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Explicit Determination of Nontrivial
Torsion Structures of Elliptic Curves
Over Quadratic Number Fields

By Markus A. Reichert

Abstract. We determine equations of the modular curves X;(N) for N = 11, 13, 14, 15, 16, 17
and 18. Except for N = 17, these are the only existing elliptic or hyperelliptic X;(N).
Applying these X;(N), we calculate tables of elliptic curves E over quadratic fields K with
torsion groups of one of the following isomorphism types:

E(K)=7Z/mZ, m=11,13,14,15,16 and 18.

1. Introduction. Let E denote an elliptic curve defined over an algebraic number
field K of finite degree over the rationals Q. We shall assume that the curve E is
given in Weierstrass normal form:

(1) E:Y*+a,XY+a,Y=X+a,X*+a,X+as; a,,a,,a; a, ag€EK.
Designate by E(K) the group of rational points of E over K. Mordell and Weil

proved that E(K) is finitely generated. Hence, E(K) may be written as a direct
sum,

E(K) = Etor(K) ® Efr(K)a
of the torsion group E, (K) and a free group E (K). The number of free
generators of E.(K) is called the rank of E over K. Of course, E, (K) is finite,
and it is conjectured that the order of E, (K) is bounded by a constant N(K)

depending only on K.

Boundedness Conjecture:

|Etor(K) I < N(K)

In 1969 Manin [7] proved this conjecture for the p-component of E, (K ), p being a
prime. In 1979 Kenku [2] explicitly determined this Manin-bound for the case p = 2
and K a quadratic field over Q. He proved that the maximal 2-power order of a
K-rational torsion point of an elliptic curve over K is 16. This bound is sharp. We
have computed elliptic curves over quadratic fields K over Q with K-rational points
of order 16.

In 1977 Mazur [8] proved the boundedness conjecture in the case K = Q. He
determined that N(Q) equals 16, and more precisely he obtained

_ [Z/mZ; m=1,2,...,100r 12,
wa(Qy) - {Z/ZZ X Z/mZ; m=1,2,3,4.

Received January 5, 1984.
1980 Mathematics Subject Classification. Primary 14K07, 10B10, 10D12; Secondary 14K15, 14G25.

©1986 American Mathematical Society
0025-5718/86 $1.00 + $.25 per page

637
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2. Determination of Nontrivial Torsion Structures. When speaking of nontrivial
torsion structures, we think of structures which do not exist over Q. We have
calculated tables of elliptic curves E over quadratic fields K whose torsion group is
isomorphic to one of the following groups:

E.(K)=1Z/mZ, m=11,13,14,15,16and18.

These tables were computed by a modification of a method of Kubert [4] which in
turn is extending the method of Billing and Mahler [1] leading to the modular curves
X,(N). Our first result is

THEOREM 1. For N = 11, 13, 14, 15, 16, 17 and 18 the modular curves X,(N) are
given by the following equations:
() X,(11): V2 + Vv =U®- U?,
(i) X,(13: V*+ U -U*-1)W-U*+U=0,
(iii) X,(14): V2+ UV +V=U?-U,
(iv) X;(15): V2 + UV + V=U?+ U?,
v) X,(16): (U*+3U+ V2 + (U + 4U* + U)WV - U =0,
™) X A7): VA+ U+ 23+ U3+ )V2+ (-U° -2U*- U -U*- U)WV
- Us-2U*-U%=0,

(vil) X;(18): (U2 =2U+ )WV + (-U*+ U-1)W+ U*-U%=0.

Except for N = 17, these are the only existing elliptic or hyperelliptic X;(N) [9].
In the literature, these X;(N) are partially known, but nobody as yet seems to have
used them for calculating examples of nontrivial torsion structures.

Proof. To prove Theorem 1, we start from a special form of the elliptic curve E
over K:

E(b,c): Y>*+(1 —c)XY - bY = X?-bX?  b,c€K.
This is called the E(b, c¢)-form. We obtain it from the Weierstrass normal from (1) of
E by imposing on E the following three conditions:
@i P=(0,0) € E, (K),

(ii) the straight line X = O is a tangent to E at P,

(iii) ord(P) # 2, 3.

(1) implies that a4 = 0, and from (ii) and (iii) one deduces that a,, a, # 0, and
a, = 0. Now the equation for E assumes the form
E:Y*+ a; XY +a,Y=X*+a,X%  a,, ay;+0.

Applying the birational transformation

a3 a; a;

On substituting

@) 1-c=% and —b=2240,
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we obtain the E(b,c)-form of the elliptic curve. We shall carry out in detail the
necessary calculations relating to X;(N) in the most simple case N = 11 and outline
the remaining cases of N = 13, 14, 15, 16, 17 and 18, which are treated in a similar
manner. (See [11] for more details.)

The Case of X;(11). To calculate X;(11), we assume that ord(P) = 11. Then
SP = —6P, and

(3 Xsp = X_¢p = Xep-
In Eq. (3), x,p means the x-coordinate of the n-multiple nP of P. Now we calculate
the multiples of P on E(b, c). They are:

P =(0,0),
2P = (b, be),
3P =(c,b—c),

4P = (r(r=1),r*(c+r-1)); b=cr,
_5£=(rs(s—1),rs2(r—s)); c=s(r-1),
6P = (-mt, m*(m + 2t — 1)); m(l1 —s)=s(1-r)and
r—s=1t(1-ys).
Equation (3) implies that
(4) rs(s — 1) = -mt.
Without loss of generality, the cases s = 1 and s = 0 may be excluded. Reversing
the substitutions made when calculating 6 P, we obtain from Eq. (4):

(5) X;(11): r2 — 4sr + 3s’r — s’r + s = 0.

