

Degrees of Sums in a Separable Field Extension Author(s): I. M. Isaacs Source: *Proceedings of the American Mathematical Society*, Vol. 25, No. 3 (Jul., 1970), pp. 638-641 Published by: American Mathematical Society Stable URL: <u>http://www.jstor.org/stable/2036661</u> Accessed: 02/06/2010 16:14

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at http://www.jstor.org/action/showPublisher?publisherCode=ams.

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

DEGREES OF SUMS IN A SEPARABLE FIELD EXTENSION

I. M. ISAACS

Let F be any field and suppose that E is a separable algebraic extension of F. For elements $\alpha \in E$, we let dg α denote the degree of the minimal polynomial of α over F. Let α , $\beta \in E$, dg $\alpha = m$, dg $\beta = n$ and suppose (m, n) = 1. It is easy to see that $[F(\alpha, \beta):F] = mn$, and by a standard theorem of field theory (for instance see Theorem 40 on p. 49 of [1]), there exists an element $\gamma \in E$ such that $F(\alpha, \beta)$ $= F(\gamma)$ and thus dg $\gamma = mn$. In fact, the usual proof of this theorem produces (for infinite F) an element of the form $\gamma = \alpha + \lambda\beta$, with $\lambda \in F$. In this paper we show that in many cases the choice of $\lambda \in F$ is completely arbitrary, as long as $\lambda \neq 0$. In Theorem 63 on p. 71 of [1], it is shown that if n > m and n is a prime different from the characteristic of F, then dg $(\alpha + \beta) = mn$. The present result includes this.

THEOREM. Let $E \supseteq F$ be fields as above and let α , $\beta \in E$ with $dg\alpha = m$, $dg\beta = n$ and (m, n) = 1. Then $dg(\alpha + \lambda\beta) = mn$ for all $\lambda \neq 0$, $\lambda \in F$ unless the characteristic, ch(F) = p, a prime, and

- (a) $p \mid mn \text{ or } p < \min(m, n),$
- (b) if m or n is a prime power, then $p \mid mn$ and
- (c) if q > m for every prime $q \mid n$, then $p \mid n$.

PROOF. First we reduce the problem to one of group representations. We may assume without loss that E is a finite degree Galois extension of F and let G be the Galois group. Then G transitively permutes the sets of roots $A = \{\alpha_i | 1 \le i \le m\}$ and $B = \{\beta_j | 1 \le j \le n\}$ of the minimal polynomials of α and β . Let $V \subseteq E$ be the linear span of $A \cup B$ over F. Then V is a G-module over F and in the action of Gon V there exists orbits A and B with |A| = m, |B| = n and (m, n) = 1. We show by induction on |G| that if $\alpha \in A$ and $\beta \in B$, then $\alpha + \beta$ lies in an orbit of size mn, unless ch(F) = p and (a), (b) and (c) hold. This will clearly prove the theorem when applied to $\lambda\beta$ in place of β .

Let $H = G_{\alpha}$ and $K = G_{\beta}$, the stabilizers in G of α and β . Then |G:H| = m, |G:K| = n and since (m, n) = 1, a standard argument yields $|G:H \cap K| = mn$ and H and K act transitively on B and A respectively. It follows that G is transitive on $A \times B$ and thus all elements of V of the form $\alpha_i + \beta_j$ are conjugate under the action of G. Suppose that $\alpha + \beta$ does not have exactly mn conjugates. Then not all $\alpha_i + \beta_j$ are distinct and we may assume that $\alpha + \beta = \alpha_a + \beta_b$, where

Received by the editors June 6, 1969.

 $\alpha \neq \alpha_a$ or $\beta \neq \beta_b$. Then $\alpha - \alpha_a = \beta_b - \beta \neq 0$ and the subspaces W_1 and W_2 of V, spanned by A and B respectively, intersect nontrivially. Set $U = W_1 \cap W_2$ and observe that W_1 , W_2 and U are all G-invariant spaces.

