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Abstract

We characterize the set of positive integers m having the property that every group of order m is
nilpotent of class at most c, where c is a fixed positive integer or infinity. This generalizes and relates
results of Dickson and Pazderski. The special case where c = 1 (all groups of order m are abelian)
is used to construct a substantial class of finite Schreier systems S in free groups such that S is not a
right transversal for any normal subgroup.
© 2005 Elsevier Inc. All rights reserved.

1. Introduction and main result

Let N be the set of positive integers, and define a multiplicative function ψ : N → N via

ψ(1) = 1

ψ(pν) = (pν − 1)
(
pν−1 − 1

) · · · (p − 1) (p prime, ν � 1).
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Denote by (a, b) the greatest common divisor of integers a, b. The following result, which
generalizes and relates theorems of Dickson and Pazderski, appears to have escaped notice.

Theorem 1. Fix c ∈ N ∪ {∞}, and let m be a positive integer. Then the following two
assertions are equivalent:

(a) m satisfies (m,ψ(m)) = 1 and is (c + 2)-power free.
(b) Every group of order m is nilpotent of class at most c.

If m > 1, then condition (a) can be rephrased in terms of the prime decomposition
m = p

ν1
1 p

ν2
2 · · ·pνr

r of m as follows:

(i) νi � c + 1, 1 � i � r,

(ii) pi � (p
νj

j − 1)(p
νj −1
j − 1) · · · (pj − 1), 1 � i, j � r.

Corollary 1. (Dickson [4]) An integer m = p
ν1
1 p

ν2
2 · · ·pνr

r > 1 satisfies νi � 2 and

(pi,p
νj

j − 1) = 1 for 1 � i � r and 1 � i, j � r , respectively, if and only if every group of
order m is abelian.

This is the case c = 1 of Theorem 1, while setting c = ∞ gives the following.

Corollary 2. (Pazderski [11]) A positive integer m satisfies (m,ψ(m)) = 1 if and only if
every group of order m is nilpotent.

Corollary 1 was first established in [4] in connection with certain axiomatic investi-
gations; it was rediscovered by Rédei as an application of his classification of minimal
non-abelian groups, cf. [12, Satz 10]. Note that, writing the numbers m occurring in Corol-
lary 1 as

m = p1 · · ·paq
2
1 · · ·q2

b

with distinct primes p1, . . . , pa, q1, . . . , qb coprime to

(p1 − 1) · · · (pa − 1)
(
q2

1 − 1
) · · · (q2

b − 1
)
,

Dirichlet’s theorem on primes in arithmetic progressions1 ensures existence of infinitely
many numbers m with the above property for each pair (a, b) of nonnegative integers.

Corollary 2, which is [11, Satz 1], in particular implies another result of Rédei [12,
Satz 9] to the effect that a group whose Sylow subgroups are abelian and whose order n

satisfies (n,ψ(n)) = 1 is itself abelian.

1 Cf. [14, Chapter II.8] for an up to date discussion of the prime number theorem for arithmetic progressions,
as well as [2, Chapter X] for a leisurely exposition of a version of Dirichlet’s original approach, integrating ideas
of Landau and Siegel.
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The short proof of Theorem 1 given below makes use of Philip Hall’s bound on the
automorphism group of a finite p-group as well as Rédei’s classification of minimal non-
nilpotent groups in [13]. The paper concludes with an application of Corollary 1 to the
theory of Schreier systems.

2. Proof of Theorem 1

(a) ⇒ (b) We use induction on m, our claim being true for m = 1. Let

m = p
ν1
1 p

ν2
2 · · ·pνr

r > 1

be an integer of the form described in (a), suppose that our claim holds for all integers m′,
1 < m′ < m, satisfying (i) and (ii), and assume, by way of contradiction, that there exists a
group G of order m which is not nilpotent of class at most c; in particular, G is not cyclic.
In what follows, we take a closer look at this counterexample G.

Clearly, the set of numbers in N \ {1} satisfying (i) and (ii) is closed under taking proper
divisors; hence, every proper subgroup of G is nilpotent of class at most c by the inductive
hypothesis.

Moreover, r = 1 would imply |G| = m = p
ν1
1 with 2 � ν1 � c + 1, so G would be

nilpotent of class2

c(G) � max{1, ν1 − 1} = ν1 − 1 � c.

As this contradicts our assumption on G, we must have r > 1.
Therefore, each Sylow subgroup of G is proper, hence nilpotent of class � c, and G is

not nilpotent; for, if it were, then, by a result of Burnside,3 G would be the direct product
of its Sylow subgroups P1,P2, . . . ,Pr , and the class of G would satisfy4

c(G) = max
1�i�r

c(Pi) � c,

again contradicting our assumption on G.
We conclude from the previous discussion that G is minimal non-nilpotent (a non-

nilpotent group all of whose proper subgroups are nilpotent). These groups have been
investigated by Rédei in [13]; cf. also [7, Chapter III, Satz 5.2]. It follows in particular
from Rédei’s results that r = 2, m = pλqμ with primes p �= q , say, and that one of the
Sylow subgroups (the Sylow p-subgroup P , say) is normal in G.

Fix a Sylow q-subgroup Q0 of G. Then Q0 is a complement to P in G; that is, G is a
split extension of P by Q0. Think of G as a semi-direct product

G ∼= P �Θ Q0,

2 Cf. [8, Lemma 1.2.2] or [9, Proposition 2.1.4].
3 Cf. [1, Chapter IX, §130] or [7, Chapter III.2, Hauptsatz 2.3].
4 Cf. [3, Chapter A, Theorem 8.2(b)].
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where Θ :Q0 → Aut(P ) is the homomorphism describing the conjugation action of Q0
on P . Our assumptions on m imply that

q �
(
pλ − 1

)(
pλ−1 − 1

) · · · (p − 1). (1)

Let |P/Φ(P )| = pd . Then, by a famous result of P . Hall, the order of Aut(P ) divides

pd(λ−d)
(
pd − 1

)(
pd − p

) · · · (pd − pd−1); (2)

cf. [5, Section 1.3] or [7, Chapter III, Satz 3.19]. Rewriting (2) as

p
(d

2 )+d(λ−d)(
pd − 1

)(
pd−1 − 1

) · · · (p − 1),

and noting that d � λ, we see that (1) ensures in fact that

q �
∣∣Aut(P )

∣∣.

