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PETE L. CLARK

Let B/Q be an indefinite quaternion algebra of discriminant D (we allow the
case of D = 1, i.e., B ∼= M2(Q)) and ON a level N Eichler order in B. By taking
Γ(ON ) = Γ(B,ON ) to be the elements of O× of positive reduced norm,1 we get
an arithmetic Fuchsian group and hence a Riemann surface ON\H. So as not to
prejudice matters, let us temporarily denote the Shimura curve associated to any
quaternion order O by X(O).2 Let N be a positive integer which is prime to D.
By definition a level N Eichler order is the intersection of two maximal orders,
ON = O ∩O′. Here N can be characterized in any of the following ways:

(i) The discriminant of ON is N ·D.
(ii) N is the common index [O : ON ] = [O′ : ON ].

Let N =
∏

p pni =
∏

p Np. Then the completion of ON at p is equal to the in-
tersection of the standard maximal order (O)p = M2(Zp) of Bp = M2(Qp) with the
order

(ON )p =
[

Zp pnZp

p−nZp Zp

]
,

the conjugate of M2(Zp) by the element

wNp =
[

pn 0
0 1

]
.

As we saw in our study of global orders, for two maximal orders O and O′ of B,
there exists an element of B× which we shall denote wN such that O′ = wNOw−1

N .
(In the split case, we can indeed take wN =

∏
wNp .) The reduced norm of such an

element wN is well-determined up to a square, and we may choose wN so as to lie
in O and have reduced norm N . When np is odd this is called an Atkin-Lehner
involution.

We wish to address the following question: what is the modular intepretation of
X(ON ) and of the two maps

f1 : X(ON ) → X(O), f2 : X(ON ) → X(wNOw−1
N ) ?

An excellent start is the observation that when D = 1, the order ON is precisely[
Z Z

NZ Z

]
, so that Γ(ON ) = Γ0(N). This gives us the idea that the curve

XX(ON ) should parameterize O-QM abelian surfaces with some kind of “quater-
nionic Γ0(N) level structure,” which is the right idea. (In fact, in earlier lectures

1I now allow myself to refer to a discrete subgroup of GL2(R)+ as a Fuchsian group; such a
thing acts on H and the action is effective upon passing to the quotient by ±1.

2Note that in the split case B = M2(Q), we are getting a noncompactified modular curve,
which would be more traditionally denoted by Y “of something.” We will not do this here.
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we have denoted X(ON ) by XD
0 (N) and Γ(ON ) by ΓD

0 (N), so to a certain extent
we have presupposed the explanation which we are now giving.) However, our task
here is to make this precise, and also to resolve the following issue: we also have an
interpretation of X(ON ) = Γ(ON )\H as a moduli space of abelian surfaces of the

form C2/Φ(ON )
[

τ
1

]
, where Φ : B ↪→ B⊗R = M2(R), in other words as ON -QM

abelian surfaces.

Thus, what we really want to understand is why an ON -QM structure is equiv-
alent to an O-QM structure together with a quaternionic Γ0(N)-level structure
(and to define the latter). Because we can view O×N as defining a compact open
subgroup of B×(Af ) – namely we take the adelic points whose component at p is
the units of the local order (ON )p defined above, it is a priori clear that X(ON )
can be viewed as some kind of partial level N -structure in the adelic sense: namely,
an orbit of B ⊗ Ẑ-equivariant isomorphisms of Ô = O ⊗ Ẑ with the full Tate
module TA =

∏
` T`(A). To give a full level N structure is equivalent giving an

O-equivariant isomorphism from A[N ] to Ô ⊗ Z/NZ ∼= O ⊗ Z/NZ; note that the
latter is isomorphic to M2(Z/NZ) since N is divisible only by split primes of B.
Thus full level N -structures are parameterized by M2(Z/NZ)× ∼= GL2(Z/NZ), just
as in the elliptic modular case. Indeed, as long as N is prime to D, all the group
theory is the same as in the D = 1 case, and Γ(ON ) is a (non-normal!) subgroup
of Γ(O) of (projective) index equal to the (projective) index of Γ0(N) in Γ(1) in
the classical modular case.

Exactly what is a Γ0(N) level structure? In the case that D = 1, we are looking at
squares of elliptic curves E × E, and the reasonable thing to take is a subgroup of
the form Q = C × C, where C is an order N cyclic subgroup of E. It is not hard
to see that if we do this, then Q has the merit of being stabilized by M2(Z); in
particular, E×E/Q carries a natural QM structure. In fact, as far as the N -torsion
is concerned, the picture is identical in the QM case:

Let (A, ι) be an abelian surface equipped with an embedding ι : O ↪→ End(A).
The elements of ι(O), like any endomorphisms of any abelian group, preserve the
N -torsion, so we have a representation O ↪→ End(A) ∼= M4(Z/NZ), which factors
through O ⊗ Z/NZ ∼= M2(Z/NZ). Thus, the essential data is a certain homo-
morphism M2(Z/NZ) → End(W ), where W = A[N ] is a four-dimensional free
Z/NZ-module. Up to equivalence, there is only one such homomorphism (an in-
stance of Morita equivalence from the category of modules over a ring R to the
category of modules over Mn(R), but we can make this perfectly explicit here.)
Let e1, e2 be the two standard idempotents for M2(Z/NZ); then putting Vi = eiW
we get a direct sum decomposition W = V1 ⊕ V2 under which M2(Z/NZ) acts in
the obvious way (i.e., as a 4× 4 matrix partitioned into four 2× 2 blocks, each of
which consists of a scalar matrix).