We remark at this point that if $\operatorname{ch}(F) \nmid |G|$, an easy contradiction could be obtained using the fact that W_1 and W_2 are homomorphic images of the permutation modules determined by the actions of Gon A and B. In this case, the modules would be completely reducible and since HK = G, it is not hard to see that they can have only the principal module as a common constituent. It would follow that Gacts trivially on U and thus fixes $\alpha - \alpha_a$. A contradiction results since $\alpha_a = \alpha^{\varrho}$ for some $g \in G$ and the order of this element is prime to $\operatorname{ch}(F)$. It does not appear that this approach will lead to a full proof of the theorem and we continue along a different route.

It may be assumed that G acts faithfully on V or else the inductive hypothesis may be applied to G/N where N is the kernel of the action, and the result follows immediately. Suppose now that there is a subgroup $G_0 < G$ which acts so that the orbits A_0 and B_0 of α and β under G_0 satisfy $m_0 | m, n_0 | n, \alpha_a \in A_0$ and $\beta_b \in B_0$, where $m_0 = |A_0|$ and $n_0 = |B_0|$. Then $(m_0, n_0) = 1$ and since $\alpha + \beta = \alpha_a + \beta_b$, the number of conjugates of $\alpha + \beta$ under G_0 is $< m_0 n_0$. Therefore, induction applies and ch(F) = p, a prime, and by (a), $p | m_0 n_0$ or $p < \min(m_0, n_0)$. Since $m_0 | m$ and $n_0 | n$, (a) holds for m and n. Similarly, (b) and (c) for m_0 and n_0 imply the corresponding statements for m and n. We may assume then that no such subgroup G_0 exists.

Now, G permutes the set of cosets of U in W_1 and is transitive on the set of those cosets which contain elements of A. All of these, therefore, contain equal numbers of elements of A. We have α , $\alpha_a \in U + \alpha$ and if $A_0 = A \cap (U + \alpha)$, then $|A_0| | m$. Let G_0 be the stabilizer of the coset $U + \alpha$ in G. Clearly, $H \subseteq G_0$ and hence G_0 is transitive on B. We claim that G_0 is transitive on A_0 . If $\alpha_i \in A_0$, then for some $g \in G$, $\alpha^g = \alpha_i$. Thus $(U+\alpha)^g = U+\alpha_i = U+\alpha$ and so $g \in G_0$. This establishes transitivity and by the preceding paragraph, we cannot have $G_0 < G$. Therefore G stabilizes $U + \alpha$ and hence $A \subseteq U + \alpha$. By similar reasoning, $B \subseteq U + \beta$. Now, $\beta_j = u_j + \beta$ for some $u_j \in U$. Summing over $\beta_j \in B$, we obtain $\sum \beta_j = \sum u_j + n\beta$. Thus $n\beta = u + \gamma$, where $u \in U$ and $\gamma = \sum \beta_j$ is fixed by G. Let $N \triangleleft G$ be the kernel of the action of G on A. Then N fixes all elements of $W_1 \supseteq U$ and thus N fixes $n\beta$. If $ch(F) \nmid n$, then N fixes β and hence fixes all $\beta_j = u_j + \beta$. Thus N acts trivially on V, the span of $A \cup B$. Therefore, N = 1 and G is isomorphic to a subgroup of the symmetric group on A. Thus |G||m! and n|m!.

Since n > 1, this shows that the hypotheses of (c) cannot occur if $ch(F) \nmid n$ and thus (c) is proved.

Now suppose that $\operatorname{ch}(F) \nmid mn$. By interchanging A and B in the above argument, we obtain |G||n! and all prime divisors of |G| are $\leq \min(m, n)$. If $\operatorname{ch}(F) = 0$ or $\operatorname{ch}(F) = p$, a prime $> \min(m, n)$, then $\operatorname{ch}(F) \nmid |G|$. If m or n is a prime power, we may suppose that $m = q^e$ and let Q be a Sylow q-subgroup of K. Then $|K:K \cap H| = q^e$ so $K = (K \cap H)Q$ and it follows that Q is transitive on A. Thus under any of the assumptions: $\operatorname{ch}(F) = 0$, $\operatorname{ch}(F) = p > \min(m, n)$ or $m = q^e$, there exists a subgroup $L \subseteq K$ which is transitive on A and such that $\operatorname{ch}(F) \nmid |L|$. The proof will be complete if a contradiction follows from the existence of such an L.

