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1. Introduction. A function <j>{z) defined for all complex numbers z so
that for every z1 and z2

(1) 0(Z!.+22) = <£(Zi)+<£(22)
and

(2) <f>(Zlz2) = <j>{zx)<j>{z2),
and so that

(3) the equation <£(z) = £ has a solution for every complex number £

is said to define an automorphism of the field of complex numbers. Obvious
functions satisfying these conditions are <j>{z) = z, <f>(z) — z. (It is plain
that if <f>(u) = <f>(v), then <f>(u—v) = 0, and consequently, by (2), any <f>
satisfying (1) and (2) which is not identically zero cannot assume any
value twice.) The problem of the existence of non-trivial solutions was
propounded by C. Segre in 1889 (1, p. 288) in connexion with the problem
of existence of non-projective collineations in a bicomplex plane. Coolidge
(2, p. 38) referred to it as an unsolved problem in 1921, though in 1945
he mentioned (3, p. 63) reported solutions of which he had not seen proofs.
The corresponding problem in the field of rear numbers had been solved
by Darboux (4) in 1880; he proved that <j>(x) = x is the only solution,
thereby completing the proof of von Staudt's theorem that a real collinea-
tion is necessarily projective.

The existence of non-trivial solutions of the functional equation (1) was
demonstrated by Hamel (5) in 1905, but no progress seems to have been
made with Segre's problem until Lebesgue's paper (6), in the form of a
letter to Segre, appeared in 1907. This brilliant contribution to the prob-
lem ignores condition (3) above and is in places obscure, but it contains
the essentials of a complete solution; in a subsequent article (7) Lebesgue
refers to the 1907 note as a "reponse partielle" to Segre's problem.

The original version of this paper had for its main aim the completion
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of Lebesgue's argument by such methods as would occur to one inexpert
in algebra. It has since been pointed out by the referees that the existence
of non-trivial automorphisms of the complex numbers is deducible from
general theorems due to Steinitz. I am, above all, indebted to Dr. R. Rado
who has summarized the argument in a form that will be at once compre-
hensible and satisfying to an algebraist. I give Dr. Rado's account, in
his own words, in § 3. The theorems quoted from Steinitz and van der
Waerden are, however, not needed in their full generality as far as our
problem is concerned. Accordingly, in § 4, the argument is formulated in
a more concrete way; this is less revealing than the general approach, but
it is quite elementary and, except for an appeal to a few basic results in
the theory of extension of number fields, quite self-contained.

The arguments used by Lebesgue and by Steinitz rely on Zermelo's
theorem that the continuum can be well ordered, and the non-trivial
automorphisms which are subsequently "constructed" are defined by
means of transfinite induction. Both Hamel and Lebesgue had proved
that every non-trivial solution of (1) alone must be non-measurable, and
Ostrowski's researches on the same equation (8) have since proved that
every solution of (1) in the field of real numbers which is not trivial must
fluctuate wildly in every linear set of positive measure. In the second
part of this paper we prove, among other results, that every function
which defines a non-trivial automorphism of the complex numbers trans-
forms every bounded set (in the Argand plane) into a set of Lebesgue
measure zero or else into a non-measurable set. It is therefore not sur-
prising that a complete solution of Segre's problem should be virtual.

From a geometric point of view, the function <f>(z) defines an interesting
transformation of the bicomplex plane (the set of all points (x, y) where
x and y are complex numbers). If the point {<f>(x), <f>(y)} is assigned to the
point (x,y), the transformation is a collineation (in the simple sense that
it is 1-1 and that collinear points are transformed into collinear points,
both ways) since the algebraic condition for three points to be in line will,
by (1) and (2), ensure the collinearity of the transforms. Further, if four
ordered collinear points have a cross-ratio p, their transforms have cross-
ratio <f>(p) by (1) and (2). The collineation is neither projective nor anti-
projective, though it will of course, as a collineation, preserve harmonic
relations (in other words, <f>{p) = p whenever p is rational). The trans-
formation can be extended to cover the points of a line at infinity by
assigning the point {̂ (â ),<f>(x2),<f>(x3)} to the point (x1}x2ix3); the line at
infinity, x3 = 0, is then a fixed one. In spite of the fact that the trans-
formation is discontinuous at every point of the plane, it has a number of
unexpectedly normal properties. It transforms every conic into a conic,
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every circle into a circle; this follows from (1) and (2) since the alge-
braic curve with equation ^arsx

