
GAUSS’S CIRCLE PROBLEM

UPDATE: These are old course notes which are no longer being revised. For the
most recent version please see my “pre-book” at www.math.uga.edu/∼pete/4400FULL.pdf,
in which this handout appears as Chapter 12.

1. Introduction

We wish to study a very classical problem: how many lattice points lie on or inside
the circle x2 + y2 = r2? Equivalently, for how many pairs (x, y) ∈ Z2 do we have
x2 + y2 ≤ r2? Let L(r) denote the number of such pairs.

Upon gathering a bit of data, it becomes apparent that L(r) grows quadratically

with r, which leads to consideration of L(r)
r2 . Now:

L(10)/102 = 3.17.

L(100)/1002 = 3.1417.

L(1000)/10002 = 3.141549.

L(104)/108 = 3.14159053.

The pattern is pretty clear!

Theorem 1. As r → ∞, we have L(r) ∼ πr2. Explicitly,

lim
r→∞

L(r)

πr2
= 1.

Once stated, this result is quite plausible geometrically: suppose that you have to
tile an enormous circular bathroom with square tiles of side length 1 cm. The total
number of tiles required is going to be very close to the area of the floor in square
centimeters. Indeed, starting somewhere in the middle you can do the vast major-
ity of the job without even worrying about the shape of the floor. Only when you
come within 1 cm of the boundary do you have to worry about pieces of tiles and
so forth. But the number of tiles required to cover the boundary is something like a
constant times the perimeter of the region in centimeters – so something like Cπr –
whereas the number of tiles in the interior is close to πr2. Thus the contribution to
the boundary is neglible: precisely, when divided by r2, b it approaches 0 as r → ∞.

I myself find this heuristic convincing but not quite rigorous. More precisely, I
believe it for a circular region and become more concerned as the boundary of the
region becomes more irregularly shaped, but the heuristic doesn’t single out exactly
what nice properties of the circle are being used. Moreover the “error” bound is
fuzzy: it would be useful to know an explicit value of C.

To be more quantitative about it, we define the error

E(r) = |L(r)− πr2|,
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so that Theorem 1 is equivalent to the statement

lim
r→∞

E(r)

r2
= 0.

The above heuristic suggests that E(r) should be bounded above by a linear func-
tion of r. The following elementary result was proved by Gauss in 1837.

Theorem 2. For all r ≥ 7, E(r) ≤ 10r.

Proof. Let P = (x, y) ∈ Z2 be such that x2 + y2 ≤ r2. To P we associate the
square S(P ) = [x, x+ 1]× [y, y + 1], i.e., the unit square in the plane which has P
as its lower left corner. Note that the diameter of S(P ) – i.e., the greatest distance

between any two points of S(P ) – is
√
2. So, while P lies within the circle of radius

r, S(P ) may not, but it certainly lies within the circle of radius r +
√
2. It follows

that the total area of all the squares S(P ) – which is nothing else than the number

L(r) of lattice points – is at most the area of the circle of radius r +
√
2, i.e.,

L(r) ≤ π(r +
√
2)2 = πr2 + 2

√
2πr + 2.

A similar argument gives a lower bound for L(r). Namely, if (x, y) is any point

with distance from the origin at most r −
√
2, then the entire square (⌊x⌋, ⌊x +

1⌋)× (⌊y⌋, ⌊y + 1⌋) lies within the circle of radius r. Thus the union of all the unit
squares S(P ) attached to lattice points on or inside x2 + y2 = r covers the circle of

radius r −
√
2, giving

L(r) ≥ π(r −
√
2)2 = πr2 − 2

√
2πr + 2.

Thus

E(r) = |L(r)− πr2| ≤ 2π + 2
√
2πr ≤ 7 + 9r ≤ 10r,

the last inequality holding for all r ≥ 7. �

This argument skillfully exploits the geometry of the circle. I would like to present
an alternate argument with a much different emphasis.

