## THE MODULAR CURVE $X_{0}(169)$ AND RATIONAL ISOGENY

M. A. KENKU

## 1. Introduction

Let $N$ be an integer $\geqslant 1$. The affine modular curve $Y_{0}(N)$ parametrizes isomorphism classes of pairs $\left(E ; C_{N}\right)$ where $E$ is an elliptic curve defined over $\mathbb{C}$, the field of complex numbers, and $C_{N}$ is a cyclic subgroup of $E$ of order $N$. The compactification $X_{0}(N)$ is an algebraic curve defined over $\mathbb{Q}$.

Recently Mazur [6] proved a very important theorem on rational points on the modular curves $X_{0}(N)$, listing those primes $N$ for which the curve has non-cuspidal rational points. The question of isogenies for composite $N$, rational over $\mathbb{Q}$, will be settled if one determines $X_{0}(N)(\mathbb{Q})$ for all $N$ which are minimal of positive genus. In view of the articles $[2,3,6]$ the outstanding cases are $N=169$ and 125 . We show here that $Y_{0}(169)(\mathbb{Q})$ is empty.

By the recent work of Berkovic [1] it is known that the Eisenstein quotient $J_{0}^{(7)}(169)$ has Mordell-Weil rank 0 over $\mathbb{Q}$. It then follows that $X_{0}(169)(\mathbb{Q})$ is finite. That result also enables us to apply a theorem of Mazur to show that, for a rational pair $\left(E, C_{N}\right)$ corresponding to a rational point on $X_{0}(169), \quad E$ has potentially good reduction at all primes except possibly 2,13 and those primes $n \equiv 1$ (13).

We construct an affine model of the curve making use of functions which are essentially modular units. The restriction on the primes at which $E$ has potentially bad reduction translates into a similar restriction on the prime factors of the coordinate functions of our model. It is then deduced from this that $Y_{0}(169)(\mathbb{Q})$ is empty.

## 2. Preliminaries

As in the previous papers, let $\eta$ be the modular form of dimension $-\frac{1}{2}$ given by

$$
\eta(z)=q^{1 / 24} \Pi\left(1-q^{n}\right)
$$

where $q=\exp (2 \pi i z)$. The following lemma of Newmann [8] is well known.
Lemma 1. The expression $\prod_{d \mid n} \eta(d z)^{r(d)}($ where $r(d) \in \mathbb{Z})$ is a function of $X_{0}(N)$ so long as (i) $\sum_{d \mid n} r(d)=0$, (ii) $\prod_{d \mid n} d^{r(d)}$ is a square, and (iii) $\prod_{d \mid n} \eta(d z)^{r(d)}$ has integral order at every cusp of $X_{0}(N)$.

For an arbitrary positive integer $m$, let $G(m)$ denote the multiplicative group of units of the ring of congruence classes modulo $m$. The following lemma is wellknown.

[^0]Lemma 2. (i) $G\left(p^{r}\right)$ is cyclic of order $(p-1) p^{r-1}$ if $p$ is an odd prime, and $r$ is a positive integer.
(ii) $G\left(2^{r}\right)=\mathbb{Z}_{2} \times \mathbb{Z}_{2^{r-2}}$.

The following theorem of Ogg [9] about cusps of $X_{0}(N)$ is very useful.
Lemma 3. For each $d \mid N$, and $t=(d, N / d)$ we have $\phi(t)$ conjugate cusps $\binom{x}{d}$ of $X_{0}(N)$, each with ramification degree $e=t$ in $X_{1}(N) \rightarrow X_{0}(N)$ and these are all the cusps of $X_{0}(N)$. In particular all cusps are rational if $N$ or $N / 2$ is a square free integer.

Berkovic [1] proved the following theorem.
Lemma 4. If $m$ is a prime number different from $2,3,5,11$ and $h=(m-1,12)$ and $12=h q$ then for every $p \mid(m+1) / 2 q$, the ideal $I+p T \neq T$ and the group $J_{m^{2}}^{(p)}(\mathbb{Q})$ is finite.

In the statement above, $T$ is the Hecke algebra of $J_{0}(N)$ and $I$ is the Eisenstein ideal.

