The modular curves $X_{0}(65)$ and $X_{0}(91)$ and rational isogeny

By M. A. KENKU
University of Ibadan, Nigeria

(Received 30 October 1978, revised 17 May 1979)

1. Introduction. Let N be an integer $\geqslant 1$. The affine modular curve $Y_{0}(N)$ parameterizes isomorphism classes of pairs ($E ; F$), where E is an elliptic curve defined over \mathbb{C}, the field of complex numbers, and F is a cyclic subgroup of order N. The compactification $X_{0}(N)$ is an algebraic curve defined over \mathbb{Q}.

An excellent account of the connexion of $X_{0}(N)$ with the problem of rational isogeny will be found in (10).

Recently Mazur (7) proved a deep and important theorem on rational points on the modular curves $X_{0}(N)$, listing those primes N for which the curve has non-cuspidal rational points.

To treat the composite N it suffices to deal with those of minimal positive genus. Of these only the cases $N=65,91125$ and 169 are outstanding, $N=39$ having been settled in (2).
The aim of this article is to show that both $X_{0}(65)$ and $X_{0}(91)$ have no \mathbb{Q}-rational non-cuspidal points.

By the recent work of Berkovic(1) it is known that each factor of the Eisenstein quotients of the Jacobians of both curves has Mordell-Weil rank 0. For $X_{0}(91)$ we show that the Mordell-Weil group of one such factor has order 7. By also showing that $X_{0}(91) / w_{13}$ is not hyperelliptic we deduce that the curve has no non-cuspidal \mathbb{Q} rational points.

With respect to $X_{0}(65)$ we construct an equation for a model of the curve. The functions used are essentially modular units. Making use of a theorem of Mazur we show that the only possible prime factors of the denominator and numerator of the values of these functions are 2 and 13.
It is then a numerical exercise to show that $X_{0}(65)$ has no \mathbb{Q}-rational non-cuspidal point.
2. Preliminaries on the Eisenstein quotient. Let $J_{N \nu}$ denote the new part (Greek nu!) of the Jacobian J_{N} of $X_{0}(N), T$ the subring in End ${ }_{\mathbb{Q}}\left(J_{N \nu}\right)$ generated over \mathbb{Z} by Hecke operators $T_{l}, l \nmid N$ and Atkin-Lehner operators $U_{q} q \mid N$. The Hecke algebra T is commutative and free over \mathbb{Z} of rank $=\operatorname{dim}\left(J_{N v}\right)$.

The tensor product

$$
T \otimes \mathbb{Q} \cong \Pi F_{\alpha}
$$

where F_{α} is a real algebraic number field. The factorisarion corresponds to the factorisation of

$$
J_{N \nu}=\Pi J_{a}
$$

which is unique up to isogeny.

We have that $\operatorname{dim}\left(J_{\alpha}\right)=\left[F_{\alpha}: \mathbb{Q}\right]$ and if $\rho_{\alpha}=\operatorname{ker}\left(T \rightarrow F_{\alpha}\right)$ then $J_{\alpha} \cong J_{N_{\nu}} / \rho_{\alpha}\left(J_{N_{\nu}}\right)$.
Berkovic (1) proved that $T=\operatorname{End}_{\mathbb{Q}}\left(J_{N \nu}\right)$ and that in the decomposition of $J_{N \nu}$ over Q each factor occurs with multiplicity one.

Let ρ be a non-trivial ideal of T, ρ corresponds with a non-trivial factor $J^{(\rho)}$ of $J_{N \nu}$. Suppose we put $a_{\rho}=\bigcap^{\infty} \rho^{n}$ then the ideal a_{ρ} is equal to the intersection of all minimal prime ideals ρ_{α} for which $\rho_{\alpha}+\rho \neq T$.

Consider the Eisenstein ideal I of T generated by $1+l-T_{l}$ for all $l \nmid N . I$ is a proper ideal of T and it is of finite index.

Let p be a prime number such that $\wp=I+p T \neq T$. Then \wp corresponds to a factor of $J_{N \nu}$ and we denote it by $J_{N}^{(p)}$.

Suppose we specialize to the case $N=m n$ is a product of two odd primes n, m. Then $X_{0}(m n)$ has 4 cusps all rational. Denote them by P_{1}, P_{n}, P_{m} and $P_{n m}$.