The first step is to notice that instead of counting lattice points in an expand-
ing sequence of closed disks, it is equivalent to fix the plane region once and for all
– here, the unit disk D : x2+y2 ≤ 1 – and consider the number of points (x, y) ∈ Q2

with rx, ry ∈ Z. That is, instead of dividing the plane into squares of side length
one, we divide it into squares of side length 1

r . If we now count these “ 1
r -lattice

points” inside D, a moment’s thought shows that this number is precisely L(r).

Now what sort of thing is an area? In calculus we learn that areas are associ-
ated to integrals. Here we wish to consider the area of the unit disk as a double
integral over the square [−1, 1]2. In order to do this, we need to integrate the char-
acteristic function χD of the unit disk: that is, χ(P ) evaluates to 1 if P ∈ D and
χ(P ) = 0 otherwise. Now the division of the square [−1, 1]2 into 4r2 subsquares of
side length 1

r is exactly the sort of sequence of partitions that we need to define a
Riemann sum: that is, the maximum diameter of a subrectangle in the partition

is
√
2
r , which tends to 0 as r → ∞. Therefore if we choose any point P ∗

i,j in each
subsquare, then

Σr :=
1

r2

∑
i,j

χ(P ∗
i,j)
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is a sequence of Riemann sums for χD, and thus

lim
r→∞

Σr =

∫
[−1,1]2

χD = Area(D) = π.

But we observe that Σr is very close to the quantity L(r). Namely, if we take each
sample point to be the lower left corner of corner of the corresponding square, then
r2Σr = L(r) − 2, because every such sample point is a lattice point (which gets
multiplied by 1 iff the point lies inside the unit circle) and the converse is true
except that the points (1, 0) and (0, 1) are not chosen as sample points. So

lim
r→∞

L(r)

r2
= lim

r→∞

L(r)− 2 + 2

r2
= lim

r→∞
Σr + 0 = π.

The above argument is less elementary than Gauss’s and gives a weaker result: no
explicit upper bound on E(r) is obtained. So why have we bothered with it? The
answer lies in the generality of this latter argument. We can replace the circle by
any plane region R ⊂ [−1, 1]2. For any r ∈ R>0, we define the r-dilate of R,

rR = {rP | P ∈ R}.

This is a plane region which is “similar” to R in the usual sense of Euclidean
geometry. Note that if R = D is the closed unit disk then rD = {(x, y) ∈ R2 | x2+
y2 ≤ r2} is the closed disk of radius r. Therefore a direct generalization of the
counting function L(r) is

LR(r) = #{(x, y) ∈ Z2 ∩ rR}.

As above, we can essentially view LR(r)
r2 as a sequence of Riemann sums for

∫
[−1,1]2

χR

– “essentially” because any lattice points with x or y coordinate equal to 1 exactly
will contribute to LR(r) but not to the Riemann sum. But since the total number
of 1

r -squares which touch the top and/or right sides of the square [−1, 1]2 is 4r+1,

this discrepancy goes to 0 when divided by r2. (Another approach is just to assume
that R is contained in the interior (−1, 1)2 of the unit square. It should be clear
that this is no real loss of generality.) We get the following result:

Theorem 3. Let R ⊂ [−1, 1]2 be a planar region. Then

(1) lim
r→∞

LR(r)

r2
= Area(R).

There is a remaining technical issue: what exactly do we mean by a “plane region”?1

Any subset of [−1, 1]2? A Lebesgue measurable subset? Neither of these answers
is correct: take

I = {(x, y) ∈ [−1, 1]2 | x, y ∈ R \Q},
i.e., the subset of the square [−1, 1]2 consisting of points both of whose coordinates
are irrational. Then I is obtained by removing from [−1, 1]2 a set of Lebesgue mea-
sure zero, so I has Lebesgue measure 4 and thus

∫
[−1,1]2

χI exists in the Lebesgue

sense and is equal to 4. On the other hand, I contains no rational points whatso-
ever, so for all r ∈ Z+, LR(r) = 0. Thus, if we restrict r to positive integral values,
then both sides of (1) are well-defined, but they are unequal: 0 ̸= 4.