Lemma 5. Let $N=q^{2}$ or $q^{3}$ where $q$ is an odd prime. Let $n$ be an odd prime which is different from $q$ and such that $n \not \equiv 1(q)$.

Suppose that $E / \mathbb{Q}$ is an elliptic curve possessing a $\mathbb{Q}$-rational cyclic group $C_{N}$ of order $N$. Let $x=j\left(E ; C_{N}\right)$ belong to $Y_{0}(N)(\mathbb{Q})$. Suppose there exists an optimal quotient $f: J_{0}(N)^{\text {new }} \rightarrow A$ such that $f(x)$ is of finite order in $A(\mathbb{Q})$. (This is necessarily true if the Mordell-Weil group $A(\mathbb{Q})$ is finite.) Then $E$ has potentially good reduction at $n$.

Proof. Suppose that $E$ has potentially bad reduction at $n$. Then the point $x$ specialises to one of the cusps at $n$. Let $P_{0}, P_{\infty}$ denote the unitary cusps which are rational. We assert that either $x$ specialises to the reduction of $P_{0}$ or that of $P_{\infty}$.

Suppose we take first the case $N=q^{2}$. Then besides $P_{0}$ and $P_{\infty}$ there are $q-1$ other cusps $P_{i}, \quad i=1, \ldots, q-1$ which are rational in $K=\mathbb{Q}\left(\xi_{q}\right)$, the cyclotomic field of $q$-th roots of unity, and which are conjugate by Lemma 3.

Since $n \not \equiv 1(\bmod q)$, then the reduction $\widetilde{P}_{i}$ of $P_{i}, \quad i=1, \ldots, q-1$ are not $\mathbb{Z} / p \mathbb{Z}$ rational; so $\tilde{x} \neq \tilde{P}_{i}$.

The argument for $N=q^{3}$ is similar. The rest of the proof now follows as in Corollary 4.3 of [6].
3. The modular curve $X_{0}(169)$

Consider the functions

$$
X(\omega)=13 \eta^{2}(169 \omega) / \eta^{2}(13 \omega), \quad Y(\omega)=\eta^{2}(\omega) / \eta^{2}(13 \omega)
$$

Both functions satisfy conditions (i) and (ii) of Lemma 1. Let $j(\omega)$ be the classical modular invariant with $j(\sqrt{-1})=1728$. It is easy to show that the scheme of zeros
of $X, Y, j(\omega)$ and $j(13 \omega)$ is as follows:

|  | $P_{0}$ | $P_{i}$ | $P_{\infty}$ |
| :---: | :---: | :---: | :---: |
| $X$ | -1 | -1 | 13 |
| $Y$ | 13 | -1 | -1 |
| $j(\omega)$ | -169 | -1 | -1 |
| $j(13 \omega)$ | -13 | -13 | -13 |$;$

$X$ and $Y$ therefore also satisfy condition (iii).
Now let

$$
f(\tau)=13 \eta^{2}(13 \tau) / \eta^{2}(\tau), \quad g(\tau)=\eta^{2}(\tau / 13) / \eta^{2}(\tau)
$$

It is shown on page 62 of [4] that $j(\tau)=F(T) / T$ where $T=f(\tau)$ or $g(\tau)$ and

$$
F(T)=\left(T^{2}+5 T+13\right)\left(T^{4}+7 T^{3}+20 T^{2}+19 T+1\right)^{3}
$$

Suppose we put $\tau=13 \omega$; then we have $j(13 \omega)=F(X) / X=F(Y) / Y$. Hence

$$
\begin{equation*}
Y F(X)-X F(Y)=0 . \tag{1}
\end{equation*}
$$

Since $X$ and $Y$ are of degree 13 in $\mathbb{Q}\left(X_{0}(169)\right)$ it is clear that

$$
\mathbb{Q}(X, Y)=\mathbb{Q}\left(X_{0}(169)\right)
$$

especially as $X$ does not belong to $\mathbb{Q}(Y)=\mathbb{Q}\left(X_{0}(13)\right)$. Equation (1) has $X-Y$ as a factor. The other factor

$$
\begin{equation*}
X Y\left\{X^{12}+X^{11} Y+\ldots+15145(X+Y)\right\}-13=0 \tag{2}
\end{equation*}
$$

is irreducible and is the equation of an affine model of $X_{0}(169)$.
The less complex equation (1) will be used most of the time but we make use of (2) to establish a congruence condition modulo 3 on $X$ and $Y$.

