
ON THE MODULAR CURVES Xo(125)? ^ (25) AND ^,(49)

M. A. KENKU

1. Introduction

Let N be a positive integer greater than 1. Examples of elliptic curves defined
over Q possessing rational cyclic N isogenies are known for the values of N given in
the following table.

N g v N g v N g v
^ 10 0 oo 11 1 3 27 1 1

12
13
16
18
25

0
0
0
0
0

00

00

00

00

00

14
15
17
19
21

1
1
1
1
1

2
4
2
1
4

37
43
67
163

2
3
5
13

2
1
1
1

In this table, g is the genus of X0(N) and v the number of non-cuspidal rational
points of X0(N).

The curve X0(N) is the compactification of the affine modular curve Y0{N) which
parametrises isomorphism classes of pairs (E, CN) where E is an elliptic curve defined
over C, the field of complex numbers, and CN is a cyclic subgroup of E of order N. It
is well known that X0(N) is defined over Q and if k is an algebraic number field a
point x belongs to Y0(N)(k) if and only if there is a /c-rational pair (E, CN) in the
corresponding class.

One of the objects of this paper is to show that there are no Q-rational cyclic
isogenies beyond those exhibited in the above table. In the light of known results
enumerated in [9] and subsequent works [3, 4, 5] it suffices to show that YO(125)(Q)
is empty. The proof of this assertion is contained in Section 3 of this paper.

We construct an affine model of the curve by making use of functions which are
essentially modular units. A point on this curve belonging to a Q-rational class
corresponds to a point on a particular hyperelliptic curve C which is defined over the
cyclotomic field k = 0(^/1) . We deduce that YO(125)(Q) is empty from the fact that
the jacobian of C has only finitely many points rational in k. The proof of the latter
fact forms the subject of Section 2.

The other subject touched upon here relates to elliptic curves defined over
quadratic fields and their torsion points of order 25 and 49. We show that such
points cannot be rational over such quadratic fields.

In an earlier paper [6] we proved this for N = 32. Our technique consists in
showing that the number of Q-rational points on the jacobian of a certain non-
hyperelliptic curve is finite. The finiteness of the Mordell-Weil group in that case was
proved by the method of Mazur and Tate [10]. With respect to the situation when
N = 25 this has already been done for a curve B by Kubert [7]. Consequently we
show that the curve B is not hyperelliptic, determine the exact order of J(B)(Q) and
then deduce that ^(25) has no point of degree 2.

In the case when N = 49, the appropriate curve turns out to be a Q-descent of
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the Klein curve ^(7). It is well known that the jacobian of this has only finitely many
points rational over <Q(^/1). The same procedure as outlined above is followed in
this case.

On the advice of Barry Mazur and the referee the exposition has been rather
simplified. I am grateful to both of them.

2. The curve y5 = x(x — a)

Let k = Q>( ^/l) denote the cyclotomic field of the 5-th roots of unity. Suppose we
put e = exp(27ri/5) and a = (e — s4)J5. We will consider the hyperelliptic curve

C : y5 = x{x — a.).

The curve C is of genus 2. Both C and its jacobian J are defined over k and have
good reduction everywhere in k except at the ideal p = (1— e) which is completely
ramified in k. The automorphism

of C induces on J complex multiplication by Z[e], the ring of integers of k.
We note that on C we have the following decomposition into prime divisors:

where
= 5(P0-PJ,

and (y) = Po

Our main aim in this section is to prove the following.

PROPOSITION 1. The jacobian J has only finitely many points rational over k.

Proof. Let R = Z[e, 1/(1-e)] and S = Spec(K). We denote the Neron model
of J over S by the same letter J. This is an abelian S-scheme. The closure of the
group generated by the class of Po — Px in the scheme J is a finite and flat group
scheme over S. Since the Galois module of this group scheme is isomorphic to Z/5Z
(and also to ^5), the scheme itself is isomorphic over S to both Z/5Z and ju5. This
follows from Theorem 3 of Oort and Tate [13], since 5 is totally ramified in k and the
ramification degree is 4.

