M. A. KENKU

1. Introduction

Let N be an integer ≥ 1 . The affine modular curve $Y_0(N)$ parametrizes isomorphism classes of pairs $(E; C_N)$ where E is an elliptic curve defined over \mathbb{C} , the field of complex numbers, and C_N is a cyclic subgroup of E of order N. The compactification $X_0(N)$ is an algebraic curve defined over \mathbb{Q} .

Recently Mazur [6] proved a very important theorem on rational points on the modular curves $X_0(N)$, listing those primes N for which the curve has non-cuspidal rational points. The question of isogenies for composite N, rational over Q, will be settled if one determines $X_0(N)(Q)$ for all N which are minimal of positive genus. In view of the articles [2, 3, 6] the outstanding cases are N = 169 and 125. We show here that $Y_0(169)(Q)$ is empty.

By the recent work of Berkovic [1] it is known that the Eisenstein quotient $J_0^{(7)}(169)$ has Mordell-Weil rank 0 over \mathbb{Q} . It then follows that $X_0(169)(\mathbb{Q})$ is finite. That result also enables us to apply a theorem of Mazur to show that, for a rational pair (E, C_N) corresponding to a rational point on $X_0(169)$, E has potentially good reduction at all primes except possibly 2, 13 and those primes $n \equiv 1$ (13).

We construct an affine model of the curve making use of functions which are essentially modular units. The restriction on the primes at which E has potentially bad reduction translates into a similar restriction on the prime factors of the coordinate functions of our model. It is then deduced from this that $Y_0(169)(\mathbb{Q})$ is empty.

2. Preliminaries

As in the previous papers, let η be the modular form of dimension $-\frac{1}{2}$ given by

$$\eta(z) = q^{1/24} \prod (1 - q^n)$$

where $q = \exp(2\pi i z)$. The following lemma of Newmann [8] is well known.

LEMMA 1. The expression $\prod_{d|n} \eta(dz)^{r(d)}$ (where $r(d) \in \mathbb{Z}$) is a function of $X_0(N)$ so long as (i) $\sum_{d|n} r(d) = 0$, (ii) $\prod_{d|n} d^{r(d)}$ is a square, and (iii) $\prod_{d|n} \eta(dz)^{r(d)}$ has integral order at every cusp of $X_0(N)$.

For an arbitrary positive integer m, let G(m) denote the multiplicative group of units of the ring of congruence classes modulo m. The following lemma is well-known.

Received 10 July, 1979; revised 9 November, 1979.

LEMMA 2. (i) $G(p^r)$ is cyclic of order $(p-1)p^{r-1}$ if p is an odd prime, and r is a positive integer.

(ii) $G(2^r) = \mathbb{Z}_2 \times \mathbb{Z}_{2^{r-2}}$.

The following theorem of Ogg [9] about cusps of $X_0(N)$ is very useful.

LEMMA 3. For each $d \mid N$, and t = (d, N/d) we have $\phi(t)$ conjugate cusps $\begin{pmatrix} x \\ d \end{pmatrix}$ of $X_0(N)$, each with ramification degree e = t in $X_1(N) \rightarrow X_0(N)$ and these are all the cusps of $X_0(N)$. In particular all cusps are rational if N or N/2 is a square free integer.

Berkovic [1] proved the following theorem.

LEMMA 4. If m is a prime number different from 2, 3, 5, 11 and h = (m-1, 12) and 12 = hq then for every $p \mid (m+1)/2q$, the ideal $I + pT \neq T$ and the group $J_{m^2}^{(p)}(\mathbb{Q})$ is finite.

In the statement above, T is the Hecke algebra of $J_0(N)$ and I is the Eisenstein ideal.

LEMMA 5. Let $N = q^2$ or q^3 where q is an odd prime. Let n be an odd prime which is different from q and such that $n \neq 1(q)$.

Suppose that E/\mathbb{Q} is an elliptic curve possessing a \mathbb{Q} -rational cyclic group C_N of order N. Let $x = j(E; C_N)$ belong to $Y_0(N)(\mathbb{Q})$. Suppose there exists an optimal quotient $f: J_0(N)^{new} \to A$ such that f(x) is of finite order in $A(\mathbb{Q})$. (This is necessarily true if the Mordell–Weil group $A(\mathbb{Q})$ is finite.) Then E has potentially good reduction at n.

Proof. Suppose that E has potentially bad reduction at n. Then the point x specialises to one of the cusps at n. Let P_0 , P_{∞} denote the unitary cusps which are rational. We assert that either x specialises to the reduction of P_0 or that of P_{∞} .

