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THE CONGRUENCE (p—1/2)!=+1 (mod p)
L. J. MorpELL, University of Colorado and St. John’s College, Cambridge, England

Let p be an odd prime. Then Wilson’s classical result states that (p—1)!41
=0 (mod p). On noting that p —r=—r (mod p), this gives, when p=1 (mod 4),

as is well known,
p—N\\*
{(——2———) !} + 1 =0 (mod 7).

However, when p=3 (mod 4), we have
— 1\ ) 2

W (=) 1= - (moap),

Hence

where @ =0 or 1. In view of the history of the question, it may perhaps be worth
while to state and prove the

THEOREM.* If p is a prime =3 (mod 4) and p >3, then in (1)
©) a=3[1 4+ k(—p)] (mod 2)
where h(—p) is the class number of the quadratic field k{~/(—p)}.

This result does not appear to have been explicitly stated or at any rate does
not seem well known. It is, however, implicit in the literature, and it is now a
trivial deduction from results long known, e.g., an old one of Dirichlet’s (1828)
given here as (3). In fact, Jacobi (1832) conjectured a result equivalent to (2)

at a time when the class-number formula was not known. For the history of the
subject, see Dickson’s History of the Theory of Numbers, Vol. 1, page 275.

Wtite E=[4(p—1)]! Denote by 7, s, - - - the R quadratic residues of p
less than p, and by #y, ns, - - - the N quadratic nonresidues less than 3p. Then
the quadratic residues 7/ ,7{, - - - greater than }p are given by p—n1, p —ns, * -
since =3 (mod 4). Then
@) E=rra--mmg-+-=(=D)Nrpy--criry -+ =(—1)"modp if p > 3,

* Professor Chowla informs me that he found the result about the same time that I did,
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since (._ I)NE Eg2+4+' e+ (p—1) =g§(112—1) = (g%(ﬂ"‘l)) o+ = 1 (mod p)’ where g iS a
primitive root of p.
Now R+N=3%(p—1), and it is known* from the class-number formula that

d=11if p =17 (mod 8),

6§ =31if p=3 (mod 8), p > 3.

Hence 2N=3(p—1) —0h(—p). Then if p=7 (mod 8), 2N=3—h(—p) (mod 4),
and if p= 3(mod 8), 2N=1—3k(—p) (mod 4). The firstis N=%1[—1—h(—p)]

(mod 2) and the second is N=%[14%(—p)] (mod 2). These are both included
in N=1[1+ka(—p)] (mod 2).

* L. Holzer, Zahlentheorie 1I, 1959, Leipzig, pp. 91-93, and H. Hasse, Vorlesungen iiber
Zahlentheorie, 1950, Berlin, pp. 386-390.

R— N = sh(—p), {

A GENERALIZED TURAN EXPRESSION FOR THE BESSEL FUNCTIONS
WALFED A. AL-SALAM, University of Baghdad, Iraq

1. In a recent paper Toscano [3] has proved the formula
m 2m
5 =0(,") e Huo)
r=—m m —
. 2
_ 2m)\(n — m)! z": <] - 1) H,_;(x)

m! SZ\m =1/ —j)

where H,(x) is the Hermite polynomial of order #. The expression in the left
hand side may be regarded as a generalization of the Tur4n expression H2(x)
—Hpy1(x) Hoy(x). Indeed (1.1) reduces to the Demir-Hsii formula [2] when
m=1. Other proofs of (1.1) as well as extensions to the Laguerre and ultra-
spherical polynomials and other hypergeometric functions are given in [1].

In the present note we obtain a similar formula involving the Bessel func-
tions. We prove

(1.1)

(m = n)

(m) ol 2m

0@ = 5 (")t

1.2 "
(1.2) 4m(2m) ! d 2
=————— >t m+ 20k + Dpa(n + & — Vs imp (%)
22l (m — 1)! 1o
where (@)n=a(a+1)(@+2) - - - (a+m—1), (@)o=1. For definition of the Bessel
funcfion J,(x) see [4]. This formula reduces, for m=1, to Lommel’s formula

[4, p. 152]

(1.3) 30 — Te@Taa(®)} = 16°00(8) = 3 (04 1+ 20 11y,

k=0

It is also a positive representation as sum of squares.
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