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ABSTRACT

Dynkin has shown how subsystems of real root systems may be constructed. As the concept of
subsystems of complex root systems is not as well developed as in the real case, in this paper we
give an algorithm to classify the proper subsystems of complex proper root systems. Furthermore, as
an application of this algorithm, we determine the proper subsystems of imprimitive complex proper
root systems. These proper subsystems are useful in giving combinatorial constructions of irreducible
representations of properly generated finite complex reflection groups.

1. INTRODUCTION

In a now classic paper, Shephard and Todd [24] have given a complete classification
of the finite irreducible complex refiection groups. In recent years, these groups
have been the subject of considerable study, see for example [5,6], and more
recently [19,21] and [22]. The results in the real case are well developed and
documented (see, e.g., [2]). In the context of complex reflection groups however,
some of the fundamental ideas are not as well developed with no universally
accepted analogues for such basic concepts as root systems and their subsystems
and positive systems or a length function; for some recent attempts, see [17,9,3]
and [4].
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All the subsystems of a real root system & relating to a Weyl group may be
obtained up to conjugacy by a standard algorithm due independently to Dynkin [15],
Borel and de Siebenthal [1]. This is described by Carter [12] as follows: Form the
extended Dynkin diagram of ¢ by adding one further node to the Dynkin diagram
of & corresponding to the negative of the highest root. Remove one or more nodes
in all possible ways from the extended Dynkin diagram of ®. Take also the duals
of the diagrams obtained in the same way from the dual root system ® of ® which
is obtained from & by interchanging long and short roots. Then repeat the process
with the diagrams obtained, and continue any number of times. In this algorithm, the
concept of the extended Dynkin diagrams is important. Inspired by these, Hughes
[17,18] introduced what he called extended Cohen diagrams in order to give an
algorithm for obtaining subsystems of complex root systems. Unfortunately, this
algorithm has its shortcomings, since for example for type 7 (m, 1, n) = B, he
gives the following graph

g _ L
+@—2O0—0O——O—L2@ ((n+1) points),

as an extended Cohen diagram, where the adjoined root is marked with the sign
“+”. However, when m is odd, there does not exist a root in ®(m, 1, n) which can be
adjoined in this way. Moreover, as there could be more than one highest primary root
in the complex case and since a number of equivalent diagrams must be considered,
Hughes’ algorithm is more difficult to apply in the complex case in comparison with
the real case. Furthermore, neither Dynkin’s nor Hughes’ algorithm leads directly
to simple systems for subsystems which are subsets of the primary roots.

Proper subsystems of complex proper root systems are useful in giving combi-
natorial constructions of representations of properly generated complex reflection
groups. For example, they have been used in [8] where the Young tableaux method
for generalized symmetric groups [7] has been further generalized.

As the concept of subsystems of root systems for complex reflection groups is
not as well developed as in the real case, the present author [9] has presented
an alternative algorithm for obtaining all proper subsystems of a given (real or
complex) proper root system without any reference to extended diagrams. This
algorithm has the further advantage that it simultaneously obtains a simple system
which is a subset of the primary roots. Moreover, our method is more useful from
a computational point of view (see [10]). In [9], we studied how to obtain the
parabolic and non-parabolic proper subsystems of a given complex proper root
system. There is no difficulty in determining all the parabolic proper subsystems. In
[9], we also claimed that “as we run through all the parabolic proper subsystems,
we generate all the non-parabolic proper subsystems”. In Section 2 of this paper,
we prove this claim by using the ideas of [9] and give an algorithm to classify the
proper subsystems of complex proper root systems. In Section 3, we determine the
proper subsystems of imprimitive complex proper root systems.

We first establish the basic notation and state some results which are required
later. We refer the reader to [9,13] and [17] for much of the undefined terminology.
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As a convention, throughout this paper, we assume that &,, is a fixed primitive mth
root of unity.

1.1. Let V be a complex vector space of dimension » furnished with a unitary
inner product (-, -). A reflection in V is a linear transformation of V of finite order
with exactly n — 1 eigenvalues equal to 1. A reflection group G in V is a finite group
generated by reflections in V. A (base) root of a reflection in V is an eigenvector
(of length 1) corresponding to the unique non-trivial eigenvalue of the reflection.
A (base) root of G is a (base) root of a reflection in G. Let s be a reflection in V of
order m > 1. Then there exists a non-zero vector « € V and a fixed primitive mth
root of unity &, for cach m such that s, ,(v) = v — (1 — &) EZZ;“ forallveV,
where s = so,m. Define og:V — N by 06(v) = |G 1| (v € V). Then og(v) > 1
if and only if v is a root of G. In this case, o (v) is the order of the cyclic group
generated by the reflections in G with root v. If & is a root of G then the number
o¢ () is called the order of o (with respect to G).

