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EQUATIONS OF HYPERELLIPTIC
MODULAR CURVES

by Josep GONZALEZ ROVIRA

1. Introduction.

Let N be a positive integer and let Fo(N) be the subgroup of the

modular group T = 57L(2,Z)/(± 1) defined by the matrices ( ^ ) ,
V^ u/

where N divides C. As usual, we denote by XQ^N) the complet complex
curve corresponding to the subgroup FQ^N).

In [01], Ogg determines all the modular hyperelliptic curves with
genus g ^ 2. He shows that only in the case N = 37 the hyperelliptic
involution w does not preserve the cusps, and that this is the only case
in which w does not belong to the normalizer of Fo(N) in SL(2,R)/(± 1).
In all the other cases he computes the hyperelliptic involution w. His
results can be displayed as follows :

* w = w^, with 1 < N,\N and ( N ^ N / N ^ ) = 1 (Atkin-Lehner
involution) for

N = 22, 23, 26, 28, 29, 30, 31, 33, 35, 39, 41, 46, 47, 50, 59, 71,
W = Wu, Was, Was, WT, W29, Wl5,W31» ^11, ^35, ^39, ̂ i, ^33, ^47, WSQ,

^59, Wyi ,

respectively.

A^-wor^s .' Modular curves - Hyperelliptic curves - Modular equations - eta functions.
A.M.S. Classification: 14G35 - 11F11 - 11G18.
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* w is not an Atkin-Lehner involution for

N = 40,48 and w =(: ̂  ^) (: ̂  ^ respectively.

The modular curve Xo(N) is elliptic for N ^ 11, 14, 15, 17, 19, 20,
21, 24, 27, 32, 36, 49. In these cases, w^v is always a hyperelliptic
involution,

Several equations for the modular curves Xo(N) are known in the
literature. They cover all values of N for which XQ^N) is elliptic and
some of the values of N for which Xo(N) is hyperelliptic (cf. [F], [MS],
[B]). Our goal is- to give a procedure to compute, in a unified way,
the equation of ait hyperelliptic modular curves with g > 0.

Our method uses some results of Newman [N1]-[N2] and ideas
appearing in Birch's computation of an equation for Xo(50) (cf. [B]).

For the computation of the equations it has been essential a previous
study of a multiplicative group of modular functions, that we call
Newman group, obtained through Newman theorem 1 of [N2].

I would like to thank Pilar Bayer for the encouragement and useful
discussions throughout this work.

1. General facts.

1.1. Cusps in Xo(N).

The number of cusps in Xo(N) is ^ ^>(d,N/d), where (p denotes
0< d\N

the Euler function. In order to get a system of representatives of these
cusps, we choose fractions a/d for each 0 < d \ N, where a runs over a
system of representatives of (Z/^Z)*, fa = (d,N/d), with the condition
(a,d) = 1. In this way 0 = 1, i oo = 1 / N .

The ramification index of the cusp a/d under the covering map
n: Xo(N) -> X(l) is equal to ^ = N/(dfa). If follows then that

Z (P(/d)^ = ^(AO where v|/(^):= ]~[ (1 + Vrt-
0 < d\N P\N
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1.2. The normalizer of F^N) in SL(2,R)1(±1).

SL(2,R)/(± 1) is the set of automorphisms of the upper half-plane,
and, if we denote by r^(N) the normalizer of FQ(N) in SL(2,R)/(± 1),
this group singles out a group of automorphisms of X^(N) through the
quotient B(N) = r^N)/r,W.

The group B(N) has been described by Lehner and Newman
[LeN], and revised by Atldn-Lehner in [ALe]. If we denote e^ €3 the
greatest exponents such that 2e23(?3 divide N and we write

V2 = 2min(3•[(?2^, vs = 3^"<u.3/^ then the matrix (q 1) where q = v,

or q = Va defines an automorphism 5g of XQ^N). The group B(AQ is
generated by the Atkin-Lehner involutions and the automorphisms Sg
with q = V 2 , V s .

Jn the case N = 37, the hyperelliptic involution does not belong
toB(N).

