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SIGNS OF DERIVATIVES AND ANALYTIC BEHAVIOR
R. P. BOAS, Jr., Northwestern University

This is an account of some striking results, most of which are far from new
but not widely known. Although many of them were quite unexpected when
they were discovered, the results themselves are easily comprehended by under-
graduates; also, many of the proofs are sufficiently elementary to be presented
in a course in advanced calculus or elementary real analysis, or in an under-
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graduate seminar. The article is intended as a “resource paper,” rather than a
formal exposition, and accordingly I have omitted proofs that can be found in
easily accessible sources.

1. Derivatives all positive. We are concerned with real functions that have
derivatives of all orders. The field we are considering began in 1914, when
S. Bernstein proved that if f® (x) 20 for all x on [a, b], then f is real-analytic, in
fact is the restriction of a function that is analytic in a disk centered at ¢ and
of radius b —a. (We shall usually disregard the distinction between an analytic
function and its restriction to the real axis, and simply say “f is analytic in a
disk” in this case.) The rather simple proof is reproduced in a number of places,
for example [24], p. 146; [6], p. 155. (It is somewhat harder to show that it is
enough just to assume that f® (x) 20 for £ Zn(x), where #(x) may depend on x.)

A function with all derivatives nonnegative is called absolutely monotonic.
A function whose successive derivatives alternate in sign, so that (—1)"f™(x)
=0, is called completely monotonic; the change of variable y=-4a —x converts
a member of one class into a member of the other. Naturally a completely mono-
tonic function is analytic in a disk centered at b.

Many of the familiar functions that occur in calculus are either absolutely
or completely monotonic, and Bernstein’s theorem then provides an immediate
proof that they are represented by their power series. Obvious examples are 2,
e—*,and (1—x)~1 Although (1 —x)" is not necessarily absolutely monotonic, one
of its derivatives of sufficiently high order is so, and we obtain an easy proof of
the binomial theorem for general real exponents. On the other hand, although
tan x is absolutely monotonic on [0, 7/2), it would not be easy to establish this
by direct inspection of the derivatives of tan x.

A function that is absolutely monotonic on [0, ®) is the restriction of an
entire function (one that is analytic in the whole finite complex plane). On the
other hand, when a function is completely monotonic on [0, ©), as are 1/(x+1)
and e=* (¢>0), the statement about where the function is analytic has to be
modified; what is in fact true is that the function is analytic in a right-hand
half-plane. A little thought shows that a function defined by a convergent
Laplace integral of the form

f@) = [ Cemsa, 0 20,
0
or more generally by a convergent Laplace-Stieltjes integral
1) flx) = f etda(l), a increasing,
0

is completely monotonic where it converges. The converse is also true: Bernstein
and Widder discovered independently about 1929 that every function completely
monotonic on a half-line (a, «) is a Laplace transform of the form (1). There
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is a full account of the subject (which is neither elementary nor wholly germane
to this article) in [24].

It is interesting, and sometimes useful, to know that a function, initially
known only to be continuous, is absolutely monotonic if all its differences are
nonnegative, that is,

k k
@ A = 3 (- 1>f( .)f(x+jh) >0
=0 J

for all nonnegative integers k&, for all x and all positive & such that the points
x =47k that occur in (2) are in the domain of f ([24], Chap. 4). Actually it can
be shown that (2) for 2 <»n makes f have continuous derivatives of orders up to
and including # —2; this is quite elementary, but not entirely trivial [9].

Bernstein’s theorem on absolutely monotonic functions has been extended
to functions with domain of dimension greater than 1 [19], and even to functions
with infinite-dimensional domain [22].

2. Each derivative has a fixed sign. Perhaps the most natural next step is to
consider functions for which each derivative is of fixed sign on [a, b], without
regard to how the signs are distributed. Bernstein did this; he called such func-
tions regularly monotonic, and showed that a regularly monotonic function is
always analytic ([1], pp. 196-197). However, the function does not have to be
analytic in as large a region as in the absolutely monotonic case. Bernstein's
proof is a remarkable application of the elements of the theory of the approxi-
mation of continuous functions by polynomials; since there does not appear to
be any readily accessible account of it, I reproduce it here, giving the necessary
background in an appendix.

