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ABSTRACT 

Dynkin has shown how subsystems of real root systems may be constructed. As the concept of 
subsystems of complex root systems is not as well developed as in the real case, in this paper we 
give an algorithm to classify the proper subsystems of complex proper root systems. Furthermore, as 
an application of this algorithm, we determine the proper subsystems of imprimitive complex proper 
root systems. These proper subsystems are useful in giving combinatorial constructions of irreducible 
representations of properly generated finite complex reflection groups. 

1. INTRODUCTION 

In a now classic paper, Shephard and Todd [24] have given a complete classification 
of the finite irreducible complex reflection groups. In recent years, these groups 
have been the subject of considerable study, see for example [5,6], and more 
recently [19,21] and [22]. The results in the real case are well developed and 
documented (see, e.g., [2]). In the context of complex reflection groups however, 
some of the fundamental ideas are not as well developed with no universally 
accepted analogues for such basic concepts as root systems and their subsystems 
and positive systems or a length function; for some recent attempts, see [17,9,3] 
and [4]. 
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All the subsystems of a real root system ~ relating to a Weyl group may be 
obtained up to conjugacy by a standard algorithm due independently to Dynkin [ 15], 
Borel and de Siebenthal [1]. This is described by Carter [12] as follows: Form the 
extended Dynkin diagram of q~ by adding one further node to the Dynkin diagram 
of q~ corresponding to the negative of the highest root. Remove one or more nodes 
in all possible ways from the extended Dynkin diagram of q~. Take also the duals 
of the diagrams obtained in the same way from the dual root system ~ of q~ which 
is obtained from • by interchanging long and short roots. Then repeat the process 
with the diagrams obtained, and continue any number of times. In this algorithm, the 
concept of the extended Dynkin diagrams is important. Inspired by these, Hughes 
[17,18] introduced what he called extended Cohen diagrams in order to give an 
algorithm for obtaining subsystems of complex root systems. Unfortunately, this 
algorithm has its shortcomings, since for example for type 7r(m, 1, n) = B~', he 
gives the following graph 

1 I 

+ @  , /20  Q) - - - ' " -  (2) "/2@ ((n + 1) points), 

as an extended Cohen diagram, where the adjoined root is marked with the sign 
"+".  However, when m is odd, there does not exist a root in ~(rn, 1, n) which can be 
adjoined in this way. Moreover, as there could be more than one highest primary root 
in the complex case and since a number of equivalent diagrams must be considered, 
Hughes' algorithm is more difficult to apply in the complex case in comparison with 
the real case. Furthermore, neither Dynkin's nor Hughes' algorithm leads directly 
to simple systems for subsystems which are subsets of the primary roots. 

Proper subsystems of complex proper root systems are useful in giving combi- 
natorial constructions of representations of properly generated complex reflection 
groups. For example, they have been used in [8] where the Young tableaux method 
for generalized symmetric groups [7] has been further generalized. 

As the concept of subsystems of root systems for complex reflection groups is 
not as well developed as in the real case, the present author [9] has presented 
an alternative algorithm for obtaining all proper subsystems of a given (real or 
complex) proper root system without any reference to extended diagrams. This 
algorithm has the further advantage that it simultaneously obtains a simple system 
which is a subset of the primary roots. Moreover, our method is more useful from 
a computational point of view (see [10]). In [9], we studied how to obtain the 
parabolic and non-parabolic proper subsystems of a given complex proper root 
system. There is no difficulty in determining all the parabolic proper subsystems. In 
[9], we also claimed that "as we run through all the parabolic proper subsystems, 
we generate all the non-parabolic proper subsystems". In Section 2 of this paper, 
we prove this claim by using the ideas of [9] and give an algorithm to classify the 
proper subsystems of complex proper root systems. In Section 3, we determine the 
proper subsystems of imprimitive complex proper root systems. 

We first establish the basic notation and state some results which are required 
later. We refer the reader to [9,13] and [ 17] for much of the undefined terminology. 
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As a convention, throughout this paper, we assume that ~m is a fixed primitive mth 

root o f  unity. 

1.1. Let V be a complex vector space o f  dimension n furnished with a unitary 
inner product  (-, -). A reflection in V is a linear transformation o f  V o f  finite order 
with exactly n - 1 eigenvalues equal to 1. A reflection group G in V is a finite group 

generated by reflections in V. A (base) root o f  a reflection in V is an eigenvector 
(of  length 1) corresponding to the unique non-trivial eigenvalue o f  the reflection. 

A (base) root of  G is a (base) root o f  a reflection in G. Let s be a reflection in V o f  
order m > 1. Then there exists a non-zero vector oe • V and a fixed primitive mth 
root o f  unity ~m for each m such that so~,m(V) = Y - -  (1 e , (v,~)~, - ~m~-,-,-~, for all v • V, 
where s = S~,m. Define oa : V --~ N by oc(v) = IG(v)±l (v • V). Then oo(v) > 1 
if  and only if  v is a root o f  G. In this case, oa(v) is the order o f  the cyclic group 
generated by the reflections in G with root v, I f  a is a root o f  G then the number  
oc(o0 is called the order of  a (with respect to G). 

1.2. (i) A vector graph is a pair (B, 0), where B is a non-empty finite subset 
o f  C °c such that for all a, b • B, ](a, b) l --- 1 if  and only if  a = b, and 0 is a map 

from B to N\{1}. The set B is called the set of points or nodes or vectors of  the 
vector graph, and O(a) for a • B is the order of  a (with respect to (B, 0)). A vector 
graph (B, 0) is represented by a directed valued graph by assigning to each element 
a • B a node a with weight O(a) and if  (a, b) 7~ 0, 1 a directed edge from a to b 
with weight (a, b). 

