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Absolute Convergence in Ordered Fields
Pete L. Clark and Niels J. Diepeveen

Abstract. We explore the distinction between convergence and absolute convergence of se-
ries in both Archimedean and non-Archimedean ordered fields and find that the relationship
between them is closely connected to sequential (Cauchy) completeness.

1. INTRODUCTION A real series
∑∞

n=1 an is absolutely convergent if the “ab-
solute series”

∑∞
n=1 |an| converges. This is a strange and rather sneaky terminology;

many calculus students have heard “the series is absolutely convergent” as “absolutely,
the series is convergent”. The language strongly (and somewhat subliminally) hints
that an absolutely convergent series should converge. Fortunately this holds. Since∑∞

n=1 |an| converges, the partial sums form a Cauchy sequence – for all ϵ > 0, there
is N ∈ Z+ such that for all n ≥ N and m ≥ 0, we have

∑n+m
k=n |ak| < ϵ. Thus∣∣∣∣∣

m+n∑
k=n

ak

∣∣∣∣∣ ≤
m+n∑
k=n

|ak| < ϵ,

and
∑∞

n=1 an converges by the Cauchy criterion.

Above we used the convergence of Cauchy sequences – i.e., that R is sequentially
complete. In the spirit of “real analysis in reverse” – c.f. [5] and [3] – it is natural
to ask about convergence versus absolute convergence in an arbitrary ordered field.
In a recent note, Kantrowitz and Schramm ask whether in an ordered field F , every
absolutely convergent series is convergent if and only if F is sequentially complete
[2, Question 3]. We will answer this question and also determine the ordered fields in
which every convergent series is absolutely convergent.

Let us begin with a taxonomic refresher on ordered fields. An ordered field F is
Dedekind complete if every nonempty subset S of F that is bounded above ad-
mits a least upper bound. Dedekind complete ordered fields exist [1, §5], and if F1

and F2 are Dedekind complete ordered fields, there is a unique field homomorphism
ι : F1 → F2, which is moreover an isomorphism of ordered fields [1, Cor. 3.6, Cor.
3.8]. This essentially unique Dedekind complete ordered field is, of course, denoted
by R and called the field of real numbers.

For x, y ∈ F , we write x ≪ y if n|x| < |y| for all n ∈ Z+. An ordered field F
is non-Archimedean if there is x ∈ F with 1 ≪ x – equivalently, if Z+ is bounded
above in F – otherwise F is Archimedean. Notice that for x, y ∈ F with x ̸= 0,
x ≪ y holds if and only if 1 ≪ y

x
. Thus F is non-Archimedean if and only if x ≪ y

for some x, y ∈ F with x ̸= 0.

Example. The formal Laurent series field R((t)) (see e.g. [3, § 3 ]) has a unique
ordering extending the ordering on R in which 1

t
is greater than every real number. In

particular 1 ≪ 1
t
, so R((t)) is non-Archimedean.
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Explicitly, every nonzero a ∈ R((t)) has the form

a =
∞∑

m=M

bmt
m, bM ̸= 0, (1)

and then a has the same sign as bM . Put v(a) = M and also put v(0) = ∞. Then a
sequence {an} in R((t)) converges to 0 if and only if v(an) converges to ∞.

Let {an} be a Cauchy sequence in R((t)). Then {an} is bounded; there is M ∈ Z
such that for all n ∈ Z+ we may write

an =
∞∑

m=M

bm,nt
m.

The Cauchy condition also implies that for everym ≥ M , the real sequence {bm,n}∞n=1

is eventually constant, say with value bm, and thus {an} converges to
∑∞

m=M bmt
m.

Thus R((t)) is sequentially complete. Similarly, a series
∑∞

n=1 an is convergent if and
only if an → 0, so absolute convergence is equivalent to convergence in R((t)).

An ordered field F is Archimedean if and only if there is a homomorphism
ι : (F,<) ↪→ (R, <) [1, Thm. 3.5], i.e., if and only if F is isomorphic to a subfield of
R with the induced ordering. An ordered field is Dedekind complete if and only if it is
Archimedean and sequentially complete [1, Lemma 3.10, Thm. 3.11]. It follows that
the Archimedean ordered fields that are not (sequentially = Dedekind) complete are,
up to isomorphism, precisely the proper subfields of R.

Now we can state our main result.

