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Explicit Determination of Nontrivial 

Torsion Structures of Elliptic Curves 


Over Quadratic Number Fields 


By Markus A. Reichert 

Abstract. We determine equations of the modular curves X l ( N )  for N = 11,13, 14,15, 16,17 
and 18. Except for N = 17, these are the only existing elliptic or hyperelliptic X , ( N ) .  
Applying these X l ( N ) ,  we calculate tables of elliptic curves E over quadratic fields K with 
torsion groups of one of the following isomorphism types: 

m = 11,13,14,15,16 and 18 E , , , ( K )  - Z / m Z ,  

1. Introduction. Let E denote an elliptic curve defined over an algebraic number 
field K of finite degree over the rationals Q. We shall assume that the curve E is 
given in Weierstrass normal form: 

(1) E :  Y2 + alXY + a3Y= x3+ a 2 x 2+ a,X + a,; a,, a,, a,, a,, a, E K. 

Designate by E ( K )  the group of rational points of E over K. Mordell and Weil 
proved that E ( K )  is finitely generated. Hence, E(K)  may be written as a direct 
sum, 

E ( K )  = Etor(K) @ Efr(K), 
of the torsion group Etor(K) and a free group Efr(K). The number of free 
generators of E,(K) is called the rank of E over K. Of course, Etor(K) is finite, 
and it is conjectured that the order of Etor(K) is bounded by a constant N(K) 
depending only on K. 

Boundedness Conjecture: 

IEtor(K) l N(K).  

In 1969 Manin [7] proved this conjecture for the p-component of Etor(K), p being a 
prime. In 1979 Kenku [2] explicitly determined this Manin-bound for the case p = 2 
and K a quadratic field over Q. He proved that the maximal 2-power order of a 
K-rational torsion point of an elliptic curve over K is 16. This bound is sharp. We 
have computed elliptic curves over quadratic fields K over Q with K-rational points 
of order 16. 

In 1977 Mazur [8] proved the boundedness conjecture in the case K = Q. He 
determined that N(Q) equals 16, and more precisely he obtained 
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2. Determination of Nontrivial Torsion Structures. When speaking of nontrivial 
torsion structures, we think of structures which do not exist over Q. We have 
calculated tables of elliptic curves E over quadratic fields K whose torsion group is 
isomorphic to one of the following groups: 

E,,,(K) E Z/mZ, m = 11,13,14,15,16 and 18. 

These tables were computed by a modification of a method of Kubert [4] which in 
turn is extending the method of Billing and Mahler [I] leading to the modular curves 
Xl(N). Our first result is 

THEOREM1. For N = 11, 13, 14, 15, 16, 17 and 18 the modular curves Xl(N) are 
given by the following equations: 

(i) Xl(ll): v 2 +V =  U 3 -  U2, 
(ii) X1(13): v2+ ( u 3  - u2- l)V - u2+ U = 0, 

(iii) X1(14): V2 + UV + V = U3 - U, 
(iv) X1(15): V 2 +  UV+ V =  U3 + U2, 
(v) X1(16): (U2 + 3U + 2)V2 + (U3 + 4U2 + 4U)V - U = 0, 

(vi) X1(17): v4+ (U + 2)v3 + ( u 3  + i ) v 2  + ( -us  - 2 u 4  - u3- u2- U)V 
- u s  - 2 ~ 4- u3 = 0, 

(vii) Xl(18):(u2 - 2 U +  1)v2 + ( -u3  + U - 1)V+ U3 - U2 = 0. 

Except for N = 17, these are the only existing elliptic or hyperelliptic Xl(N) [9]. 
In the literature, these Xl(N) are partially known, but nobody as yet seems to have 
used them for calculating examples of nontrivial torsion structures. 

Proof. To prove Theorem 1, we start from a special form of the elliptic curve E 
over K: 

E(b ,c ) :  y2+( I  - C)XY- b y  = x3- bx2; b,c E K. 

