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INTEGERS OF QUADRATIC FIELDS AS
SUMS OF SQUARES

BY
IVAN NIVEN

1. Introduction. Lagrange proved that every positive rational integer is a
sum of four squares of rational integers. Our principal result is that in an
imaginary quadratic field every integer of the form

(1) a + 2b0) 02 = — m,

m being a positive square-free rational integer, is expressible as a sum of three
squares of integers of the field. Gaussian integers are treated in §3, integers
of the general imaginary quadratic field in §4; necessary and sufficient condi-
tions for two-square sums are given in each case. Section 6 treats real quad-
ratic integers, and §7 interprets some of the results in the theory of Diophan-
tine equations.

It will be recalled that the coefficients of quadratic integers are not always
rational integers. Specifically, if the field is an extension of the rational num-

ber field by 0 in equation (1), and if m =3 (mod 4), the integers of the field are
given by

2) © i+
( 2 2

where a and b are rational integers, both odd or both even. This introduces a
special problem, which is dealt with for imaginary fields in §5. Roman letters
represent rational integers throughout.

2. Mordell’s theorem. In this section we prove a theorem which was
stated by L. J. Mordell [1], and upon which most of our study is based.
Mordell’s proof contains an omission of such import that a complete proof is
offered here.

THEOREM 1. If f(x, y) = ax®+2hxy+by? is a positive binary quadratic form
with integral coefficients, necessary and sufficient conditions that f be expressible
as a sum of the squares of two linear forms with integral coefficients,

) J(x, y) = (a1x + 01)* + (@22 + b2y)?,

are that A=ab—h? be a perfect square and that d= (a, h, b) have no prime fac-
tor of the form 4n+3 to an odd power.

To prove that these conditions are necessary, we take equation (3) as our
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hypothesis and obtain

2

) @=as+ as, k= abi+ aby, b= b;+ b
It follows that
A=ab— h? = (dlbg —_ d2b1)2.

There is no loss of generality in assuming d to be square-free. Let p be a prime
of the form 4n+3 dividing d, that is, dividing each of @, b, and %. Using the
theory of the decomposition of an integer into the sum of two squares, we
note that the first and last equations of (4) imply that p is a divisor of a1, as, b,
and by. Hence p? divides a, b, k, and therefore d, which contradicts our hy-
pothesis that d is square-free.

Conversely, let us assume that

(5) ab— k' = A,

and that d is divisible by no prime of the form 4n+3 to an odd power, or,
what is the same thing, that d is expressible as a sum of two squares of in-
tegers. Because of the identity

(U2 4+ V) (2 + %) = (Un + Vo)? + (Uv — Vu)?,

and because we are attempting to prove that an equation of the form (3)
can be set up, we may take

(6) d=(a hb) =1

The gap in Mordell’s argument occurs at this point. He states (page 5), “Now

ab — h2 = As, hz'E — Aﬁ (mod a),
and the solution of the congruence for & gives
Aodl

h= — (mod @)

az

for an appropriate resolution of @ as a sum of two integral squares, say,
a = af + az.”

We shall show that a is expressible in the latter form, with

(7 ash = — Aga; (mod a).

Let p be a prime of the form 4n-+3 which divides ab. Equation (5) shows
that ab is a sum of two squares; hence the highest power of p dividing ab is
an even one, say p2?¢; it follows that
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p* o po] Ao,

Equation (6) implies that p%¢ divides a or b, but not both. Treating every
prime factor of ab which is congruent to 3 modulo 4 in this fashion, we see
that we may write

(8) a= P, b=QB, kh=PQH,  Ay= PQA,

wherein P and Q are odd, prime to each other, and contain only prime factors
of the form 4n+3; also 4 and B contain no such prime factors. Equation (5)
shows that

(9) AB = H + Af = (H + Ai)(H — Avi).

Now each prime factor of 4 is expressible as a sum of two squares in one and
only one way, so that we have

(10) 4 =TT+ 9 = 1L (i + pii) (3 = 9).