The following theorem was proved by $\operatorname{Ogg}(9)$.
Theorem 1. Let m, n be different prime numbers. A class of divisor

$$
D=\left(P_{1}\right)+\left(P_{m}\right)-\left(P_{n}\right)-\left(P_{m n}\right) \quad \text { on } \quad X_{0}(m n)
$$

has order $(m+1)(n-1) / h$, where $h=((m+1)(n-1), 24)$.
We note that $w_{m}(D)=D$ but $w_{n}(D)=-D$. Also in the two cases we are interested in $J_{N}=J_{N \nu}$ since N is of minimal positive genus.

Berkovic(1) proved the following:
Theorem 2. Let m, n be different prime numbers, p an odd prime, $p \mid(m+1)$ but $p \nmid(n-1)$ if $p>3$, and $9 \mid(m+1)(n-1)$ but 9$\}(n-1)$ if $p=3$.
Then the ideal $=\left(I, p, 1-w_{m}\right) \neq T$ and the group $J_{m n}^{(p)}(Q)$ is finite.
Subsequently we deal with $N=65$ for which p would be either 3 or 7 and $N=91$ for which we take $p=7$.

We require the following theorem of $\operatorname{Ogg}(9)$ about a hyperelliptic Riemann surface X of genus g.

Theorem 3. Let v be a hyperelliptic involution of X and w another involution. Let $u=v w$ (also an involution). Then the fixed point sets of u, v and w are disjoint. If g is even, then w and u have two fixed points each; ifg is odd then w has four fixed points and u none or vice-versa.

We require also the following theorem ((7), cor. 4.3).
Theorem 4. Let K be a number field, and N a square free number. Let \wp be a prime of K of characteristic p (possibly dividing N) such that the ramification index at \wp satisfies the inequality

$$
e \wp(K / Q)<p-1
$$

Let E / k be an elliptic curve possessing a K-rational cyclic subgroup C_{N} of order N. Let $x=j\left(E ; C_{N}\right) \in X_{0}(N)(K)$.

Suppose there exists an optimal quotient $f: J_{0}\left(N_{v}\right) \rightarrow A$ such that $f(x)$ is of finite order in $A(K)$. Then E has potentially good reduction at \wp.
3. $X_{0}(65)$. Let η be the modular form of dimension $-\frac{1}{2}$,

$$
\eta(z)=q^{2} \frac{1}{2} \Pi\left(1-q^{n}\right)
$$

Modular curves $X_{0}(65)$ and $X_{0}(91)$ and rational isogeny
where $q=\exp (2 \pi i z)$. The following lemma of Newman(8) is well known.

Lemma 5.

$$
\prod_{a \mid N} \eta(d z)^{r(a)}
$$

is a function on $X_{0}(N)$ so long as
(i) $\sum_{d \mid N} r(d)=0$,
(ii) $\Pi d^{r(d)}$ is a square,
(iii) $\Pi \eta(d z)^{r(d)}$ has integral order at every cusp of $X_{0}(N)$.

We consider two such functions

$$
R(\tau)=\frac{\eta(13 \tau) \eta(5 \tau)}{\eta(65 \tau) \eta(\tau)}, \quad S(\tau)=\frac{\eta^{2}(5 \tau)}{\eta^{2}(65 \tau)}
$$

The zero scheme of R and S is

$$
\begin{array}{lrcrr}
& P_{1} & P_{5} & P_{13} & P_{65} \\
R & -2 & 2 & 2 & -2 \\
S & 1 & 5 & -1 & -5
\end{array}
$$

Both of them satisfy the conditions of the lemma and are therefore on $X_{0}(65)$.
For $N^{\prime} \mid 65$, let $w_{N^{\prime}}$ be the corresponding Atkin-Lehner involution. By a theorem in Kenku(3), w_{5} and w_{13} each has no fixed points but w_{65} has 8: $X_{0}(65)$ is of genus 5 but the quotient spaces $X_{0}(65) / w_{5}$ and $X_{0}(65) / w_{13}$ each has genus 2 while $X_{0}(65) / w_{65}$ and $X_{0}(65) /\left\{w_{65}, w_{5}\right\}$ each has genus 1.

