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countable or locally compact space must be a k-space in this sense (compare
[4], p. 231, Theorem 13); a space in which each compact subset is locally com-
pact is a k-space if and only if it is a quotient of a locally compact space (com-
pare [1], Theorem 11.9.4); a quotient of any k-space is a k-space.

10. Specialize when necessary. In some situations 7> may be needed or con-
venient. In such cases one specializes; but this is no reason to use T as a blanket
assumption from the beginning, any more than prospective use of the Cech
compactification justifies dealing only with completely regular spaces from the
beginning.

11. Examples. Some examples of useful non-Hausdorff topologies are: the
topology induced by a non-separating family of seminorms on a vector space,
the one point compactification (see [9]), the Zariski topology used by algebraic
geometers.
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ON DIVIDING A SQUARE INTO TRIANGLES

PauL Monsky, Brandeis University and Kyoto University

Sometime ago in this MONTHLY, Fred Richman and John Thomas [1] asked
the following puzzling question:

Can a square S be divided into an odd number of nonoverlapping triangles T,
all of the same area?

In [2], the answer was shown to be no, provided S= [0, 1]X [0, 1] and the
coordinates of the vertices of the T'; are rational numbers with odd denominators.
In this note we shall show that the answer is always no. In fact we shall prove
the following more general result.
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Suppose that S= [0, 1]1X [0, 1] is divided into m nonoverlapping triangles Ts;
let a;=area T; Then there is a polynomial f with integer co-efficients such that
flay, + * -, am)=1/2.

There are two parts to the proof: one combinatorial, the other valuation
theoretic. The combinatorial argument generalizes an argument made in [2].
By itself it may be made to prove the desired result when the vertices of the T
all have rational coordinates. But to handle the case of arbitrary vertices, it
becomes necessary to argue with “congruences mod 2 in the reals.” This is where
valuation theory comes in; we make use of absolute values on the reals extending
the 2-adic absolute value of the rationals. In the course of the proof the the-
orem of the extension of valuations plays a remarkable and unexpected role.

We begin with the combinatorial argument. Let R be a region in the plane
bounded by a simple closed polygon. Suppose R is divided into # nonoverlapping
triangles T;. By a vertex we shall mean a vertex of some T;, by a face a face of
some T; or of R. Two vertices are called adjacent if they are in the same face and
the line segment joining them contains no other vertices. A basic segment is a
line segment joining two adjacent vertices. Note that the boundary of each T;
is a union of nonoverlapping basic segments; the same is true of the boundary
of R. Suppose now that the vertices are divided into three disjoint sets, @, ®,
and €. We shall say that a face or a basic segment is of type @Q® if it has one end-
point in @ and one in &.

LeMmMA. Suppose that no face contains vertices of all three types and that R
has an odd number of faces of type Q®B. Then some T; has vertices of all three types.

To prove the lemma note the following. A face of type @® contains an odd
number of basic segments of type @®, while a face not of type @® contains an
even number of basic segments of type @®. (Use the fact that a face contains
vertices of at most two types to prove this.) Suppose that no T; has vertices of
all three types. Then each T; has either 0 or 2 faces of type @®. Hence the
boundary of T;contains an even number of basic segments of type @®. Similarly,
the boundary of R contains an odd number of basic segments of type G@®. But
this is impossible; in an obvious sense the boundary of R is congruent to the
sum of the boundaries of the T; modulo 2.

We now come to the valuation theoretic part of the proof and need to intro-
duce some further terminology. Let K be a field. By an ultranorm (sometimes
called a non-Archimidean absolute value) on K we mean a function ” “ from K
to the nonnegative real numbers satisfying:

(1) [[esl] = sl {15l
2) = + il < max(a], 131D
®3) ll =02 =0.
We can easily prove that |[1]|=||—1||=1, and that equality holds in

equation (2) unless ||«|| =]|]|.
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As an example let K be the field of rational numbers. Any x>0 in K may be
written as 2¢(r/s), where r and s are odd integers and ¢ is an integer. Set ”x”
=(1/2)*. In this way we get an ultranorm on the rationals in which H 2“ <1. This
ultranorm is known as the 2-adic absolute value. The more general fact that we
shall need is this: There is an uliranorm on the field of real numbers (or more
generally on any extension of the rational numbers) such that ||2|| <1. This follows
from the theorem of the extension of valuations whose proof may be found in
many places; for example see [3].

Granting the above facts we may argue as follows. Choose an ultranorm on
the reals for which ||2|| <1. Divide the points of the plane into three sets in the
following way:

(1) (x,9) isina if|lsf| <1 and ||| <1,
) (%) isin® iff« 21 and [[af = 5],
3) (r,9) isine iffy| =1 and ] > [la.