Main Theorem. Let F be an ordered field.
a) Suppose F is sequentially complete and Archimedean (so F ∼= R). Then:

(i) every absolutely convergent series in F is convergent;
(ii) F admits a convergent series that is not absolutely convergent.

b) Suppose F is sequentially complete and non-Archimedean. Then:
(i) a series

∑∞
n=1 an is convergent if and only if an → 0. In particular,

(ii) a series is absolutely convergent if and only if it is convergent.
c) Suppose F is not sequentially complete. Then:

(i) F admits an absolutely convergent series that is not convergent;
(ii) F admits a convergent series that is not absolutely convergent.

Part c) gives an affirmative answer to Question 3 of [2].

Part a) of the Main Theorem is familiar from calculus. Part (i) has already been
recalled, and for part (ii) we need only exhibit the alternating harmonic series∑∞

n=1
(−1)n+1

n
. We have included part a) to facilitate comparison with the other

cases.
A natural next step is to finish off the case of Archimedean ordered fields by estab-

lishing part c) for proper subfields of R. We do so in §2, using arguments that could
be presented in an undergraduate honors calculus / real analysis course. (This turns
out to be logically superfluous; later we will prove part c) of the Main Theorem for all
ordered fields. But it still seems like an agreeable way to begin.)

For the remainder of the Main Theorem we need some techniques for construct-
ing sequences in ordered fields. In §3 we examine and classify ordered fields with
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respect to the existence of sequences of various types. For instance, there are ordered
fields in which every convergent sequence is eventually constant. In such a field, a
series

∑∞
n=1 an is convergent if and only if an = 0 for all sufficiently large n if and

only if
∑∞

n=1 |an| is convergent. Thus, in order for the Main Theorem to hold in this
case, such a field must be sequentially complete. We will show that every convergent
sequence is eventually constant if and only if every Cauchy sequence is eventually
constant. In fact we give (Theorem 6) four other conditions equivalent to “there is a
convergent sequence that is not eventually constant”, including a characterization in
terms of the associated topology and a characterization in terms of the cofinality of the
underlying ordered set.

We prove parts b) and c) of the Main Theorem in § 4.

2. SUBFIELDS OF R

Theorem 1. Let F ( R be a proper subfield. There is a series
∑∞

n=1 an with terms in
F that is absolutely convergent but not convergent.

Proof. Since F is a proper subfield of R, we may choose x ∈ [−1, 1] \ F . We claim
there is a sign sequence {sn}∞n=1 – i.e., sn ∈ {±1} for all n – such that x =

∑∞
n=1

sn
2n

.
Indeed, for N ≥ 0, take sN+1 to be 1 if

∑N
n=1

sn
2n

< x and −1 if
∑N

n=1
sn
2n

> x.
Then we see inductively that |

∑N
n=1

sn
2n

− x| ≤ 2−N , which implies convergence. In
fact the sign sequence {sn} is uniquely determined; if we take sN+1 = −1 when∑N

n=1
sn
2n

< x or SN+1 = 1 when
∑N

n=1
sn
2n

> x, then we get∣∣∣∣∣
N+1∑
n=1

sn
2n

− x

∣∣∣∣∣ > 2−N−1 =
∞∑

n=N+2

2−n ≥
∣∣∣∣∣

∞∑
n=N+2

sn
2n

∣∣∣∣∣ ,
and we have made an irrevocable mistake! The series

∑∞
n=1

sn
2n

has terms in F and is
not convergent in F , but the associated absolute series is

∑∞
n=1

1
2n

= 1 ∈ F .

The proof of Theorem 1 is reminiscent of that of the Riemann Rearrangement The-
orem, which states that a real series

∑∞
n=1 an with an → 0 and

∑∞
n=1 |an| = ∞ can

be rearranged so as to converge to any L ∈ R. The following result is a variant in
which, instead of permuting the terms of a series, we change their signs.

Theorem 2. Let {an}∞n=1 be a positive real sequence with an → 0 and
∑∞

n=1 an =
∞. For L ∈ R, there is a sign sequence sn ∈ {±1} such that

∑∞
n=1 snan = L.

Proof. We may assume L ∈ [0,∞). Let N1 be the least positive integer such that∑N1
n=1 an > L, and put s1 = . . . = sN1

= 1. Let N2 be the least integer greater than
N1 such that

∑N1
n=1 snan −

∑N2
n=N1+1 an < L, and put sN1+1 = . . . = sN2

= −1.
We continue in this manner, taking just enough terms of constant sign to place the
partial sum on the opposite side of L as the previous partial sum. The condition∑∞

n=1 an = ∞ ensures this is well-defined, and the condition an → 0 guarantees
that the resulting series

∑∞
n=1 snan converges to L.

