Degrees of Sums in a Separable Field Extension
Author(s): I. M. Isaacs
Source: Proceedings of the American Mathematical Society, Vol. 25, No. 3 (Jul., 1970), pp. 638641
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2036661
Accessed: 02/06/2010 16:14

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

[^0]
DEGREES OF SUMS IN A SEPARABLE FIELD EXTENSION

I. M. ISAACS

Let F be any field and suppose that E is a separable algebraic extension of F. For elements $\alpha \in E$, we let $\operatorname{dg} \alpha$ denote the degree of the minimal polynomial of α over F. Let $\alpha, \beta \in E, \operatorname{dg} \alpha=m, \operatorname{dg} \beta=n$ and suppose $(m, n)=1$. It is easy to see that $[F(\alpha, \beta): F]=m n$, and by a standard theorem of field theory (for instance see Theorem 40 on p. 49 of [1]), there exists an element $\gamma \in E$ such that $F(\alpha, \beta)$ $=F(\gamma)$ and thus $\mathrm{dg} \gamma=m n$. In fact, the usual proof of this theorem produces (for infinite F) an element of the form $\gamma=\alpha+\lambda \beta$, with $\lambda \in F$. In this paper we show that in many cases the choice of $\lambda \in F$ is completely arbitrary, as long as $\lambda \neq 0$. In Theorem 63 on p. 71 of [1], it is shown that if $n>m$ and n is a prime different from the characteristic of F, then $\mathrm{dg}(\alpha+\beta)=m n$. The present result includes this.

Theorem. Let $E \supseteq F$ be fields as above and let $\alpha, \beta \in E$ with $\operatorname{dg} \alpha=m$, $\operatorname{dg} \beta=n$ and $(m, n)=1$. Then $\operatorname{dg}(\alpha+\lambda \beta)=m n$ for all $\lambda \neq 0, \lambda \in F$ unless the characteristic, $\operatorname{ch}(F)=p$, a prime, and
(a) $p \mid m n$ or $p<\min (m, n)$,
(b) if m or n is a prime power, then $p \mid m n$ and
(c) if $q>m$ for every prime $q \mid n$, then $p \mid n$.

Proof. First we reduce the problem to one of group representations. We may assume without loss that E is a finite degree Galois extension of F and let G be the Galois group. Then G transitively permutes the sets of roots $A=\left\{\alpha_{i} \mid 1 \leqq i \leqq m\right\}$ and $B=\left\{\beta_{j} \mid 1 \leqq j \leqq n\right\}$ of the minimal polynomials of α and β. Let $V \subseteq E$ be the linear span of $A \cup B$ over F. Then V is a G-module over F and in the action of G on V there exists orbits A and B with $|A|=m,|B|=n$ and $(m, n)=1$. We show by induction on $|G|$ that if $\alpha \in A$ and $\beta \in B$, then $\alpha+\beta$ lies in an orbit of size $m n$, unless $\operatorname{ch}(F)=p$ and (a), (b) and (c) hold. This will clearly prove the theorem when applied to $\lambda \beta$ in place of β.

Let $H=G_{\alpha}$ and $K=G_{\beta}$, the stabilizers in G of α and β. Then $|G: H|=m,|G: K|=n$ and since $(m, n)=1$, a standard argument yields $|G: H \cap K|=m n$ and H and K act transitively on B and A respectively. It follows that G is transitive on $A \times B$ and thus all elements of V of the form $\alpha_{i}+\beta_{j}$ are conjugate under the action of G. Suppose that $\alpha+\beta$ does not have exactly $m n$ conjugates. Then not all $\alpha_{\boldsymbol{i}}+\beta_{j}$ are distinct and we may assume that $\alpha+\beta=\alpha_{a}+\beta_{b}$, where

[^1]$\alpha \neq \alpha_{a}$ or $\beta \neq \beta_{b}$. Then $\alpha-\alpha_{a}=\beta_{b}-\beta \neq 0$ and the subspaces W_{1} and W_{2} of V, spanned by A and B respectively, intersect nontrivially. Set $U=W_{1} \cap W_{2}$ and observe that W_{1}, W_{2} and U are all G-invariant spaces.