1The reader without a strong undergraduate background in real analysis can safely ignore this
discussion.
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Looking back at the argument, what is needed is precisely the Riemann inte-
grability of the characteristic function χD of the region D. It is a basic fact that
a bounded function on a bounded domain is Riemann integrable if and only if it
is continuous except on a set of measure zero. The characteristic function χD is
discontinuous precisely along the boundary of D, so the necessary condition on D
is that its boundary have measure zero. (Explicitly, this means that for any ϵ > 0,
there exists an infinite sequence Ri of open rectangles whose union covers D and
such that the sum of the areas of the rectangles is convergent and less than or equal
to ϵ.) In geometric measure theory, such regions are called Jordan measurable,
and this is the condition we need on our “planar region”.

Jordan measurability is a relatively mild condition on a region: for instance any
region bounded by a piecewise smooth curve (a circle, ellipse, polygon. . .) is Jordan
measurable. In fact a large collection of regions with fractal boundaries are Jordan
measurable: for instance Theorem 3 applies with R a copy of the Koch snowflake,
whose boundary is a nowhere differentiable curve.

2. The Question of Better Bounds

2.1. The soft/hard dichotomy. As in the previous section, suppose we have a
plane region R ⊂ [−1, 1]2, and consider the function LR(r) which counts the number
of lattice points in the dilate rR of R. The main qualitative, or soft, result of the
last section was

LR(r) ∼ Area(R)r2.

But if we take a more quantitative, or hard, view, this is only the beginning.
Namely, as before, we define

ER(r) = |LR(r)−Area(R)r2|.

Theorem 3 tells us that limr→∞ ER(r) = 0: this is a fundamentally soft-analytic re-
sult. A hard-analytic result would give an explicit upper bound on ER(r). Theorem
1 does just this, albeit in the special case where R is the closed unit disk:

ER(r) ≤ 10r.

Here are some natural questions:

Question 1. (Gauss’s Circle Problem) In the case of R = D, how much can one
improve on Gauss’s bound ED(r) ≤ 10r? Can we find nontrivial lower bounds?
What is the “truth” about ED(r)?

Question 2. Can one give an explicit upper bound on ER(r) for an arbitrary plane
region R? Could we have, for instance, that Er(R) is always bounded by a linear
function of r? Or by an even smaller power of r?

Question 1 has received much attention over the years. Let’s look again at the data:

r = 10 : L(r) = 317, πr2 ≈ 314, E(r) = 2.8407 . . .

r = 100 : L(r) = 31417, πr2 ≈ 31415.926, E(r) = 1.0734 . . .

r = 1000 : L(r) = 3141549, πr2 ≈ 3141592.653, E(r) = 43.653 . . .

r = 10000 : L(r) = 314159053, πr2 ≈ 314159265.358, E(r) = 212.3589 . . .



GAUSS’S CIRCLE PROBLEM 5

We now attempt to describe E(r) by a power law: i.e., to find a real number α
such that E(r) grows like rα. If E(r) ≈ rα, then logE(r) ≈ α log r, so that to test

for a power law we should consider the ratio P (r) := logE(r)
log r and see whether it

tends towards some constant α as r → ∞. We have at the moment only four values
of r, so this is quite rough, but nevertheless let’s try it:

r = 10 : P (r) = .453 . . . ,

r = 100 : P (r) = .01538 . . . ,

r = 1000 : P (r) = .54667 . . . ,

r = 10000 : P (r) = .5817 . . . .

Whatever is happening is happening quite slowly, but it certainly seems like E(r) ≤
Crα for some α which is safely less than 1.

The first theoretical progress was made in 1904 by a Polish undergraduate, in
competition for a prize essay sponsored by the departments of mathematics and
physics at the University of Warsaw. The student showed that there exists a con-
stant C such that ED(r) ≤ Cr

2
3 . His name was Waclaw Sierpinski, and this was

the beginning of a glorious mathematical career.2

On the other hand, in 1916 G.H. Hardy and E. Landau, independently, proved
that there does not exist a constant C such that E(r) ≤ Cr

1
2 . The conventional

wisdom however says that r
1
2 is very close to the truth: namely, it is believed that

for every real number ϵ > 0, there exists a constant Cϵ such that

(2) E(r) ≤ Cϵr
1
2+ϵ.