Suppose we take first the case $N = q^2$. Then besides P_0 and P_{∞} there are q-1 other cusps P_i , i = 1, ..., q-1 which are rational in $K = \mathbb{Q}(\xi_q)$, the cyclotomic field of q-th roots of unity, and which are conjugate by Lemma 3.

Since $n \not\equiv 1 \pmod{q}$, then the reduction \tilde{P}_i of P_i , i = 1, ..., q-1 are not $\mathbb{Z}/p\mathbb{Z}$ rational; so $\tilde{x} \neq \tilde{P}_i$.

The argument for $N = q^3$ is similar. The rest of the proof now follows as in Corollary 4.3 of [6].

3. The modular curve $X_0(169)$

Consider the functions

$$X(\omega) = \frac{13\eta^2(169\omega)}{\eta^2(13\omega)}, \qquad Y(\omega) = \frac{\eta^2(\omega)}{\eta^2(13\omega)}.$$

Both functions satisfy conditions (i) and (ii) of Lemma 1. Let $j(\omega)$ be the classical modular invariant with $j(\sqrt{-1}) = 1728$. It is easy to show that the scheme of zeros

of X, Y, $j(\omega)$ and $j(13\omega)$ is as follows:

$$\begin{array}{cccccccc} P_0 & P_i & P_{\infty} \\ X & -1 & -1 & 13 \\ Y & 13 & -1 & -1 \\ j(\omega) & -169 & -1 & -1 \\ j(13\omega) & -13 & -13 & -13 \end{array};$$

X and Y therefore also satisfy condition (iii).

Now let

$$f(\tau) = \frac{13\eta^2(13\tau)}{\eta^2(\tau)}, \qquad g(\tau) = \frac{\eta^2(\tau/13)}{\eta^2(\tau)}.$$

It is shown on page 62 of [4] that $j(\tau) = F(T)/T$ where $T = f(\tau)$ or $g(\tau)$ and

$$F(T) = (T^{2} + 5T + 13)(T^{4} + 7T^{3} + 20T^{2} + 19T + 1)^{3}.$$

Suppose we put $\tau = 13\omega$; then we have $j(13\omega) = F(X)/X = F(Y)/Y$. Hence

$$YF(X) - XF(Y) = 0.$$
⁽¹⁾

Since X and Y are of degree 13 in $\mathbb{Q}(X_0(169))$ it is clear that

$$\mathbb{Q}(X, Y) = \mathbb{Q}(X_0(169))$$

especially as X does not belong to $\mathbb{Q}(Y) = \mathbb{Q}(X_0(13))$. Equation (1) has X - Y as a factor. The other factor

$$XY\{X^{12} + X^{11}Y + \dots + 15145(X+Y)\} - 13 = 0$$
⁽²⁾

is irreducible and is the equation of an affine model of $X_0(169)$.

The less complex equation (1) will be used most of the time but we make use of (2) to establish a congruence condition modulo 3 on X and Y.

THEOREM 1. The curve $X_0(169)(\mathbb{Q})$ contains only two points which are the unitary cusp P_0 and P_{∞} .

Proof. Let $x = j(E; C_{169})$ belong to $Y_0(169)(\mathbb{Q})$. By Lemma 5, the curve E has potentially good reduction at all primes p except perhaps for p = 2, 13 and those $p \equiv 1(13)$ at which E reduces to one of the $P_{i,s}$, i = 1, ..., 12. Consequently, if ω_0 belonging to the upper half plane H is a representative of the point on the orbit space $H/\Gamma_0(169)$ corresponding to x, then the denominator of $j(\omega_0)$ has only 2, 13 and $p \equiv 1(13)$ as possible prime factors. Since $j(13\omega_0)$ is the modular invariant of an elliptic curve which is isogenous to E by an isogeny of order 13, the denominators of $j(\omega_0)$ and $j(13\omega_0)$ have the same prime factors. As $j(13\omega) = F(X)/X = F(Y)/Y$ it follows that the only possible prime factors of the numerators and denominators of X are Y are 2, 13 and primes $p \equiv 1(13)$.

Suppose that R is the integral closure of $\mathbb{Z}[j]$ in $\mathbb{Q}(X_0(169))$. We note that X and Y are units in R[1/13].

Suppose then that 2 divides the denominator of $j(13\omega_0)$. Since the reduction of the $P_{i,s}$ modulo a prime ideal dividing 2 is not rational over \mathbb{F}_2 , we know that x cannot reduce to any of them modulo 2. So x reduces to the reduction of either P_0 or P_{∞} modulo 2.