The series
∑∞

n=1
(−1)n+1

n
is defined in any subfield F ⊂ R and is not absolutely con-

vergent. However, since
∑∞

n=1
(−1)n+1

n
= log 2 ∈ R \Q, this series need not be con-

vergent in F . Using Theorem 2 we can fix this with a different choice of signs.

Corollary 3. Let F ⊆ R be a subfield. Then there is a series in F that is convergent
but not absolutely convergent.
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Proof. Apply Theorem 2 with an = 1
n

for all n ∈ Z+, and L = 1.

The constructions of this section are intended to complement those of [2]. In particular,
the proof of Theorem 1 answers their Question 1 for b = 2.

3. BUILDING SEQUENCES AND SERIES IN ORDERED FIELDS We begin
by carrying over two results from calculus to the context of ordered fields.

Lemma 4. Let (X,<) be a totally ordered set, and let {xn}∞n=1 be a sequence in X .
Then at least one of the following holds:

(i) the sequence {xn}∞n=1 admits a constant subsequence;
(ii) The sequence {xn}∞n=1 admits a strictly increasing subsequence;
(iii) The sequence {xn}∞n=1 admits a strictly decreasing subsequence.

Proof. If the image of the sequence is finite, we may extract a constant subsequence.
So assume the image is infinite. By passing to a subsequence we may assume n 7→ xn

is injective. We say m ∈ Z+ is a peak of the sequence if for all n > m, we have
xn < xm. If there are infinitely many peaks, the sequence of peaks forms a strictly
decreasing subsequence. So suppose there are only finitely many peaks and thus there
is N ∈ Z+ such that no n ≥ N is a peak. Let n1 = N . Since n1 is not a peak, there
is n2 > n1 with xn2

> xn1
. Since n2 is not a peak, there is n3 > n2 with xn3

> xn2
.

Continuing in this way we build a strictly increasing subsequence.

Lemma 5. Let {an}∞n=1 be a Cauchy sequence in the ordered field F . If {an}∞n=1

admits a convergent subsequence, then it converges.

Proof. Let {ank
}∞k=1 be a subsequence converging to L ∈ F . For ϵ > 0, choose K ∈

Z+ such that |am − an| < ϵ
2

for all m,n ≥ K and |ank
− L| < ϵ

2
for all k ≥ K . Put

nK ≥ K; then |an − L| ≤ |an − anK
|+ |anK

− L| < ϵ for all n ≥ K .

Now we introduce an invariant of a linearly ordered set that plays an important role
in the theory of ordered fields. A subset S of a linearly ordered set X is cofinal if for
all x ∈ X there is y ∈ S with x ≤ y. The cofinality of X is the least cardinality of a
cofinal subset. An ordered field is Archimedean if and only if Z+ is a cofinal subset, so
Archimedean ordered fields have countable cofinality. The subset {t−n}∞n=1 of R((t))
is countable and cofinal, so R((t)) is non-Archimedean of countable cofinality. For
any infinite cardinal κ there is an ordered field of cofinality κ [4, Cor. 2.7].

A Z-sequence in F is a sequence {an}∞n=1 with an > 0 for all n and an → 0. A
ZC-sequence is a Z-sequence {an}∞n=1 such that

∑∞
n=1 an converges.

Theorem 6. For an ordered field F , the following are equivalent:
(0) F is first countable (every point admits a countable base of neighborhoods);
(i) F has countable cofinality;
(ii) F admits a convergent sequence that is not eventually constant;
(iii) F admits a ZC-sequence;
(iv) F admits a Z-sequence;
(v) F admits a Cauchy sequence that is not eventually constant.

Proof. (0) =⇒ (i): Let {Un}∞n=1 be a countable neighborhood base at 0. For n ∈ Z+,
choose ϵn > 0 such that (−ϵn, ϵn) ⊂ Un. Then { 1

ϵn
| n ∈ Z+} is cofinal.