We have seen that $n\beta = u + \gamma$ where $u \in U$ and γ is fixed by G. As $U \subseteq W_1$, we have $u = \sum \xi_i \alpha_i$, where $\xi_i \in F$ and α_i runs over A. Now if $x \in L \subseteq K$, we have

(*)
$$\beta = \beta^{x} = \frac{1}{n} \sum \xi_{i} \alpha_{i}^{x} + \frac{1}{n} \gamma.$$

Now set $\delta = \sum \alpha_i$, and observe that since *L* is transitive on *A*, we have $\sum_{x \in L} \alpha_i^x = (|L|/m)\delta$. Now, summing (*) over *L*, we obtain

$$|L|\beta = \frac{|L|}{mn}\sum \xi_i\delta + \frac{|L|}{n}\gamma.$$

Note that division by *m* and *n* in the above equations makes sense in V since $ch(F) \nmid mn$. Since γ and δ are fixed by *G* and $ch(F) \nmid |L|$, it follows that β is fixed by *G*. This is a contradiction since $\beta \neq \beta_b$ and the proof is complete.

Now let *G* be any finite group and suppose that *V* is any faithful finite-dimensional *G*-module over a field *K*. Suppose that $u, v \in V$ are permuted by *G* into orbits of sizes *m* and *n* respectively and that u+v lies in an orbit of size *k*. Then there exist fields $E \supseteq F \supseteq K$, with *E* a finite separable extension of *F*, and elements $\alpha, \beta \in E$ with $dg\alpha = m$, $dg\beta = n$ and $dg(\alpha + \beta) = k$.

The construction is as follows. Let $e = \dim_{K}(V)$ and let $X_{1}, X_{2}, \dots, X_{e}$ be indeterminates. Set $R = K[X_{1}, \dots, X_{e}]$ and let E be the quotient field of R. Now fix a basis for V and identify this basis with the X_{i} so that V is identified with the linear span of the X_{i} in R. Now it is clear that each element of G determines an automorphism of R and hence of E. Let F be the fixed field of G in E and let α and β be the elements of E corresponding to u and v. These elements clearly have the desired properties.

It follows that to establish the best possible improvement of the present theorem with conditions given in terms of m, n and ch(F), it suffices to consider only group representations. It is possible that the theorem could be improved by dropping the possibility $p < \min(m, n)$ in (a). Some limitations on possible improvements are given by the following examples for m = 3 and n = 4.

EXAMPLE 1. Ch(K) = 2. Let $G = A_4$, the alternating group on four symbols. Let V^* be a four dimensional vector space over GF(2) and let G permute a basis, $\{w, x, y, z\}$, in the natural manner. Let $V_0 = \{0, w+x+y+z\}$ and let $V = V^*/V_0$. The image of w in V has four conjugates under G and the image of w+x has three conjugates. The sum of these elements has four conjugates.

EXAMPLE 2. Ch(K) = 3. Let V be a four dimensional vector-space over K = GF(3), with basis $\{w, x, y, z\}$. Let G be the group generated by the elements ρ , σ , $\tau \in GL(V)$ whose matrices are

$$\rho = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, \quad \sigma = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}, \quad \tau = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

Then G is the direct product of the subgroups $\langle \rho, \sigma \rangle$ of order 6 and $\langle \tau \rangle$ of order 2. The orbit of w under G is $\{w, w+x, w-x\}$ and the orbit of y under G is $\{y, y+x, z, z+x\}$. However, the orbit of w+y is $\{w+y, w+y+x, w+y-x, w+z, w+z+x, w+z-x\}$, which has six elements.

Reference

1. I. Kaplansky, Fields and rings, Univ. of Chicago Press, Chicago, 1969.

UNIVERSITY OF CHICAGO, CHICAGO, ILLINOIS 60637