
Annals of Mathematics

The Subgroup of the Elements of Finite Order of an Abelian Group
Author(s): Reinhold Baer
Source: The Annals of Mathematics, Second Series, Vol. 37, No. 4 (Oct., 1936), pp. 766-781
Published by: Annals of Mathematics
Stable URL: http://www.jstor.org/stable/1968617 .
Accessed: 04/04/2011 07:55

Your use of the JSTOR archive indicates your acceptance of JSTOR's Terms and Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp. JSTOR's Terms and Conditions of Use provides, in part, that unless
you have obtained prior permission, you may not download an entire issue of a journal or multiple copies of articles, and you
may use content in the JSTOR archive only for your personal, non-commercial use.

Please contact the publisher regarding any further use of this work. Publisher contact information may be obtained at .
http://www.jstor.org/action/showPublisher?publisherCode=annals. .

Each copy of any part of a JSTOR transmission must contain the same copyright notice that appears on the screen or printed
page of such transmission.

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

Annals of Mathematics is collaborating with JSTOR to digitize, preserve and extend access to The Annals of
Mathematics.

http://www.jstor.org

http://www.jstor.org/action/showPublisher?publisherCode=annals
http://www.jstor.org/stable/1968617?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/action/showPublisher?publisherCode=annals


ANNALS OF MATHEMATICS 

Vol. 37, No. 4, October, 1936 

THE SUBGROUP OF THE ELEMENTS OF FINITE ORDER OF AN 
ABELIAN GROUP t 

BY RE:INHOLD BAER 

(Received March 5, 1936) 

Every (additively written) Abelian group A determines two characteristic 
"unmixed" groups: the subgroup F(A) of all the elements of finite order in A 
and the classgroup I(A) = A/F(A). All the elements of F(A) have finite order 
and 0 is the only element of finite order in I(A). If conversely all the elements 
of the Abelian group F have finite order and 0 is the only element of finite order 
of the Abelian group J, then the direct sum A = F + J satisfies F(A) = F and 
I(A) = J.' The structure of A is therefore completely determined by the 
structure of F(A) and of I(A) if, and only if, F(A) is a direct summand of every 
group A satisfying F(A) = F and I(A) = J. 

In the following conditions will be given for the group F(A) to be a direct 
summand of the group A. In accordance with the above considerations we are 
not interested in conditions which are dependent on the structure of the whole 
group A, but only in such conditions which depend on the structure of F(A) and 
(or) I(A) alone. 

The principal results can be found in section 8. and the concepts used for 
enunciating them in the sections 2 and 3. 

1. Subgroups satisfying nS = S for every integer n. 
(1;1) If the subgroup S of the Abelian-group A satisfies nS = S for every integer 

n 5 0, then S is a direct summand of A. 
PROOF:2 Let T be a greatest subgroup of A such that the intersection of S 

and T contains only the element 0. Then the subgroup of A which is generated 
by the elements of S and T is the direct sum S + T of S and T. If x is any 
element of A, then the subgroup T(x) of A, generated by x and the elements in T, 
contains only elements of the form nx + t where n is an integer and t an element 
of T. By the choice of T either x is contained in T or there exists an integer m 
and an element t' in T such that mx - t' is an element 0 0 in S. 

In particular to every element x in A there exists an integer n # 0 such that 
nx = 8 + t is an element in S + T. Since S = nS, there exists an element s' 

t Presented to the Am. Math. Soc., February 29, 1936. 
1 This is not quite correct, since the groups I(A) and J are only isomorphic, but not 

identical. But here and in the following we identify isomorphic groups wherever that is 
possible without confusion, in particular always when there exists a " natural" isomorphism 
between a given group and a class group. 