From the Kummer sequence

0 Z/5Z 0

of S-schemes in the /pp/-topology [2; expose IV, 6.3], where A = 1—e, we get the
commutative diagram

0 Z/5Z

Z/5Z J(K) J(K)
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Here K = Q5{E) where <Q>5 is the 5-adic completion of Q; Spec K is an S-scheme.
Note that we have used the above isomorphism of Z/5Z and fx5 to equate Hl(S, p.5)
and / / ' (S , Z/5Z), and the corresponding ones for K. Also in the diagram, y,, y2 and
y3 are injective since they are just embeddings.

LEMMA 1. To complete the proof of the proposition it suffices to show that

(i) p is injective,

(ii) Impnlma' = Z/5Z.

Proof, (i) and (ii) imply that the image of a is isomorphic to Z/5Z. Hence
multiplication by X induces a surjective map on J(/c)/Tors which is a torsion-free
2[e]-module. This is impossible unless J(/c)/Tors is trivial.

LEMMA 2. The map p is injective.

Proof. From the Kummer sequence

0 • fi5 > Gm >Gm > 0,

where Gm is the multiplicative group, we have that

Hl{S,fi5) = Rx/R*5 s Z/5Z 0 Z/5Z 0 Z/5Z .

The first isomorphism follows from Hilbert's 'Theorem 90'. Similarly,

Hl(K,fi5) s K*/KxS s Z / 5 Z ® . . . 0 Z / 5 Z .

6 copies

As a basis of the latter group we can take X, e, Ea = exp (ka), where a = 2 ,3 ,4 and 5.
We note that 1̂ (5) = 4. A basis for R* is A, e, 1 +e. Note that when we embed k in
K, (1 +e)/£2 is a fifth power.

Since p is just the embedding of k in K, it is obvious that X, e and 1 +e are not
fifth powers in K. Hence p is injective.

LEMMA 3. We have I m p n l m a ' = Z/5Z.

Proof Following Faddeev [1] we use an explicit form of the maps a and a'.
Let D be a divisor class of degree 0 on C rational over an extension L of L

r

Suppose d = YJ niPi is a divisor in the class D; then we put

In the product the factor corresponding to P^ is to be omitted while x(P0) should be
equated to a"1.
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We also define

First, we show that fi(D) is independent of the choice of the representative d chosen.
To do this we shall show that ((x), d) is a fifth power in L if d is a principal divisor
rational in L.

We write (/) for the divisor of a rational function / . The following computations
are straight forward: ((x), (x)) = a~5; and ((x), (x — a)) = a5 for aeL, the algebraic
closure of L, and a ^ 0. Using the multiplicative property of the symbol we have
((x), (fix))) = /(0)5 , if f[x) e L(x) and / (0) ^ 0 or oo, while

((x), (j;)) = 1 and ((x), iy-a)) = a5 for a + 0 .

Hence ((x), (/(>,))) = (/(0))5 for fjy) e L(j;)_and /(0) ^ 0 or oo.
Let Nm denote the norm from L(x, y) to L(x). Suppose P =£ Fo is a prime divisor

of C. Then x(P) is the value at x = 0 of the function x(F) —x whose divisor is
Nm(P — Pv). Consequently if d = (fix,y)) and Po does not occur in d, then

((x), d) = Nm/(x , y) | (0<0) = f ] / ( x , ye1) | (0.0) •
i = 0

This is obviously a fifth power in L if fix, y) e L(x, y).
Finally if Po occurs in the decomposition of d = (fix,y)) with multiplicity n,

then (fix,y)y~") has no Po as a summand and this is a fifth power in Lx if

It follows that (}(D) does not depend on the choice of the representative d and the
map D -> /?(£>) is a homomorphism.