(ii) Let re = (B, 0) be a vector graph. Denote by dim(re) the dimension of  
the vector space spanned by B and by W(rc) the group generated by the simple 
reflections Sa,o(a) with a • B. The vector graph rr is called a root graph if  dim(~r) = 
IBI (i.e., B is linearly independent over C) and W(Jr) is a finite reflection group. 
Let re t = (B t, 0') be another root graph. I f  B C B I and 0118 = 0, we say that re1 is 

an extension of  rr, or that ~ is a sub-root graph of  rr I. Root  graphs 7r = (B, 0) 
and 7r I - (B I, 0 I) are equivalent if  the groups W(re) and W(re t) are conjugate. 

For any root graph Jr = (B, 0) and for any w • U ( V ) - - t h e  group o f  all unitary 

transformations with respect to a unitary inner product, let wzr = (Bw, Ow), where 
Bw = wB and Ow(w(a)) = O(a) with a • B, then w~r is also a root graph which 
is equivalent to Jr since Sw(a),Ow(W(a))WSa,O(a)tO -1 for all a • B it follows that 
W (wzr) = w W  (~r)w -1. 

(iii) A pair (R, f )  is called a pre-root system if  R is a finite subset o f  non-zero 
elements o f C  ~ and f : R ~ N\{1} is a map such that for all a, b • R, Sa,f(a)R = R 
and f(sa,f(a)b) ~- f (b) .  To ¢P = (R, f )  is associated the reflection group W(cP) 
defined by W(~P) = (Sa,f(a) [ a • R). A pre-root system (P = (R, f )  is called a root 
system if  in addition za • R if and only i f z a  • W(OP)a for all a • R, z • C. 

(iv) Every root graph defines a pre-root system, for i f  re = (B, 0) is a root graph, 
then the pair q~ = (R, f )  where R ~- W(rc)B and the map f : R --+ N\{1} is induced 
by the order function ow(~) defines a pre-root system with W(cP) - W(Jr). 

(v) Every finite irreducible n-dimensional reflection group G in V that is 
generated by n reflections yields a root graph: Fix a base root for each o f  the n 

generating reflections in G. Let B be the set o f  these base roots and let 0 : B --+ 
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N\{I} be given by O(a)  = o G ( a ) ,  a C B .  Then Jr = (B,0)  is a root graph with 
W(zr) = G. 

(vi) I f  q~ = (R, f )  is a pre-root system, then there is a root system E = (S, g) 

with W(E)  = W(~) ,  S C R and g = f r s .  

(vii) I f  a root system • is the pre-root system obtained from a root graph zr as 

described in 1.2 (iv), then zr is called a s i m p l e  s y s t e m  in ~ .  I f  qb is a root system 
with simple system rr, then the graph associated to re is called a C o h e n  ( D y n k i n )  

d i a g r a m  of  qb. 
(viii) Cohen [ 13] proves that all finite irreducible imprimitive reflection groups in 

V are o f  the form G ( m ,  p ,  n )  for some m, p 6 N with p I m and n ~> 2. The reflection 
group G ( m ,  l ,  n)  has the following presentation (see [14]): 

G ( m ,  1, n) --- (rl . . . . .  rn -1 ,  w l  . . . . .  W n  I r~ = ( r i r i + l )  3 = ( r i r j )  2 --- e, li - Jl ~ 2, 
??l 

II) i = e ,  11)i11) j = t o j u : i ,  r i w i  = l l ) i + l r i ,  r i w j  = w j r i ,  j # i, i + 1). 

Let {el, e2 . . . . .  en} be the standard basis o f  V. We may identify ri (i = 1 . . . . .  n - 1) 

with the reflection si = s~ i ,o~i)  of  order 2 with root ot i ~-  e i  - -  ei + 1 ( i = 1 . . . . .  n - 1 ), 

and therefore the group generated by {rl . . . . .  rn l } is the Weyl group W ( A , , _  I ). The 
wi  (i = 1 . . . . .  n )  may be identified with the reflection sei,o~ei) of  order m. Now, if 
sn = s ~ , , o ~ , )  is the reflection o f  order m with root ol n = en, then Wn is the reflection 

sn and consequently wi  (i = 1 . . . . .  n - 1 ) is the reflection si si + l . . .  sn_ I s ,  sn_ l . . .  si 

(i = 1 . . . . .  n - 1 ) since ei = si si+ I . . .  Sn-  1 (otn) and 0 (e i )  = 0 (en)  for i = I . . . . .  n - 1 
it follows that 

Se i ,O(e i)  ~ Ss is i+ I . . .Sn_ 1 (Otn),O(otn) 

~ S i S i +  1 . . . S n _ l S n S n _  I . . . S  i (i = 1 . . . .  , n  -- 1). 

Note that not all finite irreducible complex n-dimensional reflection groups are 
generated by n reflections. On the other hand, we do not have root graphs for 

n-dimensional reflection groups generated by n + 1 reflections, i.e., the groups 
G ( m , p , n )  for p # l ,m  (see [13]). So we do not have a simple system (in the 
manner o f  1.2 (vii)) for the root system associated with G ( m ,  p ,  n ) ,  p # 1, m .  

Now we make the following definitions. I f  G is a finite irreducible complex 

reflection group o f  dimension n generated by n reflections, then we say that G 

is a p r o p e r l y  g e n e r a t e d  f i n i t e  c o m p l e x  re f l ec t ion  g r o u p .  Furthermore, if  • is a root 
system associated with a properly generated finite complex reflection group, then 

we say that qb is a p r o p e r  r o o t  s y s t e m .  Clearly, every proper root system has a simple 
system by 1.2 (v) and (vii). In our discussion o f  root systems, we consider the proper 

root systems (and their proper subsystems) only. I f  • is a proper root system with 
simple system zr, then we say that • is i r r e d u c i b l e  i f  W(q~) is irreducible on V, and 
we also call 7r i r r e d u c i b l e  if  W(~)  = W(rc) is irreducible, or equivalently, i f  zr is 

connected (see [13, 4.2]). 
In this paper, we only study the properly generated reflection subgroups o f  a 

properly generated finite complex reflection group. We shall do this by means o f  
proper root systems and their simple systems. 
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1.3. Now, as in Can [9] and Hughes [17], primary systems for proper root 
system • with simple system re = (B, 0) are defined. These play the role of  positive 
systems for real reflection groups. Let B = {al . . . . .  an}, and put ri = Sai,O(ai) with 
ai • B,  i = 1 . . . . .  n, then the corresponding primary system is defined inductively 
as follows: 

(i) Let ~+ = B. 
(ii) Let ep + = {ri(aj) l i # j ,  i , j  = 1 . . . . .  n, aj • ~+,  r i (aj)  ¢ q~+}. (Here, we 

require that ri(aj)  # / z b  for all b ~ ~+,  where/z is a root of  unity.) 
(iii) For k ~> 3, let ~+ + k = {ri(a) J i = 1 . . . . .  n, a • ~k -1 ,  ria --fi lzb for all b • qb +, 

1 < k}, where tz is a root of  unity. 