Let ϕ : (A1, ι1) → (A2, ι2) be an isogeny which respects the QM-structure. Equiv-
alently, there exists a positive integer N such that ϕ is given by modding out by
a finite subgroup Q ⊂ A[N ], where Q is O-stable. By the above discussion, it is
not possible for Q to have Z/NZ-rank 1: the proper, nontrivial O-stable subspaces
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all have rank 2. Thus it makes sense to define an isogeny as being QM-cyclic if
its kernel is O-stable and isomorphic as an abelian group to Z/NZ⊕ Z/NZ. More
precisely, under the Morita equivalence, a QM-cyclic subgroup Q ⊂ A[N ] will be
of the form e1Q ⊕ e2Q = C1 ⊕ C2, where Ci is an honestly cyclic subgroup of Vi.
The data of Q and C1 (or indeed also C2) are in fact equivalent: C1 = e1Q and
Q = O ·C1. Thus, a QM-cyclic degree N isogeny determines, and is determined by,
an order N cyclic subgroup C of V1. (Note however that not any order N subgroup
of A[N ] arises this way: a cardinality argument shows that it is in fact more likely
that the O-module generated by a point of order N is all of A[n].) Moreover, it
is easily seen that the subgroup of O× stabilizing a particular subgroup C ⊂ V1 is
precisely the group O×N . Thus we have proved the following

Proposition 1. The curve X(ON ) = Γ(ON )\H can be viewed as the moduli space
for either of the following structures:
(M1) Triples (A, ι, Q), where A is an abelian surface, ι : O ↪→ End(A) is an O-QM
structure, and Q ⊂ A[N ] is an O-stable subgroup of order N2.
(M2) Equivariant isogenies ϕ : (A1, ι1) → (A2, ι2) with QM -cyclic kernel.

Because of this proposition, we feel justified in reverting to the old notation ΓD
0 (N)

for the units in ON and XD
0 (N) = ΓD

0 (N)\H.

Okay, but what does this have to do with the ON -QM abelian surfaces constructed
analytically above? We have a map

A = C2/Φ(ON )
[

τ
1

]
→ C2/Φ(O)

[
τ
1

]
= A′

whose kernel is isomorphic to O/ON , i.e., cyclic of order N . It should now be
clear what’s going on: ON is the subring of End0(A) ∼= End0(A′) which stabilize
a cyclic subgroup C1 and hence become well-defined on the quotient A′. On the
other hand, there is another degree N isogeny from A to the abelian surface A′′ =

C2/Φ(wNOw−1
N )

[
τ
1

]
, with corresponding kernel C2. Again ON is the subring

of endomorphisms stabilizing this cyclic subgroup. These two degeneracy maps
f1, f2 : XD

0 (N) → XD differ by the automorphism q : XD
0 (N) → XD

0 (N) given by
conjugating elements of ON by wN . What we have then, is that the picture

A′
f1← A

f2→ A′′

is a symmetric version of the previous interpretation of XD
0 (N). Indeed, both of

the composite isogenies f2 ◦ f∨1 : A′ → A′′, f∨1 ◦ f2 : A′′ → A′ are QM-cyclic
and mutually dual (here we are using the fact that the canonical polarization on
an O-QM surface is principal, so certain details are being elided), which gives the
modular interpretation of the automorphism wN of XD

0 (N).

Remark: In the (few!) places where this is explained in the literature, one usu-
ally finds primacy given to the group C1 instead of Q. From the perspective of my
thesis work – which studies principally polarized abelian surfaces with quaternionic
multiplication defined over an extension field (analogous to studying CM elliptic
curves over Q) – the group Q is more important, since one needs to have the O-
action rationally defined in order to define the projection C1 = e1Q, but there
are curves – namely, quotients of XD

0 (N) by Atkin-Lehner involutions at primes
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dividing D, which we have not yet discussed – whose natural moduli interpretation
involves Q. However:

Exercise: Define the subgroup ΓD
1 (N) and the curve XD

1 (N) = ΓD
1 (N)\H. Show

that its moduli interpretation is a tuple (A, ι, Q, P ) with A, ι, Q as above and P a
generator of the cyclic subgroup C1 = e1Q.

But it turns out that (when D > 1!), the curves XD
0 (N) are much more interesting

than the curves XD
1 (N) insofar as their rational points are concerned. Indeed, by

the above exercise XD
1 (N) parameterizes (certain) points of order N on abelian va-

rieties with potentially good reduction, and it turns out that this information alone
is enough (in fact, more than enough) to deduce strong restrictions on the rational
points. For instance, I showed in my thesis that for any fixed p-adic field K, there
exists an integer N0 such that N > N0 implies that for all D, XD

1 (N)(K) = ∅.
This result (and in fact much stronger results) can be found in a joint paper with
Xavier Xarles.