The group of values of /? (for a fixed L) is generated by the norms of the x values
of the points on the curve C with coordinates algebraic over L. In fact, by the
Riemann-Roch theorem, it suffices to compute this for representatives of the form
P + Q — 2PX, where P + Q is rational over K (either both P and Q are rational or they
are conjugate over K and lie in a quadratic extension of K).

Suppose we now fix L = K. From the equation

y5 = x(x —a)

we can express x explicitly in terms of y as follows:

a a / 4y5

if y5/y.2 lies in the ideal p = (A), and

«2 \ l / 2

4jr

if a2/y5 does. Since V;.(y5/o>2) = 5I^(y) —6, it is clear that if y is at most quadratic
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over K, then KA(y5/a2) cannot lie between — 1 and + 3/2 and the convergence of the
binomial series is assured.

Let P be a /C-rational prime divisor corresponding to {x0, y0) with x0 =£ 0 and
y0 j= 0. Suppose that Vx(x0) > 0. Then Vx(yl/ct2) ^ 4; x0 is of the form a . u . y5 with
yeK* if KA(x0) = 3, and of the form a4. w. y5 if K;(x0) > 3. In both cases
Vx(u — 1) s= 4 (mod 5). However, KA(x0) cannot take either the value 1 or 2.

If ;̂.(xo) ^ u> t n e n Ki(a2/j;5) ^ 6; it is also congruent to 6 modulo 5. Thus it
follows that x0 is of the form u . y5 where Vx(u — 1) = 3(mod 5).

Let now P + Q be X-rational with P (and Q) rational in a quadratic extension of
K. If y0 lies in K, then x{P). x{Q) = j/jj. If X is not ramified in the quadratic
extension then the situation will be the same as in the case of a K-rational P.
Otherwise, we can first suppose that Vx(x(P)) ^ 0; then 2Vx{x0) = 0 (mod 5) and
Vk(yo) = 2Vx(x0). Also Vx{a2/y5) = 1 (mod 5), and is greater than or equal to 6.

Suppose Vx(x(P)) > 3; then 2Vx{yl) ^ 1 5 . In this case, if Vk{y%) ^ 10, then
2) > 4, so that x(P). x(Q) = a1'. u. y5 with / = 2 or 3 and V,(u-\) ^ 4. If
= 15, then 2Vx(y

5/a2) = 3 so that x(P). x(Q) = «'".«. y5 with KA(M- 1) ^ 2
and i = 2 or 3.

Lastly, we can have 2Vx(x{P)) = 5 with K,(^) = 5 so that Vx(oi2lyl) = 1 and
x(P).x{Q) = u . y 5 with Vx{u-l) ^ 1.

In the two latter cases, it can, with a lot of difficulty, be shown that Vx{u — 1) ^ 3.
However we can argue as follows. The map /? is a homomorphism so that the image
of the J{K) under it is a group. Furthermore x(P0) = a"1 and x(P{) = a. Also, by
the Riemann-Roch theorem, every divisor class of degree 0 on C has a representation
of the form P' + Q' — 2Paj. Suppose, for instance, that the value of /? on the class of
P + Q-2Pcfj were uo.y

5 with Vx(u0-l) = 1; then that of P + Q + Px -3P00, which is
also rational, would be a . u0 . y. However this does not occur in all the possible cases
we have examined. Hence we must have Vx{u0 — \) ^ 3.

Consequently the image of jl is of the form

a ' . u . y 5 w i t h i e Z , y e K x ,

and Vx(u — l) = m where m is congruent to 0, 3 or 4 modulo 5.
By Theorem 1 of [1] we know that /? and a' are the same. We have already seen

that the elements of Im p are of the above form with m = 0, 1 or 2 (modulo 5); so
Ima' n Imp is isomophic to Z/5Z.

This completes the proof of Proposition 1.

The equation y5 = x(x — a) reduces modulo 11 to

y5=x(x-4). (2)

This is still of genus 2. There are 23 points on it rational in GF(ll) and 103 points in
GF(121).