A pr imary  system in q~ is defined to be the union of all qb + (k >~ 1) and k 
will be denoted by as+. By the construction of  each ~+ (k ~> 1), it is clear that 
q~+ = ~k>~t+ q5 k+ with ~+ C~ (I)jq- = 13 whenever i # j .  The elements of  q5+ are 
called pr imary  roots. This algorithm says that a primary root is a single root in 
each 1-dimensional space spanned by a root. 

The primary system is not unique in that there is an element of  choice at each 
step. However, having fixed a primary system ~+ for the simple system Jr of  the 
root system ~,  if  the simple system rr is replaced by another simple system wrr, 
w • W(rr), then the corresponding primary system obtained by making the same 
choices in the above algorithm is the conjugate wdp+ of  4~ +, namely, any two 
primary systems in • are conjugate under W(~) (see [9, Lemma 2.1]). Thus, this 
fact shows that it makes no great difference which ~+ we choose. In fact, different 
choices in the above algorithm would result in conjugate primary systems. In the 
case of  real reflection groups, the primary systems are positive systems. 

2. C L A S S I F I C A T I O N  OF P R O P E R  SUBSYSTEMS 

Let • = (R, f )  be a proper root system with a fixed simple system 7r = (B, 0). 
Denote by W(qb) = W(~r) the properly generated finite reflection group generated 
by the simple reflections sa,o(a) with a • B. If  S is a subset of  R and g = f l s ,  
then the pair • = (S, g) is called a proper  subsystem of  q5 if  • is itself a proper 
root system. The corresponding properly generated reflection subgroup W ( ~ )  is 
the subgroup of  W(qS) generated by the Sa,g(a ) with a • S. 

The proper subsystems ~1 = (S1, gl) and tP2 = ($2, g2) of  • are conjugate under 

W(~) if $2 = 1/3S1 and g2(w(a))  = gl(a) for some w • W(~)  and for all a • S1; 

in which case W(W~l) = w W ( ~ l ) W  - l ,  that is, W(~I)  and W(~2) are conjugate 
subgroups in W(~). I f  zr = (B, 0) (resp., qb = (R, f ) )  is a simple system (resp., 
proper root system), by abuse of  notation we sometimes say zr = B (resp., q5 = R). 

The proper subsystems of  qb fall into two categories: Proper subsystems whose 
simple systems J = (Bzr, 0~r) are such that B~r C B and 0rr = OIB,~ are called 
parabolic proper subsystems (for a similar argument in the real case, see, for 
example [20, pp. 18-19]). A proper subsystem of  q5 which is not parabolic is called 
a non-parabolic proper subsystem. 
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Lemma 2.1 [9, 2.2]. I f  do = (R, f )  is a proper  root system with a f ixed simple 

system Jr = (B,O) then the pair  J = (B~r,O~r), where B~ C B and O~r = 0IBm, is a 
sub-root graph o f  Jr. Furthermore, J yields a parabolic proper  subsystem o f  do. 

Lemma 2.2 [9, 2.3]. Let do = (R, f )  be a proper root system with a f ixed simple 
system Jr = ( B , O) and do+ be a primary system determined by Jr. Let  qJ ---- ( S , g) be 

a parabolic proper subsystem o f  do with simple system J =- ( B~ , O~r ), where B~ C B 

and Or = O[B~, and let qJ+ be a primary system determined by J. Define do+ = 

do+\qJ+, and let B ,  be a subset ()f do+ such that B~ U B .  is linearly independent 

over C. Then the pair Jo : (Bit, Oo), where Bit = Bjr U B ,  and Oo = f IBo, is a root 
graph which is' an extension ()/" J. [/" Bo 92 w B  Jor all w • W(jr), then Jo yields 

a non-parabolic proper subsystem ~?[' do. Furthermore, i[" Bo C w B j o r  some w • 

W (jr), then Jo yields' a parabolic: proper subsystem o f  do. 

If qJ is a parabolic (or non-parabolic) proper subsystem of  do, recall that its 
conjugates wkU, w • W(jr), are also parabolic (or non-parabolic) proper subsystems 
of  do. 

Now, there is a question to be considered: I f  we start with a non-parabolic proper 
subsystem, can we form it from a parabolic proper subsystem? In that case we 
say that a non-parabolic proper subsystem qJo of do can be formed from a parabolic 
proper subsystem q'l of  do ira  simple system Jo of tPo can be chosen as an extension 
of  a simple system JI of  qJj. 

in the following lemma we prove that the non-parabolic proper subsystems of qb 
are obtained from the nonempty parabolic proper subsystems. 

Lemma 2.3. Let do = (R, f )  be a proper root system with a f ixed  simple system 

Jr = (B, O) and do+ be a primary system determined by rr. l f  qJo is a non-parabolic 

proper subsystem (~f do, then qJo can be fi)rmedJ?om a nonempty parabolic proper 

subsystem qq o f  do, where qJl ~ do. 

