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ON A SPECIAL CLASS OF DEDEKIND DOMAINS 
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$1. INTRODUCTION 

WE ARE interested in Dedekind domains R which have the following two properties: 

Fl : R/‘j3 is a finite field for every maximal ideal Q 

F2: The group U(R) of units of R is finitely generated. 

The ring of integers of an algebraic number field and the Dedekind domains associated 
to curves over finite fields are examples of rings having the properties listed above. It is 
the main purpose of this note to show that there are many other examples and that, in fact, 
the quotient field of such a ring may have arbitrary, but finite, transcendence degree over 
the prime field. The particular manner in which these domains are constructed (93) suggests 
that they may have some geometric significance; but that interpretation must be left for 
another occasion. 

Certain elementary facts about the relation between units and ideal classes of a Dede- 
kind domain seem not to have appeared in the literature. Since we shall need to use some 
of these facts, we shall include them here. 

$2. UNITS AND IDEAL CLASSES 

We begin by recalling some well-known facts. If R is a Dedekind domain with quotient 
field K and ‘$ is a maximal ideal of R, then R, is a discrete rank one valuation ring and R 

is the intersection of all these R,. Furthermore, nR, = R only if every prime ideal of R 

is included in forming the intersection. If S is a subring of K which contains R, then S is 
also a Dedekind ring. Furthermore, if ‘$ is a prime ideal of R for which 13s is not S itself, 
then $S is a maximal ideal of S and all maximal ideals of S arise in this way. Finally, the 
ring of quotients of S with respect to v,S (when ‘$S # S) coincides with R,. 

If A is a set of maximal ideals of R, we denote by R* the intersection of all R,, as ‘$3 
ranges over the prime ideals not in A. Then pR* = RA is equivalent with ‘$3 E A. 

PROPOSITION (1). Let A be a jinite set of maximal ideals of R. Then U(RA)/U(R) is a free 
abelian group whose rank does not exceed the cardinality of A. Equality holds if, and only if, 

the ideal class of each !$ E A is a torsion element of the ideal class group of R. 
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Proof. A non-zero element x of K is a unit in RA if, and only if, the decomposition of 

xR as a product of prime ideals contains only ideals of the set A. Thus, U(RA)/U(R) may 

be identified with a subgroup of the group of ideals generated by the primes in the set A. 
The assertions of the proposition follow immediately. 

COROLLARY (1). The following two statements are equivalent: 

(a) Every subring of K which contains R is a ring of quotients of R; 

(b) The ideal class group of R is a torsion group. 

Proof. 

(4 -+ (b) 

Let ‘p be a prime ideal of R; form RA with A the set consisting of ‘$3 alone. Since RA 
is a ring of quotients of R and RA # R, there is a non-unit in R which is a unit in RA. It 

follows from the proposition that the ideal class of 5J3 is a torsion element. Since this is the 

case for every prime ideal of R, we see that the ideal class group of R is a torsion group. 

(b) -+ (a) 

Suppose S is a subring of K which contains R. Let M be the set ,of elements of R which 

are units in S, i.e., M = Rn U(S). A4 is then a multiplicative set, and we shall show that 

S=R,. Clearly we have R, c S. Let x be any element of S and set xR = %B- ’ where 

2I and 23 are integral ideals of R with Cu + !-3 = R. Then, 2IS + 23s = S, while 9L.S = xbS 

~233s since XES. Hence %3S = S. Now, under the assumption that the ideal class group 

of R is a torsion group, we have %3” = bR with n some positive integer. Hence, from 23s = S 

we get bS = S, i.e., bEM. But x%3 = PI c R, so that xbER, i.e., xeR,. Thus S = R, 
and the proof is complete. 

COROLLARY (2). There is a subring S of K which contains R, which has the same unit 
group as R and whose ideal class group is a torsion group. 

Proof. The set of subrings of K which contain R and which have the same group of 

units as R satisfies the requirements for the application of Zorn’s lemma. Let S be a maximal 

element of this set. Then U(S) = U(R), and if S’ contains S properly, then U(S’) is properly 

larger than U(S). Applying the proposition to S shows that the ideal class group of S is a 

torsion group. 