2 The statement (1 ;1) is well known. But we prove it here, since, to the authors knowl- 
edge, it has not been published before. 
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in S such that ns' = s and therefore the element x' = x - s' will satisfy: 
x' _ x mod S and nx' = t. If X is the set of all the elements y such that 
y x mod S and ny 0 mod T for a certain positive integer n, then X is not 
vacuous and contains elements w satisfying vw 0 mod T with a smallest 
positive v. But then there exists, as noted before, an integer u and elements a 0 0 
in S, b in T such that uw = a + b provided w is not contained in T. If (u, v) 
is the greatest common divisor of u and v, then there exist integers h and k such 
that (u, v) = hu + kv and therefore (u, v)w = ha + (kvw + hb) ha mod T. 
It follows as before that X contains an element w' satisfying (u, v) w'- 0 mod T 
and therefore that v = (u, v) i.e. u is a multiple of v. But that leads to a 
contradiction with a $ 0 and therefore w is contained in T, i.e. x is congruent 
mod S to an element of T, i.e. A = S + T. 

2. Groups without elements of infinite order.3 [If F is an Abelian group 
without elements of infinite order, then to every prime number p there belongs 
the primary-component C(p, F) of F which consists of all those elements of F 
whose order is a power of p. F is the direct sum of its primary-components 
C(p, F) and therefore every element x of F is the sum of its uniquely determined 
primary-components c(p, x) contained in C(p, F) respectively. 

Let now B be a primary Abelian group, belonging to the prime number p. 
Then p"'B is the intersection of all the groups p'B for positive integers i. 

(2;1) If the orders of the elements of B/pwB are bounded, then p"B = p(p'B). 
p"B is therefore (by (1;1)) a direct summand of B and B a-direct sum of p0B and of 
cyclic Troup8 (of bounded orders). 

(2;2) If the orders of the d 1ement. of B/puB are not bounded, then there exist 
elements a(i) in B such that the orders of the elements b(i) = F into pia(j) tend to 
infinity with i and such that b(i) is an element of lowest order in its class mod p'B. 

Since the primary group B belonging to the prime number p satisfies qB = B 
for every prime number q $ p, the statement (1;1) implies: 

(2;3) Let Q(A) be the direct mum of the groups C(p, F(A)) which satisfy 
pC(p, F(A)) = C(p, F(A)). Then Q(A) is a direct summand of A. 

It is now easy to give an example of a group A such that F(A) is not a direct 
summand of A.4 For let B be a primary group such that the orders of its 
elements are not bounded and such that pwB = 0. The sets K(i) for i = 1, 
2, ... form an L-series of B, if K(i) is a class of B mod piB and K(i) < K(i - 1) 
for every i. The intersection of all the classes of an L-series is either vacuous 
or contains exactly one element, since pwB = 0. Therefore it is possible to 
identify the b-series piB + x with the element x of B. If K(i) and H(i) are two 
L-series, then K(i) - H(i) is also an L-series. The set B of all the L-series in B 
is therefore an Abelian group, containing B, the p-adic closure of B. 

3 This section is a compilation of mostly well-known facts. 
' A first example of such a group has been given by F. Levi: Abel-8che Gruppen mit 

abzdhlbaren Elementen, Hab.-Schrift, Leipzig, 1919. 



768 REINHOLD BAER 

Since the orders of the elements of B are not bounded, it follows from (2;2) 
that there exist elements of infinite order in D. Furthermore the only direct 
summand of B which contains B is D. Since F(B) contains B, it follows there- 
fore that F(R) is not a direct summand of B. 

3. Groups without elements of finite order. Suppose that 0 is the only 
element of finite order in the (Abelian) group' J. If p is a prime number, then J 
is said to be p-complete, if J = pJ $ 0. If J is p-complete for every prime 
number p, then J is complete. 

By (1;1) every complete subgroup of J is a direct summand of J. Since the 
joingroup of two complete subgroups is also a complete subgroup it follows that 
there exists a uniquely determined greatest complete subgroup, provided there 
exist complete subgroups at all. 

(3;1) Every group J without elements of finite order is contained in one and 
essentially only one smallest complete group. 

PROOF: Let P be the set of all the pairs (x, n) for x in J and n a positive 
integer. Define equality in P by x = (x, 1), (x, n) = (y, m) if, and only if, 
mx = ny, and addition by (x, n) + (y, m) = (mx + ny, mn). 