rys = 0 is transformed into the curve
2 (f>((irs)x

ry8 = 0. In particular, if the ars are all integers, the curve will
be fixed since <f>(n) — n for every integer n. The circular lines x2-\-y2 = 0.
for example, are fixed or permuted. Parallelism and perpendicularity of
lines are both invariant, and so in fact is any geometric property of an
algebraic curve which can be expressed by the vanishing of a polynomial
in the arfS with integer coefficients: for instance, a parabola (h2 — ab, A ^ 0)
is transformed into a parabola.

The question of what restriction need be imposed on <f>, in addition to
(1), (2), and (3), to exclude the non-trivial solutions is considered in § 7.
Coolidge (2) assumes continuity, but much weaker restrictions suffice, in
view of the extreme fluctuation, already referred to, of any non-trivial <f>.

2. Notation. Z is the set of all complex numbers; it also sometimes
denotes the Argand plane (a real plane in which the complex number
x-\-iy is represented by the point with real coordinates (x,y)). In § 7 we
deal with a bicomplex plane 3 which consists of all (x, y), x and y being
any complex numbers. The set of all z in Z which satisfy \z—y\ < 8 is
called the circle in Z with centre y and radius 8.

R is the set of all rational and ^? the set of all real numbers. If f(z) is a
function defined in a set E, f(E) is the set of all numbers f(z) for which
z e E; /-1(AS) is the set of all z for which f(z) e S, S being-any set of complex
numbers.

mi E is the interior Lebesgue measure of E (upper bound of Lebesgue
measures of closed subsets of E), \E\v& the exterior Lebesgue measure of
E (whether the measure is linear or plane will be made clear by the con-
text). If | JE7 I = 0, we say E is null.

The algebraic terminology follows (9). In particular, if E c Z, B[E]
consists of all numbers which can be expressed as finite sums of products
of a finite number of terms in E-\-R, and R{E) is the field of quotients
of such numbers. A number z is algebraic in a field K if z is a zero of
a not identically vanishing polynomial over K. A function <f>(z) (not
identically zero) which satisfies (1) and (2) for all zy and z2 in a field K
will be called a Segre function, or an isomorphism, on A", a trivial one if
<f)(z) = z or <f>(z) = z. If tp(z) is an isomorphism on H D K and 0(z) = <f>(z)
in K, we say </r extends <f>. If K is algebraically closed, i.e. every poly-
nomial over K is a product of linear factors, then it is clear that <f>{K) is
also algebraically closed if <f> is a Segre function on K.

The cross-ratio — -/— is denoted by {z^z.?; z3,z±).
2 3 Z2l Zi Z2
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3. The existence of non-trivial automorphisms of Z is contained im-
plicitly in Steinitz's classical paper (10). The deduction has been sum-
marized by Dr. R. Rado as follows:

Z is an extension of R\ hence (10, p. 293, 2) there is a set T c Z such
that

(4) any finite number of elements of T are algebraically independent
over R, and

(5) Z is algebraic over R(T).

T includes more than two elements, for otherwise R{T) and Z would be
enumerable. Let x0 E T; then T includes an xY such that x1 ^ x0, xx ^ x0.
Let f(x) be a permutation of the numbers of T such that/(a;0) = xv By
(4) there is a unique extension of the definition of/ into R(T) such that
f(x) defines an automorphism of R(T). By a general principle in algebra
(e.g. 12, vol. 1, p. 42) there exists a field Y 3 R(T) and an extension of
the definition of/(a;) into Z such that / defines an isomorphism from Z
to Y. Since Z is algebraic over R(T) and algebraically closed, it follows
that f(Z) = Y is algebraic over F{R(T)} = R{T) and algebraically closed.
Hence (10, p. 287, 9) Y and Z are equivalent extensions of R(T), i.e. there
exists an isomorphism g(y) from Y to Z such that g{t) = t for teR{T).
Then h(x) = g{f(x)} defines an automorphism of Z, and

} = y(xi) = xv

Hence h(x) is a non-trivial automorphism of Z.

