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GROUPS COVERED BY PERMUTABLE SUBSETS

B. H. NEUMANN*.

§1. Introduction.

In this paper we shall be mainly concerned with groups which can be
covered by (in other words, are unions of) permutable boundedly finite
subsets. Obvious examples of such groups are the finite groups, where a
single finite set suffices, namely the group itself; and abelian groups,
where all one-element subsets will serve. The main result (Theorem 7.1)
characterizes these groups completely as those groups which possess a
subgroup of finite index with finite derived group.

Another, closely related, class of groups, which also includes all finite
groups and all abelian groups, is that of the groups with only finite classes
of conjugate elements. Such groups are called jFC-groupsf; they have
been studied in an earlier paper J, and their investigation is carried a little
further in the present paper. I t will be shown (Theorem 3.1) that if the
classes of conjugate elements in a group H are boundedly finite, then the
derived group of H is finite. The converse is also true, and nearly trivial.

The present investigation arose from the question whether a simple
and direct proof of the following theorem of Mautner§ could be devised:

Let the group 0 possess a finite subgroup K whose double cosets in 0 are
permutable. If H denotes the union of all finite classes of conjugate elements
of 0, then H (easily seen to be a subgroup of 0) has finite index in 0.

This is in fact a corollary of our more general results; we give, however,
an independent proof in a sharpened form, namely (Theorem 5.1)

* Received 11 November, 1U53; read 19 November, 19.13.
f Following Baer (2).
J Neumann (5).
§ Unpublished; it is a corollary of deeper results on unitary representations in (4).

I am indebted to F. I. Mautner for a derivation of this theorem from his, op. cit., p. 438,
and also to Kurt A. Hirsch for having drawn my attention to the above question.
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The proof is completely elementary in the sense that it uses only fundamental
notions and facts of group theory.

We also investigate (in §8) the problem how far the boundedness or
even the finiteness of the permutable subsets covering the group can be
relaxed. We show, for instance, that every finitely generated free group
but no non-denumerable free group can be covered by permutable finite
subsets; but our results are very far from a complete solution.

§2. Notation and preliminaries.

We use the following notation. Groups are written multiplicatively,
the unit element is 1, and the trivial subgroup is E = {1}. If g is an element
of a group 0, then g° is the class of its conjugates, C(g) its centralizer. If
8 is a set, 18 | denotes its cardinal. If S is a subgroup of 0 then | 0: S | is
its index; thus in particular if 8 is a normal subgroup of G> then

The centralizer of a set 8 of elements of G is

We note the (well-known) relation

\g°\ = \G:C(g)\.

11 we denote by H the union of all finite classes of conjugates in G,
then an element geG belongs to H if, and only if, |gr01 1B finite. It is not
difficult to see that H is a subgroup of G, and in fact a characteristic sub-
group. Every element of H has only a finite number of conjugates in H,
for gH is a subset of g°; a group with this property is called an .F<7-group.

The following facts* about .FC-groups will be used.

(2.1) THEOREM. / / H is an FC-group, then the periodic elements of H
form a {periodic) subgroup P of H; this contains the derived group H' of H.
If H is finitely generated, then P is finite.

I am indebted to Philip Hall for the following argument which is much
shorter than my proof op. cit. Let a, b be two elements of the .FC-group H;
denote by A the group they generate. Then the centre of A is the inter-
section of the centralizers of a and bin A, and hence of finite index in A. I t
follows from a result implicit in Schur (6)f that the derived group A' of A
is finite. If a, b are periodic, then A/A' is also finite, thus A itself is then

* Neumann (5, Theorem 5 . 1).
f This is (5, Theorem 5 .3 ) ; my proof used Sohur's basic idea. Cf. also Baer

(1, §6, Theorem 4).
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finite. I t follows at once that the periodic elements of H form a subgroup,
and the rest of Theorem 2.1 is an easy consequence*.

§3. Groups with boundedly finite classes of conjugate elements.

We begin by considering JPO-groups in which the classes of conjugate
element- are not only finite, but boundedly finite. These include all
groups whose centre has finite index; and thus in particular they inolude all
finitely generated FG-gvoups.

The example of the (restricted) direct product of infinitely many
quaternion groups with amalgamated centre shows, however, that in such
a group the centre can also have infinite index, and can indeed be finite
though the group be infinite. In this example the centre and the derived
group coincide with the only minimal normal subgroup, of order 2. Every
element outside this subgroup has precisely two conjugates, including
itselff.