This is called the E(b, c)-form. We obtain it from the Weierstrass normal from (1) of 
E by imposing on E the following three conditions: 

0)  P = (090) E E,, ( K  ), 
(ii) the straight line X = 0 is a tangent to E at P,  

(iii) ord(P) # 2,3. 
(i) implies that a, = 0, and from (ii) and (iii) one deduces that a,, a, # 0, and 
a, = 0. Now the equation for E assumes the form 

Applying the birational transformation 

we get the equation 

On substituting 

(2) 	 I - ~ = - and -b = -a; # 0, 
a3 a; 
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we obtain the E(b, c)-form of the elliptic curve. We shall carry out in detail the 
necessary calculations relating to Xl(N) in the most simple case N = 11and outline 
the remaining cases of N = 13, 14, 15, 16, 17 and 18, which are treated in a similar 
manner. (See [ l l ]  for more details.) 

The Case of Xl(ll). To calculate Xl(ll), we assume that ord(P) = 11. Then 
5P = -6P, and 

(3) XsP = X-gp = xSp. 
In Eq. (3), x,, means the x-coordinate of the n-multiple nP of P. Now we calculate 
the multiples of P on E(b, c). They are: 

-p = (O,O), 

2 P  = (b,  be), 
-


3P = (c, b - c),
-


4P  = ( r ( r  - 1) , r2 (c+ r - 1));  b = cr,
-

5P = (rs(s - I), rs2(r - s ) ) ;  c = s ( r  - I),  

6 P  = (-mt,m2(m + 2t - 1)); m(l  - s )  = s(1 - r )  and -
r - s = t ( l  - s ) .  

Equation (3) implies that 

(4) rs(s - 1) = -mt. 

Without loss of generality, the cases s = 1 and s = 0 may be excluded. Reversing 
the substitutions made when calculating 6P, we obtain from Eq. (4): 

This is one of the equations for Xl(ll), called the "raw form" of Xl(ll). This 
equation has to be transformed birationally into the equation of the Xl(ll) given in 
Theorem 1. The goal of this transformation is to get an equation of Xl(ll) with as 
few singularities as possible. This transformation is done in three steps. When 
computing the other Xl(N) we can take roughly the same steps to get the desired 
transformations. 

1. Step: Translation. We translate the point Q = (1,l) on Xl(ll) according to Eq. 
(5) to obtain Q' = (0,O) by the birational transformation: 

Equation (5) implies 

(5.I)  v: - UlV1 - u;vl - u,' = 0. 

2. Step: Quadratic transformation. By this transformation we remove the singular- 
ity at (0,O). We put 

to obtain from Eq. (5.1) 
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3. Step: Separation of variables. We set 

From Eq. (5.2), one derives 

Up until now, we made the calculations by hand. The subsequent calculations were 
performed by means of the computer algebra system SAC-2, which we implemented 
on a "Siemens 7.561" at the "Rechenzentrum der Universit'at des Saarlandes". First 
of all, we give a list of the multiples nP for n = 7,. . . , lo .  We shall write nP = 

(Nx/Dx, Ny/Dy) and exhibit Nx, Dx, Ny and Dy. 
7P:-


Nx = 2mt3 +(5m2 - 3m)t2 +(4m3 - 5m2 + m)t + m4 - 2m3 + m2, 
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+ 7 5 m  - 6 ) t 4  + ( m 6  - 30m5 + 156m4 - 244m3 + 132m2 - 24m + l ) t 3  

+ ( -3m6 + 36m5 - 102m4 + 99m3 - 33m2 + 3 m ) t 2  

+ (3m6 - 18m5 + 30m4 - 18m3 + 3 m 2 ) t  - m6 + 3m5 - 3m4 + m 3 .  

Next we calculate the equation o f x 1 ( 1 3 ) .  On putting 

6P = -7P, 
we obtain 

Without loss of generality, the case m = 0 can be excluded. We get for X1(13) the 
"raw form": 

t 4  - 3t3  + ( - 5 m  + 3 ) t 2  + ( - 4 m 2  + 5m - l ) t  - m 3  + 2m2 - m = 0 .  

By the birational transformation 
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we arrive at the equation for X1(13)claimed in the theorem: 

X1(13): V 2  + ( U 3  - U 2- l ) V  - U 2+ U = 0 .  

T h e  case of X1(14). For the calculation of X1(14),one must make sure that P is 
not a point of order 7. From the equation 

6P = -8P, 
one obtains 

t 5+ (6m - 3)t4 +(5m2 - 14m + 3)t3+ ( m 3- 10m2+ 10m - l ) t 2  

+(-2m3 + 4m2- 2m) t  = 0.  