1.2. (i) A vector graph is a pair (B, 8), where B is a non-empty finite subset
of C* such that for all a,b € B, |(a,b)| = 1 if and only if @ = b, and 0 is a map
from B to N\{1}. The set B is called the set of points or nodes or vectors of the
vector graph, and 6(a) for a € B is the order of a (with respect to (B, 6)). A vector
graph (B, 0) is represented by a directed valued graph by assigning to each element
a € B a node a with weight 6(a) and if (a,b) # 0, 1 a directed edge from a to b
with weight (a, b).

(ii) Let m = (B, 0) be a vector graph. Denote by dim(r) the dimension of
the vector space spanned by B and by W () the group generated by the simple
reflections s, p(q) With a € B. The vector graph = is called a root graph if dim(x) =
|B| (i.e., B is linearly independent over C) and W () is a finite reflection group.
Let 7/ = (B’, 6) be another root graph. If B C B’ and 6'|p = 6, we say that 7’ is
an extension of w, or that 7 is a sub-root graph of n’. Root graphs = = (B, 0)
and 7’ = (B’,0") are equivalent if the groups W(r) and W(x’) are conjugate.
For any root graph = = (B, #9) and for any w € U(V)—the group of all unitary
transformations with respect to a unitary inner product, let wn = (B, 6,), where
By = wB and 6, (w(a)) = 6(a) with a € B, then wx is also a root graph which
is equivalent t0 7 SINCe Sy(a).0, (wia)WSa.6@w " for all a € B it follows that
W(wr) =wW@)w L.

(iii) A pair (R, f) is called a pre-root system if R is a finite subset of non-zero
clements of C* and f: R — N\({1} is amap such that foralla,b € R, 54 f@)R=R
and f (54, 7@yb) = f(b). To ® = (R, f) is associated the reflection group W(®)
defined by W(®) = (s4, ) | @ € R). A pre-root system ¢ = (R, f) is called a root
system if in addition za € R if and only if za € W(®)a foralla € R, z € C.

(iv) Every root graph defines a pre-root system, for if 7 = (B, 6) is a root graph,
then the pair @ = (R, f) where R = W () B and the map f: R — N\{1} is induced
by the order function ow ) defines a pre-root system with W(®) = W ().

(v) Every finite irreducible n-dimensional reflection group G in V that is
generated by n reflections yields a root graph: Fix a base root for each of the n
generating reflections in G. Let B be the set of these base roots and let 6: B —
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N\{1} be given by #(a) = og(a), a € B. Then = = (B, ) is a root graph with
W) =G.

(vi) If ® = (R, f) is a pre-root system, then there is a root system ¥ = (S, g)
with W(Z) = W(®), SC Rand g = fls.

(vii) If a root system & is the pre-root system obtained from a root graph m as
described in 1.2 (iv), then 7 is called a simple system in ®. If ® is a root system
with simple system 7, then the graph associated to n is called a Cohen (Dynkin)
diagram of ®.

(viii) Cohen [13] proves that all finite irreducible imprimitive reflection groups in
V are of the form G(m, p, n) for some m, p € N with p | m and n > 2. The reflection
group G(m, 1, n) has the following presentation (see [14]):

2 3 2 . .
Gim, Ln)={r,....¢0p—1, W1, ..., Wy | ] = (ririp1) = (rirj)"=e, i — j| 22,

m ; P
w' =e, wiw; =wjw;, KW =W r, w;=wik, jFELIDE L.

Let {e), ez, ..., e,} be the standard basis of V. We may identify r; (i =1,...,n—1)
with the reflection s; = 54, ¢(o;) of order 2 withrooto; =e; —e; (i =1,...,n~1),
and therefore the group generated by {r|, ..., r,_} is the Weyl group W (A, ). The
w; (i =1,...,n) may be identified with the reflection s,, g(,) of order m. Now, if
Sn = Sa,.8(a,) 18 the reflection of order m with root a,, = e,,, then w, is the reflection
sy and consequently w; (i =1,...,n — 1) is the reflection s;s;41 ... Sn—1528p—1 - - . Si
i=1,..., n—1)sincee; = ;841 ...Sp—1(ay) and O(e;) =O0(e,) fori=1,...,n—1
it follows that

Se;,0(e;) = Ss5i8i41.-Su_1(@n),0{cn)
=88i41 . Sn1SuSn—1...85i (=1,....,n—1).

Note that not all finite irreducible complex n-dimensional reflection groups are
generated by n reflections. On the other hand, we do not have root graphs for
n-dimensional reflection groups generated by n + 1 reflections, i.c., the groups
G(m, p,n) for p #1,m (see [13]). So we do not have a simple system (in the
manner of 1.2 (vii)) for the root system associated with G(m, p,n), p# 1, m.

Now we make the following definitions. If G is a finite irreducible complex
reflection group of dimension n generated by n reflections, then we say that G
is a properly generated finite complex reflection group. Furthermore, if & is a root
system associated with a properly generated finite complex reflection group, then
we say that & is a proper root system. Clearly, every proper root system has a simple
system by 1.2 (v) and (vii). In our discussion of root systems, we consider the proper
root systems (and their proper subsystems) only. If & is a proper root system with
simple system , then we say that ® is irreducible if W(®) is irreducible on V, and
we also call m irreducible if W(®) = W () is irreducible, or equivalently, if 7 is
connected (see [13, 4.2]).