This group P is a smallest complete group, containing J, and if P' is another 
smallest complete group, containing J, then there exists an isomorphism between 
P and P' which leaves all the elements in J invariant. 

If G is a greatest linearly independent subset of the complete group J, (x) the 
subgroup of all the elements of J which are dependent on x, then J is the direct 
sum of all the groups (g) for g in G and every group (g) is isomorphic with the 
additive group of all the rational numbers. As a consequence of these facts and 
of (3;1) it follows: 

(3;2) If J is a group without elements of finite order, then any two greatest linearly 
independent subsets of J contain the same number of elements. This number is 
the rank of J. 

The subgroup S of the group J is closed if JIS does not contain elements of 
finite order, i.e. if all the elements of J which are dependent on S are contained 
in S. 

DEFINITION 3;2: Let J be an Abelian group without elements of finite order. 
If J is countable, then D(J) = 1. If v is any (finite or inf nit6) positive ordinal, 
then D(J) = v, if D(J) < v and if there exists a closed subgroup S of finite rank 
such that J/S is a direct sum of groups J' with D(J') < v. 

Note that there exist groups J such that D(J) is not defined e.g. the group of 
all the sequences of integers. 

(3;3) Suppose that the group J without elements of finite order contain8 a closed 
subgroup S of finite rank such that D(J/S) exists. Then D(J) exists and satisfies 
D(J) _ D(J/S). 

PROOF: If J* = J/S, D(J*) = v, then there exists a closed subgroup T* of J* 

I Then we say that J is a group without elements of finite order. 
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of finite rank such that J** = J*/T* is the direct sum of groups J**(u) satisfy- 
ing D(J**(u)) < v. Let J*(u) be the subgroup of J* which corresponds to 
J**(u), T and J(u) the subgroups of J corresponding to J*(u) and T* respec- 
tively. Then T is a closed subgroup of finite rank of J and, since J(u)/T and 
J**(u) are isomorphic, it follows that D(J(u)/T) < v. Hence JIT is the direct 
sum of the groups J(u)/T of smaller D and therefore D(J) ? v. 

The following concepts will be needed later on: 
Let P be an (infinite) set of prime numbers. Then the element x is P-infinite 

(in J), if x # 0 and if for an infinity of prime numbers p in P there exist solutions 
of the equation py = x in J. If the group J contains a P-infinite element, then 
J itself is called P-infinite and J is called almost P-infinite if there exists a closed 
subgroup S of finite rank such that JIS is P-infinite. 

Similarly: if p is a prime number, then J is called almost p-infinite if there 
exists a closed subgroup S of finite rank such that JIS contains a p-complete 
subgroup. 

If e.g. J is the additive group of all the integer p-adic numbers, then D(J) = 2 
and J is almost p-infinite but does not contain any p-complete subgroup. 

4. Extension of groups. 
(4;1) If A is any Abelian group, x* $ 0 an element of A/F(A) and p a prime 

number, then there exists a group A' such that 

(a) A 5 A', 
(b) F(A) = F(A') 
(c) the equation py* = x* has a 8olution y* in A'/F(A), 
(d) either A = A' or A'/A is a group of order p. 

PROOF: If the equation py* = x* has a solution y* in A/F(A), then A' = A 
satisfies the conditions (a) - (d). If on the other hand the equation py* =x* 
has no solution y* in A/F(A), let x be any element in A such that x* = F(A) + x 
and let A' denote the group which contains A and an element y such that py = x. 
Then every element of A' has the form a + cy for a in A and 0 ? c < p where 
a, c are uniquely determined by the element a + cy. Suppose now that n 
is a positive integer such that n(a + cy) = 0. If c = 0, then a is an element 
of F(A). If c # 0, then c and p are relatively prime and, since -na = ncy, it 
follows that nc and therefore n is a multiple of p, i.e. n = pm and hence 0 = 
m(pa + cx). Therefore pa + cx is (as an element of A) contained in F(A) or 
p(-a) = cx mod F(A). But since p is prime to c, this implies that py* = x* 
has a solution y* in A/F(A) and this is impossible. Therefore F(A) = F(A'), 
i.e. A' satisfies the conditions (a) - (d). 