$3. SPECIAL DEDEKIND DOMAINS 

THEOREM. Let R be a Dedekind domain, with field of quotients K, which satisfies the 
hypotheses Fl and F2 (of the Zntroduction). Let X be an indeterminate over K. Then, there 
is a Dedekind domain S with field of quotients K(X), which contains R[X] as subring, which 
satisJes F 1 and whose unit group coincides with the unit group of R (so that S also satisfies F2). 

Proof. We dispose first of the case where R has only a finite number of maximal ideals. 

It follows from F2 that in this case the group K* of non-zero elements of K is finitely 

generated, and this can occur only when K is a finite field. Thus, in this situation K and R 
coincide and we simply take for S the ring K[X]. 
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From now on we suppose that R has infinitely many maximal ideals. We apply 

corollary (2) of proposition (1); let R’ be a ring between R and K with the same unit group 

as R and having a torsion ideal class group. If we replace R by R’ in the statement of the 

theorem, and prove the existence of S relative to R’, then that S would have the required 

properties relative to R. Thus we may and shall assume from now on that R has a torsion 

ideal class group. 

We show first that K is countable. If ‘8 is a non-zero integral ideal, it follows from Fl 

that R/PC is a finite ring. Denote, as usual, by NIU the number of elements of RI’%. If M 

is any integer, the number of integral ideals 2I for which N2I = m is finite. Namely, let 

63 ... , %+1 be distinct elements of R. If N’U = m, then a, - aj E ‘3 for some pair of distinct 

indices i, j, so that 9L is a divisor of R(a, - aj). Since the number of such divisors is finite, 

it follows that the number of (II is finite. We conclude that the group of ideals of R is 

countable, which, when combined with the countability of U(R), shows that K is countable. 

The lemma which follows contains the crucial element of the proof of the theorem. 

LEMMA (1). Let 91 be a maximal ideal ill R[X]. Then there is a discrete rank one valuation 
ring V in K[ X], having the following properties: 

(4 V=, RI-U; 
(b) W n R[X] = %, where !JR is the ideal of non-units of V; 

(c) V/mZ is a$nite field. 

Proof. The fact that R is a Dedekind domain with infinitely many maximal ideals 

implies in particular that R is a Hilbert ring. (See [l] for a discussion of those properties 

of Hilbert rings which are needed here.) Hence ‘$3 = ‘3 n R is a maximal ideal. Then, 

‘QR[Xj c !ll and %/‘$R[X] is a maximal ideal in R[Xj/@R[X] E R/(P[X]. In particular, 

%/‘@R[X] # 0, and is a proper ideal. Since R/5$ is a field, ‘%/CpR[Xj is a principal ideal. 

We choose an element .f’ of $9 whose image in ‘%/‘$R[X] generates that ideal. Furthermore, 

we may choose f to be manic. Certainly f# R. And finally it is clear that % = ‘@[RX] + 

fNX1. 

The maximal ideal ?, of R defines a valuation of K; let r be the completion of K with 

respect to this valuation, and let D be the ring of integers of r. Since R/v is finite, D is 

compact and hence, in particular, D is not countable. Since K is countable, there are 

elements of 0 which are transcendental over K and hence also non-units of D which are 

transcendental over K. Let t be such a non-unit. 

We introduce another indeterminate Y, and consider the polynomial F( Y) = f( Y) - t E I- 
[Y]. Then F is a manic polynomial, of positive degree, with coefficients in D. Let R be 

an extension of I of finite degree which contains a zero yO of F. Then, firstly yO is integral 

over J3, and secondly, y, is still transcendental over K. 

Because y, is transcendental over K, there is an imbedding of K(X) into Sz in which X 
is mapped on y,. The valuation of I extends (uniquely) to Q, again with finite residue class 

field. The imbedding of K(X) into R induces a valuation in K(X); we denote its valuation 
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ring by V. Clearly Y is a discrete rank one valuation ring with finite residue class field. 

Since y, is integral over K), we have XE V and hence R[X] c V. If 2lI is the ideal of non- 

units of V, then certainly ‘lp c ‘%V. Furthermore, under the imbedding of K(X) into 0, f 

maps into t which is in 0 and is a non-unit in that ring. HencefE!& and therefore !B = 

‘$R[X] + fR[X] c 9J n R[X]. However, ‘9 is a maximal ideal so that we have % = YJI n 

R[X] and the proof of the lemma is complete. 