This is one of the equations for X;(11), called the “raw form” of X;(11). This
equation has to be transformed birationally into the equation of the X;(11) given in
Theorem 1. The goal of this transformation is to get an equation of X;(11) with as
few singularities as possible. This transformation is done in three steps. When
computing the other X;(N) we can take roughly the same steps to get the desired
transformations.

1. Step: Translation. We translate the point Q = (1,1) on X;(11) according to Eq.
(5) to obtain Q' = (0, 0) by the birational transformation:

s=U +1, r=V,+1
Equation (5) implies
(5.1) VE- Uy, - UV, - U2 = 0.

2. Step: Quadratic transformation. By this transformation we remove the singular-
ity at (0, 0). We put

to obtain from Eq. (5.1)
(5.2) 1/22 + U22V2 + V2 - U23 = 0.
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3. Step: Separation of variables. We set

U2U

=—V-’ V2=

1

7
From Eq. (5.2), one derives

(6) x(M):v2+v=U-U%

Up until now, we made the calculations by hand. The subsequent calculations were
performed by means of the computer algebra system SAC-2, which we implemented
on a “Siemens 7.561” at the “Rechenzentrum der Universitat des Saarlandes”. First
of all, we give a list of the multiples nP for n = 7,...,10. We shall write nP =
(Nx/Dx, Ny/Dy) and exhibit Nx, Dx, Ny and Dy.
1P:
Nx =2mt3 + (5m? — 3m)t? +(4m> — Sm? + m)t + m* — 2m> + m?,
Dx = -3 + 2,
Ny = -mt® +(-4m? + 4m)t> +(-6m> + 15m? — 6m)t*
+(-4m* + 22m3 — 20m? + 4m) 13
+(-m® + 16m* — 25m* + 11m? — m)¢?
+(6m> — 14m* + 10m*® — 2m?)¢
+m — 3m> + 3m* — m3,
Dy =15 — 2t + £3.
8_’12
Nx = —t> +(-2m + 3)t* +(-m? + 6m — 3)t> + (4m? — 5m + 1)¢?
+(m* = 2m? + m)t,
Dx = 413 +(-4m + 8)t* +(-m> + 6m — 5)t + m* — 2m + 1,
Ny = —t7 +(~6m + 3)t° +(-13m? + 14m — 3)¢°
+(-13m* + 22m? — 10m + 1)¢*
+(-6m* + 14m® — 10m? + 2m)¢® + (-m® + 3m* — 3m® + m?)¢?,
Dy = 8t* +(12m — 20)£3 + (6m? — 24m + 18)¢?
+(m?® = 9m? + 15m — 1)t — m* +3m? — 3m + 1.

9P:
- Nx =2mt* +(9m? — 5m)e® +(12m® — 16m? + 4m)t?
+(6m* — 13m* + 18m? — m)t + m®> — 3m* + 3m® — m?,
Dx=t*— 4 +(2m + 6)t* +(dm — &)t + m? — 2m + 1,
Ny = 4m?t" + (12m® — 16m?)¢® + (13m* — 30m> + 25m?)¢t3
+(6m* — 3m* + 16m® — 19m?)t*
+(mS + 28m® — 52m* + 16m>® + Tm?)s?
+(24m® — T1m® + 69m* — 21m® — m?)¢?
+(8m’ — 32m® + 48m> — 32m* + 8m>)¢

+m® — 5m” + 10m® — 10m> + Sm* — m?,
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Dy =17 — 8 +(-3m + 21)¢* + (15m — 35)¢t* + (3m? — 30m + 35)¢°
+(-9m? + 30m — 21)t2 +(-m® + Im? — 15m + )t
+m? —3m?+ 3m - 1.

10P:

Nx = -mt" +(-2m? + 4m)t® +(-m> + 6m? — 6m)t> +(-4m? + 4m)t*
+(=3m* + 11m?® — 3m? — m)£3 +(-m> + 14m* — 17Tm3 + 4m?)¢?
+(6m® — 13m* + 8m3 — m?)t + m® — 3m® + 3m* — m3,

Dx = t% +(6m — 4)t3 +(11m? — 20m + 6)t* +(6m> — 30m? + 24m — 4)¢>
+(m* — 14m® + 28m? — 12m + 1)12 +(-2m* + 10m*® — 10m? + 2m)t
+m* — 2m? + m?,

Ny = 3m*" +(13m® — 21m?)¢° + (22m* — 91m> + 64m?)®
+(18m> — 160m* + 271m> — 111m?)+¢’
+(7TmS — 146m> + 472m* — 449m> + 120m?)¢$
+(m” — T3m® + 438m° — T44m* + 453m® — 83m?)¢5
+(-19m" + 235m® — 654m> + 68Tm* — 285m> + 36m?)¢*
+(-2m® + 74m’ — 330m® + 537m® — 379m* + 109m> — Im?)s>
+(13m® — 96m” + 230m® — 245m> + 120m* — 23m> + m?)¢?
+(m® — 15m® + 52m” — 78mS + 5Tm® — 19m* + 2m>)¢
—m® + 5m® — 10m” + 10m® — 5m> + m*,

Dy = t° +(9m — 6)t® +(30m? — 48m + 15)¢’
+(45m3 — 141m? + 105m — 20)¢5
+(30m* — 186m® + 26Tm* — 120m + 15)1°
+(9m® — 111m* + 303m> — 258m?
+75m — 6)t* +(m® — 30m® + 156m* — 244m> + 132m? — 24m + 1)13
+(=3m® + 36m>® — 102m* + 9m> — 33m? + 3m)+?
+(3m® — 18m® + 30m* — 18m> + 3m?)t — m® + 3m® — 3m* + m>.

