
SOLUTION TO MATH 8410, EXERCISE 2.4

PETE L. CLARK

Prerequisites: This exercise uses Exercise 2.2 and Exercise 2.3.

Statement: Let (K, | |) be a non-Archimedean normed field, and let L/K be
a purely transcendental extension. Show that | | extends to a norm on L.

Background: We will review the definition of a purely transcendental extension.
More significantly, we will prove the result by transfinite induction, so let’s begin
with a refresher1 on that.

Recall that a well-ordered set is a set S endowed with a total ordering rela-
tion ≤ (a reflexive, anti-symmetric, transitive relation such that for all x, y ∈ S, at
least one of x ≤ y and y ≤ x holds) which has the additional property that every
nonempty subset T of S has a least element. For instance, the natural numbers
N with their usual ordering are a well-ordered set, as are N ∪ {∞}, the natural
numbers with an additional element ∞ such that x < ∞ for all x ∈ N. In fact,
for any well-ordered set S, it turns out to be useful to define the well-ordered set
S+ = S∪{∞} in the same way. (In particular, S+ has a maximal element, whereas
S need not.)

The empty set is well-ordered. Any nonempty well-ordered set has a least ele-
ment, which we might as well call 0.2 If S is well-ordered, and x is any element of
S except possibly the maximal element (if any), then the set {y ∈ S | x < y} is
nonempty hence has a least element, the successor of x. In the natural numbers,
the successor of n is nothing else than n+1, so we may as well denote the successor
of x by x + 1 in the general case. An element x is called a successor element if
x = y +1 for some y, i.e., if x is the successor of some other element. An element x
which is not a successor element is called a limit element. Note that technically
0 is a limit element, but not such a great example of one. A better example is
the element ∞ in N+: it has the property that for any x < ∞, the interval (x,∞)
contains infinitely many elements, which is characteristic of nonzero limit elements.

Principle of Transfinite Induction: Let (S,≤) be a nonempty well-ordered set. Let
{P (s)}s∈S be a family of statements indexed by the elements of S. Suppose that
both of the following hold:

(PTI1) P (0) is true.
(PTI2) For all s ∈ S, (if P (s′) holds for all s′ < s, then P (s) holds) is true.
Then P (s) is true for all s ∈ S.

1Suitable for those who have never seen it before!
2This is an allusion to ordinal arithmetic, which is in no way necessary for us here.
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Note that this is a direct generalization of the principle of mathematical induc-
tion, which we recover by taking S = N. The proof is the same in the general case,
the method of minimal counterexample: let T be the set of all elements s of
S for which P (s) is false. We wish to show that T = ∅, so assume not. Since T is a
nonempty subset of a well-ordered set, it has a least element, say t. By minimality
of t, P (t′) is true for all t′ < t. So either t = 0, which contradicts (PTI1), or t > 0,
which contradicts (PTI2).

Remark 1: Note that there is absolutely no set-theoretic funny business here: in
particular, we are not (yet) assuming the Axiom of Choice or anything like that.

Remark 2: If in fact we apply the condition (PTI2) with s = 0, we see that we
must assume nothing and deduce P (0), i.e., we recover (PTI1). However it seems
less confusing to state PTI in this slightly redundant way.

Remark 3: In practice to apply PTI one considers not two but three separate
cases of (PTI2): s = 0, s a successor element, and s a limit element. This is indeed
what we are about to do.

Purely transcendental extensions: A purely transcendental extension of a field k is
a field extension obtained by adjoining an arbitrary indexed set {ti}i∈I of indeter-
minates. Precisely, one first defines the polynomial ring k[{ti}i∈I ] (see e.g. X.X
for a rigorous definition of a polynomial ring in an arbitrary set of indeterminates)
and then forms the field of fractions, a rational function field in the indetermiates
{ti}i∈I . It may be worth emphasizing that any given rational function may in-
volve only finitely many indeterminates, so that a purely transcendental extension
is simply the direct limit of its subextensions k({ti}i∈J) as J ranges over the finite
subsets of I.

Solution: Let T = {ti}i∈S be a set of indeterminates indexed by any nonempty
set I. Choose a well-ordering ≤ on S.3 For i ∈ S+, define Ki = k({ti′}i′<i). Thus
if the elements of S+ begin 0, 1, . . . , n, . . ., then K0 = k, K1 = k(t0), . . . Kn =
k(t0, . . . , tn−1), and so forth; finally K∞ = k(T ). Now, for i ∈ S+, let P (i) be the
following statement: for every i′ ≤ i, there exists a norm | |i′ on Ki′ extending | |
on k, and this family of norms is compatible in the sense that for all i′ < i′′ ≤ i, the
natural inclusion Ki′ ↪→ Ki′′ is a homomorphism of normed fields. We will prove
by transfinite induction that P (i) holds for all i ∈ S+; applying this with i = ∞
gives the result we want.

Case 1: i = 0. P (0) says that there exists a norm on k which is compatible
with the given norm on k. True!

Case 2: Suppose i = i′ + 1 is a successor element. Then Ki = Ki′(ti′). By
our induction hypothesis, we are assuming that we have a norm | |i′ on Ki′ which is
compatible with all the previous norms. So we can just endow Ki with the Gauss

3That each set can be well-ordered follows from, and also implies, the Axiom of Choice. This
is where the set-theoretic funny business comes in!
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norm of Exercise 2.3.

Case 3: Suppose that i is a limit element. Then Ki =
⋃

i′<i Ki′ (this is proabably
the step you want to think about the most if you have not seen a proof by transfi-
nite induction before; every PTI I have seen uses this kind of argument for the case
of limit elements) and we already have a compatible family of norms on each Ki′ .
It follows from Exercise 2.2 that there is a unique norm on Ki compatible with the
norms on all the subfields Ki′ .

Applying the principle of transfinite induction, we’re finished.

Note that the norm we end up constructing on k(T ) is nothing close to unique.
Well-ordering S corresponds to making a bewilderingly complicated set of choices,
and moreover in Case 2 we chose to extend a norm from a field L to L(t) by the
Gauss norm, rather than, for instance, the image of the Gauss norm under a linear
fractional transformation M ∈ PGL2(L) ⊂ Aut(L(t)).