$$
w_{65}(R)=R \quad \text { and } \quad w_{5}(R)=R^{-1}
$$

while

$$
w_{65}(S)=13 R^{2} S^{-1} \quad \text { and } \quad w_{5}(S)=S R^{-2}
$$

$$
Y=(S / R+13 R / S)\left(R+R^{-1}\right) \quad \text { and } \quad L=\left(R-R^{-1}\right)
$$

are functions on $E=X_{0}(N) /\left\{w_{65}, w_{5}\right\}$. By considering the behaviour of Y and L at the only cusp of E which is their only pole, we obtain the following relation

$$
Y^{2}+5 Y\left(L^{2}+4\right)=\left(L^{2}+4\right)\left(L^{3}-10 L^{2}+3 L-50\right)
$$

Substituting $H=\left(Y+2 L^{2}+L+10\right) /(L-2)$ we get

$$
H^{2}+H L=L^{3}+4 L+1
$$

which is the equation of the Néron model of E.
In terms of R and S, we have

$$
\begin{align*}
& R\left(S^{2}+13 R^{2}\right)^{2}\left(R^{4}+2 R^{2}+1\right)+5 S R\left(S^{2}+13 R^{2}\right)\left(R^{4}-1\right)\left(R^{2}-1\right) \\
&=S^{2}\left(R^{4}+2 R^{2}+1\right)\left(R^{6}-10 R^{5}-30 R^{3}-10 R-1\right) \ldots \tag{1}
\end{align*}
$$

Now write $T(\tau)$ for $13 \eta^{2}(13 \tau) / \eta^{2}(\tau)$.
Then $T(\tau)$ is a univalent function on $X_{0}(13)$ and if $j(\tau)$ denotes the classical modular invariant with $j(\sqrt{ }-1)=1728$ we have from ((4), p. 62)

$$
\begin{aligned}
j(\tau) & =\left(T^{2}+5 T+13\right)\left(T^{4}+7 T^{3}+20 T^{2}+19 T+1\right)^{3} / T \\
& =F(T) / T
\end{aligned}
$$

So $j(5 \tau)=S F\left(13 S^{-1}\right) / 13$ or $\quad F(M) / M$, where $M=13 S^{-1}$.

M. A. Kenku

Theorem 6. The curve $X_{0}(65)$ has no non-cuspidal points which are \mathbb{Q}-rational.
Proof. Suppose there is such a point x. Suppose ω is a point in the fundamental region of $\Gamma_{0}(65)$ corresponding to such a point; then $S(\omega)$ and $R(\omega)$ both belong to Q.

The fact that they are non-zero follows from the properties of the η function. Suppose

$$
S(\omega)=m / n \quad \text { where } \quad m, n \in \mathbb{Z}
$$

and m and n coprime. Let q be a prime dividing m. If $q \neq 13$, then

$$
j(5 \omega)=\frac{m}{13 n} F\left(\frac{13 n}{m}\right)
$$

has q as a factor of its denominator. The same is true for $q=13$ if 13^{2} divides m. Similarly, if a prime q divides $n, j(5 \omega)$ again has q as a factor of its denominator.

If $x=j\left(E, C_{N}\right)$ with $C_{N} \mathbb{Q}$-rational, $j(\omega)$ is the invariant of E while $j(5 \omega)$ is the invariant of the isomorphism class of elliptic curves corresponding to $w_{5}(x)$.

Also we know that q divides the denominator of $j(5 \omega)$ only if the \mathbb{Q}-rational elliptic curve corresponding to $w_{5}(x)$ has potential multiplicative reduction at the prime q. Since E is isogenous to one such curve, the same holds for E.

By Theorem 2 we know that for $p=3$ or $p=7$ the corresponding Eisenstein quotient has finite Mordell-Weil group over \mathbb{Q}. Hence if we take $K=\mathbb{Q}$ in theorem 4 it follows that E should have potentially good reduction at q if $q \neq 2$.

This therefore implies that the only prime factor that can divide n is 2 while m is divisible at most by 2 or 13 and no higher power of 13 .