Suppose that 2 divides the denominator of X. This implies that X specializes to ∞ at 2. Since X has a pole at P_0 , while Y has a zero, we have that 2 divides the numerator of Y. It is easy to see from equation 1 (or by applying Theorem 9 and preceeding results of [5]) that if 2", for a positive integer n, exactly divides the denominator of X, that 2^{13n} divides the numerator of Y and vice versa.

Similarly if p is a prime $\equiv 1(13)$ and divides the denominator of $j(13\omega_0)$ then x reduces modulo p to the reduction of one of the $P_{i,s}$. The prime p then divides the denominator of X and Y to the same power since X and Y have poles at the $P_{i,s}$.

On the other hand, it is possible for the prime 13 to divide the numerator of X and neither the numerator nor the denominator of Y and vice versa. Although this is possible, 13^2 does not divide the numerator of X. Before we examine the possible cases we make a useful observation: E has a potentially good reduction at 3, and hence 3 divides neither the numerator nor the denominator of X and Y. By reducing equation (2) modulo 3 it is easy to see that the only possible solutions for X and Y modulo 3, rational over \mathbb{F}_3 are $X \equiv \pm 1(3)$ and $X \not\equiv Y(3)$.

Finally we note that the Atkin-Lehner involution W_{169} permutes X and Y. From the remarks above, we have only the following cases:

- (i) $X = \varepsilon_1/2^n \cdot 13^r \cdot m$; $Y = \varepsilon_2 2^{13n} \cdot 13^{13r+1}/m$,
- (ii) $X = \varepsilon_1 2^{13n} / 13^r \cdot m$; $Y = \varepsilon_2 1 3^{13r+1} / 2^n \cdot m$,
- (iii) $X = \varepsilon_1 \cdot 13^r \cdot 2^{13n}/m; Y = \varepsilon_2 13^r/2^n \cdot m,$
- (iv) $X = \varepsilon_1 13 \cdot 2^{13n}/m$; $Y = \varepsilon_2/2^n \cdot m$,

(v)
$$X = \varepsilon_1 2^{13n} / 13^r \cdot m$$
; $Y = \varepsilon_2 / m \cdot 13^r \cdot 2^n$,

where $\varepsilon_i = \pm 1$ for i = 1 and 2, both r and n are non-negative integers and m is either 1 or a finite product of primes $\equiv 1(13)$.

We recall that

$$\begin{split} F(T) &= T^{14} + 26T^{13} + 325T^{12} + 2548T^{11} + 13832T^{10} + 54340T^9 + 157118T^8 \\ &+ 333580T^7 + 509366T^6 + 534820T^5 + 354536T^4 + 124852T^3 + 15145T^2 + 476T + 13 \,, \end{split}$$

and note that all but the first and the coefficient of T are divisible by 13. Since $X \neq Y \mod (3)$ it is clear that $\varepsilon_1 \neq \varepsilon_2$ in all the five cases. In case (1)

$$\begin{split} \varepsilon_2 \{ 1 + 26\varepsilon_1 (2^n \cdot 13^r \cdot m) + \ldots + 2^{14n} \cdot 13^{14r+1} \cdot m^{14} \} \\ &= \varepsilon_1 \{ 13^{(14r+1)13} \cdot 2^{14 \times 13n} + 2\varepsilon_2 13^{(13r+1)13} \cdot 2^{13 \times 13n} + \ldots + m^{14} \} \,. \end{split}$$

Hence, 2^{n+1} divides $m^{14}\varepsilon_2 - \varepsilon_1$. Since $\varepsilon_1 \neq \varepsilon_2$, we have n = 0. This implies that 13 divides $m^{14} + 1$. This is impossible since $m \equiv 1(13)$. So case (i) is impossible. For case (ii) we have

$$\varepsilon_{2} \{ 2^{13n \times 14} + 26\varepsilon_{1} (2^{13 \times 13n} \cdot 13^{r} \cdot m) + \dots + 13^{14r+1} \cdot m^{14} \}$$

= $\varepsilon_{1} \{ 13^{(14r+1) \times 13} + 2\varepsilon_{2} (13^{13(13r+1)} \cdot 2^{n} \cdot m) + \dots + 2^{14n} \cdot m^{14} \}.$

Hence 13 divides $2^{14n} \{\varepsilon_1 m^{14} - \varepsilon_2 2^{14n \times 12}\}$. This is impossible since $\varepsilon_1 \neq \varepsilon_2$ and both components are congruent to 1(13).