4. In this paragraph we give a more concrete and self-contained version
of the argument contained in § 3.

4-1. The construction of the set T, which is due to Lebesgue and to
Steinitz, is easily described. Let zl, z2,..., z^,... be a well-ordered series,
denoted by (S), of all the complex numbers, and let Pa be the set of all
zr with r < a. T is defined to consist of all those za which are not algebraic
in the corresponding field R(Pa). If there exist complex numbers not
algebraic over R(T), let za be the first such number to occur in (S). Since
za e T, za is algebraic over R(Pa). Since every z in Pa is algebraic over
R(T) so is za (9, p. 389), and this is a contradiction. This proves (4) and
(6) of §3.

4-2. L e t / be any permutation of T satisfying f(x0) = xx (§ 3). By (4)
of § 3 it follows that if 9 and I/J are rational functions (over R) of indeter-
minates xx, x2)..., xn, and they are equal for one set zv z2,..., zn in T, then
they are also equal for the set/(zj, f(z2),..., f(zn). Hence, if

z — 6(zv z2,..., zn),
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where zv z2,..., zn are in T, it follows that the definition

/(*) = *{/(*i)Jfo)>... ,/(*»)}
defines a (one-valued) function over R(T). If x = 6(zv z2,..., zn) and
y = i{j(zv z2)..., zn) are in R{T), then x-\-y is the value of 0+«A at (zls z2,..., zn)
and consequently f{x+y) = f{x) +f(y). Similarly/(xy) =f(x)f(y). More-
over, f(z) = xtiz = flf/-1^),..., Z" 1 ^ )} , and so /(tf(T)} = R(T); hence
/(z) defines an automorphism, of R{T).

4-3. We now extend/, defined on R{T), to a Segre function <j> on Z\ if
this is done, <£(Z) will be algebraically closed (like Z) and therefore include
all numbers algebraic in <f>{R{T)}. Since <f>{R(T)} = -R(T'), this means
<I>(Z) D !Z and so <f> is an automorphism of Z with ^(a;0) = xv Suppose
£1? t,2,..., is a well-ordered series of all numbers in Z—R(T), and suppose
<f> has been defined as a Segre function on F^, the extension of R(T) by
all £r having r < a. If £a e Fa, <£(£a) will have been defined. Suppose now
that £a e jPa. Since ^a is algebraic in .Fa (being algebraic in R{T)), there
is a unique irreducible polynomial

2 ^ ^ ^
r=0

such that P(Ca) = 0. Let X be chosen to satisfy

r = 0

If p(t) and g(<) are polynomials over jPa with p{£a) = qi^), then >̂ = q
(mod P); hence, if

* = i<v£(c r e jF a ) and we define <̂ (a;) = f ^(cr)J^,
r=0 r=0

it follows, since <f> is a Segre function on ^a, that <f> is one-valued in jPa(^a),
and arguments parallel to those used in 4*2 show that ^ is a Segre function

By the principle of transfinite induction, the above process defines <f> in
Z so that <f> is a Segre function on every F^. Since every pair of numbers
in Z belong to Fa for some a, <f> is an isomorphism defined on Z which
extends / , and this completes the proof.

4-4. I am indebted to a referee for the suggestion to use Zorn's principle,
and also to Dr. J. L. B. Cooper who made some very helpful suggestions
in the same sense. It may be of interest to show how the argument of
4-3 is transformed when Zorn's principle (14) replaces the well-ordering
theorem of Zermelo.
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Let / 0 be the automorphism of j?(v'2) denned by /0(V2) = — V2 (any
non-trivial automorphism of a subfield of Z would do instead). We show
that there is an automorphism of Z which extends /0 .

Suppose B is a set of isomorphisms such that any element of B either
extends or is extended by any other element of B. It is clear that, if E
is the union of the fields of all the elements of B, then (i) E is a field,
(ii) if F(z) is defined in E as 6(z), where 6 is any element of B whose field
of definition includes z, then F is an isomorphism on E, and (iii) F is an
automorphism if every element of B is one.

