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CLASSROOM NOTES 

EDrIED BY DEBORAH TEPPER HAimo AND FRANKuN TEPPER HAIMO 

Material for this department should be sent to Professor Deborah Tepper Haimo, Department of Mathematical 
Sciences, University of Missouri, St. Louis, MO 63121. 

FUNCTIONS WITH ARBITRARILY SMALL PERIODS 

J. M. HENLE 

Department of Mathematics, Smith College, Northampton, MA 01060 

Recently R. Cignoli and J. Hounie [2] gave a new proof, together with applications, of 
Burstin's Theorem: A Lebesgue-measurable function f:R-*R having arbitrarily small periods is 
constant ae. The following is a more direct, self-contained proof. 

Let I be any closed interval, and let D =f -'(I). Then the measure of D intersected with any 
interval depends linearly on the length of the interval. To see this, let a= m(D n [0, ID and 
suppose we are given e > 0 and a <b. Choose a periodp of f so thatp <8 and rm/n -(b - a)l <8, 
where n = [l/p] and m = [(b - a)/p]. Since p is a period off, the measure of D intersected with 
any interval of length p is the same. Thus if d = m(D n [O,p]), then a = m(D n [0, 1]) = nd + eI and 
m(D n (a, b)) = md+ 62, with el, 62 <8. We then have: 

jm(D nf(a,b))- a(b-a)j = nd(Lm ) + 62-(nd+ e8)(b- a)f 

= nd(- - (b-a)) +62-el(b-a)f <a8+82+8l(b-a); 

hence m(D n (a, b)) = a(b - a). 
The theorem results from the following lemma. 

LEMMA. If the measure of a set D intersected with any interval depends linearly on its length, 
then either m(D) = 0 or m(DC) = 0. 

Using this, for each n >0, let kn, I,, = [ks/n, (k,, + 1)/n] be such that f '(I,,) is not of measure 
0. By the lemma, m(f 1(In)C)=0. Also, n,,<.I,, is not empty, since 

(f(( n In))) = (f'( U i m( muf_nc =0. 

Since there can be no more than one point q in n n< In, 0=m(f ({q})c) implies f(x)=q a.e. 
The lemma is proved as follows: let a = m(D n [0, 1]). Given 8>0, cover D n [0,1 ] with open 

intervals 0n so that 2,nm(On))<a+e. Since m(On n D)=am(On), we have 

a =m (D n [0, I1])S< Em(Dn On) < a2m (On) < a2 +aYe. 
n n 

As e is arbitrary, this shows a < a2, and so a=0 or 1. If a=0, m(D)=0; and if a= 1, m(DC)=0. 
Another proof depends on the well-known principle that a set that covers at most a fixed 

fraction of every interval covers almost none of every interval. 
I am informed that A. B. Novikoff has found that Burstin's original proof is incorrect. 
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