LeMMA 1 (see p. 1090). If f™ (x) = N >0 on an interval I of length 2k, and M
1s the maximum of |f(x)| on I, then M=2 N(h/2)*/n!.

Suppose now that f+9(x) has constant sign on I; then f™ (x) is monotonic
(either increasing or decreasing). Let ¢ be any point of I; we may suppose
f™(¢) >0 (otherwise consider —f(x)). Since f™ is monotonic there is either an
interval (¢, t4¢€) or an interval (¢ —e¢, £) on which f™ (x) >f™ (t) >0 (where € can
be taken as the distance from ¢ to the nearer endpoint of I). Hence by Lemma 1

M > 2| f™®@) | (e/4)"/n!
for each ¢ in I. That is,
®) [ f™ @) | < 3n!M(4/e)m

If we expand f(x) in a Taylor series about a point s of I, the usual estimate for
the remainder after # terms yields

I Rn| b I x — s|" max|f(")(t) |/n!,
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where the maximum is taken for ¢ between s and x. If then |x—s| is less than
one-fourth the smaller of the distances from s and from x to the endpoints of I,
we obtain R,—0.

Bernstein next asked what happens if not all f® (x) have constant sign on I,
but infinitely many of them do. He showed that f then always has a “quasi-
analytic” property, namely that f is determined throughout I by its values on
an arbitrarily short subinterval. If enough of the f™ have constant sign, f
is still analytic; more precisely, this happens when f™(x) =0 with n.1/7:
bounded; for example, if f2¥(x) =0 or even iff(zk)(x) =0, but not if f*Y(x) 20.
(See [4].)

3. Sequence of derivatives of fixed sign. These results of Bernstein’s are far
from simple to establish. In the summer of 1940, Widder asked me if I knew a
simple proof that f is analytic when f@?(x) 20. I was not immediately able to
provide one, but I suggested that he try to use Lidstone series, which are series
of polynomials, two of each odd degree, with coefficients f@»(1) and f©@#(0).
This seems, in retrospect, not a very sensible suggestion because what is “really”
involved in Lidstone series is (—1)*f?® (1) and (—1)7/2»(0). It did not, in fact,
lead to a proof of the theorem in question; but it led to the quite unexpected re-
sult that if the even derivatives of f alternate in sign on (0, 1), i.e., if (—1)7f@» (x)
20, then fis represented by a Lidstone series and consequently is not only the
restriction of an analytic function, but of one that is entire and of slow growth.
(See [24], pp. 177-179.) More precisely, it satisfies | /™ (x)| < Aw", where 4
does not depend on %, and hence is what is known as an entire function of ex-
ponential type, satisfying | f(z)| <Ae"isl. A function f with (—1)"f@m(x) 20 in
an interval is now called completely convex. The discovery of completely convex
functions led immediately to a few years of intense development of related re-
sults, after which the field became rather inactive, although a number of open
problems remain. .

There is an elementary proof of Widder’s theorem ([24], p. 177). It involves
repeated integration by parts in

1
f f(x) sin mxdx;
0
this leads to the necessary estimates, but only for even #. For the transition to
odd #, one needs a lemma of Hadamard’s:

If on [—h, 1] we have lf(x)l <A and |f”(x)| <B, and B/A>4/h?, then
| /()| S2(4B)*

Proof: By Taylor’s theorem with remainder of order 2,

_ji(gc_ﬁ;_—_f(@ _%5f”(x—|-06),|0| <1;|f'(x)| =24/| 8|+ |8|B/2.

If B/A>4/h* we can take § =2(4/B).

1) =
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Incidentally this lemma is one of a family of results in which one infers some-
thing about f’ from information about f and f”/; some references are [14], p. 36;
[3]. Many generalizations of completely convex functions rely on more general
(and much deeper) inequalities of the following form: Let M;=max | f® (x)|;
then if M,>0, there are numbers C,,; such that

1-1/n_ k/n

|f(k)(x)l S=CoiMy M, (0 <E< n);

fairly precise estimates for C,,; are required. At present, the C,; are known
explicitly for functions whose domain is (— «, ») [12], and for those whose
domain is [0, ©) [20]; various estimates are known when the domain is a finite
interval ([8], and references given there).