1) If N = N1-^2 with (A^,Ay = 1 and N, > 1, the Atkin-Lehner

involution w^i is defined by the matrix ( ^ ) with A, B, C,
\ -iV v^ YV i-̂ -' /

D e Z and determinant equal to TVi. It is always true that w^ = w^ w^.

It is known that these involutions act on the cusps in the following
way:

If z = a/d is a cusp such that (a,d) = 1, (a,fa) = 1 and d \ N , then

, ,,. , , , , , ,, ,. , , , , \a' =. — a(modfi)\v^(a/d) = a ' I d ' where d ' = N^/d, and ) ^ = a ( m o d n

With /i, ̂  A^i ; /2, ^2 I ^2 ; /d = /1/2 ; ^ = ^1^2.

In particular w^ transforms all the cusps with the same denominator
d in cusps with the same denominator N^d/(N^d)2.

In this way w^ acts on the set of the positive divisors of N by :
v^W = N,d/(N,,d)\

2) It is easy to see that S^ transforms cusps with the same
denominator into cusps with the same denominator, while 5'4, SQ , ^3
do not verify this condition :

S,(- 1/3) = 1, ^(1/3) = 2/3 ; ^(-1/4) = 1, ^(1/4) = 1/2 ;
^(-1/8)= 1, ^(1/8)= 1/4.



782 JOSEP GONZALEZ ROVIRA

We denote by B ' ( N ) the subgroup of B(N) generated by the Atkin-
Lehner involutions and S^ if 4 \ N . The subgroup B ' ( N ) acts on the
set of positive divisors of N, and for N = 40 or N = 48 the hyperelliptic
involution w is in B ' ( N ) because w = (wgtS^H^ or w = (wig^)2^.

We denote by C(Zo(AO) the function field of Xo(N) and by
S2kVo(N)) the vector space of parabolic modular forms of weight 2k,
which is isomorphic to the space of holomorphic differentials
H\X,(NW.

In general, if an automorphism u of B(N) is defined by the matrix

y == ( „ „ ) with determinant M, then u acts on the modular forms

of weigth 2k by: (f\u)(z) = ̂ (z^M^Cz+Z))2*.

2. Newman's group.

2.1. The matrix .̂

Let A(z) = e^ \\ (l-^""2)24 be the parabolic modular form of
n > 0

weight 12 for F. Given a natural A^ > 1, for each positive divisor d N
we have that A(dz) belongs to S^(Xo(N)). We provide the set of
divisors 0 < d | N with an ordering. Let us denote by A^ ==
(.^')o<d,d'\N the matrix indexed by these divisors such that a^' is the
order of A(rfz) at the cusps of denominator d ' . If we want this definition
to be meaningful, we have to show that if there exist different cusps
with denominator d ' , A(rfz) has the same order in all of them (cf.
Proposition 1).

If {5;} denotes the set of cusps of Xo(N) we have :

i) a^ = d ; of = e^' = -.—.-—T-,7-' because q = e21112 is a uniformizerd (d , N / d )
of i oo and A(z) is a modular form on ^(1), with a simple zero at
i oo.

ii) ^ord^.A(dz) = v|/(W) if 0 < rf A^, because the degree of any

modular form of weigth 12 on Xo(N) is ^f(N). In terms of the matrix
AN this condition yields ^ add\(d',N/d') = \|/(A^).

0 < d' | N
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Hi) Given the projection Xo(N)-> Xo(N/d), och->p, and given
a divisor m N / d , we have that ordaA(wz) = ordp A(mz)^(oc/P),
where ^(oc/R) denotes the ramification index of a over P. Thus
^(a/R) = e ^ / e ^ , where ^, ^p are the ramification indices of a, P under
the projections over Xo(l).

PROPOSITION 1. - i) The matrix A^ is well defined and
,, _ N(d,d'Y

ad d d \ d ' , N / d 1 ) '
ii) If N == p^, p prime and a > 0, then

det(^) = p[<3a2+l)/4]-a(p(^)a\|/(^)ot.
iii) If N = n^' is the decomposition of N in prime factors, then

det (A^) = II det (Ap^0^^^ where Oo(m) denotes the number of positive
divisors of m. In particular det (A^) + 0.