Theorem 1. The curve $X_{0}(169)(\mathbb{Q})$ contains only two points which are the unitary cusp $P_{0}$ and $P_{\omega}$.

Proof. Let $x=j\left(E ; C_{169}\right)$ belong to $Y_{0}(169)(\mathbb{Q})$. By Lemma 5, the curve $E$ has potentially good reduction at all primes $p$ except perhaps for $p=2,13$ and those $p \equiv 1(13)$ at which $E$ reduces to one of the $P_{i, s}, \quad i=1, \ldots, 12$. Consequently, if $\omega_{0}$ belonging to the upper half plane $H$ is a representative of the point on the orbit space $H / \Gamma_{0}(169)$ corresponding to $x$, then the denominator of $j\left(\omega_{0}\right)$ has only 2,13 and $p \equiv 1(13)$ as possible prime factors. Since $j\left(13 \omega_{0}\right)$ is the modular invariant of an elliptic curve which is isogenous to $E$ by an isogeny of order 13, the denominators of $j\left(\omega_{0}\right)$ and $j\left(13 \omega_{0}\right)$ have the same prime factors. As $j(13 \omega)=F(X) / X=F(Y) / Y$ it follows that the only possible prime factors of the numerators and denominators of $X$ are $Y$ are 2,13 and primes $p \equiv 1(13)$.

Suppose that $R$ is the integral closure of $\mathbb{Z}[j]$ in $\mathbb{Q}\left(X_{0}(169)\right)$. We note that $X$ and $Y$ are units in $R[1 / 13]$.

Suppose then that 2 divides the denominator of $j\left(13 \omega_{0}\right)$. Since the reduction of the $P_{i, s}$ modulo a prime ideal dividing 2 is not rational over $\mathbb{F}_{2}$, we know that $x$ cannot reduce to any of them modulo 2 . So $x$ reduces to the reduction of either $P_{0}$ or $P_{\infty}$ modulo 2.

Suppose that 2 divides the denominator of $X$. This implies that $X$ specializes to $\infty$ at 2 . Since $X$ has a pole at $P_{0}$, while $Y$ has a zero, we have that 2 divides the numerator of $Y$. It is easy to see from equation (or by applying Theorem 9 and preceeding results of [5]) that if $2^{\prime \prime}$, for a positive integer $n$, exactly divides the denominator of $X$, that $2^{13 n}$ divides the numerator of $Y$ and vice versa.

Similarly if $p$ is a prime $\equiv 1(13)$ and divides the denominator of $j\left(13 \omega_{0}\right)$ then $x$ reduces modulo $p$ to the reduction of one of the $P_{i, s}$. The prime $p$ then divides the denominator of $X$ and $Y$ to the same power since $X$ and $Y$ have poles at the $P_{i, s}$.

On the other hand, it is possible for the prime 13 to divide the numerator of $X$ and neither the numerator nor the denominator of $Y$ and vice versa. Although this is possible, $13^{2}$ does not divide the numerator of $X$. Before we examine the possible cases we make a useful observation: $E$ has a potentially good reduction at 3 , and hence 3 divides neither the numerator nor the denominator of $X$ and $Y$. By reducing equation (2) modulo 3 it is easy to see that the only possible solutions for $X$ and $Y$ modulo 3, rational over $\mathbb{F}_{3}$ are $X \equiv \pm 1(3)$ and $X \not \equiv Y(3)$.