Proof. Let W(~Po) be the properly generated reflection subgroup of  W(do) corre- 
sponding to the non-parabolic proper subsystem qJo. Referring to 1.2 (v) and 1.3, 
choose and fix a primary base root as • qJ0 n do+ for each of  the generating 
reflections s in W(qJ0). Let B0 be the set of  elements a, • qJo n do + obtained in this 
way, and define a map 0o: Bo ---> N\{1} by Oo(a) = ow(,o)(a)  for all a • Bo. Then 
by 1.2 (v) the pair Jo = (Bo, 0o) is a root graph with W(Jo) = W(qJo). Now, put 
So = W(Jo)Bo, and define the extension go:S0 -~ N\{1} of 0o by go(w(a))  = Oo(a) 

for a • Bo and w • W(Jo).  Then we have q% = (So, go) by 1.2 (iv), and Jo is 
a simple system for ~Po by 1.2 (vii). By definition of  the non-parabolic proper 
subsystem, we have also Bo 92 w B  for all w • W(do). 

We decompose the set B0 into two nonempty parts as follows. Bo = B1 ~J B2 such 
that B1 = wB~ for some B~ C B but B~ 7~ 13 and w • W(do), and B2 = Bo\B~. 
(Here, the symbol t~ denotes the disjoint union. This is possible, for if  a • B0 then 
a = w(o0 for some o~ • B and w • W(do). This will be illustrated in Example 2.5.) I f  
we put 0~r = 01B~ then the pair J = (Bzr ,  0zr) is a nonempty sub-root graph of  Jr and 
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yields a nonempty parabolic proper subsystem to of  qb by Lemma 2.1. Since B .  # 0 
and B1 = wB~r C wB,  the pair J1 = ( B 1 , 0 1 ) ,  where 01(w(a)) = O~r(a) with ot 
B . ,  is a nonempty sub-root graph of  wzr and yields a nonempty parabolic proper 
subsystem to1 of  q5 which is conjugate to to by Lemma 2.1. 

Now, let ~+  be a primary system determined by J1.  Then, it is clear that B 2 

tP +, for if  so, then Jo is a simple system for to~. But since J0 corresponds to the 
non-parabolic proper subsystem too, we have too = qsl, contradicting the choice of 
tol. To obey the notation in Lemma 2.2 we write just B% instead of  B2. Since 
B% C dp+, we have B% C ~b+ 1 = qb+\to+ such that Bo = wBrr W BqJ 1 is linearly 
independent over C. Thus, we have verified the hypotheses of  Lemma 2.2, so the 
root graph J0 is an extension of  J1 and so the non-parabolic proper subsystem 
too is formed from the nonempty parabolic proper subsystem to1, and the proof is 
complete. [] 

We recall that the previous lemma is trivially true with tol the empty system; 
we reach this case by taking B~r (and so B1) to be the empty set in the proof of 
Lemma 2.3. On the other hand, we must take that to1 # qs, for if we take to1 = q5 
then a simple system Jo of  too cannot be chosen as an extension of  the simple 
system J1 = zr of  tol = q~ (for if Jo is chosen as an extension of  J1 = Yr then J0 is 
linearly dependent over C, contradicting the definition of  simple system). 

Corollary 2.4. Let q~ = (R, f )  be a proper root system with a f ixed simple system 
zr = (B, O) and ~+ be a primary system determined by re. I f  tO is a non-empty 

k proper subsystem o f  ~, then we have a decomposition to = ~ i = 1  toi (k ~ 1) of  to, 
where each toi is an irreducible proper subsystem o f  ~. 

Proof. Construct a simple system J = (B', 0 I) for qJ as in the proof of  Lemma 2.3. 
If  J is connected, then to itself is irreducible and we are done (k = 1 and 
to = to1). I f  not, then suppose that J splits into k connected components J~ = 
(B1,01) . . . . .  Jk = (Bk, Ok), where B' = ~/k=l Bi with Bi 5~ 0 and Bi N Bj = 0 
whenever i # j ,  and Oi = O'IBi for all i = 1 . . . . .  k. Thus each J/ = (Bi, Oi) is 
a sub-root graph of  J and yields a subsystem q/i of  (I) by 1.2 (iv) and (vi). 
Furthermore, since each Ji = (Bi, Oi) is connected then each proper subsystem toi 
of  qb is irreducible. 

Now, if ot 6 Bi and 15 ~ Bj (i # j ) ,  then we have (a,/5) = 0 and therefore 
s,~,oi (~s~,oj @ = s~,oj (~)s,~,oi(~), and so the corresponding properly generated reflec- 
tion subgroup W ( J) is the direct product W ( J) = W ( J1) x . . .  x W ( Jk ) of  properly 
generated reflection subgroups W(Ji ) ,  where W(Ji)  Cq W ( J j )  = {el (i # j) .  Then, 
W(Ji )Bi  A W ( J j ) B j  = 0 (i # j ) ,  that is, toi A toj = 0 (i # j) .  Thus, 

k k 

(W(J1) x ' "  x W ( J k ) ) U B i  = ~ J t o i = t I I ,  
i=1 i=1 

as desired. [] 
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E x a m p l e  2.5. Let q~ be the proper  root system o f  type B 3 with simple system 
Jr = (B, 0), where B = {oti = e i  - e i + l  ( i  = 1 . . . . .  5), ot 6 = e6},  and corresponding 
pr imary system ~ + .  Referring to 1.2 (viii), denote by ri (i = 1 . . . . .  5) and wi 
(i = 1 . . . . .  6) the reflection sai,o(~i) of  order 2 (i = 1 . . . . .  5) and the reflection 
Sei,O(ei) of  order 3 (i = 1 . . . . .  6) respectively. Now, put si = s~i,o(~) for i = 1 . . . . .  6, 
then w6 is the reflection s6 and consequently wi (i = 1 . . . . .  5) is the reflection 

S i S i +  1 . . .  $ 5 S 6 S 5 . . .  S i (i = 1 . . . . .  5). 
Let qJo be a proper subsystem o f  q~ of  type A2 + B23 + B~ with simple system 

Jo = {el - e3, e3 - ~;e4, e2 - es, es, e6}. (Here, ~3 is a fixed primitive cube root 
o f  unity.) Since Jo ~ wzr for all w 6 W(n-), then qJo is non-parabolic.  The Cohen 
diagram A for qJo is 

1/3 3/4 4/2 2/5 5/6 6 

5 

w h e r e  t h e  n o d e s  corresponding to e l  - -  e3 ,  e3 --  ~ 2 e 4 ,  e2 --  e5 ,  e s ,  e6 a r e  d e n o t e d  by 
1/3, 3/4, 2/5,  5, 6 respectively, the nodes 4 /2  and 5 /6  have been deleted. 