This in turn forces Θ to be the trivial homomorphism, implying that G ∼= P ×Q0 is nilpo-
tent; the desired contradiction.

(b) ⇒ (a) In order to establish the converse, we need a supply of p-groups of maximal
class, that is p-groups of order pλ and class λ−1 with λ � 2. This is provided, for example,
by the following explicit construction.

Let p be a prime, n � 2 an integer, and let Op be the ring of integers in the pth cy-
clotomic field Q(ζ ), where ζ is a pth root of unity. Let pp = (ζ − 1), the maximal ideal
of Op , and define E(p,n) to be the split extension of Op/pn−1

p by a cyclic group C = 〈x〉
of order p, with x acting on Op/pn−1

p as multiplication by ζ . Then E(p,n) is a group of
order pn and class precisely n − 1. In particular, E(2, n) ∼= D2n is the dihedral group of
order 2n; cf. [8, Section 3.1] or [9, Section 2.2].

Suppose first that m = p
ν1
1 p

ν2
2 · · ·pνr

r > 1 does not satisfy condition (i); that is, one of
the exponents (to fix ideas, say ν1) is strictly larger than c + 1. Then

G = E(p1, ν1) × C
p

ν2
2

× · · · × Cp
νr
r

is a group of order m, which is nilpotent of class

c(G) = max{1, ν1 − 1} = ν1 − 1 > c.

In order to treat the case where m violates condition (ii), consider the group R(p, q;μ)

generated by elements A,B0,B1, . . . ,Bν−1 subject to the relations

Apμ = B
q

0 = B
q

1 = · · · = B
q

ν−1 = 1,

BiBj = BjBi (0 � i, j � ν − 1),

A−1BiA = Bi+1 (0 � i � ν − 2),

A−1Bν−1A = B
c0B

c1 · · ·Bcν−1,
0 1 ν−1
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where p and q are primes, μ is a positive integer, ν is the exponent of q mod p, and

xν − cν−1x
ν−1 − · · · − c1x − c0

is an irreducible factor of xp−1
x−1 mod q . The groups R(p, q;μ) are precisely those minimal

non-abelian groups which are not of prime power order, as was shown in [12]. For our
present purposes we only note that R(p, q;μ) has order pμqν , and is not nilpotent (its
Sylow p-subgroups are self-normalizing); cf. [12, Satz 8].

Now suppose that m as above does not satisfy condition (ii); that is, there exist distinct
prime divisors pi,pj of m such that

pi | ψ(
p

νj

j

) = (
p

νj

j − 1
)(

p
νj −1
j − 1

) · · · (pj − 1).

Then the exponent ν of pj mod pi satisfies ν � νj , and we can form the group

G = R(pi,pj ;1) × C
p

νi−1
i

× C
p

νj −ν

j

×
∏

1�ρ�r
ρ �=i,j

C
p

νρ
ρ

,

which is of order m, but not nilpotent.

3. An application to Schreier systems

Let F be a free group with basis X. Recall that a set S ⊆ F has the Schreier property
with respect to X, if S contains the identity element 1 and is closed under forming initial
segments; that is,

1 �= σ = x
ε1
i1

x
ε2
i2

· · ·xεr

ir
∈ S ⇒ σρ = x

ε1
i1

x
ε2
i2

· · ·xερ

iρ
∈ S for all 1 � ρ � r,

where ε1, . . . , εr ∈ {1,−1}, xi1, . . . , xir ∈ X, and σ,σρ are written as reduced words. A set
S ⊆ F is a Schreier system of F , if S has the Schreier property with respect to some basis
of F . A subgroup U � F is associated with a Schreier system S, if S is a right transversal
for U in F .

Given a concrete Schreier system S in a free group F together with a basis X for
which S has the Schreier property, it is possible to parametrize (and, if countable, to ex-
plicitly enumerate) the collection of subgroups of F which are associated with S; cf. [6]
or [10]. On the other hand, it is quite hard to decide in general whether or not S has asso-
ciated normal or maximal subgroups. In this direction, Corollary 1 is easily seen to imply
for instance the following.

Proposition 1. Let F be a free group, and let S ⊆ F be a finite Schreier system of F .
Suppose that
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(i) S contains elements σ1, σ2 with σ1 �= σ2 having representations as (not necessarily
reduced words) wX(σ1), wX(σ2) with respect to some basis X of F , which can be
transformed into each other by permuting the elements of X ∪ X−1, and that

(ii) the length |S| of S is cube-free and satisfies (|S|,ψ(|S|)) = 1.

Then S does not have an associated normal subgroup.

As an illustration, let F = F2 be the free group freely generated by x and y, and let
S be the Schreier system with respect to {x, y} generated by the words σ1 = x2yx−1yx,
σ2 = xy2x, and σ3 = y2xyx−1; that is,

S = {
1, x, y, x2, y2, xy, x2y, xy2, y2x, x2yx−1, xy2x, y2xy, x2yx−1y, y2xyx−1,

x2yx−1yx
}
,

a set of 15 elements. Then one can show that S is associated with exactly

7! · 8! = 203212800

subgroups in F ; but, according to Proposition 1, none of these subgroups is normal.
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