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1. Introduction. Let N be an integer ^ 1. The affine modular curve Y0(N) para-
meterizes isomorphism classes of pairs (E; F), where E is an elliptic curve defined over
C, the field of complex numbers, and F is a cyclic subgroup of order N. The compacti-
fication X0(N) is an algebraic curve denned over <Q>.

An excellent account of the connexion of X0(N) with the problem of rational isogeny
will be found in (10).

Recently Mazur (7) proved a deep and important theorem on rational points on the
modular curves X0(N), listing those primes N for which the curve has non-cuspidal
rational points.

To treat the composite N it suffices to deal with those of minimal positive genus. Of
these only the cases N = 65, 91 125 and 169 are outstanding, N = 39 having been
settled in (2).

The aim of this article is to show that both X0(65) and iT0(91) have no Q-rational
non-cuspidal points.

By the recent work of Berkovic(l) it is known that each factor of the Eisenstein
quotients of the Jacobians of both curves has Mordell-Weil rank 0. For -Xo(91) we
show that the Mordell-Weil group of one such factor has order 7. By also showing that
X0(9l)/w13 is not hyperelliptic we deduce that the curve has no non-cuspidal ir-
rational points.

With respect to X0(65) we construct an equation for a model of the curve. The
functions used are essentially modular units. Making use of a theorem of Mazur we
show that the only possible prime factors of the denominator and numerator of the
values of these functions are 2 and 13.

It is then a numerical exercise to show that X0(65) has no Q-rational non-cuspidal
point.

2. Preliminaries on the Eisenstein quotient. Let JNv denote the new part (Greek nu!)
of the Jacobian JN of X0(N), T the subring in EndofJ^,,) generated over 2 by Hecke
operators Tt, l\N and Atkin-Lehner operators Uqq\N. The Hecke algebra T is commu-
tative and free over Z of rank = dim (JNv).

The tensor product

where Fa is a real algebraic number field. The factorisarion corresponds to the factorisa-

tion of T -UT

which is unique up to isogeny.
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We have that dim (Ja) = [Fa: Q] and if pa = ker (T-+FJ then Ja ~ JNu/pa{JNv).
Berkovic(i) proved that T = EndQ(<7,v>,) and that in the decomposition of JNv over

Q each factor occurs with multiplicity one.
Let p be a non-trivial ideal of T, p corresponds with a non-trivial factor JW of JNv.

00

Suppose we put ap = f) Pn then the ideal ap is equal to the intersection of all minimal
prime ideals pa for which pa+p + T.

Consider the Eisenstein ideal / of T generated by 1 +1 — Tx for all l\N. I is a proper
ideal of T and it is of finite index.

Let p be a prime number such that p — I +pT 4= T. Then p corresponds to a factor
oiJNv and we denote it by J^ ' .

Suppose we specialize to the case N = mn is a product of two odd primes n, m. Then
X0(mn) has 4 cusps all rational. Denote them by Plt Pn, Pm and Pnm.

The following theorem was proved by Ogg(9).

THEOREM 1. Let m, n be different prime numbers. A class of divisor

D=(P1) + (Pm)-(Pn)-(Pmn) on X0(mn)

has order (m + l) (n— 1)/A, where h = ((m+ l)(n— 1), 24).
We note that wm(D) = D but wn(D) = — D. Also in the two cases we are interested in

JN = JNv since N is of minimal positive genus.
Berkovic(i) proved the following:

THEOREM 2. Let m, n be different prime numbers, p an odd prime, p\(m+ 1) but
p\{n-\) ifp > 3, and 9|(m+ 1) (n- 1) but 9](n-l) if p = 3.
Then the ideal = (I,p,l — wm) =)= T and the group J^mniQ) is finite.

Subsequently we deal with N = 65 for which p would be either 3 or 7 and N = 91 for
which we take^j = 7.

We require the following theorem of Ogg(9) about a hyperelliptic Riemann surface
X of genus g.

THEOREM 3. Let v be a hyperelliptic involution of X and w another involution. Let
u = vw (also an involution). Then the fixed point sets ofu, v and w are disjoint. Ifg is even,
then w and u have two fixed points each; ifg is odd then w has four fixed points and u none
or vice-versa.

We require also the following theorem ((7), cor. 4-3).

THEOREM 4. Let Kbea number field, and N a square free number. Let p be aprime ofK
of characteristic p {possibly dividing N) such that the ramification index at p satisfies the

*»*"*» ep(K/Q)<p-l.

Let E/k be an elliptic curve possessing a ^-rational cyclic subgroup CN of order N.
Let x=j(E;CN)eX0(N)(K).