Now, write J0 = J] ~ B%,  where B .  I = {es}, J1 = {el - e3, e3 - ~2e4, e2 - e5, 
e6} = w2r2r3J for w2r2r3 E W(zr) where w 2 is the reflection SdS5S2S5Sd, and where 
J = {el - e2, e2 - e3, e4 - es, e6} C 7r. Then qJ is a parabolic proper subsystem 
o f  dp of  type A2 + Al + B~ with simple system J ,  by L e m m a  2.1. Since JI = 
w2r2r3J C w2r2r3Jr, Jl is a sub-root graph o f  w2r2r3zr and yields the parabolic 
proper subsystem qJl = w2r2r3 qj of  • o f  type A2 + A| + B~. The pr imary system 

o f  qJ] determined by Jl is qJ+ = {el - e3, el - ~2e4, e3 - se;e4, e2 - e5, e6}, and so 
B,~ ~Z qJ+. Thus, we have B% C q~+~ = q~+ \ qJ+ such that J0 = J1 +~ B,~ is linearly 
independent over C. Therefore,  by L e m m a  2.2 the root graph Jo is an extension o f  
J] and so the qJ0 is formed from the parabolic proper subsystem qJl. 

We now have all the ingredients to give an algorithm to classify all the proper 
subsystems o f  a given (real or complex)  proper root system. 

A lgo r i t hm 2.6. Let q~ be a proper root system. Choose a simple system rr in 
and corresponding Cohen (Dynkin) diagram A, and keep them fixed. Let q~+ be a 
pr imary system determined by rr. 

(1) Obtain the parabolic proper subsystems o f  q~ by removing one or more  nodes 
in all possible ways from the Cohen (Dynkin) diagram A o f  ~ .  

(2) To generate a non-parabolic proper  subsystem o f  ~ ,  take a parabolic proper 
subsystem • o f  q~ obtained in (1) with simple system J~r c Jr and correspond- 
ing pr imary system ~ + .  

Define ~ +  = ~ + \ q J + ,  and choose a non-empty  subset B~, o f  q~+ such that 

(i) J r  U Bq, ~ wJr for all w 6 W(:r),  
(ii) J r  U B~p is linearly independent over C. 
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Then J0 = J~r U Bq, is a root graph which is an extension of J~r which yields a 
non-parabolic proper subsystem qJ0 of ~. 

(3) Repeat the process (2) with the parabolic proper subsystems obtained in (1), 
and continue any number of times. 

(4) To obtain all the proper subsystems (both parabolic and non-parabolic) of q~ up 
to conjugacy, replace n by another simple system art ,  a e W(rr), and repeat 
the processes (1), (2) and (3) step by step. 

Remark  2.7. In the previous algorithm, if  hypothesis (2) (i) is dropped then, at any 
stage of  the above construction, we may have J0 c wrr for some w 6 W(rr) which 
implies that qJ0 is parabolic. Therefore, the hypothesis (2) (i) merely enables us 
to construct the non-parabolic proper subsystems of ~.  For a precise information, 
see Lemma 2.2. Furthermore, I f  • is a real root system, then we may replace the 
hypothesis (2) (ii) of Algorithm 2.6 by (a, b) ~< 0 for all pairs a ~ b in J0 = J~r U Bq, 
(see [9, Corollary 2.4]). 

Indeed, the following theorem states that Algorithm 2.6 does everything we want. 

Theorem 2.8. Let ep be a proper root system. Choose a simple system rr in ¢b and 
corresponding Cohen (Dynkin) diagram A, and keep them fixed. Then: 

(i) The parabolic proper subsystems of c~ are obtained by removing one or more 
nodes in all possible ways from the Cohen (Dynkin) diagram A of ~. 

(ii) As we run through all the parabolic proper subsystems obtained in (i), we 
generate the non-parabolic proper subsystems of c~. 

(iii) A simple system for a proper subsystem of c~ can be chosen as a subset of a 
primary system of C~. 

(iv) All the proper subsystems (both parabolic and non-parabolic) of ~ are 
obtained up to conjugacy. 

(v) Let G be a finite complex reflection group of dimension n generated by n 
reflections, with proper root system ~. Then every proper subsystem ~ of ~, 
with simple system J is contained in a proper root system which has simple 
system consisting of n nodes. 

Proof. The statement (i) follows immediately from Lemma 2.1. The assertion (ii) 
follows from Lemma 2.2 and Lemma 2.3. (iii) follows from Theorem 1 of [9]. To 
prove (iv), replace 7r by another simple system crJr, a e W(zr), and apply (i) and (ii). 

Now we consider the last assertion. I f  J consists of fewer than n nodes, then 
there are roots in • not expressible linearly in terms of the roots of J. We adjoin 
one of these roots to J to obtain a new proper subsystem with new graph which 
is equivalent to a root graph. We continue this process until we obtain a proper 
root system with simple system consisting of n nodes. This proves part (v) of the 
theorem. [] 
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We now give the following example to illustrate the fact stated in the part (v) o f  
Theorem 2.8. 

Example  2.9. Let us consider the Weyl group G = W(cP) with proper root system 

cp o f  type B4.  Let n- = {cq = el - e2, Og2 = e2 -- e3, Or3 : e3 - e4,  or4 = e4} be a fixed 
simple system in ~ .  Then G is a finite reflection group o f  dimension 4 generated 
by 4 simple reflections o f  order 2 with roots cq, ~2, ~3, ~4. 

