CORRIGENDUM:
 THE MODULAR CURVE X_{0} (169) AND RATIONAL ISOGENY

M. A. KENKU

The error arose from equation (2) (in [2]) which should have read

$$
\begin{equation*}
X Y\left\{X^{12}+X^{11} Y+\ldots+Y^{12}+\ldots+124852(X+Y)+15145\right\}-13=0 \tag{2}
\end{equation*}
$$

Consequently, the only possible values of X and Y modulo 3 , rational over \mathbb{F}_{3}, are $X \equiv \pm 1(3)$ and $X \equiv Y(3)$. Since $W=W_{169}$ permutes X and Y, these two points are fixed by W. The modular invariant corresponding to them is the supersingular invariant $j=0$ in characteristic 3 .

As in [1], we calculated the characteristic polynomial of the Hecke operator T_{p} for $p=2$ and 3. The polynomial for T_{2} is $\left(X^{3}-2 X^{2}-X+1\right)\left(X^{3}+2 X^{2}-X-1\right)\left(X^{2}-3\right)$, and that for T_{3} is $\left(X^{3}+2 X^{2}-X-1\right)^{2}(X-2)^{2}$. From these it is clear that the Eisenstein quotient $J^{(7)}=J_{0}(169)$ has Mordell-Weil group of order 7 over \mathbb{Q} which is generated by the image of the class of the divisor $P_{0}-P_{\infty}$. Also the reduction homomorphism on $J^{(7)}(\mathbb{Q})$ is injective modulo 2,3 and 13 .

Let $P \in Y_{0}(169)(\mathbb{Q})$. Since the elliptic curve in a rational pair (E, A) corresponding to P has potentially good reduction modulo 3, the image of the divisor class $P-W P$ on $J^{(7)}$ reduces to 0 modulo 3. Hence P cannot reduce to P_{0} / \mathbb{F}_{2} or $P_{\infty} / \mathbb{F}_{2}$ modulo 2 , or to P_{0} / \mathbb{F}_{13} or $P_{\infty} / \mathbb{F}_{13}$ modulo 13 .

Consequently, the only possibilities for X and Y are
(i) $X=Y=\varepsilon 13^{r} / m$,
(ii) $X=13 Y=\varepsilon 13 / \mathrm{m}$,
where $\varepsilon= \pm 1, r$ is an integer and m is a positive integer divisible only by primes p congruent to 1 modulo 13. Both cases are easily dismissed.

References

1. M. A. Kenku, "The modular curves $X_{0}(65)$ and $X_{0}(91)$ and rational isogeny", Math. Proc. Cambridge Philos. Soc., 87 (1980), 15-20.
2. M. A. Kenku, "The modular curve $X_{0}(169)$ and rational isogeny", J. London Math. Soc. (2), 22 (1980), 239-244.

School of Mathematics,
Institute for Advanced Study,
Princeton,
New Jersey 08540,
U.S.A.