In this paper, we only study the properly generated reflection subgroups of a
properly generated finite complex reflection group. We shall do this by means of
proper root systems and their simple systems.
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1.3. Now, as in Can [9] and Hughes [17], primary systems for proper root
system @ with simple system = = (B, 6) are defined. These play the role of positive

systems for real reflection groups. Let B = {a1, ..., @}, and put r; = 54, 6(¢;) With
a; € B,i=1,...,n, then the corresponding primary system is defined inductively
as follows:

(i) Let @} = B.

(i) Let @ ={ri(aj) |i # j,i,j=1,...,n,a; € ®], ri(a;) ¢ ©T). (Here, we
require that r;(a;) # ub forall b € Qf’, where p is a root of unity.)

(iii) For k >3, let & ={ri(@) |i=1,...,n,a € ®}_, ria # ub forall b € d/,
[ < k}, where w is a root of unity.

A primary system in @ is defined to be the union of all ®; (k > 1) and
will be denoted by ®*. By the construction of each <1>;f (k > 1), it is clear that
®F = ), ®F with @ N @] = @ whenever i # j. The elements of &* are
called primary roots. This algorithm says that a primary root is a single root in
each 1-dimensional space spanned by a root.

The primary system is not unique in that there is an element of choice at each
step. However, having fixed a primary system ®* for the simple system 5 of the .
root system @, if the simple system 7 is replaced by another simple system wr,
w € W(m), then the corresponding primary system obtained by making the same
choices in the above algorithm is the conjugate w®* of &%, namely, any two
primary systems in @ are conjugate under W(®) (see [9, Lemma 2.1]). Thus, this
fact shows that it makes no great difference which ®* we choose. In fact, different
choices in the above algorithm would result in conjugate primary systems. In the
case of real reflection groups, the primary systems are positive systems.

2. CLASSIFICATION OF PROPER SUBSYSTEMS

Let ® = (R, f) be a proper root system with a fixed simple system = = (B, 6).
Denote by W(®) = W () the properly generated finite reflection group generated
by the simple reflections s;6(q) With @ € B. If § is a subset of R and g = f|s,
then the pair W = (S, g) is called a proper subsystem of ® if W is itself a proper
root system. The corresponding properly generated reflection subgroup W (V) is
the subgroup of W(®) generated by the s, g(o) Witha € S.

The proper subsystems W) = (S, g1) and ¥, = (57, g2) of ® are conjugate under
W(®d) if S = wS; and g2(w(a)) = g1(a) for some w € W(P) and for all a € S;;
in which case W(wW,) = wW (¥)w™1, that is, W(¥;) and W (W) are conjugate
subgroups in W(®). If w = (B, 8) (resp., & = (R, f)) is a simple system (resp.,
proper root system), by abuse of notation we sometimes say = = B (resp., ¢ = R).

The proper subsystems of & fall into two categories: Proper subsystems whose
simple systems J = (By,8;) are such that B, C B and 6, = 0|p, are called
parabolic proper subsystems (for a similar argument in the real case, see, for
example [20, pp. 18-19]). A proper subsystem of & which is not parabolic is called
a non-parabolic proper subsystem.
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Lemma 2.1 [9, 2.2]. If ® = (R, f) is a proper root system with a fixed simple
system w = (B, 0) then the pair J = (By,0), where By C B and 6, =0\p_, is a
sub-root graph of . Furthermore, J yields a parabolic proper subsystem of .

Lemma 2.2 [9,2.3]. Let ® = (R, f) be a proper root system with a fixed simple
system = (B, 6) and ®% be a primary system determined by w. Let ¥ = (S, g) be
a parabolic proper subsystem of Y with simple system J = (B, 60r), where B C B
and 6, =0\, and let ¥+ be a primary system determined by J. Define df =
O\WT, and let By be a subset of <b$ such that By U By is linearly independent
over C. Then the pair Jy = (Bo, 6y), where By = By U By and 6y = fp,, is a root
graph which is an extension of J. If By ¢ wB for all w € W (), then Jy yields
a non-parabolic proper subsystem of . Furthermore, if By C wB for some w €
W (r), then Jy yields u parabolic proper subsystem of ®.

If W is a parabolic (or non-parabolic) proper subsystem of &, recall that its
conjugates wW, w € W(m), are also parabolic (or non-parabolic) proper subsystems
of ®.

Now, there is a question to be considered: If we start with a non-parabolic proper
subsystem, can we form it from a parabolic proper subsystem? In that case we
say that a non-parabolic proper subsystem ¥ of ® can be formed from a parabolic
proper subsystem W of ® if a simple system Jy of W, can be chosen as an extension
of'a simple system J; of V.

In the following lemma we prove that the non-parabolic proper subsystems of &
are obtained from the nonempty parabolic proper subsystems.

Lemma 2.3. Let ® = (R, f) be a proper root system with a fixed simple system
7w =(B,0) and ®F be a primary system determined by 7. If W is a non-parabolic
proper subsystem of ®, then Y can be formed from a nonempty parabolic proper
subsystem V| of ®, where V| # ©.