Remark: It is not hard to show that this conjecture implies that

lim
r→∞

P (r) = lim
r→∞

logE(r)

log r
=

1

2
.

(Note that the calculations above certainly are not sufficient to suggest this result.
It would therefore be interesting to extend these calculations and see if convergence
to 1

2 becomes more apparent.)

Note that Theorem 1 above tells us we can take ϵ = 1
2 and Cϵ = 10, whereas

Sierpinski showed that we can take ϵ = 1
6 .

3 The best current bound was proven by
Huxley in 1993: he showed that (2) holds for every ϵ > 19/146 = 0.13 . . .. In early
2007 a preprint of Cappell and Shaneson appeared on the arxiv, which claims to
establish (2) for every ϵ > 0. As of this writing (Spring of 2009) the paper has not
been published, nor do I know any expert opinion on its correctness.

As for Question 2, we begin with the following simple but enlightening example.

2Sierpinski (1882-1969) may well be the greatest Polish mathematician of all time, and Poland is

a country with an especially distinguished mathematical tradition. Sierpinski is most remembered
nowadays for the fractal triangle pattern that bears his name. I have encountered his work several
times over the years, and the work on the Gauss Circle Problem is typical of his style: his theorems
have elementary but striking statements and difficult, intricate proofs.

3I don’t know what value he had for C 1
3
or even whether his proof gave an explicit value.
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Example: Let R = [−1, 1]2 be the square of sidelength 2 centered at the origin.
Then Area(R) = 4, so that for any r ∈ R+ we have Area(rR) = 4r2. On the other
hand, for r ∈ Z+, we can determine LR(r), the number of lattice points in [−r, r]2

exactly: there are 2r+1 possible values for the x coordinate and the same number
of possible values for the y-coordinate, so that Lr(R) = (2r + 1)2 = 4r2 + 4r + 1.
In this case we have

ER(r) = |Lr(R)−Area(rR)| = 4r + 1,

so that the true error is a linear function of r. This makes us appreciate Sierpinski’s
result more: to get a bound of ED(r) ≤ Crα for some α < 1 one does need to use
properties specific to the circle: in the roughest possible terms, there cannot be as
many lattice points on the boundary of a curved region as on a straight line segment.

More formally, in his 1919 thesis van der Corput proved the following result:

Theorem 4. Let R ⊂ R2 be a bounded planar region whose boundary is C∞-smooth
and with nowhere vanishing curvature. Then there exists a constant C (depending
on R) such that for all sufficiently large r ∈ R>0,

|LR(r)−Area(R)r2| ≤ Cr
2
3 .

It is also known that this result is best possible – there are examples of regions with
very nice boundaries in which the power 2

3 cannot be lowered. (Thus again, the
circle is very special!) There are many results which study how the behavior of the
error term depends on the assumptions one makes about the boundary of R. To go
to the other extreme, a 1997 result of L. Colzani shows that for any bounded region
R whose boundary has fractal dimension at most α (this has a technical meaning
particular to Colzani’s paper; we do not give an explicit definition here), then

|Lr(R)−Area(R)r2| ≤ Cr2−α.

As far as I know, it is an open problem to give corresponding lower bounds: for
instance, to construct, for any ϵ > 0, a region R such that
|Lr(R)−Area(R)r2| > r2−ϵ for infinitely many positive integers r. (I myself do not
know how to construct such a region for any ϵ < 1.)

3. Connections to average values

The reader may well be wondering why the Gauss Circle Problem counts as num-
ber theory. On the one hand, as we will see later on, number theory is very much
concerned with counting lattice points in certain planar and spatial reasons. But
more specifically, Gauss’ Circle Problem has to do with the average value of an
arithmetical function.