For f), see [Li].

The proof of ii) and iii) has no special difficulty and can be
performed by induction over the number of divisors ofA".

2.2. Newmaifs group.

The function r\(z) = q1124 Y[ (l—q") has neither poles nor zeros in
n > 0

the upper half-plane. For all T = ( „ ) of F with C > 0, we have :
\C Dj

T|(TZ) = ^(TK-^Cz+jD))1^^), where we take the branch of the
square-root function which is positive on the positive real axis. ^(r)
denotes a 24-th root of unity defined by ^(r) == exp {Tn'aJ, where

A + Do^ = ——— — s(A,C) and s(h,k) is the Dedekind sum. We recall that:
1. Zf^y

1) If hh = 1 (mod fe) then s(h,k) = s(h, k).

2) If a = ( c ~_ ~\ with A,C> 0 then a, + a, = 1/4.
\^ £>/

3) If k is odd then 12ks(h,k) = k + 1 - 2(-) (mod 8), where (-) is\k/
the Jacobi symbol.
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The function r| allows the construction of modular functions, as it
is shown -in tee "following theorem.

THEOREM (Newman). - Given the function F(z) = f] T| (dz)^ mth
Q< d\N

r^ e Z, if the following conditions are satisfied :
i) 'E r,=0,

0< d\N

' S ) I~[ d^ is a square,
0< d\N

in) the order of F at the cusps is an integer or, equivalently, the
Ai\

vector AN\ \ ) belongs to 24 ]~[ Z,
\r^/ 0<d |N

then'F is a modular function on Xo(N).

The second condition is, essentially, a parity condition, since it is
ftlilfiHdd1 it all the exponents are even.

The third condition can be replaced by a weaker one, demanding
that the order of F at 0 and i oo be an integer. Under this formulation
the 'theorem was proved by Newman in [N2]. Later I^igozat demonstrated
in [Li] that the three1 conditions are necessary for F to i be a modular
function.

-Let.^us .notice that, given two vectors r = ( rd)o<d^, n = (na)o<d\N
such that A^r = n, if ^ ^ = 0 then ^ n^(d,N/d) = 0 because

d d

^^^(d^N/d) = ^f(N). The converse is true also due to det (A^) ^ 0.
d

Thus"if n satisfies the conditions of the theorem, the order of F at
(afty cu$p denominator d is nd/24 and so ^ n^(d,N/d) = 0.

0< d\N

'Let us denote by G^ the multiplicative group of the modular
functions obtained by the above procedure. These functions have all

-their zeros, and, poles at'the-cusps, and have v the same order at the
cusps with'the same denominator d N.

.The Fourier expansions of the functions FeG^ have the shape
C + .E W1 -with On e2 for all n > m (*).
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PROPOSITION 2. — For any modular function F without zeros or ^ poles
in the upper half-plane and such that it has the same order at all 'cusps
mth the same denominator 0 < d \ N, there exists a positive integer [i
such that F^eC (x) G^r. If moreover, F has the Fourier expansion as (*)
then n == 1 and FeG^.

Indeed, if we denote by n = (rid)o<d\N the0 vector of the orders of
F at the cusps 0 < d \ N , it suffices to take [i as the smaller integer
which renders 24^4 ̂ n = (j'a)o<d\N integer andfulfills the parity condition,
since the condition Sr^ == 0 follows from ^n^^d^N/d) = 0.

Let F be a modular function such that F^ = Tlr[(dz)rd e G^v for a
certain natural p, > 1, and such that F has the Fourier expansion of
the shape ^4- ^ a^ with a^eZ for all n > m. Let a, be the first
a^ non zero. n>m

We denote by d i , . . . , ^ the positive divisors of N such that
d, < d, < ' ' ' < d, and r^ ^ 0. We have (F/q^ = n FI (l-^T^

d n> 0
thus 1 + Hfl^1"7" + • • • = 1 - r^q111 + • • • , and so r^ = 0 (mod [i).

