreed to be analytic if ◦q is locally analytic near any chosen preimage q−1(P ).

It remains to describe the complex structure on the quotient locally at the fixed
point P = q(P̃ ) of an elliptic element γ ∈ Γ. Let λ be a holomorphic isomorphism
from H to the unit disk such that H(γ) = 0. After this coordinate change γ is given
locally as multiplication by ζn = e2πia/n, where n = #〈γ〉. We can thus define a
function element on the quotient to be locally analytic at P if its preimage as a
function element near 0 ∈ D is analytic and has valuation at 0 divisible by n. This
gives an analytic structure on the quotient space.

4. Fundamental regions

For a full rank lattice Λ ⊂ C, one best visualizes the quotient space C/Λ by con-
sidering the side identifications on a fundamental parallelogram for Λ. This went
without explicit mention in our discussion of uniformized elliptic curves (here, af-
ter all, the topological picture is the same in every case). The analogous geometric
construction for Fuchsian groups Γ acting on H is much richer, and plays a unifying
role in the theory.

Definition: A fundamental set S ⊂ H for Γ is a set of representatives for the
Γ orbits of H: in other words, H =

∐
g∈Γ gS. It is obvious that fundamental sets
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exist for group actions on any set (provided that you believe in the axiom of choice).

Comparison with the case of lattices in C suggests however that this is not the
definition we really want: a parallelogram is not a fundamental set until we choose
to delete one of each pair of opposite sides. This choice is arbitrary and, in fact,
inconvenient: in order to see what we are glueing, it would be better to have both
edges. On the other hand we should try to impose some additional nice properties
for a fundamental region: at the moment, a fundamental region need not be mea-
surable.

It is, of course, not a priori clear which properties can be required of a fundamental
region for an arbitrary Fuchsian group (e.g. connectedness, yes; compactness, no),
nor necessarily which are desirable. But in the interest of streamlining the presen-
tation, we jump to the following definition.

Definition: A subset R ⊂ H is called a fundamental region for Γ if it satis-
fies the following conditions:
FR1) R is equal to the closure of its interior, R◦.
FR2)

⋃
g∈Γ gR = H, and for 1 6= g ∈ Γ, R◦ ∩ gR◦ = ∅.

FR3) R◦ is hyperbolically convex (so is in particular connected).
FR4) ∂R has measure zero, and is a countable union of edges Ci, which are either
closed geodesic arcs or closed intervals of the real line (free edges). If Ci 6= Cj ,
then Ci ∩ Cj is empty or consists of a single point.
FR5) The induced tesselation {gR | g ∈ Γ} is locally finite: any compact set
meets only finitely many translates of R.

Example: Let Γ = 〈γ〉 be a cyclic subgroup generated by the hyperbolic trans-
formation γ(z) = λz, for λ 6= 1. We may assume that λ > 1 (otherwise replace γ
by γ−1). Let

R := {z ∈ H | 1 ≤ |z| ≤ λ}.
That R is a fundamental domain for Γ is self-evident. The quotient Riemann sur-
face is a topological cylinder (in particular, it is not an affine or complete algebraic
curve)2 It is not hard to see that R has infinite hyperbolic area.

Exercise 2.11: Show that, in fact, any fundamental region with a free side has
infinite hyperbolic area.

Exercise 2.12: Carry out the corresponding discussion for a cyclic group gener-
ated by a parabolic element.

Example: Let Γ = PSL2(Z). We claim that

R = {z ∈ H | <(z) ∈ [−1
2
,
1
2
], |z| ≥ 1}

2However, it inherits the structure of a Riemannian surface of constant negative curvature, so
is – I suppose – what geometers would call a “pseudosphere.”
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is a fundamental domain for Γ. Fix z ∈ H and γ =
[

a b
c d

]
∈ SL2(Z). Then

=(γ(z)) = =(z)/|cz + d|2. Since +Z is a lattice in C, there exists a minimum
|cz + d| for (c, d) 6= (0, 0), which in turn implies that for fixed z, maxγ∈Γ =(γ(z))
exists. Choose γ so as to maximize y = =(γ(z)), where w = γ(z) = x + iy. Let

S =
[

0 1
−1 0

]
. Then

=(Sγ(z)) = =(−1/w) =
y

|w|2 ≤ y,

and we conclude that |w| ≥ 1. Now put T (z) = z+1, so that =(Th(σ(z)) = =(σ(z))
for all integers h, so that |Th(σ(z))| ≥ 1. Certainly we can choose h so as to put
the real part of σ(z) in the interval [−1

2 , 1
2 ], and we have shown that every element

of H is equivalent to an element of R.
It remains to be seen that distinct elements of R◦ are not Γ-equivalent, so assume

for a contradiction that z′ = σ(z). WLOG, =(z) ≤ =(z′) = =(z)/|cz + d|2. Thus

|c|=(z) ≤ |cz + d| ≤ 1.