(4;2) If A i8 any Abdlian group, then there exists an Abelian group A' such that 

(a) A ? A', 
(b) F(A) = F(A') 
(c) A'/F(A') i8 complete, [or 01, 
(d) all the element8 of A'/A are of finite order. 
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PROOF: By well-ordering the elements of A/F(A) and by applying (4:1) 
successively on all the elements of A/F(A) it follows that there exists a group 
A* such that 

(a) A _ A*, 
(b) F(A) = F(A 
(c) the equation py* = x* has a solution y* in A*/F(A) for every element 

x* 0 0 in A/F(A) and every prime number p, 
(d) A*/A contains only elements of finite order. 

To A* there exists an analogous group (A*)* = A** and so on and the join A' 
of all these groups satisfies the conditions of (4:2). 

(4;3) Suppose that A is an Abelian group, J a group without elements of finite 
order and A/F(A) a subgroup of J. Then there exists a group A' such that 

(a) A < A', 
(b) F(A) = F(A), 
(c) A'/F(A) = J (i.e. there exists an isomorphism between A'/F(A) and J 

which leaves invariant the elements of A/F(A)). 

PROOF: By (4;2) there exists a group A" such that A _ A", F(A) = F(A 
A"/F(A) is complete and is the (by (3;1) essentially uniquely determined) 
smallest complete group which contains A/F(A). Furthermore there exists by 
(3;1) an essentially uniquely determined smallest complete group C which con- 
tains J. Since A/F(A) is a subgroup of J, there exists exactly one smallest 
complete subgroup S of C which contains A/F(A) which is therefore essentially 
identical with A"/F(A). By (1;1) S is a direct suimmand of C, i.e. C = S + T. 
Now it is easy to see that there exists a group A' between A" and A" + T 
which satisfies the conditions (a) - (c). 

(4 ;4) If F is a group without elements of infinite order, J a group without elem6nts 
of finite order and F(A) is a direct summand of every group A such that F(A) = F 
and A/F(A) = J, then F(B) is a direct summand of every group B such that 
F(B) = F and B/F(B) < J. 

PROOF: By (4;3) B is contained in a group A such that F(A) = F(B) = F 
and A/F(A) = J. F(A) is therefore from the assumption a direct summand of 
A, i.e. A = H + F(A). If K denotes the intersection of H and B, then 
B =K + F(B), since F(A) = F(B). 

(4;5) If F is a group without elements of infinite order, J a group without ele- 
ments of finite order, and if F(A) is a direct summand of every group A such that 
F(A) = C(p, F) and A/F(A) = J, then C(p, F(B)) is a direct summand of every 
group B such that F(B) = F and B/F(B) = J. 

PROOF: If Q is the direct sum of all the C(q, F) with q $ p, A = B/Q, then 
F(A) is essentially = C(p, F), since every class of F(B)/Q contains exactly one 
element of C(p, F). Furthermore A/F(A) = J. F(A) is therefore by the 
assumption a direct summand of A, i.e. A = H + F(A). Let K be the sub- 
group of B corresponding to H (such that Q < K and K/Q = H). The inter- 
section of K and C(p, F) equals the intersection of Q and C(p, F) and consists 
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therefore of the 0-element alone. B is generated by the elements in C(p, F) 
and in K, since they represent all the classes of B/Q. Hence B = C(p, F) + K 
- C(p, F(B)) + K. 

5. The first necessary condition. 
(5;1) Suppose that the group J without elements of finite order contains an almost 

p-complete subgroup. Then J contains two subgroups S, T and elements e(i) such 
that 

(a) S is a closed subgroup of finite rank of T, 
(b) S does not contain any almost p-infinite subgroup, 
(c) T is generated by the elements e(i) and the elements in S, 
(d) e(O) $ 0 mod S, pe(i) _ e(i - 1) mod S. 