Proof. Let W (W) be the properly generated reflection subgroup of W (®) corre-
sponding to the non-parabolic proper subsystem W,. Referring to 1.2 (v) and 1.3,
choose and fix a primary base root a; € Wy N @1 for each of the generating
reflections s in W (). Let By be the set of elements a, € ¥y N ®* obtained in this
way, and define a map 6y : By — N\{1} by 6y(a) = ow(w,)(a) for all a € By. Then
by 1.2 (v) the pair Jy = (Bg, 80) is a root graph with W (Jy) = W(¥y). Now, put
So = W (Jy) By, and define the extension gy : Sy — N\{1} of 8y by go(w(a)) = by(a)
for a € By and w € W(Jp). Then we have Wy = (Sp, go) by 1.2 (iv), and Jy is
a simple system for Wy by 1.2 (vii). By definition of the non-parabolic proper
subsystem, we have also By ¢ wB for all w € W(®).

We decompose the set By into two nonempty parts as follows. Bg = B; & By such
that By = wB, for some B, C B but B, # @ and w € W(®), and B; = By\B].
(Here, the symbol & denotes the disjoint union. This is possible, for if a € By then
a = w(x) for some o € B and w € W(®). This will be illustrated in Example 2.5.) If
we put 6, = 6|, then the pair J = (By, 65) is a nonempty sub-root graph of = and
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yields a nonempty parabolic proper subsystem W of ® by Lemma 2.1. Since B, # @
and B; = wB, C wB, the pair J; = (B, 6;), where 0;(w(a)) = 0, (a) with a €
By, is a nonempty sub-root graph of wn and yields a nonempty parabolic proper
subsystem ¥; of & which is conjugate to ¥ by Lemma 2.1.

Now, let W;" be a primary system determined by J;. Then, it is clear that B, ¢
\I/fr , for if so, then Jy is a simple system for W. But since Jy corresponds to the
non-parabolic proper subsystem ¥¢, we have ¥y = Wy, contradicting the choice of
W;. To obey the notation in Lemma 2.2 we write just By, instead of B,. Since
By, C ®", we have By, C CIDJ\IC1 = <I>+\\If;r such that By = wB; W By, is linearly
independent over C. Thus, we have verified the hypotheses of Lemma 2.2, so the
root graph Jp is an extension of J; and so the non-parabolic proper subsystem
I is formed from the nonempty parabolic proper subsystem W, and the proof is
complete. O

We recall that the previous lemma is trivially true with ¥; the empty system;
we reach this case by taking B, (and so Bjy) to be the empty set in the proof of
Lemma 2.3. On the other hand, we must take that W # &, for if we take ¥ = ®
then a simple system Jo of Wy cannot be chosen as an extension of the simple
system J; = of W; = & (for if Jy is chosen as an extension of J; = 7 then Jj is
linearly dependent over C, contradicting the definition of simple system).

Corollary 2.4. Let ® = (R, f) be a proper root system with a fixed simple system
n = (B,0) and @1 be a primary system determined by w. If W is a non-empty
proper subsystem of ®, then we have a decomposition ¥ = L+Jf-°=1 W (k=1) of ¥,
where each V; is an irreducible proper subsystem of ®.

Proof. Construct a simple system J = (B’, 8") for ¥ as in the proof of Lemma 2.3.
If J is connected, then W itself is irreducible and we are done (k = 1 and
W = W), If not, then suppose that J splits into k connected components J; =
(B1,60), ..., Jr = (B, 6k), where B = ¢’_, B; with B; # 0 and B; N\ B; =@
whenever i # j, and 6; = 6'|p, for all i =1,...,k. Thus each J; = (B;,6;) is
a sub-root graph of J and yields a subsystem W¥; of @ by 1.2 (iv) and (vi).
Furthermore, since each J; = (B;, 6;) is connected then each proper subsystem W;
of & is irreducible.

Now, if @ € B; and 8 € B; (i # j), then we have (¢, 8) = 0 and therefore
Sa,0;(@)SB,0;(8) = SB,0;(B)Sa.8; (), ad 50 the corresponding properly generated reflec-
tion subgroup W(J) is the direct product W(J) = W(J;) x --- x W(Ji) of properly
generated reflection subgroups W (J;), where W(J;) " W(J;) = {e} (i # j). Then,
W(J)B;NW(J;)B; =0 (i # j), thatis, ¥; "W; =@ (i # j). Thus,

k k
(W) x - x W) 4 B = wi =,
1

i=1 i=1

as desired. O
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Example 2.5. Let ® be the proper root system of type B with simple system
7 =(B,0), where B={o; =¢; —e;11 (i =1,...,5), asg = es}, and corresponding
primary system ®*. Referring to 1.2 (viii), denote by r; (i =1,...,5) and w;
(i =1,...,6) the reflection sy, 6(o;) Of order 2 (i =1,...,5) and the reflection
Se; 0(e)) of order 3 (i =1, ..., 6) respectively. Now, put s; = s4; (o) fori =1,...,6,
then wg is the reflection s¢ and consequently w; (i = 1,...,5) is the reflection
SiSit1...858685...5 i=1,...,5).