It is easy to see that if r^.e^iZ and i < k then r^ ^ e uZ. Thus,
we have 77 = Ilri^)^ and Fe Gjy because F is a modular function.

D
PROPOSITIONS. — Let F= Y[ ^(^(z))^ be a function of G^v.

0< d|7V

i) If w = w^ ^2 F|w=s^(F) f] ^r^riOvW^, w^^
0< d|^V

^i = (N^d) and £^(1^) = ± 1. If N^ is odd then s^(F) =

(-l)1^"2^))^4, w^r^ d , = d / d , , N^ = N / N i and (-) denote the
symbol of Jacobi. Always s^(F) = £^(-^), in particular e^(F) == 1.

„) y»-. , ,».»?»- ewjî w'-jij.î y'
w^r^ £(F) f5 equal ^'(-l)0^1^.

iii) Q ® G^v is stable under automorphisms of group B'^NY,

i) Assume w = w^y, Given the matrix y = ( ^ - niv ) m>t^
\ \^lj '* jL^l^ ^ y

determinant A^i, and given a positive divisor rf of A^, we- denote by y^

the matrix ( . ̂ , , , 2 ) of F. From the equality dj{i) = Yd(^(^)^),
^TVgC/da DJX\I(I^J

it follows that F w = e [l^^^)^^"^^, whfere e ^-ri^Yd)^-
d d /
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The matrix Y = ( ^ ) also defines w, and we have:
\ L/ i\ A l\ ^ j

F = ( F [ w ) w = E£'F where s7 = n Www)^' Due to the fact that
d

Ad,DN,/d,== l(modN,C/d,), it follows that ^a)=Www). thus
c2 = 1, so Soc^r^ belongs to J, and e = (-l)101^.

We can take . 4 = 0 = 1 , and so y = ( N l B } . We have\ y v D^^
^ + ̂  = 1/4, where o, = ̂ 2 ~DN^dl). thus . = Za,,r, =

- Soc^.

If A^i is odd then we have:

.=E^+l-2fA^2)+^-^/12^
Mi / Mo /*1 / ^2^

=Ed/l-2(^y,/4(mod2)

because E(A^/^)r,, = 24 ordi/w^F, and Sdi^r,, = 24 ord^F. If N^ = N
then e = l since T|(-1/z) = (-^^^(z). Always e^(F) = e^(F),
because E^^EA^F) = e^(F) = 1.

n) w = >S'2. For all odd natural d we have :

n (l-^•)3/(l-<^("')(l-<^4d'•)= n (i+^") n (i-^")-
n ^ l (»,2)=1 ( n , 2 ) = 2

It follows that

n(rfw(z))= Ti(dz+^/2)

=exo{^/24} ̂ ^ if (^)=2
exp{^/24}.^^^3^^^^^ ^ ( r f , 2 ) = l .

This proves ii), since e = exp ^m ̂  rd^/24^ = exp {711 ord^F}.
I d J

f») It is sufficient to prove the statement for w = w^, 5'z. Due to
the fact that the three conditions of the theorem of Newman are
necessary, we have F | w e C ® G^v.

If w = w^ then F\ w e Q 0 G^ since fl^i)"'^2 E Q' because
d

Y\ d^ is a square. In the case w = ^ the proposition is obvious.
d
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3. Hyperelliptic modular curves.

Recall that a compact Riemann surface X of genus g is hyperelliptic
if it satisfies one of the following equivalent conditions:

0 there exists a covering F:X-> tP^C) of degree 2,
ii) there exists an involution w : X -> X with 2g + 2 fixed points

Hi) there exists an involution w : X -> X such that A7w has genus
zero.

If we denote by Zi, . . . , -^+2 the images by F of the ramification
2g+2

points, then X is the curve defined by the equation V2 = Y[ (F—z,)
!=1

2g+l

or F2 == Y[ ( F — Z i ) , depending on whether z, ̂  oo for all i = 1, . . . ,
i=l

Ig + 2 or Z2^+2 = °°5 ^ equivalently, on whether F has two simples
poles at non ramification points or a double pole at a ramification
point.

n

Conversely the equation Y2 = Y[ (Z-Zi) with z, ^ Zj if i = 7, defines
i= l

a hyperelliptic curve of genus g == [(n—l)/2].