Next we calculate the equation of X,(13). On putting
6P = —7P,
we obtain
m(t* = 3> +(=5m + 3)12 +(-4m* + 5m — 1)t — m> + 2m* — m) = 0.

Without loss of generality, the case m = 0 can be excluded. We get for X,(13) the
“raw form”:

t* =33 +(-5m + 3)2 +(-4m? + 5m — 1)t — m*> + 2m* —m = 0.
By the birational transformation

_V+U-U t=—U2+U
m = V ’ V ’
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we arrive at the equation for X;(13) claimed in the theorem:
X, (13): V2+(U*-U?-1)V-U?+ U=0.
The case of X,(14). For the calculation of X;(14), one must make sure that P is
not a point of order 7. From the equation
6P = -8P,
one obtains
t>+(6m — 3)t* +(5m? — 14m + 3)3 +(m* — 10m? + 10m — 1)¢?
+(-2m* + 4m? — 2m)t = 0.
The case t = 0 and m # 0,1 implies that P has order 7. On the other hand, if t = 0
and m = 0,1, one obtains b = 0. This is a contradiction to (2). Without loss of
generality, t may be assumed different from zero. Then we get for X;(14) the “raw
form”:
t* +(6m — 3)t® +(5m? — 14m + 3)t2 + (m> — 10m? + 10m — 1)¢
—-2m?* +4m? - 2m = 0.
By the substitution
8V — 24U + 32 2V —U*-2U+ 8
m= ’ t= ’
QU-8)V-U*+6U%*- 32 2V—U?+2U + 8
we transform this equation birationally into
Vi=U3+ U?-8U + 16.

Applying now the algorithm of Laska [6], we get the form of X;(14) given in the
theorem:

X,(14): V2+ UV+V=U3-U.
The case of X,(15). To calculate X;(15), we put
7P = -8P.
This implies the condition
8 +2m— 4" +(m?+ 6)t® +(33m? — 17m — 4)1°
+(37m?® — 78m? + 32m + 1)¢*
+(25m* — 94m>® + 93m? — 24m)t® + (8m>® — 50m* + 84m> — 50m? + 8m)¢?
+(m® — 12m>® + 31m* — 31m® + 12m? — m)t — m®
+4m> — 6m* + 4m3 — m? = 0;
or, equivalently,
(m+t-1)(-1)(m+1)
(£5 =2t +(Tm + 1)2 +(12m? — 12m)+?
+(6m® — 12m* + 6m)t + m* - 3m* + 3m? — m) = 0.
Without loss of generality, we can exclude the case that the first three factors are
equal to zero. Then the “raw form” of X;(15) is given by
3= 2t +(Tm + 1)3 +(12m? — 12m)1? + (6m*® — 12m? + 6m)t
+m* = 3m3 + 3m?2 —m=0.
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By the transformation

m = -V2+(U*-U)V+ U3 [ - uv

_V2+(U2+ U)W+ U+ UY -V2+(U+ U)W+ U+ UY
we get the form of X;(15) required in the theorem:
X,(15): v+ uv+ v=U3+ U
The case of X,(16). To calculate X;(16), we put
7P = -9P.

This implies the following condition:

4mt” +(14m?* — 18m)t® +(16m> — 54m? + 34m)¢’

+(Tm* — 53m® + 89m? — 35m)¢*

+(m’ = 21m* + 80m® — 81m? + 21m):¢>

+(-3m> + 3d4m* — 68m>® + 42m? — Tm)1?

+(8m® — 25m* — 27m® — 11m? + m)t + m — 4m> + 6m* — 4m® + m* = 0.
Equivalently,

m(m+t—1)(m+2t-1)
(2% +(4m — 6)t* +(m* — 10m + 7)2% +(-3m? + 11m — 4)¢?
+(5m2—6m+ 1)t +m’—2m*+m) = 0.
Once more we can exclude that the first three factors are zero, and therefore the
“raw form” of X,(16)is:
215 +(4m — 6)t* +(m? — 10m + 1) +(-3m? + 11m — 4)¢2
+(5m*—6m+ 1)t + m®> - 2m* + m=0.
By the following birational transformation
_ Vi+(U-1)V t=—_l—
Vi+(U-1)v-U’ V-1
this form is equivalent to
X,(16): (U +3U+2)V2+(U3+4U*+4U)V - U=0.
The case of X,(17). We calculate the equation of X;(17) by setting
8P = -9P

and obtain the condition
% +(=2m + 7)t® +(-m? + 24m — 21)t7 +(56m? — 8Tm + 35)¢8
+(89m?® — 213m? + 151m — 35)¢°
+(81m* — 291m3 + 332m? — 143m + 21)¢*
+(40m® — 212m* + 365m> — 261m?* + T5m — 7)13
+(10m® — 81m® + 200m* — 215m® + 105m> — 20m + 1)12
+(m” — 15m® + 52m® — 18m* + 5Tm3 — 19m? + 2m)¢