The case t = 0 and m Z 0 , l  implies that P has order 7. On the other hand, if t = 0 
and m = 0,1, one obtains b = 0. This is a contradiction to (2). Without loss of 
generality, t may be assumed different from zero. Then we get for X1(14)the "raw 
form": 

t 4 + (6m - 3) t3  +(5m2 - 14m + 3) t2  + ( m 3  -	10m2+ 10m - l ) t  

-2m3 + 4m2- 2m = 0.  
By the substitution 

we transform this equation birationally into 

V 2 = U 3 +  U 2 - 8 U + 1 6 .  
Applying now the algorithm of Laska [6],we get the form of X1(14)given in the 
theorem: 

x1(14):v2+UV-k v= u 3 -  u. 

The case ofXl(15).To calculate X1(15),we put 


7P = -8P. 

This implies the condition 

t 8 + (2m - 4)t7 + ( m 2  + 6)t6+ (33m2- 17m - 4) t5  

+ (37m3- 78m2+ 32m + l ) f 4  

+ (25m4- 94m3 + 93m2- 24m)t3 +(8m5 - 50m4 + 84m3- 50m2 + 8m) t2  

+ ( m 6- 12m5+ 31m4- 31m3+ 12m2- m ) t  - m6 

+4m5- 6m4+ 4m3- m 2 = 0 ;  

or, equivalently, 

( m  + t - l ) ( t  - l ) ( m+ t )  

( t 5- 2t4 +(7m + l ) t 3  +(12m2 - 12m)t2  

+ ( 6 m 3 -  12m2+ 6 m ) t +  m 4 -  3m3 + 3 m 2 -  m )  = 0.  

Without loss of generality, we can exclude the case that the first three factors are 
equal to zero. Then the "raw form" of X1(15)is given by 
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By the transformation 

we get the form of X1(15)required in the theorem: 

T h e  case of X1(16). To calculate X1(16),we put 


7P = -9P. 


This implies the following condition: 

Equivalently, 

m ( m  + t - l ) ( m + 2t - 1) 

(2 t5  +(4m - 6) t4  + ( m 2  - lOm + 7 ) t 3  +(-3m2 + l l m  - 4 ) t 2  

+(5m2- 6m + 1)t + m3- 2m2 + m )  = 0.  

Once more we can exclude that the first three factors are zero, and therefore the 
"raw form" of X1(16)is: 

2t5 +(4m - 6) t4  + ( m 2  - 10m + 7 ) t 3  +(-3m2 + l l m  - 4 ) t 2  

+(5m2- 6m + 1)t + m3- 2m2 + m = 0 .  

By the following birational transformation 

this form is equivalent to 

X1(16):( u 2 +3 ~ +  + 4 u 2 + ~ u ) v -2 ) v 2+(u3 U =  0.  

T h e  case ofXl(17).We calculate the equation of X1(17)by setting 

8P = -9P 
and obtain the condition 
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This is equivalent to 

( m  + t - I ) ~  

( t 7- 5t6 + (-12m + 10)t5+ (-27m2 + 33m - 10)t4 

+ (-23m3 + 59m2- 33m + 5) t3  +(-8m4 + 40m3 - 45m2 + 14m - l ) t 2  

+( -m5  + l l m 4  - 21m3 + 13m2- 2m) t  + m5 - 3m4 + 3m3- m 2 )= 0 .  

The case m + t - 1 = 0 can be excluded without loss of generality, and the "raw 
form" of X,(17) is 

By virtue of the transformation 
v+1 t = - u2+Um = -
v+  u2' v+ u 2 '  

the above form of x1(17) is birationally equivalent to the form required in the 
theorem: 

X1(17): v4+(u+2 ) v 3+(u3+ 1 ) v 2+(-u5- 2u4  - u3- u2- U ) V  
- 2 ~ 4- u3 = 0.  

The case ofX,(18). To calculate the equation of X1(18),we set 


8P = -lOP. 