The idea of the elementary proof of Widder’s theorem was used by Pélya
[158] to show that f is an entire function of exponential type if f® (x) sin (k+1)a
=0 for some a (0 <a<w) and all k; it seems that more general results of this
kind have not been studied. The elementary proof, however, does not work even
for such a regular case as (—1)*#»(x) =20, and it does not give any insight into
why completely monotonic and completely convex functions behave so differ-
ently.

At this point we should observe something that had been forgotten in 1940,
namely that about 1928 Bernstein had already found that the distribution of
the signs of successive derivatives has a decisive influence on the behavior of a
regularly monotonic function. More precisely, the significant property in his
work is the distribution of successive blocks of either constant or alternating
sign. If each derivative has a fixed sign, each derivative is monotonic; the prop-
erty is easier to state in terms of whether | /™ (x)| increases or decreases (as was
suggested by Pélya). Since the derivative of [f™(x)]? is 2f®™ (x)f**D(x), we
have lf(")(x)l increasing if f®(x) and f®*V(x) have the same sign, |f(")(x)l
decreasing if f®™(x) and f®**V(x) have opposite signs. We consider successive
blocks where | fm™ (x)l increases or decreases; for example, when the signs of suc-
cessive derivatives are +++ —+ -+ — — — 4+ —+ —+ ++, etc., the lengths
of the successive blocks are 2, 5, 2, 5, etc. For sin x on (0, w/2), the signs are
++ ——+4++4+——, etc., and all blocks are of length 1. For an absolutely or
completely monotonic function, there is just one block, of infinite length. A
convenient way to see where one block ends and the next begins is to notice that
f® and f™V belong to different blocks if and only if f™(x)f™*?(x) <0. (See
[16], p. 185.) (Functions with the signs of successive derivatives distributed
periodically, for example like those of sin x on (0, w/2), are called cyclically
monotonic; they have a substantial literature of their own.) The general lesson
of Bernstein’s results (which will be stated in greater detail below) is that the
presence of many blocks makes the function behave regularly, and more regu-
larly when the blocks are short.

However, Bernstein’s results do not establish Widder’s theorem since that
theorem has no hypothesis at all about the derivatives of odd order. The follow-
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ing general theorem, which includes both Bernstein’s and Widder's results,
appeared two years after Widder’s theorem [8].

Let {nk} and {qk} be increasing sequences of positive integers such that g1 +q,
+ - -+ +@=0(m), and suppose that f™ (x) and f+2%) (x) have opposite signs
(so that it is derivatives with orders differing by an even integer that have opposite
signs). Then if:

nr—np—1=0(ni) and g =o0(ny), f is entire;
=1 =O0(n""/?) and g=0(my), f is entire and of order at most p;
me==nx1=0(1) and ¢ =0(1), f is entire and of exponential type.

For example, when 7, =2k and ¢ =1 we have completely convex functions;
when 7, =4k and ¢z =2, we have functions such that (—1)¥®»(x)=0; when
h+b+ - - - +l=m (I is the length of the kth block for a regularly monotonic
function), and ¢: =1, we get Bernstein’s results on blocks of signs. When 7, = k2
and g; =k the theorem says that if f*(x) and f*+b*~1(x) always have opposite
signs, for example if f'(x), f®(x), f@(x), - - - 20 and f(x), f"'(x), f®(x), - - -
=0, then fis an entire function of order at most 2.

It is interesting that in spite of the apparent generality of this theorem, there
still are theorems with simple statements that it does not cover. Indeed, Leeming
and Sharma [13 ] haveshown thatfisentire and of exponential typeif (—1)4f @k (x)
20 and (—1)*¥(**D(a) Z0 for I=1, 2, - - -, p—2. Note that nothing is said
about the sign of f®*~V(x), and nothing about the intermediate derivatives ex-
cept at one point; we are again outside the domain of Bernstein’s results.
Leeming.and Sharma base their proof on generalized Lidstone series; it would
be interesting to have a direct elementary proof.