Each of the complex factors in the latter product is a prime in the field R(%),
the rational number field extended by 4. The unique factorization law holds
in R(%) so that x;+y;7 divides one of the two factors

H 4 Ay, H — Az

of AB, and x;—7y;i divides the other. Combining the terms of the product (10)
according to this distinction, we may write
(11) A = (A1 — Agi)(A; + Agi) = A5 + 43,
where

(Ay — Agi) | (H + Axi), (A1 + A2d) | (H — Avi).
Similarly we have
(12) B = Bi+ By = (B; — Byi)(B: + Bui),

these factors dividing H+A;¢ and H—Ai respectively. Equations (9), (11),
and (12) imply

H + Ay = (A1 — Agi)(By — Bai),
whence we obtain
(13) H = A;B, — A3By, Ay = — A,By — A,B,.
If we write

a, = PA4,, a2 = PA,, by = QBy, be = QBa,
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then equations (8), (11), (12), and (13) imply

(14)  a=ai+as, b=20)+by h=abi— asbs Ao= — asby — agbs.
It follows that

2
agh = agalbl - azbz,

ash = asa:b, + asz (mod a),
and :

ash = — a4, (mod a),
which we set out to prove. In fact, equations (14) imply
dzh + dle dlh — (lng

(15) = — by, ——— = by,
a a

and it is easily verified that
ax® + 2hxy + by = (a16 + b1y)? 4 (asx — boy)2.

3. Gaussian integers. Let us consider a4 257, where a and b are rational
integers. We have, for an arbitrary integer ¢,

a+ 2bi = (a+ t) + 207 + 42

which may thus be considered as a quadratic form in 1 and 7. Mordell’s
theorem is applicable; first we wish to show that there exists a rational in-
tegral value of ¢ such that #(a+¢) —b2 is a perfect square.

First let a be even, a=24. We wish to obtain integral ¢ and x to satisfy

124 + &) — b2 = a2,
which may be written in the form
(16) (t+ A)? — a2 = 42 + p2,

This equation has no solutions if both 4 and b are odd, but is solvable other-
wise.
In case either 4 or-b is odd, we write the solution

4+ A+ x= A%+ b2 t+4—x=1,
so that
(A — 1)2 4 p2
TR

In our application of Theorem 1, we have (in the case considered) satisfied
the condition that the negative of the discriminant of the form be a square.
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We now consider the nature of d, the greatest common divisor of ¢, b, and
a—+t. The above equations show that

d_<b (4 — 1)+ b2 (A+1)2+b2)
= , 2 i 2 .

Let p be any odd prime dividing d. It is an immediate consequence of the
above equation that p divides b, 4 —1, and 4 +1. Hence p=1, and d is not
divisible by any odd prime.

In case both 4 and b are even, we write 4 =244, b= 2b,, and equation (16)
has the solutions

P24 4 @ = 240+ b, i+ 24— x =2,
so that

t=(4,— 1)+ bi.

The value of & is now given by the equation

d= (b (4 — 1)+ by, (A + D+ by).

The argument of the last paragraph applies again to show that d is divisible
by no odd prime. This completes the discussion when a is even.
In case a is odd, a=24 +1, equation (16) is replaced by

(17 (2t + a)? — 4x? = a? + 4%
This equation always has rational integral solutions ¢ and «x. For if we write
2t + a + 2x = a? + 402, 24 a—2x=1,
the solution is
= A? 4 b2
Again we see that d is divisible by no odd prime, because
d= (b, A2+ b2, (4 + 1)% + b?).

Recalling the remark after equation (16), we have shown that a+2b7 is
expressible as a quadratic form in 1 and 7 satisfying the conditions of Theo-
rem 1 provided that not both a/2 and b are integral and odd. Hence if these
conditions on a and.b are satisfied, the integer a4 2b7 is expressible as a sum
of two squares of Gaussian integers.

Conversely, suppose that the Gaussian integer a4-2b7 is a sum of two
squares,

@+ 2bi = (c + di)® + (e + fi)™
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Setting t=d2+f2, we have the result
(a+ 2%+ 2bxy + ty* = (cx + dy)? + (ex + fy)2

Theorem 1 shows that ¢(a+¢) —b2 must be the square of an integer, and the
conditions for equations (16) or (17) must be fulfilled for ¢ even or odd, re-
spectively. But equation (16) cannot be satisfied if /2 and b are odd integers.
Hence the Gaussian integer a+2b: is not expressible as a sum of two squares
if /2 and b are odd rational integers. We have proven the first statement of
the following theorem.

THEOREM 2. 4 Gaussian integer of the form a-+2bi is expressible as a sum
of two squares of Gaussian integers if and only if not both a/2 and b are odd
integers. Every Gaussian integer of the form a-+2bi is expressible as a sum of
three squares. A Gaussian integer is expressible as a sum of squares of Gaussian
integers if and only if its imaginary coordinate is even.

The last remark is trivial. The second statement is a corollary of the first.
Forif a/2 and b are integral and odd, the integer a — 1425 is expressible as a
sum of two squares, whence a+2b: is a sum of three squares, one of which is
unity.