(i) =⇒ (o): Let {sn}∞n=1 be a cofinal sequence of positive elements. Let ϵn = 1
sn

and
Un = (−ϵn, ϵn). Then {Un}∞n=1 is a countable base at zero, and thus for all x ∈ F ,
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the collection {Un + x}∞n=1 is a countable base at x. Thus F is first countable.
(i) =⇒ (ii): Let S = {sn}∞n=1 be a cofinal sequence. Put a1 = max(1, s1). Having
defined an, put an+1 = max(an + 1, sn+1). Then {an}∞n=1 is a strictly increasing
sequence whose set of terms is a cofinal subset. The sequence {a−1

n }∞n=1 converges to
0 and is not eventually constant.
(ii) =⇒ (iii): Let {xn}∞n=1 be a sequence that is convergent and is not eventually
constant; its set of terms must then be infinite. By Lemma 4, {xn}∞n=1 has a subse-
quence that is either strictly increasing or strictly decreasing; by changing the signs
of all terms if necessary and adding a constant we get a strictly increasing convergent
sequence 0 < S1 < S2 < . . .. Put S0 = 0, and for n ∈ Z+, put an = Sn − Sn−1.
Then {an}∞n=1 is a ZC-sequence.
(iii) =⇒ (iv) =⇒ (v) is immediate.
(v) =⇒ (i): If {an}∞n=1 is a Cauchy sequence and not eventually constant, then{

1

|am − an|

∣∣∣∣m,n ∈ Z+, am ̸= an

}
is countable and cofinal. Let α > 0 in F . There is an N ∈ Z+ such that for all m,n ≥
N , we have |am − an| ≤ 1

α
. Since the sequence is not eventually constant, there are

m,n ≥ N with am ̸= an, and then α < 1
|am−an| .

Theorem 6 is a key step towards establishing the Main Theorem. For starters, it dis-
poses of the case of ordered fields of uncountable cofinality; by (i) ⇐⇒ (v), such
fields must be sequentially complete. Moreover, by (i) ⇐⇒ (ii) an infinite series∑∞

n=1 an converges if and only if an = 0 for all sufficiently large n if and only if
an → 0. And in the case of countable cofinality it gives us some useful sequences.

Consider the sequence {tn}∞n=1 in R((t)). It converges to 0, and for all n ∈ Z+,
we have tn+1 ≪ tn. One can use the sequence {tn}∞n=1 to “test for convergence”;
a sequence {an}∞n=1 in R((t)) converges if and only if for each N ∈ Z+, we have
|an| ≤ tN for all sufficiently large n.

Here is a useful generalization to arbitrary ordered fields. A test sequence is a
Z-sequence {ϵn}∞n=1 such that ϵn+1 ≪ ϵn for all n ∈ Z+.

Proposition 7. For an ordered field F , the following are equivalent:
(i) F admits a test sequence;
(ii) F is non-Archimedean of countable cofinality.

Proof. (i) =⇒ (ii): The existence of 0 < ϵ2 ≪ ϵ1 shows F is non-Archimedean. The
implication (iv) =⇒ (i) of Theorem 6 shows that F has countable cofinality.
(ii) =⇒ (i): Let S = {sn}∞n=1 ⊂ F be countable and cofinal. Since F is non-
Archimedean, there is x1 ∈ S with 1 ≪ x1 and s1 ≤ x1. Then x1 ≪ x2

1, and by
cofinality there is x2 ∈ S such that x2 ≥ max(x2

1, s2). Continuing in this manner we
get a sequence {xn}∞n=1. Taking ϵn = x−1

n gives a test sequence.

4. PROOF OF THE MAIN THEOREM We will now prove part b) of the Main
Theorem.

Let F be a sequentially complete non-Archimedean field. First we must show that
a series

∑∞
n=1 an in F is convergent if and only if an → 0. That a convergent series

has an → 0 follows (as usual) from the fact that a convergent sequence is a Cauchy
sequence. Suppose an → 0. If F has uncountable cofinality, then by the remarks
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following Theorem 6, a series
∑∞

n=1 an converges if and only if an = 0 for all large
enough n, hence if and only if an → 0. Now suppose F has countable cofinality. By
Proposition 7, there is a test sequence {ϵn}∞n=1. For k ∈ Z+, choose Nk such that for
all n ≥ Nk, we have |an| ≤ ϵk+1. Then for all n ≥ Nk and ℓ ≥ 0, we have

|an + an+1 + . . .+ an+ℓ| ≤ |an|+ . . .+ |an+ℓ| ≤ (ℓ+ 1)ϵk+1 < ϵk.

Thus the sequence is a Cauchy sequence, and hence convergent because F is sequen-
tially complete. The fact that a series in F is convergent if and only if it is absolutely
convergent follows immediately, since an → 0 if and only if |an| → 0.

