
LECTURES ON SHIMURA CURVES 0: MODULAR CURVES

PETE L. CLARK

General remarks about these documents: These are lecture notes. Let us reflect
separately on the meaning of both words. The first word is meant to indicate
some correspondence between what is said in the lectures and what appears in
these notes. This correspondence is not precise: on the one hand, in response to a
question or a comment, I may say things in class which do not make it into these
documents. (If I or someone else says something important that does not appear
here, let me know, and I will try to incorporate it into a later draft.) On the other
hand in certain places the notes will go into significantly more depth than what is
said in class. It is also hoped that gaps in arguments which get pointed out in class
will be filled in the notes. The meaning of the second word is that these documents
are provisional and works in progress – we hope that the mathematics presented
in here is clear, and is complete at least where it claims to be complete. It would
be nice if every unproved fact were accompanied by a precise reference, but this
may be too much to hope for. An important part of your responsibility in taking
the class is to look through the notes and to suggest improvements. Perhaps some
day these notes will be turned into a formal written document, but that day is not
especially near at hand.

Interspersed throughout the notes are Exercises and Problems. If you want
to keep up with the material, then working on the exercises is very strongly rec-
ommended. However, solving the exercises is not required in any formal sense, or
at least not by me. Not all of the exercises have the same status: some exercises
ask for the proof of a stated result (the implication here is usually that it follows
rather easily from what has already been said), whereas others are more ancillary.
I have put stars in front of certain exercises or parts of exercises. A star means
the exercise is likely to require some extra knowledge, or in other words a possibly
“unfair” question, so be warned. A problem is more serious than an exercise, either
in difficulty or scale. A problem may not be phrased so as to have a clearly defined
solution, or the solution may be unknown (or unknown to me).

1. Introducing modular curves

In one sentence, the goal of this course is to become acquainted with certain
Shimura varieties which are generalizations of the classical modular curves (like
X0(N)) in that they parameterize certain higher-dimensional abelian varieties, and
to concentrate especially on the case of (quaternionic) Shimura curves.

1.1. Complex elliptic curves. What is meant by an elliptic curve over the com-
plex numbers? There are at least three quite different looking definitions:
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(EC1) It is given by a Weierstrass equation

y2z = x3 + Ax2z + Bz3

whose discriminant ∆ = 4A3 + 27B2 is nonzero.

Advantages: (i) elementary nature; (ii) amenability to computation; (iii) gener-
ality (works over every field of characteristic not 2 or 3 and over every field with
minor modifications).
Disadvantages: (i) The equation is not intrinsic, necessitating a theory of changing
between all possible equations. (ii) does not suggest generalizations (other than
hyperelliptic curves!).

(EC2) It is both a compact Riemann surface (= complex manifold of dimension
one) and a complex Lie group.

It is not too hard to show that all such objects (EC2) are of the form C/Λ (i.e.,
topologically a torus) where Λ ∼= Z2 is a lattice in C viewed as a two-dimensional
R-vector space, and conversely such quotients clearly give objects (EC2).

Advantage: The nice geometric picture makes many properties obvious (e.g., the
structure of the torsion subgroup) obvious for which purely algebraic proofs would
be much harder fought (or impossible).
Disadvantage: Again suggests “the wrong” higher-dimensional generalization, to
complex tori rather than abelian varieties.

(EC3) The instance k = C of the following definition: An elliptic curve over an
arbitrary field k is a nice (= nonsingular, connected) projective curve of genus one
endowed with a k-rational point O ∈ C(k).

(EC4) The instance k = C of: An elliptic curve is a one-dimensional abelian variety,
i.e., a nice projective group variety A/k.

The last two definitions I would regard as “correct” but more technically demand-
ing and not as immediately useful as (EC1) and (EC2).

These four definitions are in fact equivalent, although the equivalence is by no
means obvious. (The proofs can be found, e.g., in Silverman’s two books.) It might
be educational to at least think about what is involved in proving the equivalence
of these four criteria.

Let us recall some of the relations between the first two definitions. For an elliptic
curve given by a Weierstrass equation as above, one can define its j-invariant

j(E) =
2833A3

4A3 + 27B2
,

and as the terminology suggests, j is independent of the choice of the Weierstrass
equation so gives a complex number which is an invariant of E. Moreover, the
following facts are known:

(J1) If E and E′ are C-elliptic curves, then E ∼= E′ ⇐⇒ j(E) = j(E′).
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(J2) For every j ∈ C, there exists an E with j(E) = j.

In other words, over the complex numbers, isomorphism classes of elliptic curves
are naturally paramterized by a copy of the complex numbers – or, to rephrase
things in a more pretentious way – by A1, the affine line over the complex numbers.
The slogan here is: “The moduli space of elliptic curves is the j-line.”