If the genus g > 1 then X has exactly 2 ^ + 2 Weierstrass points,
which are the ramifications points of the covering F and, at the same
time, the fixed points of w. In this case w is the only hyperelliptic
involution, and w is in the center of the automorphism group ofX.

In the following, Xo(N) is a hyperelliptic modular curve of non zero
genus. We denote by w the only hyperelliptic involution if the genus
is greater that one or the Atkin involution if the genus is one (that is
always hyperelliptic), and Xy, denote the quotient curve X^ = XQ(N)/\V .

Given two points P, Q of Xo(N) such that w(P) ^ Q, due to the
fact that X^ has genus zero, there exists a function F on X^ such that
di\x F is (0) - (P). If we consider this function F on Xo(N), it is
invariant under w, and has D = (w(g)) + (g) - (w(P)) - (P) as a
divisor. On the other hand, the function field over X^ are the rational
functions in F .
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The next proposition shows several elementary facts which will be
essential to construct the required equations.

PROPOSITION 4. — i) Let F, G be functions over XQ^N) such that
G\w^G,F\\v = F and such that F viewed as a function over Y has a
simple pole. Then C(X^N)) = C(F,G).

ii) For all fe S,(To(N)) then f\w = - w.
iii) The cusp i oo is not a ramification point over Xo(N)/w.

i) and ii) are obvious because the degree of the extension
C(Xo(N))/C(F) is equal to 2 and H°{Xo(N)/w,Q.1) is equal to {0}.

ii) If w is an Atkin-Lehner involution, it is clear that w(ioo) 7^ i oo.

In the case N = 40, 48 the proposition can be easily checked.
Finally, as it has been shown by Ogg, i oo is not a Weierstrass point
when N is prime and so i oo is not a ramification point of Ao(37). D

We must look for functions F, G of Xo(N) such that:

*) F\\v = F; F, considered as a function over A^, has a simple
pole at i oo and its Fourier expansion is normalized. Furthermore, if
N = 37 we require, moreover, that F has a simple zero at 0.

*) G vv 7^ G, Ge GN and H = G + G\\v, considered as a function
over X^, has the only pole at i oo .

Because iii) of the proposition 4, the equation that we will find for
2g+2

Xo(N) will be of the form Y2 = I~[ ( x ~ x i ) '

4. Modular equations.

4.1. The search for a function JF.

PROPOSITION 5 (^(A^)? elliptic). - Let Xo(N) be elliptic and let be
G a modular function with poles and zeros only at 0, i oo. If we denote

by CD the Neron differential, then F = ———— is a modular function
CrCO

invariant under Wjv, and with a simple pole at i oo, 0.
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There always exists a function G as described, and due to the
fact that it has zeros and poles only at 0, i oo it satisfies

G ' ( — — j = a/G(z) for aeC*. Taking the derivative with respect to z,

we get:

^-^).l/^--^ that is ^^_^
G(-\/Nz) ' G(z) G | " G

Thus, the logarithmic derivative of G has two simple poles at 0,
i oo, and is an eigenvector of w^ with eigenvalue — 1. Since co w^ = -co,
and co does not have any zeros, it follows that the quotient between
the logarithmic derivative and the Neron differential is a function F as

the one described in the proposition. Furthemore, ———— is equal to
,^ , / j G

the logarithmic differential ——— up to a multiplicative constant. D(j

PROPOSITION 6 (XQ^N) hyperelliptic non elliptic). — If Xo(N) has
genus g > 1 then there exist two parabolic forms of weigth two fg, fg-1
with Fourier expansions of the form fi = q1 + ^ a^ i = g ~ 1, g - The

n>i

modular function F = fg-i/fg is invariant under w, has poles only at i oo,
w(i co) which are simples, and F is normalized.