Suppose now that P=(x, y) and P’'=(x’, ¥') are points and that P’ is a
translate of P by a point of type @; in other words, that both ||’ —x|| <1 and
lly’ =9l <1. Then P and P’ have the same type. If P is of type @ this is obvious.
If P is of type ®, then ||+’|| =||x|| 21, while ||y’|| £ max(1, ||y]]) =||«|| =]]«’||; so
P’ is of type ® too. If P is of type @ the argument is similar.

It is now easy to see that a line L cannot contain points of all three types.
For by translating a point of type @ on L to the origin we may assume that
(0, 0) is on L. Let (x, ¥) and (x’, ¥') be points of L of types & and €. Then
ll| Z[|3Il, |9l >|#’]l, and ||=y’|| >||%"3||. This is absurd as xy’ =x"y. Note also
that if a triangle T has vertices of all three types then ||area T|| > 1. For we may
assume that the vertex of T of type @ is (0, 0). Let (x, ¥) and (x’, y’) be the
vertices of types ® and @. Then area T, up to sign, is equal to %(xy’ —x'y). But
lley’[[ > |5 So ||area T{| =[|3]| [lxyl| =[] - ll[| -l 7]] > 1.

Suppose now that S= [0, 1]X [0, 1] is divided into # nonoverlapping tri-
angles T; each of area 1/m. Obviously S has exactly one face of type G®; by
the lemma, some T has vertices of all three types. By the paragraph above,
||larea T4|| =||1/m||>1. So m is even. (Note that if all vertices have rational
coordinates, then we can argue directly with the 2-adic absolute value of the
rationals, and avoid the theorem of the extension of valuations; this is essen-
tially what was done in [2].)

Finally, we indicate the proof of the more general theorem mentioned at
the beginning of this paper. Let A be the ring Z[ai, - - - , an]. If 2 generates the
unit ideal in A, then 1=2f(as, - - -, an) and we are done. If 2A5£ A, then 2 is
contained in a height 1 prime ideal P of A. The integral closure of the local ring
of P on A is a discrete valuation ring. This ring gives rise to an ultranorm on the
quotient field of A such that ||ai|| £1, while ||2]| <1. Extend this ultranorm to
the reals, and use it to subdivide the plane into points of three types as above.
Then, as above, some T has vertices of all three types, and ||ai|| =||area T3] >1,
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a contradiction. (By using valuation rings instead of ultranorms we could sim-
plify the proof a little.)

The above proof is not so wildly nonconstructive as it first appears. For the
entire argument is carried out in the field generated by the coordinates of the
vertices. So it is only necessary to extend our ultranorm from Q to this finitely
generated field, not to the entire field of real numbers.
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SYLVESTER’S PROBLEM ON COLLINEAR POINTS AND A RELATIVE

G. D. CHARERIAN, University of California, Davis

In 1893, J. J. Sylvester posed the following question in the Educational
Times: Given a finite set of points in the plane, not all lying on a straight line, must
there be a line containing exactly two of the points?

This question was not settled until after 1930, when T. Gallai proved the
affirmative answer. Many proofs have been given since that time, some sparked
by a restatement of the problem by P. Erdés [3] in this MonTtHLY. V. C.
Williams [9] recently gave a proof in this MoNTHLY. Extensive references to the
literature which has grown up around the problem can be found in [2], [4],
and [5].

If we settle upon the projective plane as an appropriate setting and state the
problem in its dual form, we obtain: Givern n lines in the projective plane, not all
concurrent, must there be a point lying on exactly two of the lines?

Thinking of the projective plane as a sphere with antipodes identified, and
then immediately observing that the identification contributes nothing to the
problem, we obtain the following equivalent formulation of Sylvester’s problem:
Given n great circles on a sphere, not all concurrent, must there be a point lying on
exactly two of the great circles?

In his exquisite paper on zonohedra, H. S. M. Coxeter [1] observes in passing
that in this context the positive answer to Sylvester’s question follows imme-
diately from the fact that there exists no map on the sphere (each of whose
countries has at least 3 sides) such that all vertices have valence 6 or more.
For a set of # great circles such that no point lies on exactly two circles, would
form a map on the sphere such that each vertex has valence at least 6.

Here is a short proof of this fact about maps. Suppose we are given a map
on the sphere such that each face (country) has 3 or more sides. Suppose each
vertex had valence at least 6 (the valence of a vertex is the number of edges
emanating from that vertex). If ¥ denotes the total number of vertices, E the
number of edges, and F the number of faces, then we have Euler’s relation,

1) V—E+F=2
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