These groups are capable of a very simple characterization:

(3.1) THEOREM. The classes of conjugate elements of a group H are
boundedly finite if, and only if, the derived group H' of H is finite.

Proof. If H' is finite then | H' | is a finite bound for the cardinal of
every class of conjugate elements; for if hv h2, ..., hn are different con-
jugates, then 1, h^hz, h±xhz, ..., h^xhn are different commutatorsJ.

Assume now conversely that the classes of conjugates in H are boundedly
finite, and let n be the least upper bound of their cardinals. Let a be an
element of H with exactly n conjugates, and let 1 = 6!, 62, ..., 6n form a
set of right coset representatives of H modulo C(a). Thus

a1 = a, a2 = 62-
1a62, ..., an = b~1abn

are the n distinct conjugates of a. Next let

U = C({bvb2, ...,6n})

be the centralizer of 6ls 62, ..., bn in H. This is the intersection of a finite
number of groups each of finite index in H:

* Another elegant simplification of my proof has been found by J. Erdos (3). I owe
this information to Tibor Szele.

f Other such examples, made independently by J. Erdos (3), have been kindly com-
municated to me by Tibor Szele.

J This reasoning has already been applied to prove (5, Theorem 6 .4).
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Hence its index \H:U\ = m, say, is again finite. Let c1} c2, ..., cm be a set
of right coset representatives of H modulo U, and let V be the least normal
subgroup of H containing a, cv c2, ..., cm. Then V is finitely generated,
namely by the finitely many conjugates of a, cv c2, ..., cm. Also

H=UV.

Let h = uv and h' = u' v' be two arbitrary elements of H. We form their
commutator

[h, h'] = [uv, u' v'] = [u, «'] (mod V),

and show that this lies in V. In fact we show that [u, u'] lies in {a}H, the
normal closure of a in H. Consider the element w = ua. As u permutes
with blt 62, ..., 6n, the conjugates

w = ua, b2
1wb2 = ua2, ..., b~1wbn = uan

of w are all different. They must be all the conjugates of w, as n was the
greatest number of conjugates any element of H could possess. Thus

for some i; and as also

for some j , then

u'~xwu' = uai

u'~x au' =

Thus H/V is abelian, and H' C V. But H' is a periodic group by Theorem
2.1 , and the subgroup of periodic elements of V is finite, also by Theorem
2.1 , because V is finitely generated. Thus H' is finite, and the theorem
follows.

I do not know whether one can refine this argument to give a bound
for the order \H'\ of the derived group in terms of the bound n for the
cardinals of classes of conjugate elements.

§4. Groups covered by finitely many cosets.

In this section we derive a lemma which will be required later. I t is
quite possibly known, but I know of no reference in the literature.

(4.1) LEMMA. Let the group 0 be the union of finitely many, let us say n,
cosets of subgroups Cv G2, ..., Cn:

(4.11)

Then the index of (at least) one of these subgroups in G does not exceed n.

It should be noted that we have sacrificed no generality in writing the
n cosets as right cosets; for a left coset of a subgroup C is also a right coset
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of a conjugate of G:
gC = gCg-Kg.

It may also be remarked that the lemma is obvious for finite groups G,
and that it becomes false if an infinite cardinal is substituted for n. Its
proof for arbitrary G is carried out in several steps.

(4.2) Under the assumptions of the lemma at least one subgroup Ct has
finite index in G.

Proof. We proceed by induction over the number of distinct groups
among Cv C2> • • • > ^n- If a^ the groups Gi coincide, that is if G is the union
of n right cosets of a single group, then this clearly has finite index. Assume
now that the proposition is true when there are r— 1 or fewer distinct groups
Ct; and let there be r > 1 distinct groups among Gv C2, ..., Gn. Consider
one of the groups, Cn, say; and assume the groups in (4.11) so arranged
that Clt ..., Gm are different from Cn, and Cm+1 = Cm+2 = ... = Gn. Now
either

G = UU+iCU> (4.21)

in which case Cn clearly has finite index in G, or else there is an element

HUi^+iOngt. (4.22)

In this case then

and therefore CnhQ 11?=! Ctgt.

Thus

that is to say, every right coset of Cn is contained in a finite union of right
cosets of the other r— 1 groups C,-. But then G can also be covered by a
union of finitely many right cosets of these r— 1 groups, and by the
induction hypothesis one of them has finite index in G. Thus (4.2)
follows.

