The modular curves $X_0(65)$ and $X_0(91)$ and rational isogeny

By M. A. KENKU

University of Ibadan, Nigeria

(Received 30 October 1978, revised 17 May 1979)

1. Introduction. Let N be an integer ≥ 1 . The affine modular curve $Y_0(N)$ parameterizes isomorphism classes of pairs (E; F), where E is an elliptic curve defined over \mathbb{C} , the field of complex numbers, and F is a cyclic subgroup of order N. The compactification $X_0(N)$ is an algebraic curve defined over \mathbb{Q} .

An excellent account of the connexion of $X_0(N)$ with the problem of rational isogeny will be found in (10).

Recently Mazur (7) proved a deep and important theorem on rational points on the modular curves $X_0(N)$, listing those primes N for which the curve has non-cuspidal rational points.

To treat the composite N it suffices to deal with those of minimal positive genus. Of these only the cases N = 65, 91 125 and 169 are outstanding, N = 39 having been settled in (2).

The aim of this article is to show that both $X_0(65)$ and $X_0(91)$ have no Q-rational non-cuspidal points.

By the recent work of Berkovic(1) it is known that each factor of the Eisenstein quotients of the Jacobians of both curves has Mordell–Weil rank 0. For $X_0(91)$ we show that the Mordell–Weil group of one such factor has order 7. By also showing that $X_0(91)/w_{13}$ is not hyperelliptic we deduce that the curve has no non-cuspidal Q-rational points.

With respect to $X_0(65)$ we construct an equation for a model of the curve. The functions used are essentially modular units. Making use of a theorem of Mazur we show that the only possible prime factors of the denominator and numerator of the values of these functions are 2 and 13.

It is then a numerical exercise to show that $X_0(65)$ has no Q-rational non-cuspidal point.

2. Preliminaries on the Eisenstein quotient. Let $J_{N\nu}$ denote the new part (Greek nu!) of the Jacobian J_N of $X_0(N)$, T the subring in $\operatorname{End}_{\mathbf{Q}}(J_{N\nu})$ generated over \mathbb{Z} by Hecke operators T_l , $l \not\mid N$ and Atkin-Lehner operators $U_q q \mid N$. The Hecke algebra T is commutative and free over \mathbb{Z} of rank = dim $(J_{N\nu})$.

The tensor product

$$T \otimes \mathbb{Q} \cong \Pi F_a$$
,

where F_{α} is a real algebraic number field. The factorisation corresponds to the factorisation of $J_{N\nu} = \Pi J_{\alpha}$,

which is unique up to isogeny.

0305-0041/80/0000-6790 \$03.50 © 1980 Cambridge Philosophical Society

We have that dim $(J_{\alpha}) = [F_{\alpha}:\mathbb{Q}]$ and if $\rho_{\alpha} = \ker (T \to F_{\alpha})$ then $J_{\alpha} \cong J_{N\nu}/\rho_{\alpha}(J_{N\nu})$.

Berkovic (1) proved that $T = \operatorname{End}_{\mathbb{Q}}(J_{N\nu})$ and that in the decomposition of $J_{N\nu}$ over \mathbb{Q} each factor occurs with multiplicity one.

Let ρ be a non-trivial ideal of T, ρ corresponds with a non-trivial factor $J^{(\rho)}$ of $J_{N\nu}$. Suppose we put $a_{\rho} = \bigcap_{\alpha}^{\infty} \rho^n$ then the ideal a_{ρ} is equal to the intersection of all minimal prime ideals ρ_{α} for which $\rho_{\alpha} + \rho \neq T$.

Consider the Eisenstein ideal I of T generated by $1 + l - T_l$ for all $l \nmid N$. I is a proper ideal of T and it is of finite index.

Let p be a prime number such that $\wp = I + pT \neq T$. Then \wp corresponds to a factor of $J_{N_{\nu}}$ and we denote it by $J_{N}^{(p)}$.

Suppose we specialize to the case N = mn is a product of two odd primes n, m. Then $X_0(mn)$ has 4 cusps all rational. Denote them by P_1, P_n, P_m and P_{nm} .

The following theorem was proved by Ogg(9).

THEOREM 1. Let m, n be different prime numbers. A class of divisor

$$D = (P_1) + (P_m) - (P_n) - (P_{mn}) \quad on \quad X_0(mn)$$

has order (m+1)(n-1)/h, where h = ((m+1)(n-1), 24).

We note that $w_m(D) = D$ but $w_n(D) = -D$. Also in the two cases we are interested in $J_N = J_{N\nu}$ since N is of minimal positive genus.

Berkovic(1) proved the following:

THEOREM 2. Let m, n be different prime numbers, p an odd prime, p|(m+1) but $p\nmid (n-1)$ if p > 3, and 9|(m+1)(n-1) but $9\nmid (n-1)$ if p = 3.