If c = 0, then a = d = ±1 so z′ = z ± b, impossible. Therefore c 6= 0. Looking at
R, we clearly have =(z) >

√
32, so the equation implies c = 1, so |z ± d| ≤ 1. But

if z ∈ R◦ and |d| ≥ 1, we have |z + d| > 1. Hence d = 0, so |z| ≤ 1, and z is not in
R◦. This completes the proof.

Note that the right hand side of the fundamental region is a hyperbolic trian-
gle with angles (π/2, π/3, 0). Thus by Gauss-Bonnet it has hyperbolic area π/6,
hence the given fundamental domain for PSL2(Z) has area π/3. (This could, of
course, be shown by a direct computation.)

Exercise 2.13: a) Deduce from the proof that PSL2(Z) is generated by S and
T .
b) Thus PSL2(Z) is also generated by S and W = ST .
c) Use the tesselation of H by translates of R to show that PSL2(Z) admits the
presentation

〈S, W | S2 = W 3 = 1〉;
in combinatorial group theory one would say that PSL2(Z) is the free product of
Z/2Z and Z/3Z. (This begins to illustrate the supremacy of geometric methods in
“abstract” group theory. It is not at all straightforward to give a direct algebraic
proof of this, and harder still to imagine how one would guess the result in the first
place.)

Exercise 2.14: Use the above presentation for PSL2(Z) to solve the congruence
subgroup problem; in other words, show that there exist finite index subgroups
Γ ⊂ PSL2(Z) which do not contain Γ(N) for any N . (Suggestions: (i) Γ′ can be
taken to be normal. (ii) What are the possible composition factors of the groups
PSL2(Z/NZ)? (iii) Look up the list of finite simple groups which can be generated
by an element of order 2 and an element of order 3 (it’s a long list).)

Note that the fundamental region for a Fuchsian group – or even the tesselation
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that it determines – is far from unique. For instance, we could translate the fun-
damental region R for PSL2(Z) to the right by any real number in (0, 1) and get
a different tesselation. (In this case the tesselations are conjugate under the action
of PSL2(R), but this need not occur in general.) It is thus important to identify
properties which are independent of the choice of the fundamental region.

Proposition 14. Any two fundamental regions for the same Fuchsian group have
the same hyperbolic area (which may be infinite).

Proof: Let R1 and R2 be two fundamental regions. By definition, the areas are
equal to the areas of their interiors, so

R1 ⊃ R1 ∩ (
⋃

g∈Γ

g(R◦2)) =
⋃

g∈Γ

R1 ∩ g(R◦2).

The sets on the right hand side are pairwise disjoint, so

µ(R1) ≥
∑

g∈Γ

µ(R1 ∩ gR◦2) =
∑

g∈Γ

µ(gR1 ∩R◦2) ≥ µ(
⋃
g

gR1 ∩R◦2) = µ(R◦2) = µ(R2).

By symmetry, we conclude µ(R1) = µ(R2).

In view of this proposition, it makes sense to define the covolume of a Fuch-
sian group Γ as µ(R) for any fundamental region R for Γ. We will write vol(Γ). A
Fuchsian group is said to be v-finite if vol(Γ) < ∞.

Proposition 15. Let Γ′ ⊂ Γ be a subgroup of a Fuchsian group. Then

v(Γ′) = [Γ : Γ′] vol(Γ).

Exericse 2.X: Prove it.

We now turn to the construction of a fundamental region satisfying all the de-
sired properties. We first choose any p ∈ H which is not an elliptic element for Γ.
Then define

DP (Γ) = {z ∈ H |∀γ ∈ Γ, d(z, p) ≤ d(z, γ(p))}
where d denotes the hyperbolic distance. In other words, we just take those points
z all of whose Γ translates are at least as far from p as z itself.

Theorem 16. Dp(Γ) is a fundamental region for Γ.

Sketch proof: We need the following alternate construction of the Dirichlet region.
Namely, Then Dp(Γ) = ∩g∈Γ\1Hp(g), where

Hp(g) = {z ∈ H | d(z, p) ≤ d(z, g(p))}.
Reflecting a bit on the analogies with Euclidean geometry, it is plausible (and also
provable!) that Hp(g) can be described as follows: for 1 6= gΓ, let Lp(g) be the
unique geodesic connecting p and g(p)(our assumption on p guarantees that these
are distinct points). Let Tp(g) be the perpendicular bisector of Lp(g). then Tp(g)
divides H into two halfplanes3, and the one containing p is Hp(g).