In S'i(To(N)), there always exists a basis of parabolic forms h^,
i = 1, . . . g such that hi = q1 mod qg+l, because i oo is not a Weierstrass
point. Thus, the existence of parabolic forms of the type fg, fg-^ is
ensured. Any parabolic form is an eigenvector of w with eigenvalue
— 1, and so, i oo, w(i oo) are zeros of the same order.

Thus, if we think of fg, fg-^ as holomorphic differentials, their
divisors are :

div/, = ( g - l)[0oo)+(w(foo))],
div/,-, = (P) + (w(P)) + (g-2)[(zoo).(w(foo))]

with P, w(P) ^ i oo. It is obvious that fg-i/fg satisfy the required
conditions. D

PROPOSITION 7 (N=31). - 'Let /, g be the parabolic normalized
forms of weigth two, such that f\w^=f and g\Wsrj = — g , then the
modular function F = (f-\-g)/(f — g) is invariant under w and
divF = (0) + (w(0)) - (too) - (w(foo)).
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If we look upon h = / - g, h' = / + g as holomorphic differentials,
their divisors are :

div h = (too) + (w(foo)) because h has a simple zero at i oo and
h\w = - h.
div ^/ = (0) + (w(0)) because w^w = ww^v and ^|w^v = h'.

It follows that the function F == ^7/i is invariant under w, and has
simple zero at 0, w(0) and simple pole at too, x(foo). D

PROPOSITION 8 (W composed ^- 49, 27). - Let N be a non prime
number different from 27 and 49. For every cusp s with denominator d
satisfying (d,N/d) = 1, and such that both 5, w(s) are different from i oo,
there exists a function FG G^ invariant under w such that
divF = (5) + (w(s)) - O'oo) - (w(foo)).

The proof is performed by checking that in every Xo(N) and for
every cusp 5 = 1/d the following system

has as integer solution which satisfies the parity condition. The results
are summarized in the table. Let us notice that the conditions imposed
on the cusps s are necessary and sufficient for F to belong to G^.
Moreover, in view of the previous results, we already know that, for
a suitable number u, F ^ e G ^ , so proposition 2 affirms that u = 1.

4.2. The search for a function G.

Let F be a modular function of Xo(N) non constant, such that
divF = (P) + (w(P)) - (foo) - (wQ'oo)).

a) Assume N ^ 37. In this case w(foo) is a cusp. We are looking
for a function Ge Gjv with poles only at i oo and zeros only at w(foo).
According to what we have said, this function does exist and it is not
invariant under w. It only remains to compute the smaller natural a
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such that the vector

/ 0\ /r,
oc.24.^ n-^oo)/

\ - l / ^ fco \r^

is integer and satisfies the parity conditions.

Since div G = a (w(foo)) — a(ioo), divG|w = — div G we have
G\\v = b/G for a certain fceQ*. For instance if N = p prime,

r / \ -j24/d

^ = ——— with d = (12^-1)- In this case Gjv^ = p^/G.[_^{PZ)_\
b) Assume N is composed and N + 27, 49, or A^ is equal to 37. In

this case we take F such that P is a cusp. We are looking for a
function GeG^ with div G = P(P) - P(foo). We will have

div G\w == P(w(P)) - P(w(foo)) = div (F^/G),

and thus there exists a certain f c e C * such that G|w = bF^/G. For
instance if TV = 37, G(z) = r^/r^z)2 and G|w = bFVG.

4.3. The equations.

No matter which of the above mentioned possibilities we try, we
will have H = G + G|w = G + bF^G with a pole of multiplicity m at
i oo, w(ioo) ( n = 0 m = a or n = p m = P depending on the chosen
possibility).

Thus, in any case we have H = P(F), where P is a polynomial of
degree m. Expanding G, F in Fourier series in q, P(F) and b are easily
evaluated, because if H and P(F) have the same polar part, then
H — P(F) has no poles and is a constant.