Before proving part c) of the Main Theorem, we want to build one more type of
sequence. A ZD-sequence is a Z-sequence {an}∞n=1 such that

∑∞
n=1 an diverges.

Lemma 8. For an ordered field F , the following are equivalent:
(i) F admits a ZD-sequence;
(ii) F is Archimedean or is not sequentially complete.

Proof. (i) =⇒ (ii): Let {an}∞n=1 be a ZD-sequence in F . By part b) of the Main
Theorem, F cannot be non-Archimedean and sequentially complete.
(ii) =⇒ (i): If F is Archimedean, { 1

n
}∞n=1 is a ZD-sequence. Suppose F is non-

Archimedean and not sequentially complete, and let {an}∞n=1 be a divergent Cauchy
sequence. By Lemmas 4 and 5, after passing to a subsequence and possibly changing
the sign, we get a strictly increasing, divergent Cauchy sequence {Sn}∞n=1. Put S0 =
0, and for n ∈ Z+, put an = Sn − Sn−1. Then {an}∞n=1 is a ZD-sequence.

Finally we can prove both assertions of part c) of the Main Theorem.

Theorem 9. For an ordered field F , the following are equivalent:
(i) F is sequentially complete;
(ii) Every absolutely convergent series in F converges.

Proof. (i) =⇒ (ii): This was proved at the beginning of §1.
¬ (i) =⇒ ¬ (ii): Let {an}∞n=1 be a divergent Cauchy sequence in F . By Theorem
6 there is a ZC-sequence {ck}∞k=1. Since {an}∞n=1 is a Cauchy sequence, there is
a strictly increasing sequence of integers {nk}∞k=1 such that for all n ≥ nk, we have
|an − ank

| < ck. It follows that |ank+1
− ank

| < ck for all k. By Lemma 5, {ank
}∞k=1

is divergent hence so is {ank
− an1

}∞k=1. For k ∈ Z+, put

d2k−1 =
ank+1

− ank
+ ck

2
, and

d2k =
ank+1

− ank
− ck

2
.

Then

k∑
i=1

(d2i−1 + d2i) =
k∑

i=1

(
ani+1

− ani

)
= ank+1

− an1
.

This is a divergent subsequence of the sequence of partial sums associated to {dk}∞k=1,
and hence

∑∞
k=1 dk diverges. Since −ck < ank+1

− ank
< ck, we have

|d2k−1|+ |d2k| = d2k−1 − d2k = ck.
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Hence
∑∞

k=1 |dk| =
∑

k ck is convergent, i.e.,
∑∞

k=1 dk is absolutely convergent.

Theorem 10. Let F be an ordered field that is not sequentially complete. Then F
admits a convergent series that is not absolutely convergent.

Proof. By Lemma 8, F admits a ZD-sequence {dn}∞n=1. For n ∈ Z+, put

a2n−1 =
dn
2
, a2n =

−dn
2

.

Then for all n ∈ Z+ we have

0 ≤
n∑

k=1

ak ≤
d⌈n

2 ⌉

2
,

so
∑∞

n=1 an converges (to 0). But
∑∞

n=1 |an| =
∑∞

n=1 dn diverges.

ACKNOWLEDGMENTS. We thank Paul Pollack and the referees for several com-
ments that led to improvements of the exposition.

REFERENCES

1. J.F. Hall, Completeness of Ordered Fields (2011), available at http://arxiv.org/pdf/1101.
5652v1.pdf.

2. R. Kantrowitz, M. Schramm, Series that Converge Absolutely but Don’t Converge. College Math.
J. 43 (2012) 331–333.

3. J. Propp, Real Analysis in Reverse. Amer. Math. Monthly 120 (2013) 392–408.
4. J.H. Schmerl, Models of Peano Arithmetic and a Question of Sikorski on Ordered Fields. Israel J.

Math. 50 no. 1-2 (1985) 145–159.
5. H. Teismann, Toward a More Complete List of Completeness Axioms. Amer. Math. Monthly 120

(2013) 99–114.

PETE L. CLARK is an associate professor at the University of Georgia. His primary research interests lie in
arithmetic geometry and number theory.
University of Georgia, Athens GA 30606
pete@math.uga.edu

NIELS J. DIEPEVEEN is a private citizen of the Netherlands. He studies topology and related topics.
niels@dv1.demon.nl

January 2014] ABSOLUTE CONVERGENCE 7