Now consider the class s/ of all automorphisms Avhich extend /0 . By
Zorn's principle, srf has a maximal element /x which cannot be extended
by any element of J / . Our object is attained if H = Z, H^ denoting the
field on which /x is defined. Suppose that G = Z—H^ ^ 0. If £ e G, then
£ is algebraic over Hfl, for if this were false we could, following the argu-
ment of 4-2, extend /x by an automorphism over H(£). Now consider the
class J of all isomorphisms which extend /u. By Zorn's principle Jf has
a maximal element v. The arguments of 4-2 and 4-3 show that a maximal
element of./ must have Z for its field. Hence v is an isomorphism on Z
which extends/„. Our object is attained if v(Z) = Z, and since v extends fx
it is enough to show that v(Z) D G. This follows at once from the fact that
j/( Z), like Z, is algebraically closed and the fact that G is algebraic in H .

5. It was proved by Hamel (5) that if (f>(x) is real and satisfies (1) for
all real zx and z2, then the values assumed by <f>(x) in any interval of 3k,
however small, are everywhere dense in (—00,00), except in the trivial
oase <f>(x) = xcf>(l). This was extended by Ostrowski (8), who showed that
interval may be replaced by set having positive interior measure. In this
section we prove a series of similar results for non-trivial Segre functions
on Z; they include and extend results of E. Noether (15). These results
have a bearing on the problem of finding conditions which are sufficient
to restrict a Segre function to the trivial cases. From the geometrical
point of view, there is some interest in considering the character of <f>(z)
in so far as it is determined by its values for real z.

LEMMA 1. Suppose that <f>(z") is a Segre function in Z and <f>(z) is con-
tinuous relative to & at one point of &, then <j> is trivial.

Proof. By (1), <f>(z) is continuous relative to & at all points of (ft. Since
(f>(x) = x whenever x is rational, this means that <f>{x) = x whenever x is
real. By (2), {<f>{i)f = <f>{-l) = - 1 , and so </>{i) = ±i. By (1) and (2)
A\ c now conclude that

<f>
i.e. <f> is tr ivial .
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THEOREM 1. Suppose that <j>(z) is a Segre function in Z. If Ec& and
mtE > 0, and <f>(z) is either (i) bounded in E or (ii) real for all z in E,
then </> is trivial.

Proof. By a theorem of Steinhaus (11), there is a positive number 8
such that every x satisfying — 8 < x < 8 can be written x = a—b, where
a and b belong to E.

If (i) holds, let M be the upper bound of \cf>(z) | in J57; then — hjn < x < hjn
implies \<f>(x)\ < 231/n, and so <f>(z) is continuous relative to 8& at z •-=• 0.
Lemma 1 completes the proof.

If (ii) holds, then <j)(x) is real whenever —8 < x < 8, and, since
<f)(rx) = r<f>(x) for rational r, <f>(x) must be real throughout &. If now x
and h are real, h ^ 0, then

j{x+h*)-4>(x) = <^2) = fo(A)}2 > 0.
Thus <j>(x) is monotone in 9t and </>(x) = x whenever x G i2. This implies
<f>(x) = a; throughout £%; lemma 1 completes the proof.

THEOREM 2. / / <j>{z) is a non-trivial Segre function in Z, then <(>(&) is
everywhere dense in Z.

Proof. By theorem 1 (ii), there is a real £ with <f>(£) unreal. Hence, if
rx and r2 range through R, the numbers fi<£(£)+?'2, i.e. the numbers
<^(rx^-i-r2) are everywhere dense in Z.

THEOREM 3. / / </>(z) is a non-trivial Segre function in Z, and U is any
circle in Z, then the set of real x with <j>(x) e U is non-measurable and has
zero interior measure (in &).

Proof. Let H — ^ ~ 1 ( t / ) . Take £ as in the proof of theorem 2 and
then rx and r2, rx ^ 0, so that <t>ixx£-\-r^ e U, i.e. rx£-\-r2 e H. If \H\ = 0
it follows, since R is enumerable, that the set of all £ is null and conse-
quently that <j>(x) is real almost everywhere in ^ , which contradicts
theorem 1 (ii). Hence \H\ > 0. Since <f>{H) is bounded, m^l — 0 by
theorem 1 (i).