With the change U = 2G - P(F), the equality G + bF^G = P(F)
yields the equation U2 = P(F)2 - 4bF\ Let us write Q(x) = R(x)T(x)\
where Q(x) is the polynomial Q(x) = P(x)2 — 4&x" and jR(x) has no
double roots. The change Y = U/T(F) yields the equation Y2 = R(F),
where R(x) is a polynomial of degree 2g + 2, because the genus of the
equation must be equal tog.
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TABLE N COMPOSED (^ 27,29)

N F G

14 1/7

15 1/5

20 1/4

1/2

21 1/3

24 1/8

1/2

1/4

32 1/2

36 1/4

22 1/11

26 1/2

28 1

1/2

30 1/6

e/Kptic

i^z)4^)4

T^TI (14z)4

11(3̂  (5z)3

^^(ISz)3

T^Z)2^)2

Ti^r^Oz)2

T^(2^)4^^(10z)<

T|(z)3^^(4z)r|(5^)r|(20^)3

^^(3^)2T^(7^)2

Tl^r^lz)2

^^(2z)rl(3^)2l^(8^)2^^(12^)
^^(z)2r^(4^)T^(6z)T^(24z)2

^^(2^)5^^(3^)T^(8z)T^(12^)5

n(^)3T^(4z)3r^(6^)3T^(24^)3

T^Z)4^)4

r| (z)ii (2^)2^^ (3z)r](Sz)r)(l2zYi}(24z)

7^(2z)3l^(16z)3

T^T^I^T^Z)2

il(4z)Ti(9z)
r|(z)Tl(36z)

non elliptic
T^T^llz)2

^^(2^)2^^(22^)2

T^(2z)21^(>13z)2

n(z)2^^(26^)2

Ti(z)i}(7z)
Ti(4z)n(28z)

r|(2z)3n(14z)3

r)(z)r^(7^)T|(4^)2^^(28^)2

^^(^)T^(6^)2^^0z)2^^(15^)
^^(2^)27^(3z)n(5z)1^(30z)2

Ti(2z)n(7z)7

il(z)Ti(14z)7

Ti(3z)ii(5z)5

T1(Z)T1(15Z)5

T^(4z)47^(10z)2

r^^Oz)4

^^(3^)3l^(7z)7

il(z)il(21z)3

T^(8^)4T^(12^)4

^^(4z)2r|(24z)4

Ti(16z)6

^^(8z)2r|(32z)4

T^(4^)21^(18z)
Tl(2z)n(36z)2

Tl(2z)Ti(llz)"
T1(Z)T1(22Z)"

ri(2z)*Ti(13z)2

l^(^)2^^(26z)4

T^(14z)2T^(4^)4

T^(2^)2n(28^)4

^T^'TiaOz)2^^)3

l^(2^)2n(3^)3^^(5^)l^(30a)6



N

33

35

39

40

46

48

50

S

1

1/3

r/iii

1/5

1/3

1/8

1

1/2

1

1/16

1

1/2

1/2

EQUATIONS OF HYPERELLIPTIC

F

^T^TKlOz^^z)2

11(27)^(32)11(52)71 (30Z)2

Tl(3z)ii(5z)
il(2z)Ti(30z)

r|(z)ii(llz)
il(3z)ii(33z)

Tt(5z)ii(7z)
n(z)ri(35z)

il(3z)r|(13z)
Tl(z)il(39z)

T^i^^Oz)3

r^^lOz^Oz)2

Ti(z)Ti(8z)ii(10z)2

rl(4^)2Tl(5^)rl(40^)
r\(lz)^z)^(5z)r\(lQz)
T^(^)1^(4^)3T^(10^)r|(40^)

ri(z)Ti(23z)
Ti(2z)ii(46z)

T^(4^)Tl(16^)2T^(24^)3

T^'TI^T^Z)2

^^(^)^^(4z)^^(16^)T^(6z)2^^(24^)
^^(2^)T^(8^)2^^(3^)1^(12^)T^(48^)

^^(2^)2rl(16^)^^(3z)^^(24^)
1^(^)^1(8^)27^(6z)T^(48^)

n(2z)Ti(25z)
71(Z)T1(50Z)

MODULAR CURVES

G

il(3z)Ti(llz)"
ri(z)il(33z)"

1^(5^)51^(7z)
il(z)ii(35z)5

Tl(3z)'Ti(13z)
Ti(z)n(39z)3

r|(8^)4^^(20^)2

T^(4^)2r|(40^)4

Tl(2z)°Ti(23z)4

Tl(^)4^^(46^)8

rK^T^z)2

n(8z)2r|(48z)4

^^(2^)21^(25z)
r|(z)ii(50z)2

793

G\w

F ^ / G

49F6/G

13F4/G

S F ' / G

232/G

-3F4/G

5F3/G

In order to compute the equations tHat follow, we have used the
functions F which appear with functions G beside them.