Then the ideal = $(I, p, 1 - w_m) \neq T$ and the group $J_{mn}^{(p)}(Q)$ is finite.

Subsequently we deal with N = 65 for which p would be either 3 or 7 and N = 91 for which we take p = 7.

We require the following theorem of Ogg(9) about a hyperelliptic Riemann surface X of genus g.

THEOREM 3. Let v be a hyperelliptic involution of X and w another involution. Let u = vw (also an involution). Then the fixed point sets of u, v and w are disjoint. If g is even, then w and u have two fixed points each; if g is odd then w has four fixed points and u none or vice-versa.

We require also the following theorem $((7), \text{ cor. } 4\cdot 3)$.

THEOREM 4. Let K be a number field, and N a square free number. Let \wp be a prime of K of characteristic p (possibly dividing N) such that the ramification index at \wp satisfies the inequality

$$e\wp(K/Q) < p-1.$$

Let E/k be an elliptic curve possessing a K-rational cyclic subgroup C_N of order N. Let $x = j(E; C_N) \in X_0(N)(K)$.

Suppose there exists an optimal quotient $f: J_0(N_v) \to A$ such that f(x) is of finite order in A(K). Then E has potentially good reduction at \wp .

3. $X_0(65)$. Let η be the modular form of dimension $-\frac{1}{2}$,

$$\eta(z)=q^{\frac{1}{n-1}}\Pi(1-q^n),$$

16

where $q = \exp(2\pi i z)$. The following lemma of Newman(8) is well known.

Lemma 5.

$$\prod_{d \mid N} \eta(dz)^{r(d)}$$

is a function on $X_0(N)$ so long as

- (i) $\sum_{d \in N} r(d) = 0$,
- (ii) $\prod d^{r(d)}$ is a square,

(iii) $\Pi \eta(dz)^{r(d)}$ has integral order at every cusp of $X_0(N)$. We consider two such functions

$$R(\tau) = \frac{\eta(13\tau)\,\eta(5\tau)}{\eta(65\tau)\,\eta(\tau)}, \quad S(\tau) = \frac{\eta^2(5\tau)}{\eta^2(65\tau)}$$

The zero scheme of R and S is

Both of them satisfy the conditions of the lemma and are therefore on $X_0(65)$.

For $N'|_{65}$, let $w_{N'}$ be the corresponding Atkin-Lehner involution. By a theorem in Kenku(3), w_5 and w_{13} each has no fixed points but w_{65} has 8: $X_0(65)$ is of genus 5 but the quotient spaces $X_0(65)/w_5$ and $X_0(65)/w_{13}$ each has genus 2 while $X_0(65)/w_{65}$ and $X_0(65)/w_{65}$, w_5 each has genus 1.

$$w_{65}(R) = R \quad \text{and} \quad w_5(R) = R^{-1},$$

while $w_{65}(S) = 13R^2S^{-1}$ and $w_5(S) = SR^{-2}.$
 $Y = (S/R + 13R/S)(R + R^{-1})$ and $L = (R - R^{-1})$

are functions on $E = X_0(N)/\{w_{65}, w_5\}$. By considering the behaviour of Y and L at the only cusp of E which is their only pole, we obtain the following relation

 $Y^2 + 5Y(L^2 + 4) = (L^2 + 4)(L^3 - 10L^2 + 3L - 50).$

Substituting $H = (Y + 2L^2 + L + 10)/(L-2)$ we get

$$H^2 + HL = L^3 + 4L + 1,$$

which is the equation of the Néron model of E.

In terms of R and S, we have

$$R(S^{2}+13R^{2})^{2}(R^{4}+2R^{2}+1)+5SR(S^{2}+13R^{2})(R^{4}-1)(R^{2}-1)$$

= S²(R⁴+2R²+1)(R⁶-10R⁵-30R³-10R-1).... (1)

Now write $T(\tau)$ for $13\eta^2(13\tau)/\eta^2(\tau)$.

Then $T(\tau)$ is a univalent function on $X_0(13)$ and if $j(\tau)$ denotes the classical modular invariant with $j(\sqrt{-1}) = 1728$ we have from ((4), p. 62)

$$\begin{aligned} j(\tau) &= (T^2 + 5T + 13) \left(T^4 + 7T^3 + 20T^2 + 19T + 1 \right)^3 / T \\ &= F(T) / T. \end{aligned}$$

So $j(5\tau) = SF(13S^{-1})/13$ or F(M)/M, where $M = 13S^{-1}$.

M. A. KENKU

THEOREM 6. The curve $X_0(65)$ has no non-cuspidal points which are Q-rational.