What we are looking for is moduli spaces of higher-dimensional abelian varieties,
but this purely algebraic discussion doesn’t suggest anything. Much more enlight-
ening is the corresponding discussion of the j-invariant in the language of (EC2),
which we will now review.

Namely, let us try to construct (roughly speaking) “the moduli space of lattices”
Λ in C. Viewing C = R2, we can specify a lattice by giving its basis, which will
be two vectors v1, v2 ∈ R2, and the only condition is that they be (R)-linearly
independent, or in other words that the matrix [v1|v2] should have nonzero deter-
minant: this gives us GL2(R).

We are certainly not done, since on the one hand we are giving ourselves not just
a lattice but a “framed lattice” (i.e., a choice of basis), and on the other hand we
need to consider the relationship between two lattices Λ, Λ′ such that C/Λ and
C/Λ′ are isomorphic elliptic curves. It is not hard to see that such an isomor-
phism determines and is determined by a C-linear isomorphism α : C → C (here
we view C as the universal cover of the two elliptic curves) with the property that
α(Λ) ⊂ Λ′. The C-linear maps from C to C are just the constants, so the right
equivalence relation on lattices is homothety: for any α ∈ C×, Λ and αΛ give the
same elliptic curve. In other words, we need to consider the quotient GL2(R)/C×.

Exercise 0.1: Show that GL2(R)/C× is naturally isomorphic to the “double half
plane” H± = {x + yi | y 6= 0}.

More precisely, GL2(R) acts on H± by linear fractional transformations:
[

a b
c d

]
(z) =

az + b

cz + d

so that GL2(R)+ (the matices with positive determinant) act on H by fractional
transformations, and the above exercise is equivalent to the claim that this action
is transitive and the stabilizer of i is SO(2), i.e., the complex numbers of norm 1.

The passage from GL2(R) to GL2(R)+ can be seen as requiring our basis vec-
tor [z1 | z2] to be positively oriented. Thus, by dividing by z1, we get a reprentative
of any elliptic curve by the lattice Λτ = [1 | τ ] for τ ∈ H. Thus we get a C-valued
function on the upper halfplane,

J(τ) := j(Eτ ).

This function is not an injection, because Z + Zτ and Z + Zτ ′ can be the same
lattice without τ = τ ′. The ambiguity here is in the choice of an oriented basis for
the lattice, and this is easy to account for:
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Exercise 0.2: Show that Λτ = Λτ ′ if and only if there exists a matrix m ∈ SL2(Z)
such that mτ = τ ′.

In other words, J factors through to give a function

J : H/SL2(Z) → C.

Let us write Y (1) for the quotient space H/SL2(Z): it is an example of a Riemann
surface uniformized by a Fuchsian group. The argument shows that the descended
function J is an injection. In fact, it can be shown that J is an isomorphism.1

In summary, we obtain the j-line, the moduli space for elliptic curves, by con-
sidering the quotient of the upper halfplane by the discrete subgroup SL2(Z), or
equivalently, as the double coset space GL2(Z)\GL2(R)/C×.

1.2. Modular curves of higher level. Put Γ(1) := SL2(Z) and let N be a
positive integer. We define a subgroup Γ(N) ⊂ SL2(Z) as the kernel of the homo-
morphism of groups SL2(Z) → SL2(Z/NZ) obtained by reducing entries modulo

N . In other words, Γ(N) is the set of matrices
[

a b
c d

]
∈ SL2(Z) such that

a − 1, b, c, d − 1 are all divisible by N . A group Γ such that Γ(N) ⊂ Γ ⊂ Γ(1)
is called a congruence subgroup of SL2(Z).2 To such a Γ, we can associate the
Riemann surface

Y (Γ) = Γ\H.

Notice that Y (Γ) comes equipped with a natural map to Y (1), via the quotient map
Γ\H → SL2(Z)\H, which is finite of degree either [Γ(1) : Γ] or 1

2 [Γ(1) : Γ]. The
curve Y (Γ) is a moduli space for elliptic curves together with some extra structure
on the N -torsion subgroup. This can be explained (probably too briefly for those
who have not seen the material before) as follows: on the “framed” elliptic curve
Eτ we can, for any N ≥ 2 write down a canonical basis of the N -torsion, namely
( 1

N , τ
N ). If, however, we change the lattice basis by some m ∈ SL2(Z), we get a

different canonical basis, and the new and old bases can be compared via a matrix
T ∈ SL2(Z/NZ). It is thus at least plausible that if we restricted to m which
are congruent to the identity modulo N , the transition matrix T will also be the
identity, so in other words Y (Γ(N)) parameterizes triples (E, P, Q), where E is an
elliptic curve and P, Q give a basis for E[N ].