Now, consider the proper subsystem qJ o f  • o f  type A3 with simple system J = 

{Ct I ,6tZ,Ot3}. Let - ~  • ¢P, where 6~ is the highest root o f  ¢P. Since ~ = el + e2 = 
o t l +  2ot2 + 2o~3 + 2ot4 then - ~  cannot be written as a linear combination o f  roots 
in J .  If  we adjoin - &  to J by attaching - ~  to ~2, then J t2 {-c~} is a root graph of  
type D4 and yields a proper root system E of  type D4 by 1.2 (iv). Then by 1.2 (vii) 
J U {-6t} is a simple system in ]E consisting o f  4 nodes. Furthermore, qJ is contained 

in Z. 
Now, consider c~4 c ~.  Then ~4 cannot be written as a linear combination o f  

the roots o f  J .  If  ~4 is adjoined to J ,  then J U {or4} = 7r. Thus, for • the proper 
root system ¢P itself satisfies part (v) o f  Theorem 2.8. In fact, we have a chain 

c Z c • for the proper subsystem • o f  q~. 

Theorem 2.8 gives us a direct way for finding a certain proper subsystem. 
Furthermore, the part (v) o f  Theorem 2.8 says that a given system is a proper 
subsystem of  a proper root system. The corresponding results for real root systems 
are well known (see [l,15]). Hence, in order to classify all the proper subsystems 
of  a given (real or complex) proper root system it is sufficient to apply the above 
algorithm. Now, as an application o f  this section, we shall construct the proper 
subsystems in the imprimitive case in the following section. (For the primitive 
reflection groups, the proper subsystems o f  each individual proper root system need 
to be listed one by one.) 

3. P R O P E R  S U B S Y S T E M S  IN THE I M P R I M I T I V E  C A S E  

Let V = C ", the complex vector space o f  dimension n with standard unitary 
inner product (., .) and the standard basis {el, e2 . . . . .  en}. A group G of  unitary 
automorphisms o f  V is called imprimitive i f  V is a direct sum V = VI • V2 ~ . . .  ® V~ 

of  non-trivial proper linear subspaces Vi (1 K i ~< t) o f  V such that {~ I i = 1 . . . . .  t} 
is invariant under G. I f  such a direct splitting o f  V does not exist, then G is called 
primitive. 

Let Sn be the group o f  all n × n permutation matrices, and let A(m,  p, n), where 

P I m (m, p E N), be the group of  all diagonal n z n matrices with ~ ,  si ~ Z in 
the (i, i) position and ~ i ~ |  si =- 0 (rood p). Define G(m,  p, n) = A(m,  p, n) × S~ 
(semi-direct product), then the imprimitive reflection groups in V are o f  the 

form G(m, p, n), where p I m (see [13]). Furthermore, G(m, m, 2) is conjugate to 
W(Iz (m) ) ,  G(1, 1, n) = W ( a n - 1 ) ,  G(2, 1, n) = W(B~) = W(Cn) and G(2, 2, n) = 

W(Dn) .  
I f  p = 1 or m, it is possible to choose n generating reflections for G(m,  p, n). 

Take the reflections o f  order 2 with roots el - e2, e2 - e3 . . . . .  en-I - en and if  
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p ---- m also the reflection of order 2 with root en-1 - ~me,,; and if p = 1 also the 
reflection of  order m with root en, I f  p ~ 1, m, take the n generating reflections for 
G(m, m, n) together with the reflection of  order m / p  with root en, to obtain n ÷ 1 
generating reflections for G(m, p, n). Clearly, the groups G(m, m, n) and G(m, 1, n) 
are properly generated groups. 

A root system for G(m, p, n) may be defined as follows (see [13]). Let #m -- 
{ ~  I l c N, ~m is a fixed primitive mth root of  unity]. For W ( D  m) = G(m, m, n), 
take 

R ( m , m , n )  = Iz,n{+(ei - ~lmej) ] i, j ,  l E N, i T~ j ,  l <~ i, j <~ n} 

with fm,m,n : R(m,  m, n) --+ N\{1} being the constant map 2; then we have 
that ¢ (m,  m, n) = (R(m,  m, n), fm,m,n) is a root system with W ( ¢ ( m ,  m, n)) = 
G(m, m, n). 

Now let q = m / p  ~ N\{1}. Put R(m,  p, n) = R(m,  m, n) U ~q{ek I 1 ~ k <~ n], and 
let fm,p;~ : R(m,  p, n) --+ N\{1} be defined by 

fm,p ,n(a)= { 2 i f a ~  #q{ek l l <~ k 

Then qS(m, p, n) = (R(m,  p, n), fm,p,n) is a root system with W ( ~ ( m ,  p, n)) = 
G(m, p, n). I f p  = 1, then we write W(OP(m, 1, n)) = W(Bm).  

I f  ~ (m,  p, n) is a root system associated with an imprimitive reflection group 
G(m, p, n), then we say that ~(m,  p, n) is an imprimitive root system. 

We now determine the proper subsystems of  qS(m, p, n) (p --- 1, m) by means of  
Algorithm 2.6. These proper subsystems are now used to construct some irreducible 
modules of  G (m, p, n) (see [22,11 ]). 

Let ~(m,  p, n) (p = 1, m) be an imprimitive proper root system with a fixed 
simple system 7r(m, p, n) = (B, 0), where 

{oti =ei  - e i + l  (i = 1 . . . . .  n - 1), Otn =en} i f  p =  1, 
B :  {fli ei ei+l ( i = l ,  . , n - - 1 ) ,  ~ , = e , - l - - ~ m e n }  i f p = m ,  

and corresponding primary system qb+(m, p, n) (p = 1, m). 