—m” + 5m® — 10m> + 10m* — 5m® + m? = 0.
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This is equivalent to
(m+1t-1)°
(¢7 = 5¢5 +(-12m + 10)¢° +(-27m? + 33m — 10)¢*
+(=23m® + 59m? — 33m + 5)t3 +(-8m* + 40m> — 45m? + 14m — 1)¢?
+(-m® 4+ 11m* = 21m* + 13m? = 2m)t + m® — 3m* + 3m> — m?) = 0.
The case m + ¢t — 1 = 0 can be excluded without loss of generality, and the “raw
form” of X;(17) is
t7 = 5t% +(-12m + 10)¢> +(-27m?* + 33m — 10)¢*
+(-23m>® + 59m* — 33m + 5)t3 +(-8m* + 40m> — 45m? + 14m — 1)¢?
+(-m* + 11m* = 21m® + 13m? — 2m)t + m®> — 3m* + 3m® — m? = 0.
By virtue of the transformation
__V+1 . U+ U
v+ U? V+U?
the above form of X;(17) is birationally equivalent to the form required in the
theorem:
X(17): V*+(U+ 2V +(UP+1)V2+(-U>-2U*-U*-U?-U)V
-U*-20*-U3=0.
The case of X,(18). To calculate the equation of X;(18), we set
8P = -10P.
This equation implies the condition:
" +(-12m + 7)e* + (-36m? + 76m — 21)¢°
+(-47m> + 209m? — 204m + 35)®
+(=30m* + 251m® — 497m? + 300m — 35)¢’
+(-9m* + 151m* — 508m> + 617Tm? — 260m + 21)¢6
+(-m® + 44m> — 222m* + 462m> — 416m? + 132m — 7)¢°
+(5m® — 10m> + 44m* — 140m> + 136m? — 36m + 1)¢*
+(26m® — 120m> + 162m* — 64m* — 8m? + 4m)¢3
+(9m” — 6Tm® + 153m> — 14Tm* + 58m>® — 6m?)¢t?
+(m® — 14m” + 47m® — 68m> + 4Tm* — 14m> + m?)t
—m®+ 5m” — 10m® + 10m>® — 5m* + m® = 0;
or, equivalently,
(m+0)(t-D(m+t-1)(2-2t-m+1)
(£3+(9m — 2)t* +(6m? — 11m + 1)1 +(m® + 3m)1?

+(4m3 — 4m?)t + m* — 2m3 + m?) = 0.

Without loss of generality, the first four factors can be omitted, and we get for
X,(18) the “raw form”:

X:(18): 2 +(9m — 2)t* +(6m? — 11m + 1)£> +(m® + 3m)¢?
+(4m® — 4m*)t + m* - 2m* + m* = 0.
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Transforming now this equation birationally by means of the transformation

(-U+ 1)V + U? uv
m = s t= )
-VI+(U+ 1)V + U? -V2+(U+1)V+ U?

we obtain the form of X,(18) asserted in the theorem:
X,(18): (U2 -2U+ 1)V?+(-U*+ U-1)V+ U*-U?=0.

The X,(N) are elliptic for N = 11, 14 and 15. The form of these X;(N) as given in
the theorem is called an equation of restricted type for X,(N ) [6].

In the following table, we compile the characteristics of these X;(N). In the first
row we list the values of N, in the second the discriminant of X;(N), then the
J-invariant, the conductor of X;(N), the torsion group of X;(N) over Q, and in the
last row we display a generator of X,(N),,(Q).

N 11 14 15
A -11 -2-14 -15
. 212 56 1
J BT 214 Y
Cx.n) 1 14 b
XMo@ | Z/52 | Z/6Z 274
Sy | v | o | o

For calculating an elliptic curve with a point of order 11, we transform X;(11) into
the form Y2 = f(X) for f(X) € Z| X]. The corresponding equation for X,(11) is

(7) Y2=X3-4Xx2+16.
Inserting, e.g., X = 2 yields

Y=12/2.
We now carry out our calculations over the ground field Q(v2). If we set X = 2 and
Y = 2y2 in the birational transformations, performed to obtain X,(11) in the form
of Eq. (7), and reverse these transformations, we get the coefficients b and ¢ as
1 1
b=-1V2, ¢=70-272),
giving the elliptic curve E in E(b, c:)-form
3.1 1 1
cy2(2. 1 1 - y3 4 2
E:Y +(4 + 4¢2_)XY+ ERY=X"+ 16‘/2_X
with P = (0, 0) as a point of order 11.

Not much is known concerning the question: Over which quadratic fields K are
there elliptic curves with a K-rational point of order 11 and over which are there
none? With regard to this question, we have examined the fields Q(v¥-1) and Q(v-11)
and have proved

THEOREM 2. Quer the quadratic fields K = Q(/-1) and K = Q(V-11), there are no
elliptic curves having a K-rational point of order 11.
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Proof. One must find the rational points of X;(11) and the rational points of
X,(11) twisted by -1 or —11. Then one proves Theorem 2 by means of theorems of
Nagell [10] and Kramer [3]. (See [11] for details.)

We shall now establish tables of elliptic curves E with torsion groups of one of the
following isomorphism types:

E.(K)=Z/mZ, m =11,13,14,15,16 and 18.