Suppose there exists an optimal quotient/: JO(NV) -> A such that f(x) is of finite order
in A(K). Then E has potentially good reduction at p.

3. -3LO(65). Let v be the modular form of dimension — £,
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where q = exp (2niz). The following lemma of Newman(8) is well known.

LEMMA 5.

v
is a function on X0(N) so long as

(i) £ r ( d ) = O,
d\N

(ii) Ild*® is a square,
(iii) n^dz)** has integral order at every cusp of X0(N).

We consider two such functions

v ' I / ( 6 5 T ) ^ ( T ) ' V ' 7 ? 2 ( 6 5 T ) '

The zero scheme of R and S is

R - 2 2 2 - 2
S 1 5 - 1 - 5

Both of them satisfy the conditions of the lemma and are therefore on X0(65).
For iV'|65, let wN. be the corresponding Atkin-Lehner involution. By a theorem in

Kenku(3), wb and w13 each has no fixed points but w6b has 8: -X"o(65) is of genus 5 but the
quotient spaces X0(65)/w5 and X0(65)/w13 each has genus 2 while X0(65)/web and
X0(65)/{w65, w&} each has genus 1.

w65(R) = R and wb(R) = R-1,

while web(S) = 13i?2/Sf-x and wb(8) = SR~2.

Y = (S/R + 13R/S) (R + R-1) and L = (i? - R-1)

are functions on E = X0(N)/{web, wb}. By considering the behaviour of F and L at the
only cusp of E which is their only pole, we obtain the following relation

7 2 + 5 Y(L2 + 4) = (L2 + 4) (La -10L2 + 3L- 50).

Substituting H = (Y + 2L2 + L +10)/(L - 2) we get

which is the equation of the Ne"ron model of E.
In terms of R and S, we have

R(S2 + 13^2)2(i?4 + 2i?2 + 1) + 5SR(S2 + 13.R2) (2?4 - 1) (i?2 - 1)
= S2(R* + 2R*+ 1)(i?«- 10i?5-30i?3- 10R- 1).... (1)

Now write T(T) for 13^2(13T)/I/2(T).

Then T(T) is a univalent function on X0(13) and i£j(r) denotes the classical modular
invariant with j(J - 1) = 1728 we have from ((4), p. 62)

j (T) = (T2 + 5T + 13) (T4 + IT3 + 20T2 +19T+1 fjT

= F(T)/T.

So j(5r) = SF{nS-*)/n or F(M)/M, where Jf = 135"1.
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THEOREM 6. The curve XQ(Q5) has no non-cuspidal points which are Q-rational.
Proof. Suppose there is such a point x. Suppose w is a point in the fundamental region

of F0(65) corresponding to such a point; then S(io) and R(w) both belong to Q.
The fact that they are non-zero follows from the properties of the v function.

Suppose „. . , , _„
o(co) = m/n where m,neZ

and m and n coprime. Let q be a prime dividing m. If q 4= 13, then

J(5OJ) = —— F\
JK ' 13n \ m

has q as a factor of its denominator. The same is true for q = 13 if 132 divides m.
Similarly, if a prime q divides n,j(5o)) again has q as a factor of its denominator.

If a; = j(E, CN) with CN Q-rational, j(w) is the invariant of E while j(5a>) is the invar-
iant of the isomorphism class of elliptic curves corresponding to wb(x).

Also we know that q divides the denominator of j(5co) only if the Q-rational elliptic
curve corresponding to w&(x) has potential multiplicative reduction at the prime q.
Since E is isogenous to one such curve, the same holds for E.

By Theorem 2 we know that for p = 3 or p = 7 the corresponding Eisenstein
quotient has finite Mordell-Weil group over Q. Hence if we take K = Q in theorem 4 it
follows that E should have potentially good reduction at q if q =)= 2.

This therefore implies that the only prime factor that can divide n is 2 while m is
divisible at most by 2 or 13 and no higher power of 13.

Suppose we write

R((o) = - where u, ve Z but u and v are coprime.

In the same way a power of 2 can divide either u or v but no other prime. The factor 13
can be removed by considering the function H = (^2(5T))/7;2(T) and a similar expression
on page 253 of (li) giving j(r) = (G3(H))/H3. Without loss of generality we can con-
sider S = ± 2*13*, R = ± 2h, where i = 0 or 1 and t, h both ^ 0. This can be seen by
using the Atkin-Lehner involutions. Considering equation (1):

R(S2 + 13R2)2(Ri + 2i?2 + 1) + 5SR(S2 + 13R2) (i?4 - 1) (R2 - 1)

= S2(Ri + 2i?2 + 1) (R6 - 10JS5 - ZOR3 - 10R - 1);

it is easy to see by 2-adic considerations that the only possibilities for t and h are
2t = 5h, so that t = 5k and h = 2k, provided that none of the three terms is zero. I t can
be quickly checked that the latter is not possible. When 2i = 5h, the exponent of 2
dividing the first term is 10A;, that of the second is 1 l i and the third is 104.