This equation implies the condition: 

-tll + (-12m + 7)t1° + (-36m2 + 76m - 21)t9 

+ (-47m3 + 209m2 - 204m + 35)t8 

+ (-30m4 + 251m3 - 497m2+ 300m - 35)t7 

+ (-9m5 + 151m4 - 508m3+ 617m2- 260m + 21)t6 

+(-m6 + 44m5 - 222m4 + 462m3 - 416m2 + 132m - 7 ) t 5  

+(5m6- 10m5+ 44m4 - 140m3+ 136m2- 36m + l ) t 4  

+ (26m6- 120m5 + 162m4- 64m3- 8m2 + 4m) t3  

+(9m7- 67m6 + 153m5- 147m4+ 58m3- 6m2) t2  

+ ( m 8- 14m7 + 47m6 - 68m5+ 47m4 - 14m3+ m 2 ) t  

- m 8  + 5m7 - 10m6 + 10m5- 5m4 + m3 = 0 ;  

or, equivalently, 

( m  + t ) ( t  - l ) ( m + t - ~ ) ~ ( t '- 2t - m + 1) 


( t 5  +(9m - 2)t4 +(6m2 - l l m  + l ) t 3  + ( m 3  + 3m) t2  


Without loss of generality, the first four factors can be omitted, and we get for 
Xl(l 8) the "raw form": 

X1(18): t 5+ (9m - 2)t4+ (6m2- l l m  + l ) t 3+ ( m 3+ 3m) t2  

+(4m3- 4m2) t+ m4 - 2m3 + m 2 = 0.  
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Transforming now this equation birationally by means of the transformation 

we obtain the form of X1(18) asserted in the theorem: 

The Xl(N) are elliptic for N = 11, 14 and 15. The form of these Xl(N) as given in 
the theorem is called an equation ofrestricted type for Xl(N) [6]. 

In the following table, we compile the characteristics of these Xl(N). In the first 
row we list the values of N, in the second the discriminant of Xl(N), then the 
j-invariant, the conductor of Xl(N), the torsion group of Xl(N) over Q, and in the 
last row we display a generator of X,(N),,,(Q). 

N 11 14 15 

A -11 -2 . 14 -15 

j - 212-
11 

-
56 

2 . 14 
1 
15 

-- 

' x , ( N )  11 14 15 

Xl(N) tor(Q) 2/5Z 2 /62  2 /42  

Generator of 
Xi(N)tor(Q) 

(1, -1) (1, -2) (15,108) 

For calculating an elliptic curve with a point of order 11, we transform Xl(ll)  into 
the form Y = f (X) for f (X) E Z[ XI. The corresponding equation for Xl(ll)  is 

Inserting, e.g., X = 2 yields 

Y = *2JS. 
We now carry out our calculations over the ground field ~ ( 6 ) .  If we set X = 2 and 
Y = 2 6  in the birational transformations, performed to obtain Xl(ll)  in the form 
of Eq. (7), and reverse these transformations, we get the coefficients b and c as 

giving the elliptic curve E in E(b, d)-form 

with P = (0,O) as a point of order 11. 
Not much is known concerning the question: Over which quadratic fields K are 

there elliptic curves with a K-rational point of order 11 and over which are there 
none? With regard to this question, we have examined the fields ~ (a)( )and ~  a 
and have proved 

THEOREM2. Over the quadratic field K = ~ ( n )  = there are no and K ~ ( m ) ,  
elliptic curves having a K-rational point of order 11. 
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Proof. One must find the rational points of Xl(ll) and the rational points of 
Xl(ll) twisted by -1 or -11. Then one proves Theorem 2 by means of theorems of 
Nagell [lo] and Kramer [3]. (See [ l l ]  for details.) 

We shall now establish tables of elliptic curves E with torsion groups of one of the 
following isomorphism types: 

Etor(K)= Z/mZ; m = 11,13,14,15,16 and 18. 

K is a proper quadratic number field over Q. The only K-rational points which we 
have found on X1(17) over quadratic number fields K over Q are cusps. Therefore, 
we do not expect that there are examples of elliptic curves over K with K-rational 
points of order 17. This is also suggested by the fact that X1(17) has genus 5.* In our 
list of examples, the curve E will be given in short Weierstrass normal form: 

E: y 2 =x3+ AX+ B; A , B E  K, 
which is quasi-minimal. This means that there are no rational primes p such that 

p41A and p 6 1 ~  

Each example in the tables is separated from the other by a row of stars. The 
examples are printed according to the following scheme: 