K is a proper quadratic number field over Q. The only K-rational points which we
have found on X;(17) over quadratic number fields K over Q are cusps. Therefore,
we do not expect that there are examples of elliptic curves over K with K-rational
points of order 17. This is also suggested by the fact that X;(17) has genus 5.* In our
list of examples, the curve E will be given in short Weierstrass normal form:

E:Y?=X>+ AX + B; A,B €K,
which is quasi-minimal. This means that there are no rational primes p such that
p*4 and p°|B.
Each example in the tables is separated from the other by a row of stars. The
examples are printed according to the following scheme:

X D

A

B

J

p v,(J) type of decomposition
x y

p By type of decomposition

Here: “X” is the X-value which we insert into the equation Y2 = f(X) of X,(N)
for getting the desired elliptic curve E over K. “D” is, up to a factor 4, the
discriminant of the quadratic ground field K = Q(/D). “A” and “B” are the
coefficients of the elliptic curve E given in short Weierstrass normal form. In
addition, we have calculated the j-invariant and a prime decomposition of j. Here p
denotes the rational prime that divides the prime divisor b, v, is the normalized
p-adic exponential valuation and v, () is the p-value of j. The last column contains
the type of decomposition of p in K. “D” denotes decomposed, “I ” inert and “R”
ramified. “x” and “y” are the x- and y-coordinates of a generator of E, (K).
Finally, we calculated the p -values of E and determined the coefficient divisor m
(see [14]). The u,-values are important with respect to the determination of the
torsion structure of an elliptic curve over an algebraic number field [14] and with
respect to height-calculations [5]. For each rational prime p, we display the p -value
and the type of decomposition of p in K, if p, is different from zero. If the
p,-values are zero for all prime divisors p of K, we leave the space empty.
The numbers a = a + b/D € Q(/D), a, b € Q, are displayed as follows:

a=(a,b).

*Recently Kamienny has proved, that there are no elliptic curves over quadratic number fields K over
Q having a K-rational point of order 17. (Cf. S. Kamienny, “Torsion points on elliptic curves over all
quadratic fields”, to appear.)
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TABLE 1
E. (K)=Z/11Z
5858838885888 8888888888888888888888888888888888888885888888888
- -7

( -2187 , -864 )
( 170694 , -87264 )

( 2994657/68608 , u4432109/137216 )

S5 5005555385588 8558888888808808808888088880888888088088880888888

2 -1 D
67 -1 D
67 (] D
13729 3 D
13729 0 D
(15, -t12) ( 324 , -108 )
3 1 I

2855355530885 888885888888088888888888388088585858585888885888888388

2 2

( -3483 , 1836 )
( 163890 , -108108 )

( -998961/184 , -4758131/1472 )

2 -11 R
23 -1 D
23 0 D
7393 3 D
7393 0 D
( 33, 30 ) (0, 432)
3 1 I

S ES S S55S0 5553888888888 388888883838888888888385888888588888888288

TABLE 11
E.(K)=1/13Z

[ EEEREREEREENEERREEEEEEEEEEEE RS EEREE RN EREEREEENEREEE R EEENERENENERENNN]

-2 193

( -1750172807187 , 125980162056 )
( 1262137402216304190 , -90850638163719672 )

( -196626675110450473/326517350400 , O )

2 -13 D
3 -13 D
5 -2 I
7 3 D
83071 3 D
( 549447 , -39516 ) ( 34274664 , -2466936 )
3 1 D

S8 8888885558558 3888888888888388888888858883588558888885888888380

647
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TABLE II ( continued )

AR R R R R R R RS A AR R R A R R E R E R R R R RN E RN EE N

( -411864 , 99560 )
( 211240640 , -51226432 )

( -60698457/406960 , 0 )

2 -13 D
3 3 I
5 -1 1
131 3 I
( 358 , -74 ) ( 6656 , -1536 )

S5 8588888555388 5888885888808888888888888 8858088858888 888888888808

2 17

( -4323 . -1048 )
( 227630 , 55208 )

( -60698457/40960 , 0 )

2 -13 D
3 3 1
5 -1 7
131 3 I
( -49 , -12 ) ( -296 , -72 )

SE 2585588080805 5588555880888885888088238888888888088888088888808

( 2327667525288 , 1315675463376 )
( 1551448970003125440 , 87693080563196352 )

( 68633948441807/65303470080 , 0 )

2 -13 D
3 -13 D
5 -1 1
7 3 1
5849 3 D
( -277962 , -15714 ) ( -292750848 , -16547328 )
3 1 D

S5 858855888588 38 8888888888888 0888858888588385885855888888888808

4 2257

( -1794164929227099 , -37765616934240 )
( 40912730980463108972790 , 861177532113128252448 )

( 42299625914661454417/534966026895360 , 0 )

2 -26 D
3 -13 D
5 -1 I
13 6 I
53 3 I
389 3 D
( 18897603 , 397776 ) ( -6952140576 , -1463365uk )
3 1 D

I EE R EREEEEEEERENEEENEENE RN NS RN R R N N R R R R N R R R RN N RN ENNE NN NN




ELLIPTIC CURVES OVER QUADRATIC NUMBER FIELDS 649

TasBLE 111
EtO,(K) =Z7Z/14Z

L R O A T R
-3 22

( -439986643037381403 , -93803909128605216 )
( 7516285622934343121440566 , 1602474795479465435675232 )

( 19631310746169659224439/53197633242289815552 , 1262333629667
51013038203/ 434hh7338145366827008 )

2 -28 R
3 14 D
7 -7 D
13 -2 D
13 o D
2139 -1 D
239 o D
1113 o D
11113 3 D
34651 o D
34651 3 D
1718011 3 D
1718011 0 D
( -48820125 , -14300688 ) ( -5334018607008 , -1153680851232 )
3 1 D

S8 2288555558885 858808888885888883888888888¢88888888888888888888 8

( -51033138723 , -19289646936 )
( 6265927466034894 , 2368297291386600 )

( 3265635553/11664 , 29548593817/279936 )

2 1Y R

3 -7 D

19 3 D

19 0 D

165059 o D

165059 3 D

( 92463 , 27300 ) ( -5429592 , -3143448 )