Finally we note that the Atkin-Lehner involution $W_{169}$ permutes $X$ and $Y$.
From the remarks above, we have only the following cases:
(i) $X=\varepsilon_{1} / 2^{n} \cdot 13^{r} \cdot m ; \quad Y=\varepsilon_{2} 2^{13 n} \cdot 13^{13 r+1} / m$,
(ii) $X=\varepsilon_{1} 2^{13 n} / 13^{r} \cdot m ; \quad Y=\varepsilon_{2} 13^{13 r+1} / 2^{n} \cdot m$,
(iii) $X=\varepsilon_{1} \cdot 13^{r} \cdot 2^{13 n} / m ; Y=\varepsilon_{2} 13^{r} / 2^{n} \cdot m$,
(iv) $X=\varepsilon_{1} 13 \cdot 2^{13 n} / m ; \quad Y=\varepsilon_{2} / 2^{n} \cdot m$,
(v) $X=\varepsilon_{1} 2^{13 n} / 13^{r} \cdot m ; Y=\varepsilon_{2} / m \cdot 13^{r} \cdot 2^{n}$,
where $\varepsilon_{i}= \pm 1$ for $i=1$ and 2 , both $r$ and $n$ are non-negative integers and $m$ is either 1 or a finite product of primes $\equiv 1(13)$.

We recall that

$$
\begin{aligned}
& F(T)=T^{14}+26 T^{13}+325 T^{12}+2548 T^{11}+13832 T^{10}+54340 T^{9}+157118 T^{8} \\
& +333580 T^{7}+509366 T^{6}+534820 T^{5}+354536 T^{4}+124852 T^{3}+15145 T^{2}+476 T+13,
\end{aligned}
$$

and note that all but the first and the coefficient of $T$ are divisible by 13 .
Since $X \not \equiv Y \bmod$ (3) it is clear that $\varepsilon_{1} \neq \varepsilon_{2}$ in all the five cases. In case (1)

$$
\begin{aligned}
\varepsilon_{2}\left\{1+26 \varepsilon_{1}\left(2^{n} \cdot 13^{r} \cdot m\right)\right. & \left.+\ldots+2^{14 n} \cdot 13^{14 r+1} \cdot m^{14}\right\} \\
& =\varepsilon_{1}\left\{13^{(14 r+1) 13} \cdot 2^{14 \times 13 n}+2 \varepsilon_{2} 13^{(13 r+1) 13} \cdot 2^{13 \times 13 n}+\ldots+m^{14}\right\} .
\end{aligned}
$$

Hence, $2^{n+1}$ divides $m^{14} \varepsilon_{2}-\varepsilon_{1}$. Since $\varepsilon_{1} \neq \varepsilon_{2}$, we have $n=0$. This implies that 13 divides $m^{14}+1$. This is impossible since $m \equiv 1(13)$. So case (i) is impossible. For case (ii) we have

$$
\begin{aligned}
& \varepsilon_{2}\left\{2^{13 n \times 14}+26 \varepsilon_{1}\left(2^{13 \times 13 n} \cdot 13^{r} \cdot m\right)+\ldots+13^{14 r+1} \cdot m^{14}\right\} \\
&=\varepsilon_{1}\left\{13^{(14 r+1) \times 13}+2 \varepsilon_{2}\left(13^{13(13 r+1)} \cdot 2^{n} \cdot m\right)+\ldots+2^{14 n} \cdot m^{14}\right\}
\end{aligned}
$$

Hence 13 divides $2^{14 n}\left\{\varepsilon_{1} m^{14}-\varepsilon_{2} 2^{14 n \times 12}\right\}$. This is impossible since $\varepsilon_{1} \neq \varepsilon_{2}$ and both components are congruent to $1(13)$.

In case (iii) equation (1) reduces to

$$
\begin{aligned}
\varepsilon_{1}\left\{2^{13 n \times 14} 13^{14 r-1}+26 \varepsilon_{2}\left(2^{13 n \times 13}\right.\right. & \left.\left.\cdot 13^{13 r-1} \cdot m\right)+\ldots+m^{14}\right\} \\
& =\varepsilon_{2}\left\{13^{14 r-1}+26 \varepsilon_{1}\left(2^{n} \cdot 13^{13 r-1} \cdot m\right)+\ldots+2^{14 n} \cdot m^{14}\right\}
\end{aligned}
$$

This shows that $2^{n+1}$ divides $m^{14} \varepsilon_{1}-13^{14 r-1} \varepsilon_{2}$. Since $\varepsilon_{1} \neq \varepsilon_{2}$ and $m^{14} \equiv 1(8)$ while $13^{14 r-1} \equiv 5(8)$, it follows that $n=0$. This implies that $m$ divides $2 \times 13^{14 r-1}$ which is impossible; so case (iii) is also impossible.