PROOF: If V is an almost p-complete subgroup of J, then there exists a closed 
subgroup W of V which is of finite rank such that VIW is p-complete. Therefore 
V contains an element x which is not contained in W and the smallest closed 
subgroup of V which contains x and W is of finite rank and almost p-infinite 
The existence of an almost p-infinite subgroup of J implies therefore the 
existence of an almost p-infinite subgroup of finite rank. Therefore there 
exists an almost p-infinite subgroup U of smallest (finite) rank. Since U is 
almost p-infinite, it contains a subgroup S (closed in U) such that U/S is 
p-complete. The rank of S is smaller (and therefore finite) than the rank of U, 
since U/S # 0, and therefore S cannot contain any almost p-infinite sub- 
group. If e(O) is an element of U which is not contained in S (and such an 
element exists) then there exist elements e(i) such that pe(i) e(i - 1) mod S 
for i = 1, 2, ... , since U/S is p-complete. The subgroup T of J which is 
generated by S and the elements e(i) clearly satisfies (together with S and the 
elements e(i)) the conditions (a) - (d). 

(5;2) Suppose that the group J i8 of finite rank and not almost p-infinite. Then 
to every greatest linearly independent sub8et G of J there exists an integer w such 
that an equation pwe+lx = E c(g)g with integer coefficients c(g), 0 < k, (x in J) 

g in a 
implies that c(g)- 0 mod pkfor every g in G. 

PROOF: G is finite, since J is of finite rank. Furthermore it is sufficient to 
prove the statement for k = 1. If this special case of (5;2) would not be true, 
then there would exist to every positive integer i an element x(i) in J and 
integers w(g, i) not all of them 0 mod p such that 

pix(i) = E W(g, i)g. 
g in G 

Since G is finite, there exists an element h in G such that w(h, i) * 0 mod p for 
an infinity of numbers i. Since for these values of i the prime number p and 
w(h, i) are relatively prime, it follows easily that there exist elements y(i) in J 
and integers v(g, i) such that 

p'y(i) = h + E v(g, i)g. 
g in G 
g~h 
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If H is the smallest closed subgroup of J which contains the elements g 5 h in 
G, then H < J and piy(i) = h mod H, i.e. J is almost p-infinite and this is 
impossible. 

THEOREM 5;3: Suppose that g is a prime number, that F is a group without 
elements of infinite order, that J* is a group without elements of finite order and that 
(1) the orders of the elements of C(g, F)/g"C(g, F) are not bounded, 
(2) J* is almost g-infinite. 

Then there exists a group A such that F(A) = F, A/F(A) = J* and such that 
C(g, F(A)) is not a direct summand of A. 

Since C(g, F(A)) is a direct summand of F(A), this implies that F(A) is not a 
direct summand of A. 

PROOF: Because of (2) and (5;1) there exists a subgroup T* of J*, a subgroup 
8* of T* and elements e*(i) in T* such that 

S* is closed in T* and of finite rank, 
S* is not almost g-infinite, 
e*(O) is not contained in S*, 
s*(i) = ge*(i) - e*(i - 1) is contained in S* (for 0 < i), 
S* and the elements e*(i) generate T*. 

Let S be a group isomorphic with S* and let always s and s* correspond under 
this isomorphism. 

By (1) and (2;1) there exist in C(g, F) elements a(i) such that the elements 
b(i) = E j' gia(j + 1) are elements of lowest order in their class mod g'C(g, F) 
but such that their orders tend to infinity with i. 

Now let T be a group containing the direct sum F + S and elements e(i) such 
that 

ge(i) - e(i-1) = s(i) + a(i) 
for every positive i. 