I EEE R R R R R R RN EEEREE R R EEEE R R R E R EREEE R N N Y N SRR R ]
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TABLE 111 ( continued )

S22 5308828555830 8808880888830888888838883888888888882888880¢8080

-1 6

( -154171814410420731 , -62934871437671616 )
( 32948988908969804432803542 , 13451360607076546447682112 )

( 2517315283981159814713529/1498265856000000 , 368307445325827
4149011931/5618496960000000 )

2 -28
3 -7
5 -7
19 o
19 3
43 -1
43 0
71 -2

503
861293
861293

( 167199699 , 61992864 ) ( 5543964000 , -21639096000 )

~
U000 UDUDODDUDODOUDODOUXD

w

o

w
woboowwoo

(A AN EEE RSN EEEEEEEEEEEE R EEEEREENNENEERERERNENEREREREEEEERNNEEEERENR]

1 10

( -12054662356347 , 2794167678816 )
( 19484656563306373974 , -5460161248744831008 )

( 2179518798109295558939/32626354176000 , -5136542789480266512
563/244397656320000 )

2 -28 R
3 -7 D
5 -7 R
13 0 D
13 -1 D
3N 3 D
31 0 D
41 0 D
4 -2 D

S8 2S8040 8888588888888 888888888888388888888888888880088028

79 [}] D

79 3 D

1721 3 D

1721 0 D

1180409 3 D

1180409 0 D

( -708717 , 591792 ) ( -4394878560 , 1320854688 )
3 1 D

S 8888850888888 888888888883808883838088888888888888888888888880s
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TABLE 111 (continued )
[ EN N EREEEEEEEEEEENE NN NN N ENENEENEERERERERENENNERH:.JERNNENRIFN IFIINE NI IS I Ay

2 3

( -2952963 , 1704888 )
( 1067436846 , -616284936 )

( 15792703/22464 , -103368947/134784 )

2 -14
3 -7
13 -1
13 (4]
37 o
37 3
2269 3
2269 o

Uovooouonw

( -1185 , 684 ) _ ( -26568 , 15336 )

S 2482808580288 888 888800 TESIIEELIEREEEOESILIESIBBEISIEEIERBROESERES

TABLE IV
E.(K)=12/15Z

S8 S S8 5588383888883888388888885588885888888388858888888888808

-1 -7

( 539042262696 , -91517868792 )
( -158658192869698368 , -141784327118177856 )

( -19853211655423/61975789568 , 8327088487989/108457631744 )

2 -15 D

7 -5 R

1 [¢] D

1 -3 D

29 0 D

29 -1 D

179 0 D

179 3 D

259499 0 D

259499 3 D

( 4155606 , -54978 ) ( 8591837184 , -197793792 )
3 1 1

AS S S 8888888888888 888888880888888888888888888888888888888888880s
-1/2 -95

( -36843438820539915 , 9129754598177520 )
( 3933501427988825876471430 , -1526895018264725064674640 )

( -130339725162288764665/1531233206539812864 , 163416495031638
43652635/130920439159153999872 )

_]5
-15

o=~ =—=00lN
~

1

1

9 -5
1
61 0
2671 0
2671 3
23189 0
23189 3
223259 0
223259 3

09 0808080808808 E0RSREIERRIREIRRIERIERIERRIREEREISIRRIESREIRISIRIERIRIRIESRRAED

1
O0DUDUDUDUDUDDROUDODOWOD
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TABLE IV ( continued )

S HS S22 00 838202002038 0202800238000 8FL000REELELORPLOILILIEILEIOOETDS

( 964404375 , 2334036 )
( 29444742515700 , 232692977124 )

3 1 D

5 2/3 R
“‘“...“"O‘...O.‘.‘.‘O‘.‘.‘.0.0..““.O‘t“..‘-.‘.“.o't-;.
3/2 33

( 4943582901 , -860567328 )
( 100854159004422 , -17556455592864 )

( -18967036655308187/8785723392 , -4955692963031933/13178585088 )

2 -15 D

3 -5 R

29 (4] D

29 3 D

31 -3 D

31 o D

12281131 0 D

12281131 3 D

( -8889 , 1548 ) ( -2251476 , 391932 )
‘.‘...‘.““...‘.‘“...““..."......‘...‘...“‘.“‘..“‘...‘
2 5

( -630315 , 281880 )
( 328392630 , -146861640 )

( -121945/32 , 0 )

2 -5 I
5 2 R
29 3 D
( -585 , 264 ) ( -11340 , 5076 )
3 1 I
5 2/3 R

G000 00000 R EEEPRPRRRIRRESLFEESES3800 0323008008382 20808008080000

TABLE V
E.(K)=1Z7/16Z
...““““‘.“‘.“‘.‘....‘.“"..'..‘.‘."“‘O..‘..“...“.‘.
-4 10

( -4919326431372 , -540298585008 )
( 4389838223699367504 , 688123047823241184 )

( 378499465220294881/120530818800 , O )

2 -8 R
3 -16 D
5 -4 R
7 -1 I
723361 3 D
( 84458 , 151140 ) ( -689692320 , 111484512 )
3 1 D

..""‘..“‘“.‘.‘“..“‘...“.‘."‘.‘.“...“..“.....“‘..“
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TABLE V (continued )

(A A AR EREREEEE R RN NN R RN R N RN N RN NN RN N

( 404692008 , 73778280 )
( -1931895059776 , -658051602240 )

( 1023887723039/928972800 , 0 )