Suppose f(X) is the characteristic polynomial associated with the zeta function
of the reduction of C over GF(g). Let F(Y) be the polynomial such that
X9F(x + q/X) = f(X), where g is the genus of C. Then F(Y) = Y2 +11Y + 29 for the
curve (1) with q = 11. The number of points on the reduction of the jacobian J of C
at 4 = 11 is thus/(12) = 305.
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3. The modular curve

Let tj(z) be the modular form of dimension -

where q = zxp{2niz). The functions

X{u>) = //(w)///(25w) and Y(a)) =

satisfy the hypothesis of a theorem of Newmann [11] and are therefore functions on
^0(125) defined over Q. The algebraic equation relating X{to) and Y(co) can be
deduced as follows.

Let

/ ( T ) = iy2(x/5)/i,2(T) and ^(T) = * (T /25)MT) .

Weber [14; p. 256] showed that

/ 3 = 05 + 504 + 1503 + 2502 + 250 = g G(g).

We note that

X(w) = 0(25<o) and y(a>) =

If we put

h((o) = /(25co) and /(co) = / (125w) ,

then

^3(w) = JTG(^) and /3(co) = yG(y) .

Since y2 = hi it follows that

Y5 = XG(X)G{Y). (3)

Let _/(<o) be the classical modular invariant with j(y/—l) = 1728. Weber [14;
p. 256] showed that

(4)

and

y = (/6 + 10/6 + 5)//. (5)
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The scheme of zeros of X, YJ((o) and j{5aj) is as follows.

X
Y
w)
5OJ)

Po
5
1

- 1 2 5

-25

Pi

0
1

_5

-25

pJ
- 1

0
- 1
- 5

P«,
- 1
- 5
- 1
- 5

Here the cusps Po, Paj are the rational cusps, while Ph ?} for ij = 1,2,3,4 form two
complete sets of conjugates over Q and lie in Q>( f/\) (Ogg [12; Proposition 2]).

The function X is a 'HauptmoduP for XO(25) while Y is not invariant by FO(25).
From the scheme of zeros of X and Y we see that the degrees [Q(A"O(125)): Q(X)]
and [Q(XO(125)): Q(Y)] are both equal to 5; hence

Q(X, Y) = Q(XO(\25)).

In particular, corresponding to a Q-rational point x on ^0(125) there is a Q-rational
pair (X', Y'), although the converse is not necessarily true.

Lastly we note that X(a>) and Y(a>) are units in the integral closure of Z(j(w), j ]
in Q(*O(125)) [8; p. 163] and that the Atkin-Lehner involution Wl25 takes X to 5/Y
and Y to 5/X.

LEMMA 4. Suppose (x0, y0) is a Q-rational point on the curve defined by equation
(3) with (x0, y0) being neither (0, 0) nor (oo, co). Then either

(i) xo = 85Ss+lts/mn and y0 = S5s+ltr/n5

or
(ii) x0 = 5t5l5smn and y^ = Str/55sn5,

where n,m,t and r are pair-wise coprime positive integers not divisible by 5, s is a non-
negative rational integer and 3 = + 1 . Furthermore xoyo ^ 0.

Proof. Let p be a prime number not equal to 5. Suppose vp(x0) = u. If u > 0
then vp(G(x0)) = 0; clearly vp(y0) > 0 and vp(G(y0)) = 0, so that u = 5vp{y0) and p
divides t.

If u < 0, then vp(x0G(x0)) = 5u; if vp(y0) < 0 then vp(y0) = 5u
= ~y

P(.Vo 5G(.yo))' t m s implies that p divides n. On the other hand if vp(y0) = 0,
thenvp(G(y0)) = — 5u so that p divides m. The case in which vp(y0) > 0 is not possible.

Now suppose vp(y0) = u. Suppose first that u > 0. Then vp{G(y0)) = 0, so
vp(x0G{x0)) = 5M. If vp(x0) i= 0 then vp(x0) = 5w and p divides t. If vp(x0) = 0 then
p divides r.