I t is easy to check if 13|iS that the 2-exponent of the difference of the first and third
terms is at most 1 Ok + 3 if k > 1, which implies that A; ^ 3. In fact, k = 1 if R is positive
and k = 3 if R is negative. If 13 divides S the exponent of 2 in the difference is 10k + 1
or 12k + 1 depending on the sign of R. If it is 10fc+ 1 then k ^ 1, if it is 12fc+ 1, then
12k+1 = Hk which is impossible.
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Checking case by case we see that no such solution exists. This proves the theorem.

4. -X"o(91). As in Section 3 we consider 2 functions:

_ 7/(137)^(77) _ 7,2(77)
* l ( T } ~ 7/(917) 7/(7) ' * l ( T ) " 7/2(917) •

The zero scheme for i^ and /Sx is
p p p p

B 1 - 3 3 3 - 3
/Sj. 1 7 - 1 - 7

Both of them satisfy the conditions of Lemma 5 and are therefore functions on Xo(91).
w13 has 4 fixed points, w7 none and w91 has 8.

X0(9l)/w13 is of genus 3, X0(91)/w7 is of genus 4 and X0(91)/w91 is of genus 2.

f1 and w^SJ = S1Br2.
Write i x = R1 + Ri1 and J^ = ( ^ 7 ^ ) + ( 1 3 ^ / ^ ) . Both Lx and / ^ are defined over
X0(91)/{w7, w13} which is an elliptic curve E' of conductor 91. By considering the
expansions of Lx and Hx at the only ' cusp' which is also their only pole we have the
following relationship:

L\ - 21L\ - 1 \L\ + 4 9 ^ + 16 = J?f + 1H*LX + 21H± L\ - 25HV

This is the equation for a singular model of E'. We do not require this equation; we
give it just for the record.

First we note that of the eight fixed points of w91 on Xo(91) two of them arise from
complex multiplication by A = *J- 91 in the order Z[l, ^(l+^j — 91)] which has class-
number 2 and the other six in the order I[l,^J — 91] which has class-number 6.

Since w13 is defined over Q it interchanges those two and permutes the six. Hence,
on Xx = X0(91)/w13, of the four fixed points of the image w of wai, one of them x is
<Q>-rational and the other three are conjugate over Q.

Suppose Xx is hyperelliptic with hyperelliptic involution v. As before v permutes the
fixed points of w. Since the fixed points of v, u, and w are disjoint, x is not a fixed point
of u and hence must be taken to one of the other non-rational fixed points. This is
impossible since u is also Q-rational. Hence X± is not hyperelliptic.

p = 7 satisfies the condition of theorem 2 so that J$ is a factor of the Eisenstein
quotient of Jn. We will see shortly that

J91 = E'x JQ x Jff x E'

up to isogeny where J$ is the factor corresponding to 4, E' is the elliptic curve Xo(91)/
{u>7, w13} and E" is the elliptic curve corresponding to the cusp form with an
eigenvalue — 1 with respect to Atkin-Lehner operators w>7 and w13.

Using the procedure described in (5,6) we find that the characteristic polynomials
of T2, Tb are respectively

x{x + 2) (a;2 - 2) (x3 - x2 - 4x + 2),

(x + 3)2(a;2 - 6x + 7) (x3 - 2x2 - 3x + 2).
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Consequently we deduce that the reduction of Jx_ over the primes 2 and 5 has 7
elements. J1_ is (1 — w) Jx where w is the image of w91 on Xx.

J± factorises as J1+ x J±_ and as E' x J$ so thatJ1_isisogenousto J$. Consequently
the order of the Mordell-Weil group of Jt_ is 7.

Let p' be the image of one of the cusps on Xv Then (p') — w(p') is of order 7. If u is
any Q-rational non-cuspidal point of X1 not x then (u) — (w(u)) e Jj_. Hence the order
of (u) — {w(u)) is either 1 or 7. Both are impossible since X1 is not hyperelliptic as
shown above. Hence we have proved

THEOREM 7. -Xo(91) has no non-cuspidal Q-rational points.
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