Let W, be a proper subsystem of ® of type A + B3 + B; with simple system
Jo=1{ey —e3,e3 — 532e4, ey — es, es,¢6}. (Here, &3 is a fixed primitive cube root
of unity.) Since Jo ¢ wn for all w € W(rr), then ¥y is non-parabolic. The Cohen
diagram A for Wy is

/3 3/4 42 2/5 5/6 6
O—O—.————Ef.:C@
5
where the nodes corresponding to e; — e3, e3 — 532(34, e, — es, es, eg are denoted by
1/3,3/4,2/5, 5, 6 respectively, the nodes 4/2 and 5/6 have been deleted.

Now, write Jo = J1 ¥ By, where By, = {es}, J1 = {e] —e3,e3 — 53284, e) — es,
e6) = wirar3J for wirars € W(rr) where w? is the reflection s4sss?ssss, and where
J =1le| —ex,ex —e3,e4 — es5,e¢} C . Then W is a parabolic proper subsystem
of ® of type Ay + A| + B with simple system J, by Lemma 2.1. Since J; =
w?ryryJ C wiryrsm, Jy is a sub-root graph of wirorsm and yields the parabolic
proper subsystem W, = w§r2r3\v of ® of type A, + A + B?- The primary system
of W, determined by J; is W;" = {e; — e3, e1 — £3es, €3 — E2es, €2 — €5, €6}, and 50
By, ¢ \Pf. Thus, we have By, C d>$l = <I>+\\Ill+ such that Jo = J; & By, is linearly
independent over C. Therefore, by Lemma 2.2 the root graph Jy is an extension of
Jy and so the ¥y is formed from the parabolic proper subsystem W;.

We now have all the ingredients to give an algorithm to classify all the proper
subsystems of a given (real or complex) proper root system.

Algorithm 2.6. Let @ be a proper root system. Choose a simple system 7 in ®
and corresponding Cohen (Dynkin) diagram A, and keep them fixed. Let & be a
primary system determined by 7.

(1) Obtain the parabolic proper subsystems of ® by removing one or more nodes
in all possible ways from the Cohen (Dynkin) diagram A of ®.

(2) To generate a non-parabolic proper subsystem of @, take a parabolic proper
subsystem ¥ of ® obtained in (1) with simple system J, C = and correspond-
ing primary system W,

Define @, = ®*\ W+, and choose a non-empty subset By of ®J, such that

(i) Jr UBy ¢ wr forall w e W(r),
(i) J; U By is linearly independent over C.
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Then Jo = J; U By is a root graph which is an extension of J, which yields a
non-parabolic proper subsystem Wq of .

(3) Repeat the process (2) with the parabolic proper subsystems obtained in (1),
and continue any number of times.

(4) To obtain all the proper subsystems (both parabolic and non-parabolic) of ® up
to conjugacy, replace # by another simple system on, o € W{x), and repeat
the processes (1), (2) and (3) step by step.

Remark 2.7. In the previous algorithm, if hypothesis (2) (i) is dropped then, at any
stage of the above construction, we may have Jy C wm for some w € W () which
implies that Wy is parabolic. Therefore, the hypothesis (2) (i) merely enables us
to construct the non-parabolic proper subsystems of ®. For a precise information,
see Lemma 2.2. Furthermore, If ® is a real root system, then we may replace the
hypothesis (2) (ii) of Algorithm 2.6 by (a, b) < 0 for all pairs a # b in Jo = J, U By
(see [9, Corollary 2.4]).

Indeed, the following theorem states that Algorithm 2.6 does everything we want.

Theorem 2.8. Let ® be a proper root system. Choose a simple system 7 in ® and
corresponding Cohen (Dynkin) diagram A, and keep them fixed. Then:

(i) The parabolic proper subsystems of ® are obtained by removing one or more
nodes in all possible ways from the Cohen (Dynkin) diagram A of ®.

(ii) As we run through all the parabolic proper subsystems obtained in (i), we
generate the non-parabolic proper subsystems of ®.

(iii) 4 simple system for a proper subsystem of ® can be chosen as a subset of a
primary system of ®.

(iv) All the proper subsystems (both parabolic and non-parabolic) of ® are
obtained up to conjugacy.

(v) Let G be a finite complex reflection group of dimension n generated by n
reflections, with proper root system ®. Then every proper subsystem W of P,
with simple system J is contained in a proper root system which has simple
system consisting of n nodes.

Proof. The statement (i) follows immediately from Lemma 2.1. The assertion (ii)
follows from Lemma 2.2 and Lemma 2.3. (iii) follows from Theorem 1 of [9]. To
prove (iv), replace 7 by another simple system o7, o € W (ir), and apply (i) and (ii).