Proof. Suppose there is such a point x. Suppose ω is a point in the fundamental region of $\Gamma_0(65)$ corresponding to such a point; then $S(\omega)$ and $R(\omega)$ both belong to Q.

The fact that they are non-zero follows from the properties of the η function. Suppose

$$S(\omega) = m/n$$
 where $m, n \in \mathbb{Z}$

and m and n coprime. Let q be a prime dividing m. If $q \neq 13$, then

$$j(5\omega) = \frac{m}{13n} F\left(\frac{13n}{m}\right)$$

has q as a factor of its denominator. The same is true for q = 13 if 13^2 divides m. Similarly, if a prime q divides $n, j(5\omega)$ again has q as a factor of its denominator.

If $x = j(E, C_N)$ with $C_N \mathbb{Q}$ -rational, $j(\omega)$ is the invariant of E while $j(5\omega)$ is the invariant of the isomorphism class of elliptic curves corresponding to $w_5(x)$.

Also we know that q divides the denominator of $j(5\omega)$ only if the Q-rational elliptic curve corresponding to $w_5(x)$ has potential multiplicative reduction at the prime q. Since E is isogenous to one such curve, the same holds for E.

By Theorem 2 we know that for p = 3 or p = 7 the corresponding Eisenstein quotient has finite Mordell-Weil group over Q. Hence if we take K = Q in theorem 4 it follows that E should have potentially good reduction at q if $q \neq 2$.

This therefore implies that the only prime factor that can divide n is 2 while m is divisible at most by 2 or 13 and no higher power of 13.

Suppose we write

$$R(\omega) = \frac{u}{v}$$
 where $u, v \in \mathbb{Z}$ but u and v are coprime.

In the same way a power of 2 can divide either u or v but no other prime. The factor 13 can be removed by considering the function $H = (\eta^2(5\tau))/\eta^2(\tau)$ and a similar expression on page 253 of (11) giving $j(\tau) = (G^3(H))/H^3$. Without loss of generality we can consider $S = \pm 2^{t}13^{i}$, $R = \pm 2^{h}$, where i = 0 or 1 and t, h both ≥ 0 . This can be seen by using the Atkin-Lehner involutions. Considering equation (1):

$$\begin{aligned} R(S^2+13R^2)^2(R^4+2R^2+1) + 5SR(S^2+13R^2)\left(R^4-1\right)\left(R^2-1\right) \\ &= S^2(R^4+2R^2+1)\left(R^6-10R^5-30R^3-10R-1\right); \end{aligned}$$

it is easy to see by 2-adic considerations that the only possibilities for t and h are 2t = 5h, so that t = 5k and h = 2k, provided that none of the three terms is zero. It can be quickly checked that the latter is not possible. When 2t = 5h, the exponent of 2 dividing the first term is 10k, that of the second is 11k and the third is 10k.

It is easy to check if $13 \nmid S$ that the 2-exponent of the difference of the first and third terms is at most 10k + 3 if k > 1, which implies that $k \leq 3$. In fact, k = 1 if R is positive and k = 3 if R is negative. If 13 divides S the exponent of 2 in the difference is 10k + 1 or 12k + 1 depending on the sign of R. If it is 10k + 1 then $k \leq 1$, if it is 12k + 1, then 12k + 1 = 11k which is impossible.

18

Modular curves $X_0(65)$ and $X_0(91)$ and rational isogeny 19

Checking case by case we see that no such solution exists. This proves the theorem.

4. $X_0(91)$. As in Section 3 we consider 2 functions:

$$R_1(\tau) = \frac{\eta(13\tau)\,\eta(7\tau)}{\eta(91\tau)\,\eta(\tau)}, \quad S_1(\tau) = \frac{\eta^2(7\tau)}{\eta^2(91\tau)}.$$

The zero scheme for R_1 and S_1 is

Both of them satisfy the conditions of Lemma 5 and are therefore functions on $X_0(91)$. w_{13} has 4 fixed points, w_7 none and w_{91} has 8.

 $X_0(91)/w_{13}$ is of genus 3, $X_0(91)/w_7$ is of genus 4 and $X_0(91)/w_{91}$ is of genus 2.

$$\begin{split} w_{\mathfrak{g}_1}(R_1) &= R_1 & \text{and} & w_7(R_1) = R_1^{-1}, \\ w_{\mathfrak{g}_1}(S_1) &= 13R_1^2S_1^{-1} & \text{and} & w_7(S_1) = S_1R_1^{-2} \end{split}$$

Write $L_1 = R_1 + R_1^{-1}$ and $H_1 = (S_1/R_1) + (13R_1/S_1)$. Both L_1 and H_1 are defined over $X_0(91)/\{w_7, w_{13}\}$ which is an elliptic curve E' of conductor 91. By considering the expansions of L_1 and H_1 at the only 'cusp' which is also their only pole we have the following relationship:

$$L_1^4 - 21L_1^3 - 11L_1^2 + 49L_1 + 16 = H_1^3 + 7H^2L_1 + 21H_1L_1^2 - 25H_1.$$

This is the equation for a singular model of E'. We do not require this equation; we give it just for the record.