Suppose we write

$$
R(\omega)=\frac{u}{v} \quad \text { where } u, v \in \mathbb{Z} \text { but } u \text { and } v \text { are coprime. }
$$

In the same way a power of 2 can divide either u or v but no other prime. The factor 13 can be removed by considering the function $H=\left(\eta^{2}(5 \tau)\right) / \eta^{2}(\tau)$ and a similar expression on page 253 of (11) giving $j(\tau)=\left(G^{3}(H)\right) / H^{3}$. Without loss of generality we can consider $S= \pm 2^{t} 13^{i}, R= \pm 2^{h}$, where $i=0$ or 1 and t, h both $\geqslant 0$. This can be seen by using the Atkin-Lehner involutions. Considering equation (1):

$$
\begin{aligned}
R\left(S^{2}+13 R^{2}\right)^{2}\left(R^{4}+2 R^{2}+1\right)+ & 5 S R\left(S^{2}+13 R^{2}\right)\left(R^{4}-1\right)\left(R^{2}-1\right) \\
& =S^{2}\left(R^{4}+2 R^{2}+1\right)\left(R^{6}-10 R^{5}-30 R^{3}-10 R-1\right)
\end{aligned}
$$

it is easy to see by 2 -adic considerations that the only possibilities for t and h are $2 t=5 h$, so that $t=5 k$ and $h=2 k$, provided that none of the three terms is zero. It can be quickly checked that the latter is not possible. When $2 t=5 h$, the exponent of 2 dividing the first term is $10 k$, that of the second is $11 k$ and the third is $10 k$.

It is easy to check if $13 \nmid S$ that the 2-exponent of the difference of the first and third terms is at most $10 k+3$ if $k>1$, which implies that $k \leqslant 3$. In fact, $k=1$ if R is positive and $k=3$ if R is negative. If 13 divides S the exponent of 2 in the difference is $10 k+1$ or $12 k+1$ depending on the sign of R. If it is $10 k+1$ then $k \leqslant 1$, if it is $12 k+1$, then $12 k+1=11 k$ which is impossible.

Checking case by case we see that no such solution exists. This proves the theorem.
4. $X_{0}(91)$. As in Section 3 we consider 2 functions:

$$
R_{1}(\tau)=\frac{\eta(13 \tau) \eta(7 \tau)}{\eta(91 \tau) \eta(\tau)}, \quad S_{1}(\tau)=\frac{\eta^{2}(7 \tau)}{\eta^{2}(91 \tau)}
$$

The zero scheme for R_{1} and S_{1} is

	P_{1}	P_{7}	P_{13}	P_{91}
R_{1}	-3	3	3	-3
S_{1}	1	7	-1	-7

Both of them satisfy the conditions of Lemma 5 and are therefore functions on $X_{0}(91)$. w_{13} has 4 fixed points, w_{7} none and w_{91} has 8.
$X_{0}(91) / w_{13}$ is of genus $3, X_{0}(91) / w_{7}$ is of genus 4 and $X_{0}(91) / w_{91}$ is of genus 2.

$$
\begin{array}{lll}
w_{91}\left(R_{1}\right)=R_{1} & \text { and } & w_{7}\left(R_{1}\right)=R_{1}^{-1} \\
w_{91}\left(S_{1}\right)=13 R_{1}^{2} S_{1}^{-1} & \text { and } & w_{7}\left(S_{1}\right)=S_{1} R_{1}^{-2} .
\end{array}
$$

Write $L_{1}=R_{1}+R_{1}^{-1}$ and $H_{1}=\left(S_{1} / R_{1}\right)+\left(13 R_{1} / S_{1}\right)$. Both L_{1} and H_{1} are defined over $X_{0}(91) /\left\{w_{7}, w_{13}\right\}$ which is an elliptic curve E^{\prime} of conductor 91 . By considering the expansions of L_{1} and H_{1} at the only 'cusp' which is also their only pole we have the following relationship:

$$
L_{1}^{4}-21 L_{1}^{3}-11 L_{1}^{2}+49 L_{1}+16=H_{1}^{3}+7 H^{2} L_{1}+21 H_{1} L_{1}^{2}-25 H_{1}
$$

This is the equation for a singular model of E^{\prime}. We do not require this equation; we give it just for the record.

First we note that of the eight fixed points of w_{91} on $X_{0}(91)$ two of them arise from complex multiplication by $\lambda=\sqrt{ }-91$ in the order $\mathbb{Z}\left[1, \frac{1}{2}(1+\sqrt{ }-91)\right]$ which has classnumber 2 and the other six in the order $\mathbb{Z}[1, \sqrt{ }-91]$ which has class-number 6.

Since w_{13} is defined over \mathbb{Q} it interchanges those two and permutes the six. Hence, on $X_{1}=X_{0}(91) / w_{13}$, of the four fixed points of the image w of w_{91}, one of them x is \mathbb{Q}-rational and the other three are conjugate over \mathbb{Q}.