Suppose u < 0; then vp(x0(G{x0))) < 0, and consequently u = 5up(x0); this
implies that p divides n.

Hence {x0, y0) conforms to the patterns of (i) and (ii) with respect to p =£ 5.
Suppose we put y5(x0) = 0. Suppose u > 0; then US(X0G(.Y0))

= u + 2 = ^(.yoG^o)"1). Hence if u5(>'0) > 0,thenu = 1 (mod 5) and we are in case
(i). However v5(y0) cannot be zero if u is positive.
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Suppose that u ^ 0; then D5(A'0C(X0)) = 5w; this implies that
vs(yoG{yo)~l) = vs(yo) = 5u and we are in case (ii).

As G is positive definite, xoyo ^ 0. This completes the proof of the lemma.

Remark. The primes p dividing m and r are those primes at which (A'0,J>0)

reduces to the same point of Ar
0(125)(GF(p)) as one of the non-rational cusps. Since

the reductions of these cusps are not GF(p) rational unless p = 1 (mod 5), it follows
that the primes dividing m and r are congruent to 1 modulo 5. In particular, 2 does
not divide either m or r.

Suppose we write C(w, v) for v4G{u/v). The polynomial G(u, v) can be factorised
over Z[Y] as

G(u,v) = Yl(u-OiV), (6)
i = i

where 0x = i\/5 and 02 = -z2j5, while 03 = - K \ / 5 and 04 = ^4
N/5.

If u and v are coprime rational integers and 5 does not divide w, then the only
common factors of any pair of the factors on the right hand side of (6) in Z[Y| are
units.

LEMMA 5. Suppose u0 and v0 are coprime non-zero rational integers and 5 does

not divide u0. Ij u0 and v0 satisfy the equation

G(u,v) = z5 (7)

for some rational integer z0 coprime to 10, then

uo-0, i ' o = C5

where C, is an integer O / Z [ E ] . Furthermore 10 divides i0.

Proof. From the remarks above it follows that

where f.i is a unit and £ is an integer of Z[e]. The units of Z[E] are generated by ± 1, c
and 1 +e. Also we can write

and 02 =
while

03 =

Hence we have that

and 04 = - ( e 3 - e 2 - e + 1).

5 (9)

with 0 ^ i,j ^ 4. If we write
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with a, b, c, and deZ, then we get

C 5 = 2 3

with A, B, C and D belonging to Z, and each expressible in terms of a, b, c and d. It
is easy to see that all but A are divisible by 5 if 5 does not divide z0.

By comparing coefficients in equation (9) and its conjugates, it is not difficult to
see that the only possibilities for i and j are as follows:

(I) i = 0 and j = 0 when 5 divides v0;

(II) i = 0 and j = 2 when 5 divides u0;

(III) i = 2 and) = 3 when 5 divides u0;

(IV) i = 4 and j = 4 when 5 divides u0.

Hence, if we assume as in the hypothesis that 5 does not divide u0, we are left with
the case where / = 0 and j = 0, and we have that 5 divides v0.

In this case, by again comparing coefficients, we see that both D and C should be
even (D = 0). This is possible only if exactly three of a, b, c and d are even; this
implies that v0 is even.

This completes the proof of the lemma.

We can now prove the main theorem.

THEOREM 1. The curve yo(125)(Q) is empty.

Proof. Let x e yo(125)(Q) and let coo be a point in the upper half plane H which
corresponds to x in the orbit space H/TO(125). Put X' = X(co0) and Y' = Y(coo).
Both X' and Y' are rational numbers; by well-known properties of the eta-function,
{X1, Y') ± (0, 0) and (X1, Y') ± {co, oo). They also satisfy equation (3).