At least given a belief that hyperbolic geometry works out nicely, much of the
proof follows from this: as Dp(Γ) an intersection of halfplanes, it is evidently hy-
perbolically convex (in particular, connected), and its boundary consists of geodesic

3Quarter planes?
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segments and free edges. It is less clear that Dp(Γ) is locally finite; for this, see [?,
Theorem 3.5.1].

One of the beautiful features of the Dirichlet region is that it displays the cusps and
the elliptic points: namely, each equivalence class of cusp or ellipic points shows
up exactly once as a vertex of any Dirichlet region. The basic idea here is that
since cusps and elliptic points have nontrivial stabilizers, they could not lie in the
interior of any fundamental region. (Moreover, a cusp is a limit point of a Γ-orbit
in H so must be represented in the closure of a fundamental set.)

There is one annoying little problem, however: an elliptic point of order n will
correspond to a vertex of the fundamental domain with angle 2π/n, so when n = 2
we get an angle of π, and it is impossible to see such vertices. This occurs in the
example of the modular group: there is a “vertex” at z = i despite the fact that
this does not appear to be an orbifold point of the fundamental region. Luckily,
the theory of elliptic points of order 2 is resolved by the theory of side pairings.

Side pairings: The sides of a Dirichlet domain arise as the nonempty sets g(R)∩R.
This picks out a subset Γ∗ of elements of Γ and a surjective map Φ from Γ∗ to the
set of sides S of R. This map is in fact a bijection. Moreover, Γ∗ is closed under
inversion: if gR ∩ R 6= ∅, then so is its image under g−1. Thus there is a natural
pairing amongst the sides of R, induced by the action of Γ∗. Note that a side gets
paired with itself if and only if the corresponding element g has order 2. This allows
us to resolve the problem of the previous paragraph: such a side must contain an
order two elliptic element, and we can subdivide the side into two subsegments and
further analyze the side pairing action.

Definition: We say a Fuchsian group is geometrically finite if it admits a Dirichlet
region with finitely many sides (in the above refined sense).

Theorem 17. Γ is generated by the side pairing elements Γ∗. In particular, if Γ
is geometrically finite, it is finitely generated. Indeed, if there exists a Dirichlet
domain with s sides, then Γ can be generated by s elements. If Γ has no elliptic
points of even order, then it can be generated by s

2 elements.

5. Basic theorems on Fuchsian groups

We know list some of the fundamental theorems on Fuchsian groups. For the sake
of brevity, we omit the proofs (in many cases, they follow by careful consideration
of what has already been shown).

Theorem 18. (Poincaré) Every Fuchsian group of the first kind admits a finite
index normal subgroup without elliptic elements.

Remark: In contrast to the other results of this section, this does not follow more
or less directly from what we have already done: some nontrivial geometry and
finite group theory are required. See Stillwell’s book on geometry of surfaces for a
wonderful discussion.

Theorem 19. For a Fuchsian group Γ, the following are equivalent:
a) There exists a finite orbit Γz.
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b) The limit set Λ(Γ) has at most two elements.
c) Γ is either abelian or conjugate to a group generated by g(z) = λz, h(z) = −1

z .
Such a Fuchsian group is said to be elementary.

Remark: The terminology “elementary” is standard but misleading: the elemen-
tary groups are the Fuchsian groups which are too small to be interesting or useful.
In many instances, they are exceptions to the general theory.

Exercise 2.15: Which Riemann surfaces arise as Γ\H for an elementary Fuchsian
group?

Before presenting the next result, let us discuss some topological aspects of the
classification of Riemann surfaces. Namely, any connected orientable surface can
be given the structure of a Riemann surface (sometimes in many different ways).
Let us divide the underlying topological surface S into four categories:

I: S is compact, of genus g ≥ 0. Equivalently, S is the set of complex points
of a projective complex algebraic curve. We shall say S is of type (g, 0, 0).

II: S is obtained from a compact Riemann surface of genus g with n > 0 punctures
removed. Equivalently, S is the set of complex points of an affine complex algebraic
curve. We say S is of type (g, n, 0).
III. S is obtained from a surface of the form II above by removing r pairwise disjoint
closed disks. We say S is of type (g, n, r). For instance, the unit disk is of type
(0, 0, 1), and the punctured unit disk is of type (0, 1, 1). Note that for r > 0, these
are not associated to algebraic curves.

Each of these Riemann surfaces are topologically finite: their homology groups
Hi(S,Q) are finite-dimensional.

IV. There are also surfaces which are topologically infinite, obtained (loosely
speaking) by allowing g, n and/or r to take the value ∞.