So far we have dealt with functions such that each derivative, or each of a
sequence of derivatives, has no zeros on an interval. Suppose instead that no
derivative changes sign more than a prescribed number of times, say that f (x)
has at most N, zeros. It is reasonable to suppose that f will be more well-
behaved when N, is small. In fact, in 1943 Schaeffer [18] showed that if N, is
bounded for ¢ £x <b, then f is analytic there. A considerable number of further
results were obtained between 1940 and 1943; see [16]. Since 1943 the field has
been rather inactive. See, however, [17] for some generalizations of completely
convex functions, and [5] for a representation of completely convex functions.
There are still a number of open questions. For example, suppose that fo (x)
has at most N zeros for a sequence {n;} 5 {k}? Suppose that f®(x) has at most
N(k) zeros? Suppose that f™(x) 20 only in an interval I,, where the length of
I, does not decrease too fast? Completely monotonic sequences { un} are defined
by having their differences of alternating sign; they have a complete theory (see
[24], Chap. 3). Nothing seems to be known about completely convex sequences.

Appendix. Proof of Lemma 1. Except for Chebyshev’s theorem on best
approximation, the proof is entirely elementary, although rather exacting. Our
version is expanded from the outline given in [1], pp. 8-10.
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LeMMA 2 (Chebyshev's theorem). If f is a real continuous function on a finite
interval [a, b], there is a unique polynomial P, of degree at most n that approximates
f most closely on [a, b), in the sense that max,| f(x) — Pa(x)| is as small as possible.
The minimum is denoted by E, [f]. The polynomial P, is characterized by the prop-
erty that f(x) —P.(x) has at least n+2 extrema on [a, b], where | f(x) —Pa(x)|

=E,[f] and the signs of f(x) — P.(x) alternate at successive extrema.

A proof of Lemma 2 can be found in almost any book on the theory of ap-
proximation, for example [10] or [21]. The proof of Lemma 1 exploits all the
information furnished by Lemma 2.

LEMMA 3. If gV (x) is continuous and strictly positive in [a, b], and g(x) has
exactly n+1 changes of sign in (a, b), then g(b) >0.

Since g(x) has n-+1 changes of sign, g’(x) has at least #, g’’(x) has at least
n—1, and so on. Finally, g™ (x) has at least one, and it cannot have more, since
g+t (x) has none. Let g (x) change sign at y;, where of course g (y,) =0. If
x>y11

g™ (x) =f gt ()dt > 0.

Vi

Similarly, g*=Y(x) has two changes of sign, say at 2, 2; with 2, <y; <z2.; and so,
for x>2,, gV (x)>0. This clearly starts an induction that winds up with
g(6)>0.

LEMMA 4. If ¢ and f have continuous (n+1)-th derivatives on [a, b] and
0 <P+ (x) <f@+D(x) on [a, b], then E,[¢] <E.[f].

Let P,, Q, be the polynomials of degree # of best approximation to ¢ and f,
respectively; write D,(x) =¢(x) — P,(x). Then D, has at least n+2 extrema with
alternating signs and so changes sign at #+1 points at least. If D, had more than
n~+1 changes of sign, D& would have at least one, but DZ*? (x) =¢®+ (x) >0.
Hence D, has exactly n+1 changes of sign and D), has exactly #; and D, has
exactly n+2 extrema on the closed interval. Next, two of the extrema of D,
are at a and b, since otherwise D, would have at least #-1 interior extrema,
each of which would be a zero of D). (None of these points could be anything
but a simple zero of D), since otherwise D] would have at least n-+2 zeros
(counting multiplicity), and (D})®™ = D{*? =¢®+D would have a zero, contrary
to hypothesis.) Then D} would have at least #+1 changes of sign, whereas we
know that it has exactly #.

