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y2(x) = (n + 1)! , xn+l+k/(n + 1 + k)! =(n + 1)! I x'Ij! =(n +1)! (ex_xIijj! 
k=0 j=n+l j=) 

= (n + 1)! ex - (n +( )! Yn (X )- 

Thus, we have y (x) = e' and yn(x) as solutions of (1.1). 
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COMMUTATORS AND THE COMMUTATOR SUBGROUP 

I. M. ISAACS 

The commutator subgroup G' of a group G is generated by commutators, elements of the form 
[x, y] = x 'y-xy. As is quite well known, not every element of G' need be a commutator. What is 
perhaps less well known is a convenient source of finite groups which are examples of this 
phenomenon. The purpose of this note is to provide such a source. (Other examples are described in 
[1], [2] and [3].) The method given here can be used to construct both solvable and nonsolvable groups 
and even yields examples which are perfect, that is G'= G. The author is unaware, however, of any 
nonabelian simple group which contains a noncommutator. 

Our examples will be wreath products and we begin with a description of these groups. Let U and 
H be any groups. Their wreath product G = U\ H has as normal subgroup the group B of all 
functions f: H-- U. Multiplication in B is pointwise. Also H C G and G = BH (and of course 
B fH= 1). Finally, to complete the description of G we have for f ? B and h c H that 
h 'fh =fh C B with fh(x) = f(xh-') for x C H. We refer to B as the base group of the wreath 
product. 

THEOREM. Let U and H be finite groups w ith U abelian and H nonabelian. Let G = U \ H. Then 
G' contains a noncommutator if 

(*) AE~~~~~~~~~~~~~4~ (lH:AKI 
A c=u' (| U I I Ul| 

where X is the set of maximal abelian subgroups of H. In particular, this condition holds whenever 
Ul - 1X! 

Actually, as can be seen from the proof, somewhat weaker conditions that (*) suffice although they 
are hard to state cleanly. In fact, if H is nonabelian of order 6, we can take I U = 2. Although (*) is not 
satisfied, nevertheless the resulting group G of order 2' 3 is an example where G' contains a 
noncommutator. 
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LEMMA 1. Let G be a group with abelian A < G and suppose G = AH with A n H = 1. If 
[x, y] e A with x, y E G, then [x, y] E [A, K] for some abelian K C H. 

Proof. Write x = ah and y = bk with a, b E A and h, k E H. Since [x, y] E A, the images of x 
and y in GIA commute. Since these are also the images of h and k, it follows that [h, k] E A. Since 
also [h, k] E H, we have [h, k] = 1 and K = (h, k) is abelian. 

Now [A, K], the group generated by commutators of elements of A with elements of K, is normal 
in AK. The images of A and K in AK/[A, K] are abelian and centralize each other, and hence 
AK/[A, K] is abelian. Thus [x, y] E (AK)' C [A, K]. U 

LEMMA 2. Let G = UX H where U is abelian and G is finite. Let B be the base group of G and let 
KCH. Then I[B,K]I = I U IIHI-IH:KI. 

Proof. Let T be a set of representatives for the left cosets of K in H. For each t E T, define 
o,: B -U by o,(f) =IlkEKf(tk). Then o, is a homomorphism and ut(fk) =c,(f) for f E B and 
k E K. 

Let C = nfltT ker o-,. Then I C I = I U j1H1-IH:KI since any f in C may be specified arbitrarily on all 
but one element in each coset. We claim that [B, K] = C. 

To show that [B, K] CC, let f EB. Then [f, k] = flfk and cr,([f, k]) =c,(f-1)o, (fk)= 1. Thus 
[f, k] E C and hence [B, K], the group generated by all [f, k], is contained in C. 

To show that C C [B, K], let r: B -- BI[B, K] be the canonical homomorphism and note that 
r(fk) = r(f) for f E B. Let c E C and k E K and define Ck E B by 

k x C) if xk E T 
I if xk T. 

It follows that c= rflkEKCk. Let b = RfkEK (Ck)k . Since r(f) = r(fk) we have r(c) = r(b). We claim that 
b = 1 and thus r(c)= 1 and C5[B,K]. We compute b(x) for x EH. If x T, then (Ck)k(X) 

Ck(xk- 1 for all k and b(x)= 1. If x E T, then 

(ck )k (x) = Ck(xk) = c (xk1) 

and so b(x)=fIkc(xk-')= X(c)= 1. The proof is complete. X 

Proof of Theorem. Let B be the base group of G = U \ H. Then [B, H] C G' and | [B, H] | = 
U H- ' by Lemma 2. If every element of [B, H] is a commutator, then [B, H]- UA . [B, A] by 
Lemma 1. Since | [B, A ] I U IIHI-IH:A , this forces 

E IUIHj-jH:AI > I U IH)-I 

A E .1 

and thus 

l H:Aj 

and the first statement is proved. The second statement follows since I H:A ? 2 for all A E d. U 
We remark that if H is simple, U is abelian and G = UXH, then G'= G". Thus if U is large 

enough, then G' is a perfect group in which not every element is a commutator. 
Finally we mention that one can read off from the character table of a group, the elements which 

are commutators. In fact g E G is a commutator iff 

nEx i XrXil) > o, 

where the sum runs over all complex irreducible characters X Of G. 
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RESTRICTIONS ON THE VALUES OF DERIVATIVES 

WALTER RUDIN 

In [1], F. D. Hammer asked whether there exists a differentiable function f with f(r) rational but 
f'(r) irrational for every rational r. Posed this way, the problem involves arithmetic properties of the 
real numbers, and the explicit example constructed by W. Knight [2] makes full use of these arithmetic 
features. 

However, the phenomenon under consideration really depends only on the fact that the set of all 
rational numbers is countable and dense in the line, and that the irrationals are also dense. (Another 
solution of the problem, found by Dan Simchoni and stated without proof after [2], furnishes an entire 
function with restrictions of f and f' on an arbitrary countable set, and makes no use of arithmetic.) 
Once this is recognized, it is easy (as we shall see) to extend this phenomenon to infinitely 
differentiable functions, in any finite number of variables. 

Let n be a fixed positive integer. A multi-index is an ordered n-tuple a = (ai,.. ., an) in which 
each ai is a nonnegative integer. To each multi-index a corresponds a differential operator 

Da'= (d)... ( 

As usual, R is the real line, R n is euclidean n-space, and C'(R n) is the class of all functions 
f: R" -* R with D af continuous for every a. 

THEOREM. Suppose that 
(a) A is a countable subset of R n, and 
(b) for each multi-index a, Ba is a dense subset of R. 
Then there exists an f E C'(R n) such that Daf maps A into Ba, for every a. 

Proof. We shall use the customary multi-index notations 

lalI=ai!1+ -+atn, at!= ai! ... n!, Xa =' lal nn 

if X =(t,... Sn) R n. 

Arrange the members of A in a sequence {xi }, i = 0, 1, 2,.. ., with xi xj if i j. For i 0, choose 
E C'(R n) with compact support Ki, such that 
(i) Ki contains no xm with m < i, 
(ii) 0 Oif(x) ' 1 for all x E Rn, and 
(iii) i (x) = 1 for all x in some neighborhood of xi. 
Choose co(a) E Ba, so small that the power series 

(1) go(x ) = E E(a) (x - xo)a 

defines an entire function go, with I go(x) I < 1 on Ko. If fo = oogo then fo E C'(R n and 

(2) (D afo) (xo) = (D ago) (xo) = co(a) 

for every a, since fo = go in a neighborhood of xo. 
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