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1. Introduction

Let N be an integer ^ 1. The affine modular curve Y0(N) parametrizes
isomorphism classes of pairs (E ; CN) where E is an elliptic curve defined over C, the
field of complex numbers, and CN is a cyclic subgroup of E of order N. The
compactification X0(N) is an algebraic curve defined over <Q>.

Recently Mazur [6] proved a very important theorem on rational points on the
modular curves X0(N), listing those primes N for which the curve has non-cuspidal
rational points. The question of isogenies for composite N, rational over Q, will be
settled if one determines X0(N)(Q) for all N which are minimal of positive genus. In
view of the articles [2, 3, 6] the outstanding cases are N = 169 and 125. We show
here that yo(169)(Q) is empty.

By the recent work of Berkovic [1] it is known that the Eisenstein quotient
J(

o
7)(169) has Mordell-Weil rank 0 over Q. It then follows that XO(169XQ) is finite.

That result also enables us to apply a theorem of Mazur to show that, for a rational
pair (E, CN) corresponding to a rational point on XO(169), E has potentially good
reduction at all primes except possibly 2, 13 and those primes n = 1 (13).

We construct an affine model of the curve making use of functions which are
essentially modular units. The restriction on the primes at which E has potentially
bad reduction translates into a similar restriction on the prime factors of the
coordinate functions of our model. It is then deduced from this that YO(169)(<Q>) is
empty.

2. Preliminaries

As in the previous papers, let n be the modular form of dimension — y given by

where q = exp (2niz). The following lemma of Newmann [8] is well known.

LEMMA 1. The expression J~[ rj(dz)r{d) (where r(d) e Z) is a function of X0(N) so
d\n

long as (i) £ r(d) = 0, (ii) J~] dr(d) is a square, and (iii) Y\ n{dz)r(d) has integral order at
d\n d\n d\n

every cusp of X0(N).

For an arbitrary positive integer m, let G(m) denote the multiplicative group of
units of the ring of congruence classes modulo m. The following lemma is well-
known.
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LEMMA 2. (i) G(pr) is cyclic of order (p—l)pr~1 if p is an odd prime, and r is a
positive integer.

(ii) G(2r) = Z2xZ2r_2.

The following theorem of Ogg [9] about cusps of X0(N) is very useful.

LEMMA 3. For each d\N, and t = (d, N/d) we have (f)(t) conjugate cusps ) of
W

X0(N), each with ramification degree e = t in XX(N) -+ X0{N) and these are all the

cusps ofX0(N). In particular all cusps are rational ifN or JV/2 is a square free integer.

Berkovic [1] proved the following theorem.

LEMMA 4. Ifm is a prime number different from 2, 3, 5,11 and h = (m — 1,12) and
12 = hq then for every p \ (m + l)/2q, the ideal I + pT =£ T and the group J${Q) is

finite.
In the statement above, T is the Hecke algebra of J0{N) and / is the Eisenstein

ideal.

LEMMA 5. Let N = q2 or q2 where q is an odd prime. Let n be an odd prime which
is different from q and such that n ^ l(q).

Suppose that E/Q is an elliptic curve possessing a Q-rational cyclic group CN of
order N. Let x = j(E ; CN) belong to Y0(N)(Q). Suppose there exists an optimal quotient
f : J0(N)new -*• A such that f(x) is of finite order in A(Q). (This is necessarily true if the
Mordell-Weil group A(Q) is finite.) Then E has potentially good reduction at n.

Proof Suppose that E has potentially bad reduction at n. Then the point x
specialises to one of the cusps at n. Let Po, PK denote the unitary cusps which are
rational. We assert that either x specialises to the reduction of Po or that of P^.

Suppose we take first the case N = q2. Then besides Po and PK there are q — \
other cusps Ph i = 1,..., q — 1 which are rational in K = Q(£q), the cyclotomic field
of q-th roots of unity, and which are conjugate by Lemma 3.