(4.3) Let Clt ..., Cm have infinite index, and let Cm+1 = Cm+2 = ... = Cn.
Then

that is to say, if only one of the groups has finite index in G, then the cosets of
groups of infinite index can be omitted from the covering of G.

This an immediate corollary of the proof of (4.2); for the alternative
(4.22) leads to one of Cv ..., Cm having finite index, and hence it cannot
arise here. We now drop the assumption that there is only one group
(possibly repeated) of finite index.
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(4.4) Let Cv ..., Cm have infinite index. Then

that is to say, the cosets of groups of infinite index can in any case be omitted
from the covering of G.

Proof. We know from (4.2) that some of Cm+V ...,Gn have finite index,
and we lose no generality if we assume that they all have finite index;
for any groups of infinite index can be lumped together with those we want
to show superfluous. We put

Then D, as the intersection of finitely many groups of finite index, also
has finite index in 0. Now Cm+1, ..., Cn each contains D, and thus can be
written as a union of right cosets of D, finitely many in every case. Thus
0 is a union of finitely many cosets of Cv ..., Cm and D. By (4.3) the
cosets of Cv ..., Cm can be omitted; then the original cosets of Cm+1, ..., Gn

are restored from the cosets of D into which they had been decomposed,
and (4.4) follows.

(4. 5) Define the " density " 8{C) of a subgroup C of 0 to be the reciprocal
of its index | G: C \ if this is finite, and zero if \ 0: C \ is infinite. Then under
the assumptions of the lemma

S8(C , )>1 . (4.51)

Proof. We begin by omitting the cosets of groups of infinite index;
and we again denote by D the intersection of the remaining groups C{.
Next we decompose the cosets C,gr,- that remain into cosets of D. Each
suoh coset C{g{is the union of | C{: D \ cosets of D. Thus 0 will be contained
in the union of 21 C{: D \ cosets of D, the summation extending over the C(

of finite index. It follows that

and this, together with the identity

proves (4.5).
Lemma 4.1 is an immediate corollary of (4.5).

§5. Mautner's Theorem.

We now consider Mautner's Theorem, and prove it in the following
more precise form:

(5.1) THEOREM. Let the group G possess a finite subgroup K with the
JOUB. 114. B
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property that the double cosets of K in 0 permute. Denote by H the union of
all finite classes of conjugates in 0. Then

O = KH.

Proof. By assumption

KyKxK = KxKyK

for all x,yeG. Thus in particular there is, to each pair x, y of elements of
0, a triplet k, k', k" of elements of K such that

yx = kxk'yk". (5.2)

(There may be more than one such triplet for some pairs x, y.)
We now keep y fixed for the moment, and denote by X{k, k', k") the

set of all those xzO which satisfy (5.2) with a given triplet k, k', k". Some
of these sets may be empty, and others may overlap; but every element
x of 0 occurs in at least one of them. Moreover there are finitely many such
sets only, namely | K |3—one to each ordered triplet of elements of K.

Next we observe that these sets X(k, k', k") are certain cosets of sub-
groups of 0. Specifically, if geX(k, k', k"), then

X(k, k', k") =

For if a; is any other element of the same set X(k, k', k"), then

yg = kgk'yk"

and yx = kxk'yk".

Hence gr1 k~l yg = k'yk" = x~l krx yx}

and xg-1zC(kr1y).

Conversely, if xeC(k~1y)g, then

x-1 kr1 yx = g-1 kr1 yg = k'yk",

and xeX(k, k', k").
Thus 0 is seen to be the union of finitely many cosets of the form

C(k~1y)g. It follows from Lemma 4.1—or even the weaker (4.2)—
that at least one C(k~1y) has finite index in 0. But this means that at
least one k~xy has only finitely many conjugates, and lies in H. Thus

and as y was an arbitrary element of 0, the theorem follows.

(5.3) COROLLABY. |
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It is not difficult to refine this proof so as to obtain the further result
that the finite olasses of conjugates of 0—that is the olasses contained
in H—are boundedly finite. However, this will also be true in the more
general situation studied in the next section, and we therefore defer the
proof.

§6. Qrowps covered by permutable boundedly finite subsets.