4. General imaginary quadratic fields. We now consider integers of the
form y=a+2b0 where @ and b are rational integers, and

(18) 0% = — m,

m being an integer greater than unity with no square factors. We note that 0%
is expressible in infinitely many ways as a quadratic form in 1 and 6,

v = (a + tm) + 200 + 162,

¢t being an arbitrary integer. If ¢ can be selected so that this quadratic form
is expressible as a sum of two squares of linear forms, then v is a sum of two
squares of integers of the field R(f).

On the other hand, if a+42b6 is a sum of two squares,

a+ 200 = (c + d)* + (e + f9)2,
we set ¢=d2?4-f? as before and obtain
(@ + tm)a® + 2bxy 4 ty® = (cx + dy)? + (ex + )2

We have shown, therefore, that the integer v is a sum of two squares of
integers of R(6) with rational integral coordinates if and only if the quadratic
form [a+tm, 2b, t] is expressible as a sum of two squares of linear forms by
means of a suitable choice of the rational integer t. Hence Theorem 1 is ap-
plicable.

THEOREM 3. The integer a+2b0 is expressible as the sum of the squares of
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two integers of the form c-+db, if and only if there exists an integer t such that
mi? + at — b?

is a perfect square, and such that (¢, b, a-++mt) is not divisible by a prime of the
form 4n+3 to an odd power.

We now consider the problem of expressing the integer a+2b6 as a sum
of three squares. The equation

(19) a4 260 — (u+ 10)2 = (tm + a — u?) + 2(b — wv)f + (¢ — 2%)6?
leads us to search for integral values of £, %, and v which will make
(20) (t— v)(tm+ a — u?) — (b — u)?
a perfect square. First we set the terms free from ¢ equal to a square,
2 (u? — a) — (b — wv)? = y?,

so that

v2a + b2 + y?
T 2 -

(21) u

To obtain an integer from this expression for u, we set v=>5 and y=2Yb or
y=(2Y41)b according as a is odd or even; the integer V is arbitrary.
The expression (20) is written

2
mt? + t(a — u? — md?) + y? = (y—-p—l>,
q

and a solution is

(22) t = q(2py + aq — ulq — mb*q),
provided
(23) p? — mg? = 1.

Note that pt/q is an integer.
We shall also need to account for the greatest common divisor of the co-
efficients of the quadratic form on the right side of equation (19),

(24) (b — uv,a— u+tm, t —v%) = (b — ub, a — u+tm, t — b?).

LEMMA. Let w1, m, - - : , 7, be the primes of the form 4n-+3 which divide b.
Then we can choose y in (21) so that
(25) u? # a (mod =;), j=12---,r

First consider @ odd, a=24 —1. Then y=2Yb, and (21) becomes
u=A4+ 272
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In this case (25) becomes
(26) (4 + 2V%2 # 24 — 1 (mod ), F=1,2,r

When Y ranges over a complete residue system modulo 7;, Y2 (and therefore
2Y%+A) takes on %(w;+1) incongruent values modulo 7;. From the theory
of quadratic residues it follows that (2¥2+4)? takes on at least [L(m;+1)]
incongruent values modulo 7; where [x] has the usual number-theoretic
meaning, namely, the greatest integer less than or equal to x. Since
[1(m;+1) ]=2 for all primes greater than 5, it is possible to select a value s;
from the complete system of residues modulo 7;, so that (26) is satisfied for
all primes greater than 5 provided

(27) Y = s; (mod ;) G=1,--,7,m;>5.

Since 5 is not a prime of the form 4n+3, we take 7w;=3 as the special case.
In this case, choose ¥=0, 1,2 (mod 3) when 4 =0, 1, 2 (mod 3) respectively,
and (25) is satisfied.

Thus an s; can be found corresponding to each m; in (27) including the
case m; =3 if it happens to be present, so that values of YV satisfying (26) may
be found by use of the Chinese remainder theorem. Hence the lemma is
proven in case a is odd.

If a=24, we have y=(2Y+1)b; equations (21) and (25) become

u=A4+1+4 2V2+4 27,
and
(28) (4 4+ 1+ 2V2+ 2Y)% #£ 24 (mod =), =1,

respectively. Again let ¥ range over a complete residue system modulo 7;;
each of the quantities Y2+ Y and 2Y2+2YV+4 41 takes on 3(m;+1) incon-
gruent values modulo ;. Thus the expression

(V2 4 2V + 4 + 1)2

takes on at least [L(m;+1)] incongruent values modulo ;. As in the earlier
case, a relation of the type (27) is established. In case the prime under dis-
cussion is 3, equation (28) is satisfied by choosing ¥'=0, 1, 2 (mod 3) when
A=0,1, 2 (mod 3) respectively. The proof of the lemma is completed by use
of the Chinese remainder theorem, as in the previous case.