We remark at this point that if $\operatorname{ch}(F) \nmid|G|$, an easy contradiction could be obtained using the fact that W_{1} and W_{2} are homomorphic images of the permutation modules determined by the actions of G on A and B. In this case, the modules would be completely reducible and since $H K=G$, it is not hard to see that they can have only the principal module as a common constituent. It would follow that G acts trivially on U and thus fixes $\alpha-\alpha_{a}$. A contradiction results since $\alpha_{a}=\alpha^{g}$ for some $g \in G$ and the order of this element is prime to $\operatorname{ch}(F)$. It does not appear that this approach will lead to a full proof of the theorem and we continue along a different route.

It may be assumed that G acts faithfully on V or else the inductive hypothesis may be applied to G / N where N is the kernel of the action, and the result follows immediately. Suppose now that there is a subgroup $G_{0}<G$ which acts so that the orbits A_{0} and B_{0} of α and β under G_{0} satisfy $m_{0}\left|m, n_{0}\right| n, \alpha_{a} \in A_{0}$ and $\beta_{b} \in B_{0}$, where $m_{0}=\left|A_{0}\right|$ and $n_{0}=\left|B_{0}\right|$. Then $\left(m_{0}, n_{0}\right)=1$ and since $\alpha+\beta=\alpha_{a}+\beta_{b}$, the number of conjugates of $\alpha+\beta$ under G_{0} is $<m_{0} n_{0}$. Therefore, induction applies and $\operatorname{ch}(F)=p$, a prime, and by (a), $p \mid m_{0} n_{0}$ or $p<\min \left(m_{0}, n_{0}\right)$. Since $m_{0} \mid m$ and $n_{0} \mid n$, (a) holds for m and n. Similarly, (b) and (c) for m_{0} and n_{0} imply the corresponding statements for m and n. We may assume then that no such subgroup G_{0} exists.

Now, G permutes the set of cosets of U in W_{1} and is transitive on the set of those cosets which contain elements of A. All of these, therefore, contain equal numbers of elements of A. We have α, $\alpha_{a} \in U+\alpha$ and if $A_{0}=A \cap(U+\alpha)$, then $\left|A_{0}\right| \mid m$. Let G_{0} be the stabilizer of the coset $U+\alpha$ in G. Clearly, $H \subseteq G_{0}$ and hence G_{0} is transitive on B. We claim that G_{0} is transitive on A_{0}. If $\alpha_{i} \in A_{0}$, then for some $g \in G, \alpha^{g}=\alpha_{i}$. Thus $(U+\alpha)^{g}=U+\alpha_{i}=U+\alpha$ and so $g \in G_{0}$. This establishes transitivity and by the preceding paragraph, we cannot have $G_{0}<G$. Therefore G stabilizes $U+\alpha$ and hence $A \subseteq U+\alpha$. By similar reasoning, $B \subseteq U+\beta$. Now, $\beta_{j}=u_{j}+\beta$ for some $u_{j} \in U$. Summing over $\beta_{j} \in B$, we obtain $\sum \beta_{j}=\sum u_{j}+n \beta$. Thus $n \beta=u+\gamma$, where $u \in U$ and $\gamma=\sum \beta_{j}$ is fixed by G. Let $N \triangleleft G$ be the kernel of the action of G on A. Then N fixes all elements of $W_{1} \supseteq U$ and thus N fixes $n \beta$. If $\operatorname{ch}(F) \nmid n$, then N fixes β and hence fixes all $\beta_{j}=u_{j}+\beta$. Thus N acts trivially on V, the span of $A \cup B$. Therefore, $N=1$ and G is isomorphic to a subgroup of the symmetric group on A. Thus $|G| \mid m!$ and $n \mid m!$.

Since $n>1$, this shows that the hypotheses of (c) cannot occur if $\operatorname{ch}(F) \nmid n$ and thus (c) is proved.

Now suppose that $\operatorname{ch}(F) \nmid m n$. By interchanging A and B in the above argument, we obtain $|G| \mid n$! and all prime divisors of $|G|$ are $\leqq \min (m, n)$. If $\operatorname{ch}(F)=0$ or $\operatorname{ch}(F)=p$, a prime $>\min (m, n)$, then $\operatorname{ch}(F) \nmid|G|$. If m or n is a prime power, we may suppose that $m=q^{e}$ and let Q be a Sylow q-subgroup of K. Then $|K: K \cap H|=q^{e}$ so $K=(K \cap H) Q$ and it follows that Q is transitive on A. Thus under any of the assumptions: $\operatorname{ch}(F)=0, \operatorname{ch}(F)=p>\min (m, n)$ or $m=q^{e}$, there exists a subgroup $L \subseteq K$ which is transitive on A and such that $\operatorname{ch}(F)\}|L|$. The proof will be complete if a contradiction follows from the existence of such an L.