By Lemma 4, there are two possibilities for X' and Y'\ either

(i) X' = 555s+it5/mn and Y' = d5s+ltr/n5, or

(ii) X' = 3ts/5smn and Y' = dtr/55sn5,

where m, n, t and r are coprime positive integers, not divisible by 5, s is a non-
negative integer and 3 = ± 1. Also X'Y' ^ 0. Furthermore we know that the prime
factors of m and r are congruent to 1 modulo 5.

The two cases are not independent really; one corresponds to the other under the
Atkin-Lehner involution Wx2$- It therefore suffices to deal with just one of them, say

(i).
For G as described earlier, by substituting the expression in (i) for X' and Y' in

equation (3), one finds that
G{mn, <555s. t5) = rs, (10)

where mn, <555s. t5 and r satisfy the hypothesis of Lemma 5, so that

mn-0x.655s .ts = £ (11)
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for some integer £, of Z[e]; also s > 0 and t is even.
Taking one of the conjugates of (11) in Z[fi], we also have

mn-d4d55s.t5 = C',5. (12)

Combining equations (11) and (12) leads to

( m / i - M ^ X m n - M S 5 ^ 5 ) = C?d5 • (13)

Dividing through by 51Os. t10 and substituting

y'= CiC\/5st and h' = (mn/d55st5)-0id

leads to

y5 = h'(h'-a). (14)

To complete the proof it suffices to show that (14) is impossible.
From Proposition 1 we have that |j(Q(e))| is finite and from reduction modulo

11 we know that its order is odd.
Since the curve C has good reduction modulo 2, this implies that the reduction

mapping modulo 2 induces an injective mapping of J(Q(e)).
Let P be the point on C corresponding to (//', / ) of (14). As f is even, 2 divides the

denominators of //' and / so that P = Px where ~ indicates the reduction of the
point modulo 2. Clearly P is not Px . Hence the divisor class of P — PK reduces to 0
modulo 2. Since reduction modulo 2 is injective on J, this implies that P — Px is
linearly equivalent to 0. But C has genus 2; hence P = P^ and this leads to a
contradiction.

This completes the proof of Theorem 1.

4. The curves A" ,(25) and A",(49)

We consider the modular curves X^N) for N = 25 and N = 49.
Let f denote the group (Z/NZ)x/{ ± 1}. If m is coprime to N, we denote its image

in F by ym. Now V s ro(N)/F,(N) and this induces an action of F on X,(N).

Let us fix N = 25. The cyclic covering Xj(25) • AO(25) can be factored
through a curve B of genus 4 over <Q: we have

and B = A',(25)/72. The curve B has 5 rational cusps, a collection of 4 cusps of
degree 4 and one of 5 cusps of degree 5.

Kubert [7], following the method of [10], has shown that J(B)(Q) is finite for the
jacobian J(B) of B. The rational cusps also generate a group of order 7L We shall
show that \J{B){Q)\ = 71.

As we described in [6; p. 238], the number of points on B defined over a finite
field GF(q) can be computed by using the moduli properties of B.
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We denote by C^ the number of points of B in GF(p')- We have

Cl
2

l) = 5 and

C<2
2) = 5

C<2
3) = 2 0

C(
2

4) = 2 9

and

and

and

C<2>

Cf

C (
3

4 )

= 5,

= 20,

= 89.

The fifteen additional points on GF(8) arise from the curves with complex

multiplication by Z : there are 5 for each of the 3 conjugate invariants.

The 9 cusps are rational in GF(16) and the other 20 points correspond to complex

multiplication by Z . The 15 additional points on GF(27) are from

complex multiplication by Z while the 80 others on GF(81) arise

from curves with complex multiplication by 1\_J — 56], Z[^/ —14] and
Z[5(l+V-H)/2].

Let F(y) be the function defined in Section 1. Then for the curve B at q = 2,

F(y) =
so that

F(3) = |J(B)(GF(2))| = 71 .
At q = 3 we have

F(y) = / + j/3-14j/2-14}/ + 31 ,
so that

F(4) = \J{B)(G¥{3))\ = 71.