Denote by A the set of non-zero elements a of R which are such that rad (aR) is a prime 

ideal. Since the ideal class group of R is a torsion group, every maximal ideal of R has the 

form rad (aR), for some a E A. Denote by A, a subset of A with the following property: 

every maximal ideal of R has the form rad (aR) for a unique a E &. 

Iffis a non-zero element of R[X], one calls the content offthe ideal C(f) in R generated 

by the coefficients off. It is well known that C(,fg) = C(f)C(g). Denote by B the set of all 

non-zero f E R[X] with the following properties: 

(a) f&A; 

(b) C(f) = R; 
(c) rad (fR[X]) is a prime ideal of R[X]. 

Iffand g are elements of B, the equality rad (fR[X]) = rad (gR[X]) defines an equiva- 

lence relation in B. Denote by B, a subset of B which contains exactly one representative 

from each equivalence class of B. Note that because of(b), rad (fR[X]) is not the extension 

to R[X] of an ideal of R. 

Since K is countable, the same is the case for K[X] so that both A, and B, are countable 

sets. Let I,, t,, . . . be an enumeration of the elements of A,u B,. 

LEMMA (2). For each n, u’e haue t,t, . . . t, _1 grad (t,R[X]). 

Proof. Note that rad (t,R[X]) is a prime ideal in R[X], so that we need only show that 

t, # rad (t,R[X]) if m # n. But this follows directly from the definition of the sets A,, B,. 

LEMMA (3.) If y is a non-zero element of R[X], then there is a positive integer It such that 

y" = &;I th" thn with u a unit qf R and hi > 0. 2 ..' " 

Proof. For a suitable non-zero element b of K we may write J’ = b,f, ,f2 . . . f,, with 

fi E R[X] andfi an irreducible polynomial viewed as an element of K[X]. Since the ideal 

class group of R is a torsion group, there is a positive integer r such that each of the ideals 

C(j;)‘, C(_f2)I . , C(f,)’ is principal. Thus, ,fi’ = ni gi, with di E R and gi E R[X] such that 

C(gi) = R. Furthermore, it is clear that g, E B. Thus, J" = dg, . g,,,, with d E K* and gi E B. 

And, since C(gi) = R, actually dE R. 

Each gi is equivalent to some element of B,-,. That is, g; = a tk where s and k are positive 

integers, a E K* and t E B,. Thus, with N a positive integer, we have ~1~ = d’r, . . . T,, where 

the ri are in B,, and as above d’ E R. 

Let d’R = ‘!& . . . !Jl, be the factorization of the ideal d’R. Each ‘$Ji when raised to a 
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suitable positive power is principal, and generated by an element of &. Hence d’M = UCQ . . . 

ctj, with tli E& and o a unit in R. 

Assembling these facts shows that fl = ut:l . . . 12 with h B 1, h > 0 and u a unit in R. 

This completes the proof of Lemma (3). 

Since R is a Hilbert ring, the same is the case for R[X] so that, because of Lemma (2), 

there are maximal ideals ‘%” in R[X] such that: 

(a) t,o&; 

(b) ti$9&fori < n. 

Note in particular that the ideals ‘II& are distinct. 

We apply Lemma (1) to ‘%,,. Thus, there is in K(X) a discrete rank one valuation ring 
I’, with finite residue class field such that: 

(b) t, is a non-unit in V,; 

(c) ti is a unit in V, for i < n, 

Denote by W, the ideal of non-units of V,, by S the intersection of all V,, and set 
c1, = Sn !Cll,. We shall show that S is a Dedekind domain, whose maximal ideals are 
exactly the ideals Qi, Q2, . . . . 

For this purpose it is sufficient to prove the following (see [2]): 

1. ifm#n,thenQ,+ Q,=S; 

2. if y is a non-zero element of R[X], then y is a unit in V, for all but a finite number of n. 

The first assertion is trivial. For W, c 0, and ‘$J,,, and ‘%,, are different maximal ideals 
in R[X]. Hence, we have 1 ES,,, + 9& and certainly therefore 1 E Q, + c2,. 