THEOREM 4. / / <£(z) is a non-trivial Segre function in Z, and S is any
set of real numbers with mi S > 0, then <f>(S) is everywhere dense in Z.

Proof. There is no loss of generality if we assume S to be closed and
bounded and that the lower bound of \x\ for x in S is positive. Let v be
the greatest value of \x\ for x in S.

Suppose first that there is a positive number p such, that \<f>(x) \ > p for
all x in 8. Let T be the set of numbers l/x as x ranges through S. Plainly
T is closed, and \<f>(t)\ < 1/p for all t in T; this contradicts theorem 3 if
mT > 0. Now if T is covered by intervals (xr,yr) (r = 1,2,...) having
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\xr\ and \yr\ both greater than ty-1 and xryr > 0, then S is covered by
intervals the sum of whose lengths is 2 l^r"1"^1!* which is less than

r

(2v)2 2 (yr—
xr)y anc* s o mT = ° implies mS = 0. Thus mT > 0, and it

follows that <f>(8) has points in every circle centred on the origin.
Now suppose that <f>(8) has no points in a circle \z—y\ < p. By

theorem 2 there is a real number f with |<£(£)—y\ < \p. Let E be the
set of real x for which (#+£) e #. Then raj£ > 0, and if xe E we have
l*(aH-£)-yl>p. i-e. l # e ) - H ( | ) - y | > p, as weU as | f l £ ) - y | < */>.
Hence |<£(z)| > £p for aM x in E, and this contradicts the case first con-
sidered.

THEOREM 5. Suppose that <f> is a non-trivial Segre function in Z and E
is any subset of Z with both interior and exterior points.* Let I be any line
in the Argand plane; then l^-^E) is (i) everywhere dense in I, (ii) non-
measurable and of zero interior measure. The same is true of ty(E) if <f> is
an automorphism.

Proof. First suppose that I is the real axis. If mi{Z^~1(^)} > 0, then
by theorem 4 and the hypothesis on E, <̂ {Ẑ -1(JS/)} includes points of Z—E,
which is impossible. Hence m<Z^~1(^) = 0. Replace E by Z—E to get
mM-iiZ—E) = 0. This implies (i) and (ii).

If I is the imaginary axis, then <f>{iy) e E means that <j>{i)<f>(y) e E} i.e.
(f>(y) ef{E), where f{E) is a linear transformation of E. This reduces to
the first case. Finally, if I has the equation y = ax-\-b (a, b real), then the
projection on the real axis of hj>-x{E) is the set of real x for which
<f>{x-\-i(ax-{-b)}, i.e. {<f>(x)<f>(l-\-ia)-\-<f>(ib)} e E\ this again restricts <f>(x) to
a linear transformation of E and so reduces to the first case.

If <f>(z) is an automorphism, so is ^~1(z), and we may replace <f> by <£-1

in (i) and (ii).
We now consider properties of Segre functions on plane sets in Z.

THEOREM 6. Suppose that <f>(z) is a non-trivial Segre function in Z; then
(i) <f>(S) is everywhere dense in Z if mtS > 0; (ii) if E is a set with both
interior and exterior points, then <j>~x{E) his zero interior measure and it
non-measurable. (The same is true of <f>{E) if <f> is an automorphism.)

Proof. If <f>(S) has no points in some circle U, then Sc<j>-l(Z—U).
But (putting E = Z— U in theorem 5) this implies that every line cuts
S in a linear set with zero interior measure. This, by Fubini's theorem,
implies mt S = 0 and proves (i). If m^-^E) > 0, then by (i) E is every-
where dense, and this is impossible since E has exterior points. Hence

= 0. Since E may be replaced by Z—E, we conclude that

* i.e. E and Z—E both possess interior points.
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has zero interior measure and is non-measurable. Finally, if <f> is
an automorphism we have the desired conclusion as in theorem 5.