Now we consider the last assertion. If J consists of fewer than n nodes, then
there are roots in ® not expressible linearly in terms of the roots of J. We adjoin
one of these roots to J to obtain a new proper subsystem with new graph which
is equivalent to a root graph. We continue this process until we obtain a proper
root system with simple system consisting of n nodes. This proves part (v) of the
theorem. O
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We now give the following example to illustrate the fact stated in the part (v) of
Theorem 2.8.

Example 2.9. Let us consider the Weyl group G = W (&) with proper root system
() oftype By Lletm={a;=e1 —er,ap = er — e3,a3 = e3 — e4, a4 = €4} be a fixed
simple system in &. Then G is a finite reflection group of dimension 4 generated
by 4 simple reflections of order 2 with roots «, o7, o3, 4.

Now, consider the proper subsystem ¥ of ® of type A3 with simple system J =
{a, 2,03}, Let —a € ®, where & is the highest root of ®. Since @ =€) + ¢; =
oy + 207 + 203 + 204 then —& cannot be written as a linear combination of roots
in J. If we adjoin —a& to J by attaching —& to «p, then J U {—a} is a root graph of
type D4 and yields a proper root system % of type D4 by 1.2 (iv). Then by 1.2 (vii)
JU{—a} is a simple system in X consisting of 4 nodes. Furthermore, ¥ is contained
in X.

Now, consider a4 € ®. Then a4 cannot be written as a linear combination of
the roots of J. If a4 is adjoined to J, then J U {aq} = 7. Thus, for ¥ the proper
root system & itself satisfies part (v) of Theorem 2.8. In fact, we have a chain
¥ C ¥ C & for the proper subsystem W of .

Theorem 2.8 gives us a direct way for finding a certain proper subsystem.
Furthermore, the part (v) of Theorem 2.8 says that a given system is a proper
subsystem of a proper root system. The corresponding results for real root systems
are well known (see [1,15]). Hence, in order to classify all the proper subsystems
of a given (real or complex) proper root system it is sufficient to apply the above
algorithm. Now, as an application of this section, we shall construct the proper
subsystems in the imprimitive case in the following section. (For the primitive
reflection groups, the proper subsystems of each individual proper root system need
to be listed one by one.)

3. PROPER SUBSYSTEMS IN THE IMPRIMITIVE CASE

Let V = C", the complex vector space of dimension » with standard unitary
inner product (-, -) and the standard basis {e|, e, ..., e,}. A group G of unitary
automorphisms of V is called imprimitive if V isadirectsum V =V, @ Vo ®--- @ V;
of non-trivial proper linear subspaces V; (1 <i <r)of Vsuchthat{V; |i=1,..., ¢}
is invariant under G. If such a direct splitting of V does not exist, then G is called
primitive.

Let &, be the group of all n x n permutation matrices, and let A(m, p, n), where
p | m (m, p € N), be the group of all diagonal n x n matrices with £,,s; € Z in
the (i, i) position and Y 7, s; =0 (mod p). Define G(m, p,n) = A(m, p,n) x S,
(semi-direct product), then the imprimitive reflection groups in V are of the
form G(m, p,n), where p | m (see [13]). Furthermore, G(m, m, 2) is conjugate to
W(lh(m)), G(1,1,n) = W(A,—1), G2,1,n) = W(B,) = W(C,) and G(2,2,n) =
W(D,).

If p=1 or m, it is possible to choose n generating reflections for G(m, p, n).
Take the reflections of order 2 with roots ey — e>, e3 —e3, ..., e,—1 — e, and if
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p = m also the reflection of order 2 with root e,_| — &,,e,; and if p = 1 also the
reflection of order m with root e,.. If p # 1, m, take the n generating reflections for
G (m, m, n) together with the reflection of order m/p with root ¢,, to obtain n + 1
generating reflections for G(m, p, n). Clearly, the groups G(m,m, n) and G(m, 1,n)
are properly generated groups.

A root system for G(m, p, n) may be defined as follows (see [13]). Let u,, =
{S,l,, |l €N, &, is a fixed primitive mth root of unity}. For W(D") = G(m,m, n),
take

R(m,m,n) = pn{*(e; — Epe) i, jl €N, i # j, 1<i, j<n)

with  fiumn: R(m,m,n) — N\{1} being the constant map 2; then we have
that ®(m,m,n) = (R(m,m,n), fumn) is a root system with W(®(m,m, n)) =
G(m,m,n).

Now letg =m/p e N\{1}.Put R(m, p,n) = R(m,m,n)Uugfex | 1 <k <n},and
let fin,p.n: R(m, p,n) — N\{1} be defined by

_la faepgle|l<ks<nl
Fn.pn(@) { 2 otherwise.

Then ®(m, p,n) = (R(m, p,n), fm pnr) is a root system with W(®(m, p,n)) =
G(m, p,n). If p =1, then we write W (P (m, 1, n)) = W(BI).

If ®(m, p,n) is a root system associated with an imprimitive reflection group
G(m, p, n), then we say that ®(m, p, n) is an imprimitive root system.