Since n # 1 (mod q), then the reduction Pt of Ph i = 1, ...,q — l are not Z/pZ
rational; so x ^ p..

The argument for N = q3 is similar. The rest of the proof now follows as in
Corollary 4.3 of [6].

3. The modular curve Ar
0(169)

Consider the functions

X((o) = 13>72(169co)A72(13co), Y(co) = rj2(a))/n2(tta>).

Both functions satisfy conditions (i) and (ii) of Lemma 1. Let j(co) be the classical
modular invariant with )(,/— 1) = 1728. It is easy to show that the scheme of zeros
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of X, Y, j(a>) and )(13co) is as follows:

X

Y

fa)
/(13o))

- 1

13

-169

- 1 3

Pi

- 1

- 1

- 1

- 1 3

Pa,

13

- 1

- 1

- 1 3 ;

X and y therefore also satisfy condition (iii).
Now let

f(x) = 13IJ2(13T)/IJ2(T), g(x) = >T(

It is shown on page 62 of [4] that j(r) = F{T)/T where T = f(x) or g{x) and

F(T) = (T2 + 5T + 13)(T4 + 7T3 + 20T2 + 19r + l)3.

Suppose we put x = 13co; then we have j(13w) = F(X)/X = F{Y)/Y. Hence

YF(X)-XF(Y) = 0 . (1)

Since X and Y are of degree 13 in Q(A'O(169)) it is clear that

Q(X, Y) = <Q(X0(169))

especially as X does not belong to Q(Y) = Q(Z0(13)). Equation (1) has X— Y as a
factor. The other factor

XY{X12 + XnY + ... + 15145(X+ y)}-13 = 0 (2)

is irreducible and is the equation of an affine model of Ar
0(169).

The less complex equation (1) will be used most of the time but we make use of (2)
to establish a congruence condition modulo 3 on X and Y.

THEOREM 1. The curve Ar
0(169)(Q) contains only two points which are the unitary

cusp Po and P^.

Proof. Let x = j(E ; C169) belong to yo(169)(Q). By Lemma 5, the curve E has
potentially good reduction at all primes p except perhaps for p = 2,13 and those
p = 1(13) at which E reduces to one of the Pis, i = 1,..., 12. Consequently, if a>0

belonging to the upper half plane H is a representative of the point on the orbit space
if/ro(169) corresponding to x, then the denominator of j(a>0) has only 2, 13 and
p = 1(13) as possible prime factors. Since j(\3a>0) is the modular invariant of an
elliptic curve which is isogenous to E by an isogeny of order 13, the denominators of
;(a;0) and j(13co0) have the same prime factors. As j(l3(o) = F(X)/X = F{Y)/Y it
follows that the only possible prime factors of the numerators and denominators of
X are Y are 2,13 and primes p = 1(13).
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Suppose that R is the integral closure of Z[/] in Q>(XO(169)). We note that X and
Y are units in /?[1/13].

Suppose then that 2 divides the denominator of ;(13a)0). Since the reduction of
the Pis modulo a prime ideal dividing 2 is not rational over F2, we know that .v
cannot reduce to any of them modulo 2. So x reduces to the reduction of either Po

or Pw modulo 2.
Suppose that 2 divides the denominator of X. This implies that X specializes to

00 at 2. Since X has a pole at Po, while Y has a zero, we have that 2 divides the
numerator of Y. It is easy to see from equation 1 (or by applying Theorem 9 and
preceeding results of [5]) that if 2", for a positive integer n, exactly divides the
denominator of X, that 213" divides the numerator of Y and vice versa.

Similarly if p is a prime = 1(13) and divides the denominator of j(13coo) then x
reduces modulo p to the reduction of one of the Pt s. The prime p then divides the
denominator of X and Yto the same power since X and Y have poles at the Pt s.