In respect of case (iv) we have

$$
\begin{aligned}
& \varepsilon_{2}\left\{2^{13 n \times 14} \cdot 13^{13}+26 \varepsilon_{1}\left(2^{13 n \times 13} \cdot 13^{12} m\right)+\ldots+m^{14}\right\} \\
&=\varepsilon_{1}\left\{1+26 \varepsilon_{2}\left(2^{n} \cdot m\right)+\ldots+2^{14 n} \cdot 13 \cdot m^{14}\right\}
\end{aligned}
$$

Again $2^{n+1}$ divides $m^{14} \varepsilon_{2}-\varepsilon_{1}$. Since $\varepsilon_{1} \neq \varepsilon_{2}$ then $n=0$. But then 13 will divide $m^{14}+746 m^{13}+1$. Since $m \equiv 1(13)$ and $746 \equiv 5(13)$ this is impossible.

Finally in case (v) we have
$\varepsilon_{2}\left\{2^{13 n \times 14}+26 \varepsilon_{1}\left(2^{13 n \times 13} \cdot 13^{r} \cdot m\right)+\ldots+13^{14 r+1} \cdot m^{14}\right\}$

$$
=\varepsilon_{1}\left\{1+26 \varepsilon_{2}\left(2^{n} \cdot 13^{r} \cdot m\right)+\ldots+13^{14 r+1} \cdot m^{14} \cdot 2^{14 n}\right\}
$$

This implies that $2^{n+1}$ divides $13^{14 r+1} \cdot m^{14} \varepsilon_{2}-\varepsilon_{1}$. Again since $\varepsilon_{1} \neq \varepsilon_{2}$, we have $n=0$; if this is so, then 13 divides 2 . This is absurd.

This concludes the proof of the theorem.
Remark. In the proof of Theorem 7 of [3] we did not explain why $(u)-(\omega(u))$ is linearly equivalent to $\left(p^{\prime}\right)-\left(\omega\left(p^{\prime}\right)\right)$ if it is of order 7. This follows from the fact the $X_{0}(91)$ has exactly four points (the unitary cusps) rational over $\mathbb{F}_{2}$. This can be quickly seen from the characteristic polynomial of $T_{2}$.

## References

1. B. G. Berkovic, "The rational points on the jacobians of modular curves", Math. USSR Sb., 30 (1976), 478-500.
2. M. A. Kenku, "The modular curve $X_{0}(39)$ and rational isogeny", Math. Proc. Cambridge Philos. Soc., 85 (1979), 21-23.
3. M. A. Kenku, "The modular curves $X_{0}(65)$ and $X_{0}(91)$ and rational isogeny", Math. Proc. Cambridge Philos. Soc., 87 (1980), 15-20.
4. F. Klein and R. Fricke, "Vorlesungen über die Theorie der elliptischen Modul-funktionen". Vol. 2 (Chelsea).
5. D. Kubert and S. Lang, "Units in Modular Function Field I", Math. Ann., 218 (1975), 67-96.
6. B. Mazur, "Rational isogenies of prime degree", Invent. Math., 44 (1978), 129-162.
7. B. Mazur, "Modular curves and the Eisenstein ideal", Publications Mathematiques 47 (Institut des Hautes Études Scientifiques, Paris, 1978), pp. 33-186.
8. M. Newmann, "Construction and application of a class of modular functions", Proc. London Math. Soc., (3), 7 (1957), 331-350, 9 (1959), 373-387.
9. A. P. Ogg, "Rational points on certain elliptic modular curves", Proceedings Symposia in Pure Mathematics 24 (American Mathematical Society, Providence, R.I., 1973), pp. 221-231.

## Department of Mathematics,

University of Ibadan,
Nigeria.


[^0]:    Received 10 July, 1979; revised 9 November, 1979.