We now determine the proper subsystems of ®(m, p,n) (p = 1, m) by means of
Algorithm 2.6. These proper subsystems are now used to construct some irreducible
modules of G(m, p,n) (see [22,11]).

Let ®(m, p,n) (p = 1,m) be an imprimitive proper root system with a fixed
simple system 7 (m, p, n) = (B, 0), where

B={{a,'=e,-—-e,-+1(i=1,...,n—1), oy = ey} ifp=1,
{Bi=ei—en1(i=1,...,n=1), B, =e,-1 —émes} fp=m,

and corresponding primary system ®*(m, p,n) (p =1, m).

3.1. Type B

If p =1, then ®(m, 1, n) is a proper root system of type B? and the corresponding
Cohen diagram for ®(m, 1, n) is

1 2 n—1 n
O———O0——(C——Mm
where the node corresponding to o; (i = 1,...,n) is denoted by i.

By following Algorithm 2.6 (1), for 1 < k; <ky < --- <k < n, let ¥ be a
parabolic proper subsystem of ® (i, 1, n) with Cohen diagram

1 2 kl k2 k; n—1 n
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where the nodes ki, kz, ..., k, have been deleted. If weput/; =k; —k; 1 — 1 (j =

., 1) with kg = 0, then W is of type Z’jz, Bl + B Lk w1th s1mp1e system

J = Z;-=1 ka + Ju—i,,» Where ka = {akj_]+1,akj41+2, .. .,Otkj_l} and J,_y, =
{otk,+1, Ok, 42, - - ., 00y } are simple systems for types Bllj and B,’l"_kt respectively.

By considering Algorithm 2.6 (2), for | <t <th < -+ <ty <tmyi1 =t,let Jg =

th'”:*‘t:ﬂ Jy; be a subset of ®¢,(m, 1, n), where

Jo, {{Ek ~1—&meg;} ifn+1<j<n,

lex;) ifo+1< ] <tmyts
and let

131 19}

Jo=JUdy =3 Ji,+ > (i, +Juu,)

Jj=1 j=t+1
m lit]

+ Z Z (i, + i} + T, -
i=2 j=t;+1

Then Jy ¢ wn(m, 1,n) forall we W(r(m, 1, n)).
Since the corresponding Cohen diagrams for Ji, +Jwk; i+ 1< j<n) and
Jij + Jwk (2 + 1< j <tuy) are respectively

k-1
" kj_g+1 kj—2
Dlj+| O—~O— - H—?m
;-1 Emek
and
kjo1+1 k-1 e;

B;7+1 O—- —O:@

then Jy is linearly independent over C. Hence, by Algorithm 2.6 (2), Jy is a root
graph which is an extension of J and so Wy is a non-parabolic proper subsystem of
®(m, 1, n) of type

m gl

ZBI + Z DI+I+Z Z B+ By

j=t+1 i=2 j=1;41
with simple system Jp and
m  lil
Z(z +1)+ Z G+D+> Y Ui+ D+n—k=n

j=t+1 i=2 j=t;+1
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On the other hand, we can rewrite the type of Wy as follows:

-1 m lig1 =4
ZBI +ZDlt+j 1+2; Zl Blt+] 1+B
=< J

Bysettings=tn,~fiand pu; =1, ;+1(j=1,...,5),andfori=1,2,...,m

] ifi=1,
Si=1t+1— 4 ifi=2,....m-—1,
Imt1 —tm+1 ifi=m
L (G=1,2,....51) ifi=1,
@) lti+j+1(j=1,2,...,si) ifi=2,...,m—1,
M 41 G =12 5= 1) ifiz and
n—k (j=sm) ifi =
m._{l ifi =1,
Tlm ifi=2,....m

we can refine the type of ¥y as follows:

) Z Z BT + Z Dy, with

11]11

Z(A“’ 1)+ZZA“)+ZM =n.

i=2 j=1

In the formula (1), if we take m = 2 then the formula for type B, is

(1) Z Z BT+ Dp,
j=1

zl]lf

But Hughes [16] has proved that there is a one-to-one correspondence between
conjugacy classes of W(B;") and proper subsystems of the type

. 1 ifi=1,
(111 ;;Bi’) w1thm,~={m fic2 . m and

i=2 j=1

Of course the choice of the set Jy is arbitrary. Therefore, in the construction of the
formula (I), if we take the empty set instead of {ex;—1 — &me; ) for+1<j<n
then the last term of the formula (I) disappears completely, and so we directly obtain
the formula (TII).

In the formula (III), if we take m = 1, 2 then the formulas for types A,—; and C,
are respectively
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Table 1

& Types of proper subsystems

An Y7 Ay P i+ D=n+1
By, Zf:l Ay + ZS':l Bpj + Zf}:l Dy, Zip=1()\i +1)+ Z;=1 pj+ Z‘:',:] My =n
C" 1P=l A}Vi + Z;’:l CMj Zip_—_]()"i + 1) + 25‘21 ,LLJ =n
S i s $ | S ]
By YL X Bl + X D PIYITOASE VETD 3PS P
J
+ Zj‘=| Hj=n

S
av) A ) BY, and
j=t

2 s
V) G DY BT

i=t j=1 "I

and so we recover the results of Dynkin [15] for types A, _; and C,,. Thus we have
the following.