Now suppose, contrary towhat we want toprovein Lemma4, that 0 <¢®+9 (x)
<f@*+V(x) on [a, b] and | f(x) —Qu(x)| <E.[¢] on [a, b], where Q. is the poly-
nomial (of degree at most #) of best approximation to f. Then at the points where
|¢(x) —P,(x) | =E,[¢], the function

F(x) = ¢() — Pa(x) — f(x) + Qu(x) = Da(x) — [f(») — Qu(#)]
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has the sign of ¢(x) —P,(x). We already know that D,(x) has exactly n+1
changes of sign on (a, b) ; hence so does F(x). Now

F(n+1)(x) = ¢(n+l)(x) _f(n+l)(x) <0

on [a, b] by hypothesis, and so by Lemma 3 (applied to g = — F), F(b) <0. But
F(b) has the sign of ¢(b) —P,.(b) =D, (b), since b is a point where lD,,(x)|
=E,[¢]. By Lemma 3 applied to D,(x), which has D@+ (x) =¢®+D (x) >0, we
must have D,(b) >0, contradicting the facts that F(b) <0 and that F(b) and
D, (b) have the same sign.

This shows that we cannot have E,[f]<E,[¢]; to complete the proof of
Lemma 4, we need to know that E,[f] =E,[¢] is also impossible. Suppose the
contrary, and let 0 <¢+V(x) <f*+D(x) and E,[f]=E.[¢]. Let X be a positive
number and consider ¢(x) +Nf(x) =g(x). Since gtV (x) =p™+D (x) +N "+ (x),
we have (1+N)f®+D(x) > g+ (x) > (14N)p"tD(x), and hence by what has
already been proved, (14+MN)E,[p]<E.[g]<(1+MNE.[f]. By assumption,
E., [f] =E, [d’]: SO

E,,[g] =1+ >\)En[‘t’] =(1+ )\)Ean] = En[¢’] + En[f]
Let P, and Q, be the polynomials realizing E,[¢] and E, [f]; then

| Pa(®) + A0u() — g(®)| = | Pal®) — ¢(x) + A[Qu(®) — ful()]]
< E.[¢] + AEW[f].

But E,[g] =E.[¢]+E.[f], so that no polynomial S, of degree % (or less) can
make max,|S,(x) —g(x)l less than this value. Since the best approximating
polynomial for g is unique, it must therefore be P,(x) +AQ.(x), and consequently
|6 (x) +M(x) — [Pu(x) +AQn(x) ]| attains its maximum value E,[¢p]+NE,[f] at
n~+2 points. This is possible only if Id)(x) —Pn(x)l and l f(x) —Qa(x)| attain
their maximum values, namely E,[¢] and E,[f], at the same #+2 points. This
means that F(x) =¢(x) —P.(x) — [f(x) —Q.(x) ] has n+2 double zeros, and so
F™*tD(x) has at least one zero; but we had F**+V(x) <0 by hypothesis. This
completes the proof of Lemma 4.

LEMMA 5 (Another theorem of Chebyshev). On any interval of length 2k’
En [xn+1] —_ 2»hn+1.

Another way of stating this is to say that if a polynomial of degree #+1 has
its absolute value bounded by 1 on an interval of length 2%, the absolute value
of its leading coefficient is at most 2=»h—"~! (and can attain this value). This can
be proved in a quite elementary way; see, for example, [21], p. 24, or [7].

We can now prove Lemma 1. Suppose that f®+D(x)>N>0. Take ¢(x)
=Nx"*+1/(n+1)!, so that ¢ (x) = N; we then have f™*+D(x) >¢*+D(x) >0. By
Lemma 4, E,[f]>E,[¢]. By Lemma 5, E, [¢] =2N(h/2)"*'/(n+1)!, and there-
fore E, [f]>2N(h/2)"*1/(n+1)\. If P, is the polynomial of degree at most # that
realizes E, [f], and R, is any other polynomial of degree at most #, we have

E,[f] = mxax|f(x) —P,(%)| = m:txlf(x) — R.(x) |
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Take R,(x) =0; then
AN(R/2)"1/ (n + 1)! < E,[f] £ max| f(x) |.

This establishes Lemma 1.

This article is based on a talk given at a seminar in honor of D. V. Widder, May 8, 1971.
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