X D 
A 
B 
j 

P u,(j> type of decomposition 
X Y 

P type of decomposition 

Here: "X" is the X-value which we insert into the equation Y 2 = f (X)  of Xl(N) 
for getting the desired elliptic curve E over K. "D" is, up to a factor 4, the 
discriminant of the quadratic ground field K = ~(fi).  "A" and "B" are the 
coefficients of the elliptic curve E given in short Weierstrass normal form. In 
addition, we have calculated the j-invariant and a prime decomposition of j. Here p 
denotes the rational prime that divides the prime divisor 0, u, is the normalized 
Q-adic exponential valuation and u,( j )  is the @-value of j. The last column contains 
the type of decomposition of p in K. "D" denotes decomposed, "I" inert and "R" 
ramified. "x" and "y" are the x- and y-coordinates of a generator of Etor(K). 
Finally, we calculated the p,-values of E and determined the coefficient divisor m 
(see 1141). The p,-values are important with respect to the determination of the 
torsion structure of an elliptic curve over an algebraic number field [14] and with 
respect to height-calculations 151. For each rational prime p,  we display the p,-value 
and the type of decomposition of p in K, if pp is different from zero. If the 
pu-values are zero for all prime divisors @ of K, we leave the space empty. 

The numbers a = a + b f i  E Q(@), a, b E Q, are displayed as follows: 

a = ( a ,  b). 

*Recently Kamienny has proved, that there are no elliptic curves over quadratic number fields K over 
Q having a K-rational point of order 17. (Cf. S .  Kamienny, "Torsion points on elliptic curves over all 
quadratic fields", to appear.) 
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TABLEI1 (continued ) 
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TABLEI11 (continued) 
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TABLEI11 (continued) 



TABLEIV (continued) 

TABLEV 

E,, (K ) E Z/16Z 
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TABLEV (continued ) 
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For the sake of completeness, we mention that Stephens and Stroeker [12], by a 
different method, have found three elliptic curves with a point of order 11 and one 
elliptic curve with a point of order 15. 

We now give an example of an elliptic curve with a point of order 18, where the 
coefficients are much bigger than before. 

Here we were unable to calculate the prime decomposition of the j-invariant, 
because to this end we had to factor the norm of the j-invariant over Q, which is too 
large a number. Our calculations involved much bigger numbers, the biggest one 
being one of 5,000 digits. 

We have added on microfiches (at the end of this issue) a rather comprehensive 
table of examples of elliptic curves with torsion points of order 11, 13, 14 15, 16 and 
18. For lack of computer time, we have not calculated all the prime decompositions 
of j in our tables. 

3. Algorithms. For finding the transformations needed for the calculation of the 
X,(N), no general algorithm exists. The number of steps necessary for carrying out 
the transformations varies greatly. For calculating an equation of Xl(ll), we used 3 
steps. In other cases, sometimes more than 15 steps were required. To analyze the 
algebraic curves and to test the transformations, we wrote a program based on 
algorithms for the factorization of polynomials, for birational transformations and 
for computing resultants and singularities [Ill. The program works interactively. 
There are many ways to deduce from the raw form the form of the Xl(N) given in 
Theorem 1. The user of our program is in the position to interactively test many 
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birational transformations before fixing the next step. The algorithm for the bira- 
tional transformation is as follows: 

(1) Input an algebraic curve P(X, Y) = 0, P(X, Y) E Z[X, Y], 
k I 

Input the transformation 

(2) Determine Pl(Xl, Y,) in accordance with the equation 

=:P,(X1, Yl) . f 2 ( ~ 1 ,y lrk.g 2 ( ~ 1 ,y1)-', 

Pl(X1,Yl) E Z[Xl,YlI. 
(3) Print out the polynomial PI( XI, Y,). 


By the above transformation, Pl(Xl, Y,) = 0 is the curve 

equivalent to P(X, Y) = 0. 

END. 


We now state the algorithm used for the calculation of the tables. 
(1) Input: - Xl(N) given in the form y2= f(X); f (X)  E Z[X] 

- the birational transformation to obtain this form of the Xl(N) from 
the raw form, and the substitution made during the calculation of 6P. 

- the x-value which we wish to substitute into the equation of Xl(N). 
(2) If f(x)  = 0 then go to (7). 


Determine the discriminant D of the ground field. 

(3) Determine the coefficients b and c. 

Calculate the discriminant A of a curve E in E(b, c)-form. 
If A = 0 then go to (7). 
If A # 0 then E is an elliptic curve with the point P = (0,O) as a point of 
order N. 

(4) Transform E in short and quasi-minimal Weierstrass normal form such that 
the coefficients A and B are elements of z[@]. 