2 -16 D
3 -8 R
5 -4 R
? -1 1
10079 3 I
( 27238 , -2602 ) ( 5253120 , -497664 )

P22 2023008500388 850308888883088030000808888880088880 Bttt
-1/2 -15

( 272133 , 0 )
( 1173974 , 0 )

( 1023887723039/928972800 , 0 )

2 -16 D

3 -8 R

5 -4 R

7 -1 I

10079 3 1

(3, -144) ( -6480 , -h32 )

(IR EEREEEEEEREEE RN N R R Y R N NN E RN R TN IR NN
1 105

( 319281675048 , 22722016968 )
( 63178738374096576 , 5446154665957824 )

( 1023887723039/928972800 , 0 )

2 -16 D
3 -8 R
5 -4 R
7 -2 R
10079 3 D
( 698502 , 58590 ) ( 934778880 , 78575616 )

(A AR AR RN EREEEEEE R R N N N R R N A R N R R NN NN N
2 70

( -69908375342547 , -4919013939420 )
( 254857783665620184714 , 233704009 12286838060 )

( 378499465220294881/120530818800 , 0 )

2 -8 R
3 -16 D
5 -1 R
2 -2 R
723361 3 D
( 7270053 , 456582 ) ( 12615228360 , 1377258876 )
3 1 D

AR AR R R RS AR R R R R R R N N RN NN R RN R RN

653
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TABLE VI
E,o,(Kl) =7/18Z

IEE RN EENEENEERERENEEEENEREREEEREERERENERENRENRENERNEENEENNENRNENRNERNENRNN.H}]

-1 33

( -162675 , -28296 )
( 35441118 , 6168312 )

( 31701473569/524288 , 5519537297/524288 )

2 -9 D
2 -18 D
17 0 D
17 3 D
3329 3 D
3329 0 D
( -285 , -48 ) (-4428 , -756 )

0883800808830 8 0388888388088 88088 0808888888008 8 0080080888ttt stsotte
-1/4 8241

( -668103059283507 , -6973228583640 )
( 9041240256 83947091006 , 98714413787929024680 )

( 5606641052u761901395u11u779u57771266159521/|7826086125568000
000000000000000 , -6176028936156912169249015730864995075351/17
826086125568000000000000000000 )

2 -18 D
2 -36 D
5 -18 D
5 -9 D
7 -6 D
7 -3 D
17 -2 D
17 -1 D
197 o D
197 3 D
307 0 D
307 3 D
13358503 3 D
13358503 (o] D
927720953 3 D
927720953 0 D
( 11499447 , 88980 ) ( -2890029240 , -31744L4LUO )

IFEEERENERNNENNNEINNENNENNNNENNENEN NN NN BN RN RN RN NI N R NN Y

1/2 33

( -162675 , 28296 )
( 35441118 , -6168312 )

( 31701473569/524288 , -5519537297/524288 )

2 -18 D
2 -9 D
17 3 D
17 (0] D
3329 0 D
3329 3 D
( 147 , -24) ( -540 , 108)

IEE NN ENEENNEENEENENNENNENEENNRENNENNENNNENNENRIENENRJENNERRINENRIJEJRJEJNRNEJEJEJRJERJNJEJRJE;NH}]
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For the sake of completeness, we mention that Stephens and Stroeker [12], by a
different method, have found three elliptic curves with a point of order 11 and one
elliptic curve with a point of order 15.

We now give an example of an elliptic curve with a point of order 18, where the
coefficients are much bigger than before.

99/2 8691664833337

( -14768222079904599000226787421543491231849193473355 , -197
0467345153166758654514839049908324353312 )

( 2197129153421664762322899620769929522381139061084534394472
134349123557 1462 , 43690982801166816298320513373853689518042
37918513251914616441002976 )

( 1820771879928064881129012745252230204273591164876834330993
955161082530792489104411320768821434152886994185291068594483
46574971204881791849038369/165171715810521209210213942419805
861455244043038594604419810218087221490524489372242729838653
659246889869907591168 , -19530081342348892804570498768647272
039415917364691634885610209665069114446730529340756778918126
0629305849739652435294219105604111310340811/1651717158105212
092102213942419805861455244043038594604419810218037221490524
489372242729839653659246889869907591168 )

( 2476188105984575611665015 , -145343913837642036 )

( 680494937500537833832958824599248388 , -764060714620524131
742929250396 )

Here we were unable to calculate the prime decomposition of the j-invariant,
because to this end we had to factor the norm of the j-invariant over Q, which is too
large a number. Our calculations involved much bigger numbers, the biggest one
being one of 5,000 digits.

We have added on microfiches (at the end of this issue) a rather comprehensive
table of examples of elliptic curves with torsion points of order 11, 13, 14 15, 16 and
18. For lack of computer time, we have not calculated all the prime decompositions
of j in our tables.