We have seen that $n \beta=u+\gamma$ where $u \in U$ and γ is fixed by G. As $U \subseteq W_{1}$, we have $u=\sum \xi_{i} \alpha_{i}$, where $\xi_{i} \in F$ and α_{i} runs over A. Now if $x \in L \subseteq K$, we have

$$
\begin{equation*}
\beta=\beta^{x}=\frac{1}{n} \sum \xi_{i} \alpha_{i}^{x}+\frac{1}{n} \gamma . \tag{}
\end{equation*}
$$

Now set $\delta=\sum \alpha_{i}$, and observe that since L is transitive on A, we have $\sum_{x \in L} \alpha_{i}^{x}=(|L| / m) \delta$. Now, summing $\left({ }^{*}\right)$ over L, we obtain

$$
|L| \beta=\frac{|L|}{m n} \sum \xi_{i} \delta+\frac{|L|}{n} \gamma .
$$

Note that division by m and n in the above equations makes sense in V since $\operatorname{ch}(F) \nmid m n$. Since γ and δ are fixed by G and $\operatorname{ch}(F) \nmid|L|$, it follows that β is fixed by G. This is a contradiction since $\beta \neq \beta_{b}$ and the proof is complete.

Now let G be any finite group and suppose that V is any faithful finite-dimensional G-module over a field K. Suppose that $u, v \in V$ are permuted by G into orbits of sizes m and n respectively and that $u+v$ lies in an orbit of size k. Then there exist fields $E \supseteq F \supseteq K$, with E a finite separable extension of F, and elements $\alpha, \beta \in E$ with $\operatorname{dg} \alpha=m$, $\operatorname{dg} \beta=n$ and $\operatorname{dg}(\alpha+\beta)=k$.

The construction is as follows. Let $e=\operatorname{dim}_{K}(V)$ and let X_{1}, X_{2}, \cdots, X_{e} be indeterminates. Set $R=K\left[X_{1}, \cdots, X_{e}\right]$ and let E be the quotient field of R. Now fix a basis for V and identify this basis with the X_{i} so that V is identified with the linear span of the X_{i} in R. Now it is clear that each element of G determines an automorphism of R and hence of E. Let F be the fixed field of G in E and let α and β be the elements of E corresponding to u and v. These elements clearly have the desired properties.

It follows that to establish the best possible improvement of the present theorem with conditions given in terms of m, n and $\operatorname{ch}(F)$, it suffices to consider only group representations. It is possible that the theorem could be improved by dropping the possibility $p<\min (m, n)$ in (a). Some limitations on possible improvements are given by the following examples for $m=3$ and $n=4$.

Example 1. $\mathrm{Ch}(K)=2$. Let $G=A_{4}$, the alternating group on four symbols. Let V^{*} be a four dimensional vector space over $G F(2)$ and let G permute a basis, $\{w, x, y, z\}$, in the natural manner. Let $V_{0}=\{0, w+x+y+z\}$ and let $V=V^{*} / V_{0}$. The image of w in V has four conjugates under G and the image of $w+x$ has three conjugates. The sum of these elements has four conjugates.

Example 2. $\mathrm{Ch}(K)=3$. Let V be a four dimensional vector-space over $K=G F(3)$, with basis $\{w, x, y, z\}$. Let G be the group generated by the elements $\rho, \sigma, \tau \in \mathrm{GL}(V)$ whose matrices are

$$
\rho=\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right], \quad \sigma=\left[\begin{array}{rrrr}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right], \quad \tau=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] .
$$

Then G is the direct product of the subgroups $\langle\rho, \sigma\rangle$ of order 6 and $\langle\tau\rangle$ of order 2. The orbit of w under G is $\{w, w+x, w-x\}$ and the orbit of y under G is $\{y, y+x, z, z+x\}$. However, the orbit of $w+y$ is $\{w+y, w+y+x, w+y-x, w+z, w+z+x, w+z-x\}$, which has six elements.

Reference

1. I. Kaplansky, Fields and rings, Univ. of Chicago Press, Chicago, 1969.

University of Chicago, Chicago, Illinois 60637

[^0]: American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

[^1]: Received by the editors June 6, 1969.