Equations N composed (^27,49)

14 Y2 = F4 - 14F3 + 19F2 - 14F + 1

15 Y2 = F4 - 10F3 - 13/^ + 10F + 1

20 F2 = F4 - 8F3 - 2F2 - 8F + 1

21 V2 = F4 - 6F3 - 17F2 - 6F + 1
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22 V2 = F6 + 12F5 + 56F4 + 148F3 + 224F2 + 192F + 64

24 y2 = F4 - 8F3 + 2F2 + 8F + 1

26 Y2 = F6 - 8F5 + 8F4 - 18F3 + 8F2 - 8F + 1

28 V2 = F6 + 6F5 + 25 F4 + 60F3 + 100F2 + 96F + 64

30 y2 = F8 + 6F7 + 9F6 + 6F5 - 4F4 - 6F3 + 9F2 - 6F + 1

32 Y2 = F4 - 8F3 + 12F2 - 16F + 4

33 Y2 = F8 + 8F7 + 38F6 + 108F5 + 227F4 + 324F3 + 342F2 + 216F+ 81

35 V2 = F8 - 4F7 - 6F6 - 4F5 - 9F4 + 4F3 - 6F2 + 4F + 1

36 y2 = F4 - 4F3 - 6F2 - 4F + 1

39 Y2 = F8 - 6F7 + 3F6 + 12F5 - 23 F4 + 12F3 + 3F2 - 6F + 1

40 y2 = F8 + 8F6 - 2F4 + 8F2 + 1

46 F2 = F12 + 10F11 + 49F10 + 166 F9 + 418F8 + 824 F7 + 1 301 F6

+ 1 648F5 + 1 672F4 + 1 328F3 + 784F2 + 320F + 64

48 y2 = F8 + 14F4 + 1

50 y2 = F6 - 4F5 - 10F3 - 4F + 1

Equations N prime or N = 27, 49 ;

1 1 V2 = F4 + 4F3 - 88F2 - 668F - 1 272

17 V2 = F4 + 2F3 - 39F2 - 176F - 212

19 V2 == F4 - 32F2 - 76F - 48

23 V2 = F6 + 4F5 - 18F4 - 142F3 - 351 F2 - 394F - 175

27 V2 = F4 - 18F2 - 36F - 27

29 V2 = F6 + 2F5 - 17F4 - 66F3 - 83F2 - 32F - 4

31 V2 = F6 - 4F5 - 14F4 - 94F3 - 159F2 - 98F - 27

37 V2 = F6 - 4F5 - 40F4 + 348F3 - 1 072F2 + 1 532F - 860

41 V2 == F8 + 4F7 - 8F6 - 66F5 - 120F4 - 56F3 + 53F2 + 36F - 16

47 V2 = F10 + 4F9 + 2F8 - 32F7 - 135F6

- 294F5 - 424F4 - 410F3 - 268 F2 - 100F - 19

49 V2 = F4 - 2F3 - 9F2 + 10F - 3

59 V2 = F12 + 4F11 - 28F9 - 84F8

- 152F7 - 202F6 - 212F5 - 176F4 - 120F3 - 68 F2 - 24F - 11

71 V2 = F14 + 4F13 - 2F12 - 38F11 - 77F10 - 26F9 + 1 1 IF8

+ 148 F7 + F6 - 122F5 - 70 F4 + 30F3 + 40F2 + 4F - 11
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In this case, F denotes the function which has a simple pole at i oo
in the quotient curve and such that its Fourier coefficients are a_ i == 1,
do = 0.
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