It follows easily then that J{B)(Q) = 71.
If B were hyperelliptic then it would have at most 2(8 + 1) points on GF(8); since

C(
2
3) = 20 it follows that B is not hyperelliptic.

THEOREM 2. There are no non-cusp points of degree 2 on ^(25).

Proof. Let P be a point of degree 2 on X, (25) and let P' be its image on B. Then
P' is also a non-cusp point of degree 1 or 2. If the degree is 1 let Q be any point of
degree 1 on B; otherwise let Q be the conjugate of P'. Since the only points of B over
GF(4) are the reductions of rational cusps, there are cusps Pl and P2 such that P', Q
have the same reduction modulo 2 as P1 and P2. So P' + Q — 2PX and Pi+P2 — 2PK

reduce modulo 2 to the same point of J(B)(GF(2)); since |J(J5)(Q)| = 71, reduction
modulo 2 is injective on J(B)(Q), and so P' + Q-2PK and Px +P2-2PK are the same
point of J(B)(Q). So P' + Q is linearly equivalent to P{ +P2; as they are different and
B is not hyperelliptic this is not possible.

21

Suppose now that we fix N = 49. The cyclic covering Xj(49)
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factors through a curve A defined over Q,

where A = Xl(49)/yl and is of genus 3. The curve A possesses 3 cusps rational over
Q, 3 conjugate ones in a cubic field and 3 collections of 6 cusps rational in fields of
degree 6.

We can describe A as H/V^ where

- 1 3

so that I ) has the same effect as y\ on XX{A9). It turns out that F^ is

conjugate to the Kleinian group F(7). In fact, if U = ( 1, then

r; = ur(i)u~l = ro(49)nr1(7).

The curve A is thus a Q-descent of X(l) which is birationally isomorphic to it
over Q>( ^/l). It is well known (Fadeev [1]) that X(l) can be defined by the equation

+ x = 0,

and that it is birationally isomorphic to

x*( l -x) = y1

over Q(l/i). Furthermore if J(7) is the jacobian of ^(7), then |J(7)(Q( ^/1))| is finite.
We therefore have that, if J{A) is the jacobian of A, then J(A)(Q) is finite.

As in the case of B we have for A that C(
2
n = 3 while C(

2
2) = 5 and C(

2
3) = 24; the

two non-cusp points on GF(4) come from the supersingular invariant and are
ramified over ^ ( 4 9 ) while those in GF(8) are all the cusps. For q = 2,

F(y) = y3-6y+5 = (y- l)(3;
2 + y-5)

so that

Again since C(
2
3) = 24, we see that A is not hyperelliptic.

The rational cusps of A generate a group of order 7 on J(A){Q); this can be seen
by using the method of Ogg [12].

Finally we note that the only cusps of A rational in GF(3) and GF(9) are the 3
rational cusps. Three of the remaining are rational in GF(27) and the rest in GF(36)
since the residue degree of 3 is 6 in Q( ^/

THEOREM 3. There are no non-cusp points of degree 2 on Ar
1(49).

Proof. Let P be a non-cusp point of degree 2 on X,(49). Then its reduction
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modulo 3 on ^ ( 4 9 ) is a cusp. This follows from the fact that by the Riemann
hypothesis no elliptic curve defined over GF(9) can have a torsion point of order 49
rational in GF(9) and that XX(N) is a fine moduli scheme for N > 3.

So let P' be the projection on A. The reduction of P' in GF(9) is rational in GF(9)
and therefore a cusp. Let Q be defined in a way similar to that in Theorem 2 and let.
P, and P2 be cusps with the same reduction as P' and Q.

Since 3 does not divide |J(/4)(Q)| the reduction of J(A) modulo 3 is injective.
However the class of P' + Q — Pl—P2 reduces to the zero class. Hence P' + Q is
linearly equivalent to Pl+P2. As P' is different from either Px or P2 and A is not
hyperelliptic we get a contradiction.

This completes the proof of the theorem.
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