Namely, define r2(n) to be the function which counts the number of integers (x, y)
such that n = x2 + y2. The Full Two Squares Theorem says that r2(n) > 0 iff
2 | ordp(n) for every p ≡ 3 (mod 4). As you have seen in the homework, in prac-
tice this condition behaves quite erratically. Certainly the function r2(n) does not
have any nice limiting behavior at n → ∞: on the one hand it is 0 infinitely often,
and on the other hand it assumes arbitrarily large values.
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Much more regularity is displayed by the function r2(n) “on average.” Namely,
for any function f : Z+ → C, we define a new function

fave : n 7→ 1

n
(f(1) + . . .+ f(n)) .

As its name suggests, fave(n) is the average of the first n values of f .

It is also convenient to work also with the summatory function F (n) :=
∑n

k=1 f(k).
The relation between them is simple:

F (n) = n · fave(n).
Now we claim that we already know the asymptotic behavior of the average value
for r2(n).

Theorem 5. For f(n) = r2(n), F (n) ∼ πn and fave(n) ∼ π.

Proof. Indeed, F (n) = r2(1)+ . . .+ r2(n) counts the number of lattice points on or
inside the circle x2 + y2 ≤ n, exceping the origin. Therefore

F (n) = LD(
√
n)− 1 ∼ π(

√
n)2 − 1 ∼ πn.

�
In this context, the Gauss Circle Problem is equivalent to studying the error between
F (n) and πn. Studying errors in asymptotic expansions for arithmetic functions is
one of the core topics of analytic number theory.

We remark with amusement that the average value of r2(n) is asymptotically con-
stant and equal to the irrational number π: obviously there is no n for which
r2(n) = π exactly!

In fact there is a phenomenon here that we should take seriously. A natural ques-
tion is how often is r2(n) = 0? We know that r2(n) = 0 for all n = 4k + 3, so it is
equal to zero at least 1

4 of the time. But the average value computation allows us
to do better. Suppose that there exists a number 0 < α ≤ 1 such that r2(n) = 0 at
most α proportion of the time. Then r2(n) < 0 at least 1 − α of the time, so the
average value of r2(n) is at least 8(1− α). Then π ≥ 8(1− α), or

α ≥ 1− π/8 ≈ .607.

That is, we’ve shown that r2(n) = 0 more than 60% of the time.4

In fact this only hints at the truth. In reality, r2(n) is equal to zero “with prob-
ability one”. In other words, if we pick a large number N and choose at random an
elment 1 ≤ n ≤ N , then the probability that n is a sum of two squares approaches
0 as N → ∞. This exposes one of the weaknesses of the arithmetic mean (one
that those who compose and grade exams become well aware of): without further
assumptions it is unwarranted to assume that the mean value is a “typical” value
in any reasonable sense. To better capture the notion of typicality one can import
further statistical methods and study the normal order of an arithmetic function.
With regret, we shall have to pass this concept over entirely as being too delicate

4This argument was not intended to be completely rigorous, and it isn’t. What it really shows
is that it is not the case that r2(n) = 0 on a set of density at least α = 1− π/8 (the density of a

subset of integers is defined in [Primes: Infinitude, Density and Substance]). But this is morally
the right conclusion: see below.
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for our course. See for instance G. Tenenbaum, Introduction to analytic and prob-
abilistic number theory, for an excellent treatment.

The lattice point counting argument generalizes straightforwardly (but fruitfully)
to higher-dimensional Euclidean space RN . For instance, the analogous argument
involving lattice points on or inside the sphere of radius r in R3 gives:

Theorem 6. The number R3(r) of integer solutions (x, y, z) to x2 + y2 + z2 ≤ r2

is asymptotic to 4
3πr

3, with error being bounded by a constant times r2.

Corollary 7. The average value of the function r3(n), which counts representations
of n by sums of three integer squares, is asymptotic to 4

3π
√
n.

We can similarly compute nice asymptotic expressions for the average value of rk(n)
– the number of representations of n as a sum of k squares – for any k, provided
only we know a formula for the volume of the unit ball in Rk. We leave it to the
reader to derive (or look up!) such formulas and thereby compute an asymptotic
for the average value of r4(n).