Exercise 0.3:
a) Work out the details of this moduli interpretation of Y (Γ(N)).

b) Let Γ0(N) = {
[

a b
c d

]
∈ SL2(Z) | c ≡ 0 (mod N)}.

Show that Y0(N) := Y (Γ0(N)) parameterizes elliptic curves together with a distin-
guished cyclic order N subgroup.

c) Let Γ1(N) = {
[

a b
c d

]
∈ Γ0(N) | a ≡ 1 (mod N)}.

1The surjectivity is the hardest part; see Corollary I.4.3 of Silverman’s second book on elliptic
curves.

2It is not the case that every finite index subgroup is a congruence subgroup, as we shall
discuss later on.
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Show that Y1(N) := Y (Γ1(N)) parameterizes elliptic curves together with a distin-
guished point of order N .

1.3. Rational models. In particular, each Y (Γ) is an (affine) algebraic curve over
the complex numbers. It turns out that elliptic curves over the complex numbers
are no longer so interesting to algebraic geometers – their structure is well under-
stood. However, elliptic curves over other fields (e.g. Q) remain of paramount
interest to number theorists. For an arbitrary field k, our definition (EC2) does
not make sense, although the other three do. However, if k has characteristic zero
then to an elliptic curve over k one can associate an elliptic curve over C, so that
such an elliptic curve has all the structure of a complex elliptic curve and more (in
particular, complex analytic methods can still be used!).

If E is an elliptic curve over k, then its j-invariant evidently lies in k, and the
proof of (J2) actually shows that for any j ∈ k, there exists an elliptic curve E de-
fined by a Weierstrass equation all of whose coefficients are in k, such that j(E) = k.
Thus in some sense A1

/k is still a moduli space for elliptic curves over k. (However,
(J1) does not hold: if j(E) = j(E′), then one may need to extend the base field in
order for E and E′ to be isomorphic. This is the phenomenon of (usually quadratic)
twists.)

The task therefore is, for a congruence subgroup Γ, to realize X(Γ) not only as
a complex curve but also as a curve defined over Q. The details of this are cer-
tainly to be left for later: for now, suffice it to say that this goal succeeds without
reservations when Γ = Γ0(N) or Γ1(N) (for any N): one does indeed get curves
Y0(N), Y1(N) defined over Q. In general, if Γ contains Γ(N), then one gets a nice
model of X(Γ) over Q(ζN ) (where ζN is a primitive Nth root of unity) and a model
over Q which may be disconnected.

A major problem in arithmetic geometry is to classify the points on these curves
– especially Y0(N) and Y1(N) – rational over Q and over various fields of higher
degree. Here are some of the spectacular results:

Theorem 1. (Mazur) The possible structures of the torsion subgroup of an elliptic
curve over Q are as follows: Z/NZ for 1 ≤ N ≤ 10 or N = 12, or Z/2Z⊕ Z/2NZ
for 1 ≤ N ≤ 4.

The complete answer is also known over quadratic fields; I am not sure if the work
is complete over cubic fields.

Theorem 2. (Merel) There exists a function C(d) such that if K is a number field
with [K : Q] ≤ d, then N ≥ C(d) =⇒ Y1(N)(K) = ∅.
Theorem 3. (Mazur) If N > 163 is prime, then Y0(N)(Q) = ∅.
The curve Y (Γ) is always affine, but like any affine curve it can be “completed” in a
canonical way. By this, I mean that if C is any nice complex algebraic curve, then
there exists a unique integer n ≥ 0 such that C(C) is topologically an orientable
surface of genus g with n points removed. In our context, the compactification
can also be performed as follows: namely, Y (1) ∼= A1, whose completion is the
familiar object P1. Call this X(1). Then X(Γ) can be constructed as the fiber
product Y (Γ)×Y (1) X(1), or (equivalently) as the normalization of X(1) in Y (Γ).
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(Of course, there is a nicer way to describe the added points, namely as cusps, but
it is worth making the point that this theory is not necessary for constructing the
curves X(Γ).)

We can now state what is arguably the most important single result of twentieth
century number theory:

Theorem 4. (Taylor, Wiles, Breuil, Conrad, Diamond. . .) Let E/Q be a rational
elliptic curve. Then there exists a positive integer N and a finite map X0(N) → E
defined over Q.

In other words, every rational elliptic curve is modular. Work of Darmon (and
Bertolini, Dasgupta, . . .) has explored what might be the right analogue for elliptic
curves defined over more general number fields. On the other hand, one can ask for
the generalization of this enormous theorem to abelian varieties, and the statement
of this conjecture is one of the goals of the first part of the course.