We now come to study groups which can be covered by permutable
boundedly finite subsets. Throughout this section, let 0 be such a group,
and let $ be a family of subsets such that

(6.11)

FF' = F'F for all F, F'eg, (6.12)

(6.13)

We again denote by H the union of all finite classes of conjugates of 0;
and we denote by i/(m) the union of all classes of conjugates with at most
m elements. Thus

and

is the oentre of O, but #(m) for m > 1 need not be a group. We now
prove that £T(m), for suitably large m, has " finite index " in O, that is to
say, 0 is the union of a finite number of translates H^g of HSm).

(6.2) LEMMA. Let m = %n*{n-\-l), and let gv g2, ... be a sequence of
elements of 0 such thai

gt $H^gt when i <j. (6.21)

Then the sequence breaks off after at most n terms. In other words, there is
a number p ^n such thai

Proof. Assume the contrary. Then it is possible to find
elements gx, g2, ..., gn+1 satisfying (6.21). To each g( we select a set
Ftefs which contains g{. Let x be an arbitrary element of 0; we also
select a set Fe% containing x. Using the permutability of the F{ and F
we oan find elements /(eFt and x{eF such that

giX^xJi (t = 1, 2, ..., n+1).
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As | J^| ^.n, there must be two different suffixes a, t such that xa = xt;
we may take 8 < t. We obtain

Let us denote by X{s, t, fa, ft) the set of those elements xeO which satisfy
(6.3), that is to say, which transform gjlgt into / j " 1 / / - Some of these
sets may be empty, others may overlap; but in any case every element of 0
belongs to at least one of them. Moreover there are only a finite number
of such sets, in fact at most |w3(%+1) = m; for 1 ̂  s < t ^ n-\-1, whence
there are $n(n-{-1) possible choices of s, t; and/8 and/< belong to FB and Ft

respectively, and are each capable of at most n values.
Next we observe that these sets X(s, t, fa, f() are certain cosets of sub-

groups of G. Specifically, if g e X(s, t, fs> ft), then

for any other element xeX{s, t, fa, ft) transforms g^gt into/f1/,, like g.
Thus 0 is seen to be the union of at most m cosets of the form

C{g~xg^g. I t follows from Lemma 4.1 that one of the C{gjxg^ has
index at most m in G. This means that gj1 gt, for some s, t with

has at most m conjugates. The same is then true of gtgj*—which is in
fact one of these conjugates. Thus

and

contrary to (6.21); and the lemma follows.

(6.3) COROLLARY.

This is now obvious. It should be remarked that Corollary 5.3 is
in general sharper than this; for some double cosets of K may contain
n = | K |2 elements.

(6.4) LEMMA. The finite classes of conjugate elements of G are
boundedly finite; equivalently, there is a number q such that H = H(qK

Proof. We choose a sequence of elements h\, h2, ..., of H such that

hrfH^hi for i<j.

This sequence breaks off after at most n terms. Then
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An arbitrary element heH is of the form h = Um)hu with Um)zH(m) and h(

out of our finite sequence. A conjugate of h is a product of a conjugate
of Um) and a conjugate of ht; thus the number of conjugates of A is at most
the product of m and the number of conjugates of h,-:

The maximum is finite because each \h{
G\ is finite and there are only a

finite number of hf. Thus \hG\ is bounded, and the lemma follows.

§7. The main result.

We are now in a position to characterize the groups of the preceding
seotion completely.

(7.1) TXIEOHEM. A necessary and sufficient condition for the group G
to be the union of permutable boundedly finite stibseis is that G jwssesses a
subgroup of finite index whose derived group is finite; or, equivalently, that G
has a normal series

with G/H and H' finite ami HjH' abelian.

Proof. We first remark that the two stated forms of the condition,
are indeed equivalent: for if G has a subgroup S, say, of finite index and
with finite derived group 8'. then the intersection of the conjugates of S
in G is a normal subgroup H of G, still of finite index in G, and with derived
group H' contained in 8' and thus also finite.

Next we see that if G is the union of permutable boundedly finite
subsets, then the union of its finite classes H is a subgroup of finite index
by Corollary 6.3. Moreover the classes of conjugates ha in H are
boundedly finite because—by Lemma 6.4—even the finite classes h° in
G are boundedly finite. By Theorem 3.1 then the derived group H' is
finite, and the necessity of the condition follows.