To prove the second assertion we use Lemma (3): 

yh = uty . . . t.h, h 2 1, hi > 0, u E U(R). Clearly fl and hence y is a unit in V, for r > n. 

Thus S is a Dedekind domain whose maximal ideals are the Q, and furthermore 
s/a, = v,/IuI,. S therefore has property Fl. Clearly R[X] c S, so that certainly the 
quotient field of S is K[X]. There remains only the question of U(S). 

If w is a non-zero element of K(X), Lemma (3) shows that ivh = uttl . . . tin where h 2 1, 
u is a unit in R and the hi are integers (possibly negative). If w is itself not a unit in R, then 
some hi must be non-zero; we suppose h, # 0. But then ut:l . . . th;;:i is a unit in V, while tip7 

is not a unit in V,. Hence w is not a unit in V, so that certainly w is not a unit in S. Hence 
we find U(S) = U(R), and the proof of the theorem is complete. 

In order to deduce two curious corollaries from the theorem we first need a simple 
lemma. 

LEMMA (4). Let R be a Dedekind domain having property Fl, and let K, be a subfield of 

K. Then RI = R n Kl is again a Dedekind domain having property Fl. 

Proof: Let a be a non-zero element of R,. We note first that aR, = Kl n (aR). Namely, 
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aR, is certainly contained in KI n (aR). On the other hand, if b E KI n (aR), then b/a is in 

R and is also in K,, i.e., b/a E R,. It follows from this that R,/aR, is a subring of R/aR. 
Because R has property Fl, the ring RIaR is finite, so that also R,IaR, is finite. As a result, 

if 91 is any non-zero ideal of R,, the RI/B1 is finite from which it follows immediately that 

R is noetherian and that every non-zero prime ideal of R is a maximal ideal. Since R, is 

obviously integrally closed we conclude that R, is a Dedekind domain. That R, has property 

Fl has already been proved above. 

COROLLARY (1). There exists a sequence S, I S2 I> . . . 2 S,, 2 . . . of distinct Dedekind 
domains all having Q(X) as quotient field, all of which contain Z[ X], all have property Fl and 
all have the same unit group which consists of f 1. 

Proof. Applying the theorem to R = Z gives a Dedekind domain S 3 Z[X] having 

Q(X) as quotient field, having property Fl and having (_+ l} as unit group. Let h be an 

integer with h > 2, set K, = Q(Xh”), n 3 0. Also, set T,’ = Sn K,. By Lemma (4), T; is 

again a Dedekind domain with property Fl ; clearly x”” E Ti, so that the quotient field of 

T; is K,. Let T,, be the integral closure of TL in Q(X). Then T, is again a Dedekind domain 

which is a finitely generated T; module. Each residue class field of T, is an extension of 

finite degree of some residue class field of T,‘, so that T. also has property Fl. We have 

S=T,IT,I . . . IT,, I . . . . and we shall show that not all the T. coincide with S. 

Let p be a rational prime number, so that p is not a unit in S. Suppose T,, = S for some 

n. SetpT; =C$l . . . CI”,~. Then S/QiS is a vector space over T;/Bi of dimension [Q(X) : K,] = 

h”. Now, $3 = (Q,S)b1 . . . (Q,,,S)bm, so that the number of elements in S/QiS is not more 

than the number of elements in S/pS. But, the number of elements in S/%&S is the h” power 

of the number of elements in T~lai. Thus, if T,, = S, then n is bounded, and therefore 

T,, # S for some n. 

Set S, = S and S2 = T, for some n such that T,, # S. We now repeat the whole of the 

above process, starting with S2 instead of S, leading to a ring S, c Ss, S, # S2. This pro- 

cedure may be continued indefinitely, which completes the proof of the corollary. 

COROLLARY (2). There exists a Dedekind domain having properties Fl and F2 whose 

ideal class group is not a torsion group. 

Proof. We refer to the preceding corollary. Since S, is a proper subring of S,, yet 

with U(S,) = U(S,), it follows from Corollary (1) of proposition (1) that the ideal class 

group of S, cannot be a torsion group. 
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