3.1. Type  B~ 

I f  p = 1, then ~) (m, 1, n) is a proper root system of type B~ and the corresponding 
Cohen diagram for • (m, 1, n) is 

1 2 n - 1  n 

0 0 ..~ 0 ® 

where the node corresponding to oei (i = 1 . . . . .  n) is denoted by i. 
By following Algorithm 2.6 (1), for 1 ~< k~ < k2 < . . .  < kt <<. n, let qJ be a 

parabolic proper subsystem of  ~(m,  1, n) with Cohen diagram 

1 2 k I k2 kt n - 1  n 

0 0 - - ' - - t ~  "--0- '--0-"-<D----~ 
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where the nodes kl, k2 . . . . .  kt have been deleted. I f  we put lj = kj - kj I - 1 (j  = 
1, . . . ,  t) with ko = 0, then • is o f  type ~ 5 = I  Bllj + Bmn-kt with simple system 

J = ~ } = l  Jkj + Jn-k,, where Jkj = {o%_1+1,o%_1+2 . . . . .  o%_1} and J ,-k,  = 

{otk,+ ~, otkt +2, • • • , Otn } are simple systems for types Bljl and Bn_k t m  respectively. 

By considering Algorithm 2.6 (2), for 1 < tl < t2 < -..  < tm < tm+l = t, let J ,  = 
~--~tm + l ~P. (m, l, n), where z._,j=tl+l J*,kj be a subset of  + 

{ekj-1 - -~mekj}  i f q  + 1 ~< j ~ tz, 
J q~,k j = {ekj} ift2 + 1 <~ j <~ tin+l, 

and let 

tl t2 

Jo= J U Jq, = Z Jkj + E {Jk.i + Jq<kj} 
j=l j=tl+l 

ti+l 

+ Z {Jkj + J*,kj } + Jn-~,. 
i =2 j =t i + I 

Then Jo qL wrr(m, 1, n) for all w ~ W(zr(m, 1, n)). 
Since the corresponding Cohen diagrams for Jkj + Jq<k i (tj + 1 <<. j <~ t2) and 

Jkj + JqJ,kj (t2 + 1 ~< j ~< tm+l) are respectively 

k j -  1 

O m kj_l+l k j - 2  / @  

% . )  
ekj-I ~mekj 

and 

k j_ 1 + I k.i - 1 ekj 
B m 

lj+, 0 "" C, ® 

then Jo is linearly independent over C. Hence, by Algorithm 2.6 (2), Jo is a root 
graph which is an extension o f  J and so ~o is a non-parabolic proper subsystem of  
q~(m, 1, n) o f  type 

tl t2 m ti+l 

E BIlj + Z Dm B m m /j+l + ~ ~ /j+l + B._~,, 
j=l j=tl+l i=2 j=t i+l  

with simple system Jo and 

tl t2 m ti+l 

E ( I J  + 1) + Z ( l j  + 1) + E E ( l j  + l) + n - kt = n .  

j=l j=tl+l i=2 j=t i+l  
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On the other hand, we can rewrite the type o f  qJo as follows: 

tl t2--t I m ti+l --ti 
1 

E B l j - } -  E Dm - [ - E  E Bm m ltl+j+l lti+j+l + On_kt. 
j = l  j = l  i=2 j = l  

By setting s = t2 - tl and /z j  = ltl+j q- 1 ( j  = 1 . . . . .  s), and for i = 1, 2 . . . . .  m 

tl i f i  = l, 

si ~-- t i + l  - - t i  i f / = 2  . . . . .  m -- 1, 
tm+l -- tm q- 1 i f / =  m, 

lj ( j  = 1 ,2  . . . . .  s l )  

, (i) l t i +  j + 1 ( j  = 1, 2 . . . . .  si) 
~J = It,~+j + l ( j =  l , 2  . . . . .  s i n - l )  

n - kt ( j  = Sm) 

{lm i f i = l ,  
mi = i f / =  2 . . . . .  m, 

we can refine the type o f  qJ0 as follows: 

i f / =  1, 
i f / = 2  . . . . .  m - 1 ,  

i f / = m ,  
i f / = m ,  

and 

O) Bm: + mi D m w i t h  E B (i) uj 
i=1 j=l xj j=l 
S1 m si . s 

Z ( X ~ I )  + 1 ) +  E Z x ( j i )  + E l z j = n .  
j=l  i=2 j=l  j=l  

In the formula (I), i f  we take m = 2 then the formula  for type B~ is 

(II) 
2 si £ z i = : j  om Bn: ) + tq" 

i=1 "= j = l  

But Hughes  [16] has proved that there is a one-to-one correspondence between 
conjugacy classes o f  W (B m) and proper subsystems o f  the type 

Z E  me i f / =  1, (III) B (i) w i t h  m i = and 
zj i f  i = 2 . . . . .  m, 

i=l j = l  

Sl m si 

j= l  i=2 j = l  

O f  course the choice o f  the set J ,  is arbitrary. Therefore,  in the construction o f  the 
formula (I), i f  we take the empty  set instead o f  {ek;-1 -- ~,,ekj} for tl + 1 <~ j ~< t2 
then the last term o f  the formula (I) disappears completely, and so we directly obtain 
the formula  (III). 

In the formula (III), i f  we take m = 1, 2 then the formulas for types An-1 and Cn 
are respectively 
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Table 1 

q5 Types of proper subsystems 

An Y'~f i=1 A),~ 

Bn Z i P l  a,k i "Jr- Z j =  1 Bpy + Y'~S=l D/,~ 
C. ~P  r i=1 A~.i + ~ j = l  Cuj 

m mi s D m 
Bm Z i = I  ~'~=1 B~.(.i) -~- Z j = I  ,*.J 

) 

Y]ff--1 (~.i + 1) = n + 1 
r 

E L 1  (~.i -~- 1) + Y~-j=l PJ + Z'~=l #~ = n 
r # Z;/' + l )+ Zj=  

Z S / i  (~(l) m si ~(!) 
. j + l ) + ~ i = 2 ~ j = l  , 

S 
--l- Z j = l  #J  = n  

s I 

(IV) An: Z u"'L and 
.i = I J 

2 si 

c,,: 
i=1 j = l  .I 

and so we recover the results of Dynkin [15] for types A,, 1 and C,,. Thus we have 
the following. 