Theorem 20. For a nonelementary Fuchsian group Γ, the following are equivalent:
a) Γ is geometrically finite.
b) Γ is finitely generated.
c) Γ\H is topologically finite.
If these conditions are satisfied, Γ has only finitely many elliptic cycles, say of
orders m1, . . . , md (d = 0 is possible). If Γ\H is of type (g, n, r), one says that
the signature of Γ is (g;m1, . . . ,md; n; r). Then Γ admits a presentation with
generators α1, . . . , αg, β1, . . . , βg, γ1, . . . , γd, ρ1, . . . , ρn, ι1, . . . , ιr and relations

γmi
i = 1,

g∏

i=1

[αi, βi] · γ1 · · · γd · ρ1 · · · ρd · ι1 · · · ιr = 1.

For algebraic purposes, we are not interested in the Riemann surfaces which have
boundary curves. The following result explains which Fuchsian groups have Γ\H
of type I or II.

Theorem 21. For a Fuchsian group Γ, the following are equivalent:
a) Γ is v-finite.
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b) A Dirichlet region for Γ is geometrically finite and has no free sides.
c) Λ(Γ) = ∂H.
d) Γ\H is of type (g, n, 0).
A Fuchsian group satisfying these equivalent conditions is said to be of the first
kind.

Since we will only have truck with Fuchsian groups of the first kind, we now abbre-
viate the type (g, n, 0) to (g, n).

Theorem 22. Let Γ be a Fuchsian group of the first kind, with elliptic cycles of
orders m1, . . . , md, and such that Γ\H has type (g, n). Then

(1) vol(Γ) = 2π

(
(2g − 2) +

d∑

i=1

(1− 1
mi

)

)
.

Remark: This is essentially a theorem of hyperbolic geometry.

Note that, among other things, Equation 1 gives a necessary condition for the
existence of a Fuchsian group of a given signature, namely that the parenthesized
quantity be positive. It turns out that this condition is also sufficient:

Theorem 23. (Poincaré-Maskit) If (2g − 2) + n + r +
∑d

i=1(1 − 1
mi

) > 0, there
exists a nonelementary Fuchsian group with signature (g; m1, . . . , md; n; r).

Exercise 2.17: Let Γ be a Fuchsian group.
a) Show that vol(Γ) ≥ π

21 , with equality attained if and only if Γ has signature
(0; 2, 3, 7; 0). (We shall later see that there exists a unique conjugacy class of Fuch-
sian groups with this signature.)
b) If Γ has parabolic elements, show that vol(Γ) ≥ π

3 , with equality attained if and
only if Γ has signature (0; 2, 3; 1) (again, it will turn out that such a Γ is necessarily
conjugate to the modular group).

Problem 2.2: Let Γ be a Fuchsian group of signature (0; 2, 3, 7; 0).
a) Show that Γ has a presentation of the form

〈x, y, z | x2 = y3 = z7 = xyz = 1〉.
(Note that the perspective of abstract generators and relations reveals essentially
nothing about the structure of this group, not even that it is infinite. You might
try to figure out what group results if the 7 is replaced by a 5.)
b) By Theorem 18, there exists Γ′ a finite-index normal subgroup of Γ of hyperbolic
type. Let G = Γ/Γ′. Show that at least one composition factor of G is a simple
group.
c) Consider the compact Riemann surface X ′ := Γ′\H. If g is its genus, show that
#G = 84(g − 1).
d)* Show that there does not exist such a Γ′ with g ≤ 2, and that there exists a
unique Γ′ with g = 3.
e)** For which values of g does there exist such a Γ′?4

4Don’t actually try working on this before you consult the literature: this is an open problem
upon which a tremendous amount of work has been done. For instance, it is known that one can
take G to be the Monster.
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Note that it is implicit in our discussion that for a Fuchsian group Γ of the first
kind, the Riemann surface Γ\H can be compactified by adding finitely many points,
one for each equivalence class of cusps. This description will be suitable for our
purposes (because, in fact, we will be most interested in the case when there are no
cusps!). A somewhat finer analysis would be necessary in order to develop, e.g., the
theory of Fourier expansions of modular forms. See [?, Chapter 1] for an excellent
account of these matters.

Corollary 24. For a Fuchsian group of the first kind, the following are equivalent:
a) Γ\H is of type (g, 0, 0), i.e., is compact.
b) Γ is cocompact, i.e., Γ\PSL2(R) is compact.
c) Γ has no parabolic elements.

Note that if Γ has parabolic elements, so does every finite index subgroup. On the
other hand, the following (highly nontrivial) theorem says that elliptic elements can
be eliminated.
In particular, cocompact Fuchsian groups admit finite index normal subgroups of
hyperbolic type.


