CORRIGENDUM: THE MODULAR CURVE X_0 (169) AND RATIONAL ISOGENY

M. A. KENKU

The error arose from equation (2) (in [2]) which should have read

$$XY\{X^{12} + X^{11}Y + \dots + Y^{12} + \dots + 124852(X+Y) + 15145\} - 13 = 0.$$
 (2)

Consequently, the only possible values of X and Y modulo 3, rational over \mathbb{F}_3 , are $X \equiv \pm 1(3)$ and $X \equiv Y(3)$. Since $W = W_{169}$ permutes X and Y, these two points are fixed by W. The modular invariant corresponding to them is the supersingular invariant j = 0 in characteristic 3.

As in [1], we calculated the characteristic polynomial of the Hecke operator T_p for p = 2and 3. The polynomial for Τ, is $(X^{3}-2X^{2}-X+1)(X^{3}+2X^{2}-X-1)(X^{2}-3),$ and that for T_{λ} is $(X^3 + 2X^2 - X - 1)^2(X - 2)^2$. From these it is clear that the Eisenstein quotient $J^{(7)} = \tilde{J}_0(169)$ has Mordell–Weil group of order 7 over \mathbb{Q} which is generated by the image of the class of the divisor $P_0 - P_{\infty}$. Also the reduction homomorphism on $J^{(7)}(\mathbb{Q})$ is injective modulo 2, 3 and 13.

Let $P \in Y_0(169)(\mathbb{Q})$. Since the elliptic curve in a rational pair (E, A) corresponding to P has potentially good reduction modulo 3, the image of the divisor class P - WP on $J^{(7)}$ reduces to 0 modulo 3. Hence P cannot reduce to P_0/\mathbb{F}_2 or P_{∞}/\mathbb{F}_2 modulo 2, or to P_0/\mathbb{F}_{13} or $P_{\infty}/\mathbb{F}_{13}$ modulo 13.

Consequently, the only possibilities for X and Y are

(i) $X = Y = \varepsilon 13^r/m$,

(ii) $X = 13Y = \epsilon 13/m$,

where $\varepsilon = \pm 1$, r is an integer and m is a positive integer divisible only by primes p congruent to 1 modulo 13. Both cases are easily dismissed.

References

- M. A. Kenku, "The modular curves X₀(65) and X₀(91) and rational isogeny", Math. Proc. Cambridge Philos. Soc., 87 (1980), 15-20.
- M. A. Kenku, "The modular curve X₀(169) and rational isogeny", J. London Math. Soc. (2), 22 (1980), 239-244.

School of Mathematics, Institute for Advanced Study, Princeton, New Jersey 08540, U.S.A.

Received 5 December, 1980.