Theorem 3.1. The types o f  proper  subsys tems (up to conjugacy)  o f  the proper  root 

svs tems o f  types An. B, ,  C,, and  B,"~' are o f  the. lbrms shown in Table 1, where 

1 i f i = l ,  
m i = 

m l f i = 2  . . . . .  m. 

3.2. Type D~ 

If p = m, then ~P (m, m, n) is a proper root system of type D~ and the corresponding 
Cohen diagram for ~p(m, m, n) is 

n--I 

1 2 ~ I +~., 
O O - - ' "  2 

L )  n 
where the node corresponding to fli (i = 1 . . . . .  n) is denoted by i. 

By following Algorithm 2.6 (1), for 1 ~< 11 < 12 < ..- < lr ~< n, let • be a 
parabolic proper subsystem of • (m, m, n) with Cohen diagram 

n--l 
1 2 11 12 lr n - - 2 / ~ n - - 2  

. . . . + " " 

M.) 
11 

where the nodes ll . . . . .  Ir have been deleted. If  we put kj  = lj - l j -1  - 1 ( j  = 
1 , . . . , r )  with lo = 0 ,  then • has type ~j=~r D 1~: + Dnm_b with simple sys- 

r tem J = Y~j=I JIj + Jn-tr, where Jlj = {ill:_1+1, filj_l+2 . . . . .  fllj-1} and Jnqr = 

{fltr+l, ill,+2 . . . . .  fin} are simple systems for types D~j and Dnm_lr respectively. 
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By considering Algorithm 2.6 (2), for 1 < rl < r2 < . ' .  < rm < rm+l = r, let 
prm+l + (m, m, n), where J .  zj {eli-1 -- ~melj } for Jqu = z . . , j = r 2 + l  JqJ,lj be a subset o f  ~ ,  

j --- r2 + 1 . . . . .  r,n + 1, and let 

r 2 m ri+l 

J o =  J k-J JqJ= E JlJ -}- E E {Jlj q- Je~,lj}"}- Jn-lr. 
j = l  i=2 j=ri+l 

Then Jo 92 wzr(m, m, n) for all w ~ W(zr(m, m, n)). Since the corresponding Cohen 
diagrams for Jtj + Jeu,lj (r~, + 1 ~ j <, rm + I) are 

l j--1 
/ j_ l+ l  l j--2 /Q) 

eli -1 --~metj 

then J0 is linearly independent over C. Thus, by Algorithm 2.6 (2), Jo is a root 
graph which is an extension of J and so qJo is a non-parabolic proper subsystem of 
• (m, m, n) o f  type 

r2 1 ~ ri+l 

E k,+ E k j+l + Dnm-lr, 
j = l  i=2 j=ri+l 

with simple system Jo and 

r2 m ri + l 

E ( k j + I ) + Z  E ( k j + l ) + n - l r = n .  
j= l  i=2 j=ri+l 

By using similar arguments as in the Bn m type, we can reformulate the type of  proper 
subsystem qJo as follows: 

mi 1 i f / =  1 
(VI) Dm: D (i) withmi = and 

i=1 ' =  /z) m i f i = 2  . . . . .  m 

Ul m ui . 

+ 1)+ E Z g  =n 
j = l  i=2 j = l  

I f  we take m = 2 in (VI) then the formula for type Dn is 

(VII) 
2 ui 

0°: EE m i , 
i=1 j = l  r j  

and so we recover the result of  Dynkin [ 15] for type Dn. Thus we have the following 
theorem. 
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Table 2 

q~ Types of  proper subsystems 

S r S 
Dn Zr= l  A~i + Z j = I  Dtzj Y~-i=I (~.i + 1) + Y~-j=l/Zj = n 

m . (i) m m mi ~-~u, (/z0) + 1) + )-~i=2 )--~/1/~j = n On Z i = I  E ~ i l  O (i) / -- ' j=l  j /zj 

Theorem 3.2. The types o f  proper subsystems (up to conjugacy) o f  the proper root 
systems o f  types Dn and D~ are o f  the forms shown in Table 2, where 

1 m ! f i = l ,  
mi = t f i  ----2 . . . . .  m. 

Remark 3.3. We shall now make a few remarks on the root system ~(m, p, n) (p I 
m and p # 1, m) associated with the groups G(m, p, n). The vector graph (see [23]) 
for ~(m, p, n) is 

t+g,. "' ~-(S) - ~  @ (n + 1 points, n ~> 2), 

where q = m/p .  If  we denote this vector graph by zr(m, p, n) (p :/: 1, m), then 
W(zr(m, p, n)) = G(m, p, n). But for p # I, m, ~(m, p, n) is not a proper root 
system and zr(m, p, n) is linearly dependent over C, and so we do not have a simple 
system for the root system ~(m, p, n) (p -¢ 1, m) associated with G(m, p, n). 
Deleting a node from zr(m, p, n) leaves us one of  the vector graphs of  the type 

q :rr(m,m,n) = D m, re(q, I ,n)  = Bqn, zr (m,m,r)  + rr(q, 1,n - r) = D m + Bn_r, 
which turn out to be root graphs. Let E be a proper root system such that its 
simple system is one of  the root graphs obtained as above. Thus to obtain the proper 
subsystems of  ~(m, p, n), we apply Algorithm 2.6 (1) and (2) to the E. Since we 
have already dealt with these types, the types of  proper subsystems of  ~(m, p, n) 
(p [ m and p # 1, m) are of  the form 

(VIII) 
ui t vi 

Z mi ~-~ ~ Bqi with  D (i) + ~ ~ ~(i) 
i=1 j= l  Zj i=1 j= l  ~'J 

{1 m i f i = l ,  { ;  i f i = l ,  
mi  = qi = and 

i f / = 2  . . . . .  s, i f / =  2 . . . . .  t, 
Ul s ui Vl t vi 

Z ( y ) l )  "-~ 1 ) +  ~--~.y~ }/ffi) q_ Z ( p S ' ) q  - 1 ) +  Z ~''~ (i) 2 _ a p  j = n. 
j= l  i=2 j= l  j= l  i=2 j= l  
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