On the other hand, it is possible for the prime 13 to divide the numerator of X
and neither the numerator nor the denominator of Y and vice versa. Although this is
possible, 132 does not divide the numerator of X. Before we examine the possible
cases we make a useful observation: E has a potentially good reduction at 3, and
hence 3 divides neither the numerator nor the denominator of X and Y. By reducing
equation (2) modulo 3 it is easy to see that the only possible solutions for X and Y
modulo 3, rational over F3 are X = + 1(3) and X ^ Y(3).

Finally we note that the Atkin-Lehner involution W169 permutes X and Y.
From the remarks above, we have only the following cases:

(i) X = c1/2"-13r-m; Y = e2213" • 131 3 r + l/m,

(ii) X = e i2
1 3713r-m; Y = e21313r + 1/2" • m,

(iii) X = £ l • 13r • 213"/m;y = £213r/2" • m,

(iv) X = £ l 13 • 213"/m; Y = 82/2
n • m ,

(v) X = s ^ ' ^ / i y - m ; 7 = e2/m- 13r-2",

where e,- = ± 1 for i = 1 and 2, both r and n are non-negative integers and m is either
1 or a finite product of primes = 1(13).

We recall that

F(T) = 7 1 4 + 2671 3 + 325712 + 25487 n + 13832710 + 5434079 + 15711878

+ 33358077 + 50936676 + 53482075 + 35453674 + 12485273 + 1514572 + 4767+13 ,

and note that all but the first and the coefficient of 7 are divisible by 13.
Since X ^ Y mod (3) it is clear that ex =£ e2 in all the five cases. In case (1)

e2{l+26£1(2"-13r-m) + ... + 21 4 n-131 4 r + 1 -m14}

= e i{13(14r
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Hence, 2" + 1 divides mXAe2 — ex. Since EX =/= e2, we have n = 0. This implies that 13
divides m14 + 1 . This is impossible since m = 1(13). So case (i) is impossible. For case
(ii) we have

£2{213"xl4 + 26e1(213xl3"-13r-m) + ... + 1314r + 1 -m 1 4 }

= ei{13(14r+1)xl3 + 2£2(1313(13r + 1) • 2" • m) + ... + 214n • m 1 4 } .

Hence 13 divides 214"{e1m14 —£2214"x12}. This is impossible since 6! =£ e2 and both
components are congruent to 1(13).

In case (iii) equation (1) reduces to

e1{213"xl41314r-1-f-26e2(2l3"xl3-1313'-1-m) + ...

= £2{1314r-1 +26e1(2" • 13131-"1 • m) + ... + 214" • m14} .

This shows that 2"+ 1 divides m 1 4 ^ - 1 3 1 4 r - 1 e 2 . Since et f e2 and m14 = 1(8) while
1 3i4r-i s 5 ( g^ j t f ono w s tha t n = 0. This implies that m divides 2 x 13 1 4 ' " 1 which is
impossible; so case (iii) is also impossible.

In respect of case (iv) we have

£2{213"xl4-1313+26e1(213"xl3-1312m) + ... + m14}

= e1{H-26fi2(2
n • m) + ... + 214n • 13 • m14} .

Again 2" + 1 divides m14e2 — Ej. Since sx ^ £2 then n — 0. But then 13 will divide
m14 + 746rn13 + l. Since m = 1(13) and 746 = 5(13) this is impossible.

Finally in case (v) we have

£2{2l3"xl4 + 26£1(213"xl3-13p-m) + ... + 131 4 r + 1-m1 4}

= £1{l+26£2(2"-13r-m) + ... + 13 1 4 r + 1 • m14 • 214"} .

This implies that 2n + 1 divides 1314r + 1 -m14£2 — E^ Again since £x ^ E2, we have
n = 0; if this is so, then 13 divides 2. This is absurd.

This concludes the proof of the theorem.

Remark. In the proof of Theorem 7 of [3] we did not explain why (u) — (a>(u)) is
linearly equivalent to (p') — (co(p')) if it is of order 7. This follows from the fact the
^0(91) has exactly four points (the unitary cusps) rational over (F2. This can be
quickly seen from the characteristic polynomial of T2.
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