Suppose X_{1} is hyperelliptic with hyperelliptic involution v. As before v permutes the fixed points of w. Since the fixed points of v, u, and w are disjoint, x is not a fixed point of u and hence must be taken to one of the other non-rational fixed points. This is impossible since u is also \mathbb{Q}-rational. Hence X_{1} is not hyperelliptic.
$p=7$ satisfies the condition of theorem 2 so that $J_{91}^{(7)}$ is a factor of the Eisenstein quotient of J_{91}. We will see shortly that

$$
J_{91}=E^{\prime} \times J_{91}^{(7)} \times J_{91}^{(4)} \times E^{\prime \prime}
$$

up to isogeny where $J_{91}^{(4)}$ is the factor corresponding to $4, E^{\prime}$ is the elliptic curve $X_{0}(91) /$ $\left\{w_{7}, w_{13}\right\}$ and $E^{\prime \prime}$ is the elliptic curve corresponding to the cusp form with an eigenvalue -1 with respect to Atkin-Lehner operators w_{7} and w_{13}.

Using the procedure described in $(5,6)$ we find that the characteristic polynomials of T_{2}, T_{5} are respectively

$$
\begin{gathered}
x(x+2)\left(x^{2}-2\right)\left(x^{3}-x^{2}-4 x+2\right) \\
(x+3)^{2}\left(x^{2}-6 x+7\right)\left(x^{3}-2 x^{2}-3 x+2\right)
\end{gathered}
$$

Consequently we deduce that the reduction of J_{1-} over the primes 2 and 5 has 7 elements. J_{1-} is $(1-w) J_{1}$ where w is the image of w_{91} on X_{1}.
J_{1} factorises as $J_{1+} \times J_{1-}$ and as $E^{\prime} \times J_{91}^{(7)}$ so that J_{1-} is isogenous to $J_{91}^{(7)}$. Consequently the order of the Mordell-Weil group of J_{1-} is 7 .

Let p^{\prime} be the image of one of the cusps on X_{1}. Then $\left(p^{\prime}\right)-w\left(p^{\prime}\right)$ is of order 7. If u is any \mathbb{Q}-rational non-cuspidal point of X_{1} not x then $(u)-(w(u)) \in J_{1-}$. Hence the order of $(u)-(w(u))$ is either 1 or 7 . Both are impossible since X_{1} is not hyperelliptic as shown above. Hence we have proved

Theorem 7. $X_{0}(91)$ has no non-cuspidal \mathbb{Q}-rational points.

REFERENCES

(1) Berkovic, B. G. Rational points on the jacobians of modular curves. (In Russian.) Math. Sbornik J. 101 (1976) (143), no. 4 (12), 542-567. Translation. Math USSR Sbornik, vol. 30 (1976), no. 4.
(2) Kenkd, M. A. The modular curve $X_{0}(39)$ and rational isogeny. Math. Proc. Cambridge Philos. Soc. 85 (1979), 21-23.
(3) Kenko, M. A. Atkin-Lehner involutions and class-number residuality. Acta Arithmetica 33 (1977), 1-9.
(4) Klein, F. and Fricke, R. Vorlesungen uber die Theories der elliptischen Modulfunktionen, vol. 2 (Chelsea).
(5) Ligozat, G. Courbes modulaires de niveau 11. In Modular functions of one variable, vol. v, 148-237. Lecture Notes in Mathematics, no. 601 (Berlin, Heidelberg, New York, Springer, 1977).
(6) Manin, Y. Parabolic points and zeta-functions of modular curves. Math. U.S.S.R. Izvestija 6 (1972), no. 1, 19-64.
(7) Mazur, B. Rational isogenies of prime degree. Inventiones Math. 44 (1978), 129-162.
(8) Newman, M. Construction and applications of a class of modular functions. Proc. London Math. Soc. (3) 7 (1967), 334-350; 9 (1959), 373-387.
(9) Ogg, A. P. Hyperelliptic modular curves. Bull. Soc. Math. France 102 (1974), 449-462.
(10) Ogg, A. P. Rational points on certain modular curves. Proc. Symp. Pure Math. A.M.S. Providence 24 (1973), 221-231.
(11) Weber, H. Lehrbuch der Algebra, vol. III (Chelsea, New York).