Having thus chosen a suitable value of %, we note that ¢ in (23) may be
selected so that it is divisible by b(# —1). For we may set

(29) g = b(u— 1)Q
where Q is a solution of

(30) Pt — mb(u — 1)202 = 1.
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This is a Pell equation, and is known to have solutions p and Q because
mb2(u—1)? is not a square.

It is not difficult to show that the expression on the right side of equation
(24) has no prime of the form 4n+3 as a factor. For suppose that = is such a
prime dividing b —ub. Equation (29) shows that 7 divides ¢, and consequently
equation (22) implies that 7 divides ¢. First, if = divides b, the lemma states
that 7 does not divide #2—a, and hence a —u2+¢m is prime to 7. On the other
hand, if 7 divides # —1 but not b, it is clear that 7 cannot divide the expres-
sion t—b? in equation (24).

We have satisfied the conditions of Theorem 1, and equation (19) may
therefore be interpreted as follows:

THEOREM 4. Every integer of the form a—+2b0 of the quadratic field R(6) de-
fined by equation (18) is expressible as a sum of three squares of integers of the

feld.

5. A special case. We now examine more thoroughly the fields R(6) where
the integer m of equation (19) is of the form 4n+3.

THEOREM 5. In case m=3 (mod 4), the integer a+b0, with b an odd rational
integer, is expressible as a sum of two squares of integers of the field if and only
if 4a-+4b0 is expressible as a sum of two squares of integers of the type c+df
(see Theorem 3). Also, the integer 3a+31b0, with a and b odd rational integers,
is expressible as a sum of two squares of integers of the field if and only if 2a+2b0
is expressible as a sum of two squares of integers of the type c+df.

It is obvious that each of these conditions is necessary for the proposed
representation. To show that the condition expressed in the first statement is
sufficient, we assume that 4a+4b0 is a sum of two squares,

(31) 4a + 46 = (x1 + y10)2 + (xz + y20)2.
This implies the congruence

0= xf + x: — my? — myz (mod 4),
or

OExf+ x:+yf+y:(mod4).

Hence every one of xi, %2, ¥: and v, is even, or every one is odd. Equation (31)
can be divided by 4 to give the desired result.
We now turn to the second statement of the theorem and assume that

(32) 2a + 2060 = (21 + y10)% + (a2 + y20)2

Since a and b are odd, we obtain the congruences

2= xf + x: + yf + yz (mod 4), 1= x1y1 + %2y2 (mod 2).
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These imply that x, and y; are both even or both odd, and an analogous result
for x; and y;. The equation (32) can be divided by 4 to give the desired result,
and we have proven the theorem.

THEOREM 6. In case m=3 (mod 4), every integer of the field R(0) is expressi-
ble as a sum of three squares of integers of the field.

Because of Theorem 4 we need consider only integers of the types

(33) a + b6, b =1 (mod 2),
and

a b
(34) 7+70' a=>b=1 (mod 2).

By Theorem 4 we have
3

(35) da + 400 = 3 (x; + v:9)?,
=1

from which we obtain the congruences

2 2 2 2 2 2
0=+ %2+ %3+ 31+ y2 + y; (mod 4),
0 = x1y1 + %2y2 + %35 (mod 2).
If there were a disparity between x; and y; with respect to 2, these congru-
ences would imply
2 2 2 2
3= a3+ 25+ ys + v; (mod 4),
0 = x3ys + x3y; (mod 2),
which have no solutions in integers. Hence x; and y; are both odd or both
even, and an analogous argument holds for the pairs x,, 5 and 3, y;. Our

theorem is proven for integers of types (33) by dividing equation (35) by 4.
Turning to integers of the type (34), we write the equation

3

(36) 2a 4 260 = 3 (x; + y.0)?,

=1

using Theorem 4 as our authority. This equation implies the congruences

2
2= x§+xz+x§+y?+yz+y§(m0d4),
1= ¥1Y1 + X2V2 + X33 (mod 2)

If 1 and y; are incongruent modulo 2, we would have

1= x: + xz + yz + yz (mod 4), 1 = %992 + a3y; (mod 2),
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which are manifestly impossible in integers. Hence x; and y, are both even or
both odd; a similar statement holds for the pairs %z, y2 and a3, y3. Dividing
equation (36) by 4, we have completed the proof of the theorem.