Theorem 3.1. The types of proper subsystems (up to conjugacy) of the proper root
systems of tvpes A,, B,.C, and B! are of the forms shown in Table 1, where

1 ifi=1,

! m ifi=2,...,m.

3.2. Type D}

If p =m, then ®(m, m, n) is a proper root system of type D" and the corresponding
Cohen diagram for ®(m, m, n) is

n-1
1 2 n—2
o—o—~w<g+‘+m
n

where the node corresponding to 8; (i = 1,...,n) is denoted by i.
By following Algorithm 2.6 (1), for 1 <!/ <l <--- <l <n, let ¥ be a
parabolic proper subsystem of ®(m, m, n) with Cohen diagram

n—1

1 2 I Iy I n—2
n
where the nodes /i, ...,/ have been deleted. If we put k; =1; — ;1 —1 (j =
1,...,r) with lp = 0, then W has type Z;':1D11j + D, with simple sys-
tem J =31 Ji; + Ju—i,, Where Ji; ={Bi,_ 41,81, 142, .-, Bi; 1} and Jpy, =
{Bi,+1, Bi,+2, - - ., B} are simple systems for types D,lj and D, ; respectively.
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By considering Algorithm 2.6 (2), for 1 <rj <rp < -+ <Fp < rpmy; =7, let
Jg = J r2+1 J\]/l be a subset of ®F w(m,m,n), where Jy e, -1 — Smelj} for
j=rn+1,. rm—|—1,andlet

m  Tit1
JO_JUJW—ZJI +y 0 > Uy e+ Jacy,
j=1 i=2 j=r;+1

Then Jo ¢ wr(m, m, n) for all w € W(zr (m, m, n)). Since the corresponding Cohen
diagrams for Ji; +Jwg; 2+ 1< j<rm+ 1) are

1j-1

" i1+l ;-2
ij +1 O—-O— - Lifm
elj -1 _Smelj
then Jy is linearly independent over C. Thus, by Algorithm 2.6 (2), Jo is a root
graph which is an extension of J and so Wy is a non-parabolic proper subsystem of
®(m, m, n) of type

Titl

ZDk +Z > Dy i+ Dy

i=2 ]_r,-H
with simple system Jy and
Tigy
Z(k +1)+Z Y U+ D+n—l=n

i=2 j=ri+1

By using similar arguments as in the B! type, we can reformulate the type of proper
subsystem ¥ as follows:

: 1 ifi=1
(VD) ZZD(,) w1thm,-={m if;—z _and
bl =2,...,
m U .
ZW(D +h+y Y ul =
i=2 j=1

If we take m = 2 in (VI) then the formula for type D, is
(VI) Dy Z Z D™ "o
i=1 j=1 Hi

and so we recover the result of Dynkin [15] for type D,,. Thus we have the following
theorem.
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Table 2

P Types of proper subsystems
Dy, Z;:l Ay + Zj’:l Dﬂj Z?:l(}‘i + D+ Zj‘:l mj=n
i m; 1) i @
by pIHED Dl D“(;) Z?Ll(lé D+ YL Y ) =n
J

Theorem 3.2. The types of proper subsystems (up to conjugacy) of the proper root
systems of types Dy, and D' are of the forms shown in Table 2, where

1 ifi=1,
mi:[ ifi

m ifi=2,...,m.

Remark 3.3. We shall now make a few remarks on the root system ®(m, p,n) (p |
m and p # 1, m) associated with the groups G(m, p, n). The vector graph (see [23])
for ®(m, p,n) is

1

Litn _QE@ (n+ 1 points, n = 2),

where g = m/p. If we denote this vector graph by =m(m, p,n) (p # 1, m), then
W(r(m, p,n)) = G(m, p,n). But for p # 1,m, ®(m, p,n) is not a proper root
system and 7 (m, p, n) is linearly dependent over C, and so we do not have a simple
system for the root system ®(m, p,n) (p # 1,m) associated with G(m, p,n).
Deleting a node from 7 (m, p, n) leaves us one of the vector graphs of the type
n(m,m,n) = D", n(q,1,n) = Bl, n(m,m,r) +n(g,1,n—r)=D"+ BI__
which turn out to be root graphs. Let £ be a proper root system such that its
simple system is one of the root graphs obtained as above. Thus to obtain the proper
subsystems of ®(m, p, n), we apply Algorithm 2.6 (1) and (2) to the . Since we
have already dealt with these types, the types of proper subsystems of ®(m, p, n)
(p |m and p # 1, m) are of the form

s U t v;
Vi - Y D+ D B, with

i=1 j=1 J i=1 j=1 J

1 ifi=1, 1 ifi=1,
m; = s g = and

m ifi=2,... g fi=2...,1,
uj s u; V1 t v;
1 . 1 R
301" 04 S5 S 0+ L5
j=l1 i=2 j=1 j=1 i=2 j=1
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