Theorem 6 leads to the paradoxical conclusion that, if ikf is a measurable
subset of Z and E is a set which has both interior and exterior points,
then \Mj>-x{E) \ = \M<j>(E) \ = mM if<f> is a non-trivial automorphism of Z;
this is because ^^(Z—E) and <f>(Z—E) have zero interior measure. For
example, if {£7n} is a sequence of mutually exclusive circles, the sets
M^iUj.) will be a sequence of exclusive subsets of M each having the
same exterior measure as M.

6. In this section we discuss the geometric aspect of the transformation
of the Argand plane Z {not the bicomplex plane 3) by a function <j> which
defines an automorphism of Z.

LEMMA 2. Suppose that S is a subset of Z which includes unreal numbers
and which has the properties

(i) if ae S and b e 8, then (a—b) e S,
(ii) if ae 8 and r is rational, then ar e 8,

((i) and (ii) hold, for example, if S is a field in Z); then there are three
possibilities, just one of which must be realized:

either 8 = Z, or \8\ = 0, or mt8 = m^Z—8) = 0.
Proof. Suppose that mt 8 > 0. By Steinhaus's theorem and (i), 8 con-

tains a circle with its centre at 0. Hence, by (ii) 8 = Z.
Now suppose 0 = mi 8 < \8\. We have only to prove that m^Z—8) = 0.

The points of 8 do not lie on a single line through 0; hence, by (i) and (ii),
8 is everywhere dense in Z. Suppose now that m^Z—S) > 0, and let £
be a point of Z—8 which is the centre of arbitrarily small circles U
satisfying mi{U(Z-S)} > f|C7|, i.e. \US\ < l\U\.

Since £ is a limit point of 8 it follows that there are arbitrarily small
circles V which have their centres in S and satisfy \VS\ < £|F|. Now it
follows easily from (i) that, for any circle V which has its centre in 8,
\VS\ depends only on the radius of V. Since we have just shown that
for such circles \VS\ < £|F| for arbitrarily small V, it follows that the
exterior density of 8 is never unity at any point of S. This contradicts
|#| > 0 and so establishes m^Z—S) = 0.

THEOREM 7.* / / <j>(z) is a non-trivial Segre function in Z; then (i) <f>(&)
is a proper subfield of Z with cardinal number c, (ii) either <f>(&) is null, or
else m^M) = m^Z—M) = 0.

Proof, (i) That <f>{^) is a field follows from (1) and (2), the rest from
the fact that the mapping of Z on <f>{Z) is 1-1. (ii) Put S = <j>(&) in

* In connexion with (i), see also M. Souslin (13).
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lemma 2 to get m ^ ( ^ ) = 0. Since <f>{Z-@) c Z-<f>{@), m^Z-M) = 0
by the same lemma.

We can now give a picture of the geometric transformation of the
Argand plane Z into <f>{Z) when <f> defines an automorphism of Z. We
show that the <f>(Z) plane is covered by each of two "orthogonal" families
of sets (corresponding to the lines in the Z-plane parallel to the real and
imaginary axes). The set <f>(&) may be used as a basis for the description.

Let Yv and Xg denote the transforms by <f>{z) of the lines y = r\ and
x — £ respectively in Z. Plainly Yo = <f>(@) and, since <f>(iz) = ±.i<j>{z), Xo

is the result of rotating Yo about the origin through an angle ±^TT. YV is
the result of translating Fo by the vector 4>(irj) and Xg the result of trans-
lating Xo by the vector <f>(£).

Thus (f>(Z) is covered by the system of Xg and also by the system of Yv;
through any point iv in <j>(Z) there passes just one Yv set and one Xg set:
the former is obtained by translating <}>(&) so that one of its points falls
on w, and the latter by rotating the Yv set about w through an angle ±\rr.

If <f>(&) is not null, it follows by theorem 7 (ii) that the transform by
<j)(z) of the line y = rj cuts every measurable set E in the <f>(Z) plane in
a set whose exterior measure is mE.

It may be noted in passing that, if <f>~l(w) = X(w)-\-iY(w), where X and
Y are real functions, then these functions are additive (i.e. they satisfy
equations such as (1)) and that, since <^~1(ro) = 0t, Y(w) = 0 means
w e Yo. Hence <f>(!%) is the set of all the periods of the function Y(w).