In case (iii) equation (1) reduces to

$$\varepsilon_1 \{ 2^{13n \times 14} 13^{14r-1} + 26\varepsilon_2 (2^{13n \times 13} \cdot 13^{13r-1} \cdot m) + \dots + m^{14} \}$$

= $\varepsilon_2 \{ 13^{14r-1} + 26\varepsilon_1 (2^n \cdot 13^{13r-1} \cdot m) + \dots + 2^{14n} \cdot m^{14} \}.$

This shows that 2^{n+1} divides $m^{14}\varepsilon_1 - 13^{14r-1}\varepsilon_2$. Since $\varepsilon_1 \neq \varepsilon_2$ and $m^{14} \equiv 1(8)$ while $13^{14r-1} \equiv 5(8)$, it follows that n = 0. This implies that *m* divides $2 \times 13^{14r-1}$ which is impossible; so case (iii) is also impossible.

In respect of case (iv) we have

$$\varepsilon_{2} \{ 2^{13n \times 14} \cdot 13^{13} + 26\varepsilon_{1} (2^{13n \times 13} \cdot 13^{12} m) + \dots + m^{14} \}$$

= $\varepsilon_{1} \{ 1 + 26\varepsilon_{2} (2^{n} \cdot m) + \dots + 2^{14n} \cdot 13 \cdot m^{14} \}.$

Again 2^{n+1} divides $m^{14}\varepsilon_2 - \varepsilon_1$. Since $\varepsilon_1 \neq \varepsilon_2$ then n = 0. But then 13 will divide $m^{14} + 746m^{13} + 1$. Since $m \equiv 1(13)$ and $746 \equiv 5(13)$ this is impossible.

Finally in case (v) we have

$$\varepsilon_{2} \{ 2^{13n \times 14} + 26\varepsilon_{1} (2^{13n \times 13} \cdot 13^{r} \cdot m) + \dots + 13^{14r+1} \cdot m^{14} \}$$

= $\varepsilon_{1} \{ 1 + 26\varepsilon_{2} (2^{n} \cdot 13^{r} \cdot m) + \dots + 13^{14r+1} \cdot m^{14} \cdot 2^{14n} \}.$

This implies that 2^{n+1} divides $13^{14r+1} \cdot m^{14}\varepsilon_2 - \varepsilon_1$. Again since $\varepsilon_1 \neq \varepsilon_2$, we have n = 0; if this is so, then 13 divides 2. This is absurd.

This concludes the proof of the theorem.

Remark. In the proof of Theorem 7 of [3] we did not explain why $(u) - (\omega(u))$ is linearly equivalent to $(p') - (\omega(p'))$ if it is of order 7. This follows from the fact the $X_0(91)$ has exactly four points (the unitary cusps) rational over \mathbb{F}_2 . This can be quickly seen from the characteristic polynomial of T_2 .

References

- 1. B. G. Berkovic, "The rational points on the jacobians of modular curves", Math. USSR Sb., 30 (1976), 478-500.
- 2. M. A. Kenku, "The modular curve $X_0(39)$ and rational isogeny", Math. Proc. Cambridge Philos. Soc., 85 (1979), 21–23.
- M. A. Kenku, "The modular curves X₀(65) and X₀(91) and rational isogeny", Math. Proc. Cambridge Philos. Soc., 87 (1980), 15-20.

- 4. F. Klein and R. Fricke, "Vorlesungen über die Theorie der elliptischen Modul-funktionen". Vol. 2 (Chelsea).
- 5. D. Kubert and S. Lang, "Units in Modular Function Field I", Math. Ann., 218 (1975), 67-96.
- 6. B. Mazur, "Rational isogenies of prime degree", *Invent. Math.*, 44 (1978), 129–162.
 7. B. Mazur, "Modular curves and the Eisenstein ideal", Publications Mathématiques 47 (Institut des Hautes Études Scientifiques, Paris, 1978), pp. 33-186.
- M. Newmann, "Construction and application of a class of modular functions", Proc. London Math. Soc., (3), 7 (1957), 331-350, 9 (1959), 373-387.
- 9. A. P. Ogg, "Rational points on certain elliptic modular curves", Proceedings Symposia in Pure Mathematics 24 (American Mathematical Society, Providence, R.I., 1973), pp. 221-231.

Department of Mathematics, University of Ibadan, Nigeria.

244