Conversely let G have a subgroup H, which we may assume normal,
of finite index n, and with derived group H' finite. Let gv g2, ..., gn be a
set of representatives of G modulo / / . If heH then

This is a boundedly finite set because it is the union of n sets each of bounded
cardinal; in fact

We now define to each element g e G a set Fa containing g as follows. If
g = hgp with h e H and 1 ̂  p < n, we put
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Then |JF,| < n . | f c ° | < n a | H ' | , that is Fg is boundedly finite. Also if
g' = h'gq with h'eH, 1 < ? <w, then

Thus 0 is the union of permutable boundedly finite subsets, the condition
is seen to be sufficient, and the theorem is proved.

§8. Further results.

What r61e does the boundedness of the permutable finite subsets play?
Is it possible to characterize the groups which can be covered by permutable
finite subsets, if these subsets may be arbitrarily large?

I do not know the answer; the following partial results may indioate
some of the difficulties involved.

(8.1) LEMMA. Every finitely generated group is the union of permutable
finite subsets.

Proof. Let gv g2, ...,gn form a finite set of generators of the group 0.
We denote by Fk the set of elements of 0 which can be expressed as words
of length not exceeding A in glt g2, ..., gn. Then FK is clearly finite, and

Also 0 is evidently the union of the Fx, and the lemma follows.
It may be remarked that a finitely generated free group can even be

covered by disjoint permutable finite subsets: one uses the sets of elements
of length exactly, instead of at most, A.

(8.2) LEMMA. Every countable locally finite group is the union of
permutable finite subsets.

Proof. If G is countable and locally finite, then it is the union of an
ascending sequence

of finite groups: 0 = U{°= ̂  Gf.

These O( will themselves serve as the required subsets. If instead we put

then the F{ are also permutable and finite and they cover G; and they are,
moreover, disjoint.

These results indicate that the class of groups which can be covered
by perrautable finite subsets is wide; it may possibly include all countable
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groups. I t does not, however, include all groups; to show this we extend
the argument of §6.

(8.3) THEOREM. Let the infinite group O be the union of a family §
of permutable subsets whose cardinals are (strictly) less than a cardinal n
(strictly) less than that of 0:

(8.31)

' = F'F for all F, F'e$) (8.32)

\F\<n<\G\for all FR$. (8.33)

Then 0 has a subgroup G whose centre is not trivial and whose order exceeds n:

| C | > n .

Proof. In 0 we choose a subset Y of cardinal

To every element ye Y we select—using Zermelo's Axiom—a set Fye§
which contains y. Let x be an arbitrary element of 0; we also seleot a set
Feft containing x. Using the permutability of the Fy and F, we can
find elements fv e Fy and xy e F such that

As \F\ < | y | , there must be two different elements s, t in Y such that
xt = xt. Then

x-U-Hx=f-*f(. (8.4)

Denote by X(s, t, fs, ft) the set of those elements xe 0 which satisfy (8.4),
that is to say, which transform s'11 into fTxfi- Then 0 is the union of
these sets:

G=UX(s,t,ft,ft). (8.5)

Here s and t range over Y and / „ ft over Ft, F( respectively. Thus the
union (8.5) has at most n4 terms. At least one of these terms must have
cardinal greater than n; for otherwise the union would have cardinal
^ nB, but | O\ being infinite and (strictly) greater than n implies | O\ > n6.
Next we observe that these sets X(s, t, fs, f() are again, as in §6, cosets
of certain centralizers in 0. Specifically, if geX(s, t, fB, ft), then

The cardinal of a coset is, of course, that of the subgroup. Hence there
is a centralizer C(s~1t) whose cardinal exceeds n. Suoh a centralizer
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contains the element s~xt^\ in its centre, and will, therefore, serve as
the subgroup C of the theorem. This completes the proof.

It may be remarked that if n is a finite cardinal, the theorem asserts
much less than we know to be true: for we know that 0 has subgroups
of finite index with non-trivial centre.

(8.6) COHOLLARY. Let n be an infinite cardinal and let 0 be a locally
free group of order greater than n. Then 0 cannot be covered by per mutable
subsets of cardinal less than n. In particular no non-denumerable locally
free group is the union of permutable finite subsets.

This follows immediately from Theorem 8.3 when it is observed that
a locally free group with non-trivial centre is denumerable.
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A COUNTABLY GENERATED GROUP WHICH CANNOT BE
COVERED BY FINITE PERMUTABLE SUBSETS

P. M. COHN*.

Let G be a group and consider an expression of G in the form

G= U A, (1)

where 2( is a family of subsets of G such that

(i) AB = BA for A, Be%,

and either (ii) | A \ is bounded for A e 21,
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