7. Segre's geometrical problem may be stated as follows.

Suppose ihat T(P) is a 1-1 transformation of a bicomplex plane 3 into
itself, which transforms every three collinear points into collinear points: what
is the relation between the cross-ratio of four collinear points and that of their
transforms by T?

Both Segre and Coolidge conjectured that the two cross-ratios are either
always equal or always conjugate complex numbers. If this were so, it
would mean that T is either a projectivity or else the product of a pro-
jectivity and the transformation which assigns {zv z2, z3) to the point with
homogeneous coordinates (zvz2,z3). If a collineation T satisfies one of
these alternatives, we shall write T e S. It was pointed out in § 1 that
every non-trivial automorphism of Z could be used to define a T such that
TeS. In Coolidge (2) it is usual to impose a condition of continuity on T
in order to make TeS, but we shall see that weaker restrictions suffice.

A collineation T will be said to have the Segre property in a set E if
the cross-ratio of every four collinear points of E is either always equal
to, or is always the conjugate-complex of, that of their transforms under
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T. We observe first that if T has the Segre property in a line I of 3 , then
it has it in the whole of 3 : for, ii Qr (r — 1, 2, 3, 4) are collinear points
not on I, project them on to I from some point V, Qr going into Q'r. The
line joining T(V) to T(Qr) cuts T(l) in T(Q'r), and since {Qv Q2; Qz, Q4}
and {Q\, Q'2; Q'3, Q'A] are equal, it follows easily that T has the Segre pro-
perty in the line Qx Q2 if it has it in I. It is therefore sufficient, as well as
obviously necessary, to show that T has the Segre property in lx, the
''';u-axis'! of 3> if we wish to conclude T e 8. We suppose, for convenience,
that T is extended in the obvious way so as to apply to the points at
infinity of 3- J-^t Pz denote the point (z, 0) and P^, the point at infinity

on lx. Suppose that T{P0) = A, T^) = U, and T{Pm) = / . For every
finite z we define <f>{z) = {I, A; U, T{PZ)}. [The condition that T shall have
the Segre property on lx is then the condition that <f>{z) = z or <f>(z) = z
in Z, i.e. that <f>(z) is a trivial Segre function in Z.] We first show that
<f)(z) is a Segre function in Z. Iizx and z2 are in Z, then (PZl+Zt; Po), (PZl; PZ2),
(POOJPQO) are mates in an involution on lx. Using Desargues's theorem on
the involution properties of a quadrangle and the fact that incidence of
lines is invariant under T, we deduce that the transforms of these elements
are likewise mates in an involution on T(lx). Consequently, since {a, b\ c, t}
is, for fixed a, b, c, a linear fractional function of t, it follows that
{<f>(z1-\-z2);O}, {<f>{z1);<f>(z2)}} (oo;oo) are mates in an involution of complex
numbers, i.e. that (1) holds. Similarly, since (zx32; 1), (z1;z2), (0;oo) are
mates in an involution, we deduce that (2) holds, and so <f)(z) is a Segre
function in Z.

From what has just been proved, it follows that any set of conditions
wliich is sufficient to make a Segre function trivial will at the same time
give a geometrical condition sufficient to make T e 8.' The properties of
non-trivial Segre functions considered in § 5 make it easy to state such
conditions. For example, if we restrict our attention to the real points
of lx, it follows from theorem 4 that if lx contains a real interval, or even
a real set E with positive interior measure, such that T(E) is not every-
where dense in the complex line T(lx), then T e 8. In particular, if T(P)
is real or if T(P) is bounded in E, or if T(P) is continuous relative to E
at one point of E, then T e S.

Addendum. Dr. L. Roth has kindly shown me a paper by B. Segre
entitled " Gli automorfismi del corpo complesso, ed un problema di Corrado
Segre" which has appeared in the Atti della Ace. dei Lincei (Fasc. 5-6,
novembre-dicembre 1947, p. 414). The existence of non-trivial auto-
morphisms is established there as a deduction from Steinitz's theorems
in much the same way as in § 3 above.
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