First we note that of the eight fixed points of w_{91} on $X_0(91)$ two of them arise from complex multiplication by $\lambda = \sqrt{-91}$ in the order $\mathbb{Z}[1, \frac{1}{2}(1+\sqrt{-91})]$ which has class-number 2 and the other six in the order $\mathbb{Z}[1, \sqrt{-91}]$ which has class-number 6.

Since w_{13} is defined over Q it interchanges those two and permutes the six. Hence, on $X_1 = X_0(91)/w_{13}$, of the four fixed points of the image w of w_{91} , one of them x is Q-rational and the other three are conjugate over Q.

Suppose X_1 is hyperelliptic with hyperelliptic involution v. As before v permutes the fixed points of w. Since the fixed points of v, u, and w are disjoint, x is not a fixed point of u and hence must be taken to one of the other non-rational fixed points. This is impossible since u is also Q-rational. Hence X_1 is not hyperelliptic.

p = 7 satisfies the condition of theorem 2 so that $J_{91}^{(7)}$ is a factor of the Eisenstein quotient of J_{91} . We will see shortly that

$$J_{91} = E' \times J_{91}^{(7)} \times J_{91}^{(4)} \times E''$$

up to isogeny where $J_{91}^{(4)}$ is the factor corresponding to 4, E' is the elliptic curve $X_0(91)/\{w_7, w_{13}\}$ and E'' is the elliptic curve corresponding to the cusp form with an eigenvalue -1 with respect to Atkin-Lehner operators w_7 and w_{13} .

Using the procedure described in (5, 6) we find that the characteristic polynomials of T_2 , T_5 are respectively

$$x(x+2)(x^2-2)(x^3-x^2-4x+2),$$

 $(x+3)^2(x^2-6x+7)(x^3-2x^2-3x+2).$

Consequently we deduce that the reduction of J_{1-} over the primes 2 and 5 has 7 elements. J_{1-} is $(1-w)J_1$ where w is the image of w_{91} on X_1 .

 J_1 factorises as $J_{1+} \times J_{1-}$ and as $E' \times J_{91}^{(7)}$ so that J_{1-} is isogenous to $J_{91}^{(7)}$. Consequently the order of the Mordell-Weil group of J_{1-} is 7.

Let p' be the image of one of the cusps on X_1 . Then (p') - w(p') is of order 7. If u is any Q-rational non-cuspidal point of X_1 not x then $(u) - (w(u)) \in J_{1-}$. Hence the order of (u) - (w(u)) is either 1 or 7. Both are impossible since X_1 is not hyperelliptic as shown above. Hence we have proved

THEOREM 7. $X_0(91)$ has no non-cuspidal Q-rational points.

REFERENCES

- BERKOVIC, B. G. Rational points on the jacobians of modular curves. (In Russian.) Math. Sbornik J. 101 (1976) (143), no. 4 (12), 542-567. Translation. Math USSR Sbornik, vol. 30 (1976), no. 4.
- (2) KENKU, M. A. The modular curve $X_0(39)$ and rational isogeny. Math. Proc. Cambridge Philos. Soc. 85 (1979), 21-23.
- (3) KENKU, M. A. Atkin-Lehner involutions and class-number residuality. Acta Arithmetica 33 (1977), 1-9.
- (4) KLEIN, F. and FRICKE, R. Vorlesungen uber die Theories der elliptischen Modulfunktionen, vol. 2 (Chelsea).
- (5) LIGOZAT, G. Courbes modulaires de niveau 11. In Modular functions of one variable, vol. v, 148-237. Lecture Notes in Mathematics, no. 601 (Berlin, Heidelberg, New York, Springer, 1977).
- (6) MANIN, Y. Parabolic points and zeta-functions of modular curves. Math. U.S.S.R. Izvestija
 6 (1972), no. 1, 19-64.
- (7) MAZUR, B. Rational isogenies of prime degree. Inventiones Math. 44 (1978), 129-162.
- (8) NEWMAN, M. Construction and applications of a class of modular functions. Proc. London Math. Soc. (3) 7 (1967), 334-350; 9 (1959), 373-387.
- (9) OGG, A. P. Hyperelliptic modular curves. Bull. Soc. Math. France 102 (1974), 449-462.
- (10) OGG, A. P. Rational points on certain modular curves. Proc. Symp. Pure Math. A.M.S. Providence 24 (1973), 221-231.
- (11) WEBER, H. Lehrbuch der Algebra, vol. III (Chelsea, New York).

20