(5) Determine E,,(Q(@)) by the reduction method. 

Calculate j and the v,( j)-values. 

Compute the p,-values. 


(6) Print the results in the form described above. 

Go to (8). 


(7) Print that the point (x, f (x)) on Xl(N) is a cusp. 
(8) END. 


There is no difficulty in determining the up-values in a quadratic field K = ~ ( o ) ,  
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if p lies over a rational prime p which is inert or ramifies in K. In case p is 
decomposed, we can prove the following lemma [ll].  

LEMMA.Let K = Q(@), d E Z, be a quadratic field and let p be a rational prime 
which decomposes in K: 

P 'P I .  P,, 

where p, and p, are prime divisors of K. Let A = a, + a,@ E z(@), a E Z be 
such that 

gcd(al, a,); i fd = 2,3mod4
a = {  2gcd(al, a,);  i fd = 1mod4 

Let a;, a; E i Z  besuch that 

Then we have 
(i) p 1 p ,.A' implies 

(ii) p t p ,.A' implies 

NKIQ denotes the norm function of K/Q, and up is the normalized p-adic 
exponential valuation of Q. The lemma yields the following algorithm for de- 
termining uvl(A) and vv2(A). 

(1) Input d, a,, a, and p. 
(2) Determine a,  a;, a; as in the above lemma. 

If p 	= 2 then set p, = (1 - @)/2 

else determine a E {1,2, . . . ,(p - 1)/2) such that 

a 2 =  l m o d d a n d s e t p , =  a - @. 


(3) Calculate c = p, . (a; + a;@). 
If p 1 c then go to (4) 


else go to (5). 

(4) Calculate vv,(A) = uP(NKlQ(A)) - up(a), 

vp2(A>= up(a). 

END 


(5) Calculate uv,(A) = up(a), 

vp2(A)= U~(NK/Q(A))- vp(a). 

END 


The cpu-time used to compute the tables varies greatly because the results are often 
very large numbers. We experienced cpu-times ranging from 15 seconds to half an 
hour for one single example. 

4. Concluding Remarks. (1) The j-invariants of those elliptic curves with a point of 
order 13 or 16 appearing in our tables turn out to be defined already over Q. This is 
probably due to the fact that we obtain our elliptic curves by choosing as x-values 
rational numbers in the equation of Xl(N) for N = 13, respectively 16. Also, we 
encountered the phenomenon that different x-values in X,(N), N = 11, 13, 14, 15, 
16 and 18, yield elliptic curves with the same j-invariant. It would be desirable to 
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have some more information about the relationship between the x-values and the 
j-invariants. 

(2) It is, of course, interesting to ask the question as to whether the order N 
( N  = 11,13,14,15,16 and 18) of a torsion point of an elliptic curve over a quadratic 
field K depends on the type of decomposition in K of the rational primes p dividing 
N. This does not seem to be the case for N = 11,13,14 and 15 though, in the case of 
N = 14, we have only checked this for the prime p = 7. In the case of N = 16, we 
could not get any result of the desired type. In the case of N = 18, however, the 
prime p = 2 turned out to decompose, and the prime p = 3 either decomposed or 
ramified [Ill .  

(3) On the basis of our tables, we could, for the first time, test many important 
theorems and results of the theory of elliptic curves. We could, e.g., verify the 
theorem of Nagell [lo] already applied for proving Theorem 2. The p,-values of the 
examples coincide with the generalized Nagell-Lutz-Cassels theorem (see [14]). 

(4) Almost all the prime divisors dividing the j-invariants come from prime 
numbers which are decomposed in the corresponding quadratic field. In addition, we 
point out that the exponents of the prime divisors, which occur in the denominators 
of the j-invariants, are as they should be according to the theory of Tate-curves [13]. 

Acknowledgment. I would like to thank Professor H. G. Zimmer for calling my 
attention to this subject matter and making some valuable suggestions. 

Fachbereich Mathematik 
Universitat des Saarlandes 
D-6600 Saarbficken 
West Germany 

1. G. BILLING & K. MAHLER, "On exceptional points on cubic curves," J. London Math. Soc., v. 15, 
1940, pp. 32-43. 

2. M. A. KENKU, "Certain torsion points on elliptic curves defined over quadratic fields," J. London 
Math. Soc. (2), v. 19, 1979, pp. 233-240. 