6. Real quadratic fields. Let

f(z, y) = ax® + 2hxy + by?

be a positive form with integral coefficients. Mordell [2] has shown that f is
expressible as a sum of five squares of linear forms with integral coefficients;
also he has shown that f is expressible as a sum of four squares of linear forms
with integral coefficients if and only if ab—A? is a sum of three squares of
integers, that is, if and only if b —A? is not of the form 47(8s+7). In case the
expression ab —h? equals zero, the form f is expressible as a sum of four squares
of linear forms with integral coefficients.

Let us now consider the field R(m/?), where m is a square-free rational
integer greater than unity. The integer a+2bm!/2 can be written in the form

(37) a + 26mi’2 = (a — tm) + 2bm*/2 4 f(m'/2)?,
a quadratic form in 1 and m'/2. If Mordell’s theorems above are to apply,
we must first inquire whether ¢ can be chosen so that the right side of equa-

tion (37) is a positive form. The question is whether a positive value of ¢ can
be chosen so that

(38) D = (a — tm)t — b > 0.

If we define K by the equation

(39) K = (a® — 4mb?)17,

it is seen that D vanishes when ¢ has the values
ea—K a+ K .

2m ’ 2m

Furthermore, if K is real, and if ¢ lies between these values, then ¢ and D are
positive, and the right side of equation (37) is a positive form; hence the first
Mordell theorem stated at the beginning of this section is applicable. On the
other hand, if ¢ equals one of the above values, being real, then D is zero,
and we apply the last Mordell theorem stated.

THEOREM 7. The integer a-+2bmY/? is expressible as a sum of five squares of
integers of the form c+dmY? if and only if the quantity K defined by (39) s real
and the closed interval

(40) (a—K} a-I—K)

2m 2m

contains a rational integer.
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Since any integer contained in the interval (40) is of necessity positive,
it is clear that these conditions are sufficient. Conversely, let us assume that
there exist integral values x;, y; (j=1, - - -, 5) such that

5
@t 2mi = 3 (x4 yoin)y

=1

from which we obtain
5 9 9 5
a=2 (x;+my), b=
=1 i=1
The equation

5
a— 2m'? =3 (x; — yml2)?
i=1
shows that a?—4mb? is positive, and consequently K in (39) is real. Consider
the function

D= — m? + at — b2,

¢ being looked upon as a continuous variable. Its graph is a parabola. Its
zeros are the end-points of the interval (40). Furthermore, any value of ¢
for which D is positive lies in the interval (40). When ¢ is given the integral
value ) %_,y?; we obtain

9 5 9 5 2
D=2 x> 9 — (me‘) .
=1 =1 i=1

By the elementary theory of inequalities, this is not negative. Hence we have
exhibited an integral value satisfying the conditions of the theorem.

THEOREM 8. The integer a+2bm''? is expressible as a sum of four squares
of integers of the form c+dm''? if and only if K defined by (39) is real and the
closed interval (40) contains a rational integer t so that the value of D in equation
(38) is expressible as a sum of three squares of rational integers.

This theorem needs no explanation, since it is an immediate extension of
Theorem 7, obtained by the use of Mordell’s work as outlined at the begin-
ning of this section. It is also possible to state theorems analogous to the last
theorem for the situations wherein we wish two-square and three-square
sums; this would be done by use of Theorem 1 and other work [3] of Mordell.

7. Consequences in the theory of Diophantine equations. The first state-
ment of Theorem 2 may be interpreted as follows:

THEOREM 9. The Diophantine equations

x4 42 — 32 — w? = g, %z + yw = b,
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are solvable simultaneously if and only if not both 3a and b are integral and odd.

The second statement of Theorem 2 together with Theorem 4 leads to the
following result.

THEOREM 10. If a and b are arbitrary integers, and if m is unity or an in-
teger greater than unity which is not a square, then the equations

%2+ y2 + 22 — m(w? + u? + 0?)
xw + yu + zv = b,

a,

are solvable simultaneously in integers.

Theorem 4 was proven with m a square-free integer, but the proof is
valid with the less restrictive hypothesis that m be no square. This hypothesis
is needed to insure solutions for the Pell equation (30). Finally we rewrite
Theorem 7.

THEOREM 11. If a and b are arbitrary integers, and if m is any positive in-
teger, then the equations

5 9 9 5
2 (xi+my;) = a, 2xyi=b
=1 =1

have simultaneous solutions in integers if and only if the quantity K defined by
equation (39) is real and the closed interval (40) contains a rational integer.

The restriction that m be square-free contained in Theorem 7 is aban-
doned here because it was not used in the proof. It was included in Theorem 7
merely because quadratic integers are defined in terms of a square-free ra-
tional integer.
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