3. Algorithms. For finding the transformations needed for the calculation of the
X,(N), no general algorithm exists. The number of steps necessary for carrying out
the transformations varies greatly. For calculating an equation of X;(11), we used 3
steps. In other cases, sometimes more than 15 steps were required. To analyze the
algebraic curves and to test the transformations, we wrote a program based on
algorithms for the factorization of polynomials, for birational transformations and
for computing resultants and singularities [11]. The program works interactively.
There are many ways to deduce from the raw form the form of the X;(N) given in
Theorem 1. The user of our program is in the position to interactively test many
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birational transformations before fixing the next step. The algorithm for the bira-
tional transformation is as follows:
(1) Input an algebraic curve P(X,Y) =0, P(X,Y) € Z[X,Y],

k1
P(X,Y)= Y Y a, XY

i=0 =0
Input the transformation
X = f(X, Y1) _ &(X, 1)
L(X, 1)’ &(X, 1)’

fi(XD Y,), gi(Xl’Yl) GZ[XI’YI]; i= 1’2, and
L(X, 1) - g,(X, ¥p) # 0.
(2) Determine P,( X,, Y;) in accordance with the equation

k )
i k—i j I-j
P(X,Y)= Z Z aijfl(Xl’Yl) (X, 1) gi1( X, 1) g, (X, Y1) ’
i=0 j=0

-k -1
'fZ(Xl’ Yl) : gz(Xv Yl)

=P (X, 1) - (X, Y1)—k -8 (Xy, Y1)_I’
Pl(XD Yl) € Z[XD Yl]
(3) Print out the polynomial P,(X;, Y;).
By the above transformation, P,(X,, Y;) = 0 is the curve
equivalent to P(X,Y) = 0.
END.
We now state the algorithm used for the calculation of the tables.
(1) Input: — X,(N) given in the form Y? = f(X); f(X) € Z[ X]
— the birational transformation to obtain this form of the X;(N) from
the raw form, and the substitution made during the calculation of 6P.
— the x-value which we wish to substitute into the equation of X;(N).
(2) If f(x) = 0 then go to (7).
Determine the discriminant D of the ground field.
(3) Determine the coefficients b and c.
Calculate the discriminant A of a curve E in E(b, c)-form.
If A = 0 then go to (7).
If A # 0 then E is an elliptic curve with the point P = (0,0) as a point of
order N.
(4) Transform E in short and quasi-minimal Weierstrass normal form such that
the coefficients 4 and B are elements of Z[yD |.
(5) Determine E,(Q(VD)) by the reduction method.
Calculate j and the v, (j)-values.
Compute the p-values.
(6) Print the results in the form described above.
Go to (8).
(7) Print that the point (x, f(x)) on X;(N)is a cusp.
(8) END.

There is no difficulty in determining the v,-values in a quadratic field K = Q(Vd),
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if p lies over a rational prime p which is inert or ramifies in K. In case p is
decomposed, we can prove the following lemma [11].

LEMMA. Let K = Q(Vd), d € Z, be a quadratic field and let p be a rational prime
which decomposes in K:
PED by,
where p, and b, are prime divisors of K. Let A = a, + a,/d € L(Vd), a € L be
such that

_ [ecd(ay,a,); ifd=2,3mod4
"~ | 2ged(a,,a,); ifd=1mod4 |

Let aj, a) € LZ be such that
A= a(a{ + a’z/ﬁ) =:ad’.
Then we have
@) p|p, - A" implies

vpl(A) = vp(NK/Q(A)) - v,(a), v,,(A4) = v,(a).
(i) p + p, - A’ implies
v, (4) =v,(a),  v,,(4) =v,(Ny,(4)) = 1,(a).

Ny /o denotes the norm function of K/Q, and v, is the normalized p-adic
exponential valuation of Q. The lemma yields the following algorithm for de-
termining v, (4) and v, (A4).

(1) Input d, a,, a, and p.
(2) Determine a, aj, a} as in the above lemma.
If p=2thenset p,=(1 — Vd)/2
else determine a € {1,2,...,(p — 1)/2} such that
a®=1modd and set p, =a — Vd.
(3) Calculate ¢ = p, - (a] + aj/d).
If p|c then go to (4)
else go to (5).
(4) Calculate v, (4) = v,(Ng o(4)) — v,(a),
U,,(4) = v,(a).
END
(5) Calculate v, (4) = v,(a),
Upz(A) = Up(NK/Q(A)) - Up(a)'
END

The cpu-time used to compute the tables varies greatly because the results are often
very large numbers. We experienced cpu-times ranging from 15 seconds to half an
hour for one single example.

4. Concluding Remarks. (1) The j-invariants of those elliptic curves with a point of
order 13 or 16 appearing in our tables turn out to be defined already over Q. This is
probably due to the fact that we obtain our elliptic curves by choosing as x-values
rational numbers in the equation of X;(N) for N = 13, respectively 16. Also, we
encountered the phenomenon that different x-values in X;(N), N = 11, 13, 14, 15,
16 and 18, yield elliptic curves with the same j-invariant. It would be desirable to
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have some more information about the relationship between the x-values and the
J-invariants.

(2) It is, of course, interesting to ask the question as to whether the order N
(N =11,13, 14,15,16 and 18) of a torsion point of an elliptic curve over a quadratic
field K depends on the type of decomposition in K of the rational primes p dividing
N. This does not seem to be the case for N = 11, 13, 14 and 15 though, in the case of
N = 14, we have only checked this for the prime p = 7. In the case of N = 16, we
could not get any result of the desired type. In the case of N = 18, however, the
prime p = 2 turned out to decompose, and the prime p = 3 either decomposed or
ramified [11].

(3) On the basis of our tables, we could, for the first time, test many important
theorems and results of the theory of elliptic curves. We could, e.g., verify the
theorem of Nagell [10] already applied for proving Theorem 2. The p-values of the
examples coincide with the generalized Nagell-Lutz-Cassels theorem (see [14]).

(4) Almost all the prime divisors dividing the j-invariants come from prime
numbers which are decomposed in the corresponding quadratic field. In addition, we
point out that the exponents of the prime divisors, which occur in the denominators
of the j-invariants, are as they should be according to the theory of Tate-curves [13].
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