3. K. KRAMER, "Arithmetic of elliptic curves upon quadratic extension," Trans. Amer. Math. Soc., v. 
264,1981, pp. 121-135. 

4. D. S. KUBERT,"Universal bounds on the torsion of elliptic curves," Proc. London Math. Soc. (3), v. 
33,1976, pp. 193-237. 

5. S. LANG, Conjectured Diophantine Estimates on Elliptic Curves, Progress in Mathematics, vol. 35, 
Birkh'auser, Basel, 1983. 

6. M. LASKA, "An algorithm for finding a minimal Weierstrass equation for an elliptic curve," Math. 
Comp., v. 38,1982, pp. 257-260. 

7. Ju. I. MANIN, "The p-torsion of elliptic curves is uniformly bounded," Math. USSR-Zzv., v. 3, 
1969, pp. 433-438. (transl.) 

8. B. MAZUR, "Rational points of modular curves," in Modular Functions of One Variable V, Lecture 
Notes in Math., vol. 601, 1977, pp. 107-148. 

9. J.-F. MESTRE, "Corps euclidiens, unites exceptionnelles et courbes elliptiques," J. Number Theory, 
v. 13,1981, pp. 123-137. 

10. T. NAGELL, "Les points exceptionnels sur les cubiques planes du premier genre. I, 11," Nova Acta 
Reg. Soc. Sci. Upsaiiensis (4), v. 14, nos. 1,3,1946-1947. 

11. M. A. REICHERT,Explizite Bestimmung nichttriuialer Torsionsstrukturen elliptischer Kurven uber 
quadratischen Zahlkorpern, Diploma thesis, Saarbficken, 1983. 

12. N. M. STEPHENS & R. J. STROEKER, The Torsion Group of Elliptic Curves Over Quadratic Fields, 
Report 8113/M, Econometric Institute, Erasmus University Rotterdam, 1981. 

13. J. T. TATE, "Algorithm for finding the type of a singular fibre in an elliptic pencil," in Modular 
Functions of One Variable IV, Lecture Notes in Math., vol. 476,1975, pp. 33-52. 

14. H. G. ZIMMER, "Torsion points on elliptic curves over a global field," Manuscripta Math., v. 29, 
1979, pp. 119-145. 



You have printed the following article:

Explicit Determination of Nontrivial Torsion Structures of Elliptic Curves Over Quadratic
Number Fields
Markus A. Reichert
Mathematics of Computation, Vol. 46, No. 174. (Apr., 1986), pp. 637-658.
Stable URL:

http://links.jstor.org/sici?sici=0025-5718%28198604%2946%3A174%3C637%3AEDONTS%3E2.0.CO%3B2-W

This article references the following linked citations. If you are trying to access articles from an
off-campus location, you may be required to first logon via your library web site to access JSTOR. Please
visit your library's website or contact a librarian to learn about options for remote access to JSTOR.

[Bibliography]

3 Arithmetic of Elliptic Curves Upon Quadratic Extension
Kenneth Kramer
Transactions of the American Mathematical Society, Vol. 264, No. 1. (Mar., 1981), pp. 121-135.
Stable URL:

http://links.jstor.org/sici?sici=0002-9947%28198103%29264%3A1%3C121%3AAOECUQ%3E2.0.CO%3B2-P

6 An Algorithm for Finding a Minimal Weierstrass Equation for an Elliptic Curve
Michael Laska
Mathematics of Computation, Vol. 38, No. 157. (Jan., 1982), pp. 257-260.
Stable URL:

http://links.jstor.org/sici?sici=0025-5718%28198201%2938%3A157%3C257%3AAAFFAM%3E2.0.CO%3B2-R

http://www.jstor.org

LINKED CITATIONS
- Page 1 of 1 -

NOTE: The reference numbering from the original has been maintained in this citation list.

http://links.jstor.org/sici?sici=0025-5718%28198604%2946%3A174%3C637%3AEDONTS%3E2.0.CO%3B2-W&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0002-9947%28198103%29264%3A1%3C121%3AAOECUQ%3E2.0.CO%3B2-P&origin=JSTOR-pdf
http://links.jstor.org/sici?sici=0025-5718%28198201%2938%3A157%3C257%3AAAFFAM%3E2.0.CO%3B2-R&origin=JSTOR-pdf