This (Abelian) group T satisfies: F(T) = F and T/F(T) = T*. 
Suppose now that C(g, F(T)) = C(g, F) is a direct summand of T. Then 

there exists a subgroup H of T such that T = H + C(g, F). Let Q be the 
direct sum of all the primary-components C(p, F) with p $ g. Then there 
exists to every element x in Q + S an element f(x) in C(g, F) and to every ele- 
ment e(i) an element f(i) in C(g, F) such that x + f(x) and e(i) + f(i) are con- 
tained in H and these elements f in C(g, F) are uniquely determined by this 
condition. Since H and Q + S are subgroups of T, it follows therefore that 

f(x + y) = f(x) + f(y) for x and y in Q + S. 

If x is an element in Q, the orders of x and of f(x) are relatively prime and the 
equality for the function f(z) implies therefore that f(x) = 0 if x is contained 
in Q. 

(*) The orders of the elements f(x) for x in Q + S are bounded. 
In order to prove this statement consider a greatest linearly independent sub- 
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set G of S. There exists an integer w by (5;2) such that gw+kX = Hh in g c(h)h 
for x in S and integers c(h), 0 < k, implies that all the c(h) are divisible by gk. 

If now x is any element in Q + S, then x = y + s for y in Q and s in S and 
therefore as noted before: f(x) = f(s). If s # 0, then there exists an integer v 
and integers v(h) such that vs = ini v(h)h and v and the numbers v(h) have 
no common divisor. But this implies that v is not divisible by gw+I and since G 
is finite and vf(s) = w# hin,, v(h)f(h), we have proved (*). 

Since furthermore 

g(e(i) + f(i)) = e(i - 1) + s(i) + a(i) + gf(i) 

= e(i - 1) + f(i - 1) + s(i) + f(s(i)), 
we have: 

(**) gf(i) - f(i - 1) = f(s(i)) - a(i). 
By (*) there exists a number v such that gvf(x) = 0 for x in Q + S. Then it 
follows from (**) that 

v+i-1 

g'+if(v + i) - f(O) = A gi(f(s(j + 1)) - a(j + 1)) 
i-o 

lo-I V+i-1 

= E gif(s(j + 1))- E g'a(j +1) 
i-0 j-O 

since the elements s(j) are contained in Q + S. But this equation implies 

f(0) + wEo gif(s(j + 1)) = b(v + i - 1) mod gt+iC(g, F) 
and this congruence contradicts the choice of the elements a(i), since its left 
side does not depend on i. Hence C(g, F(T)) is not a direct summand of T. 

By (4 ;3) T is contained in a group A such that F(A) = F(T) = F and A/F(A) 
= J. Then C(g, F(A)) is not a direct summand of A, since otherwise C(g, F(A)) 
= C(g, F(T)) would be a direct summand of T and this is impossible as proved 
before. This completes the proof of our Theorem. 

6. The second necessary condition. 
(6;1) Suppose that P is an infinite set of prime numbers and that the group J 

without elements of finite order is almost P-infinite. Then there exists an infinite 
subset P* of P, a pair of subgroups S and T of J and to every prime number p in P* 
an element e(p) such that 

(a) S is a closed subgroup of finit6 rank of T, 
(b) S is not almost P-infinite, 
(c) T is generated by the elements e(p) and by the elements in S, 
(d) pe(p) qe(q) # 0 mod S for every pair p, q of primt numbers in P*. 

PROOF: Since the group J is almost P-infinite, there exists a closed subgroup 
U of finite rank of J, an infinite subset P' of P and elements v(p) for every p in P' 
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such that pv(p) qv(q) p 0 mod V for every pair p, q of prime numbers in P'. 
The group V, generated by U and the elements v(p), is an almost P-infinite sub- 
group of finite rank of J and therefore J contains an almost P-infinite sub- 
group W of lowest rank. W contains a closed subgroup S such that WIS is 
P-infinite (and of rank 1). Since the rank of S is lower than the rank of W, S 
is not almost P-infinite. Since W is almost P-infinite, there exists an infinite 
subset P* of P and elements e(p) for p in P* such that e(p) is contained in W 
and satifies: pe(p) qe(q) ; 0 mod S for every pair p, q of prime numbers in 
P*. S, P*, the elements e(p) and the subgroup T, generated by S and the 
elements e(p), satisfy (a) - (d). 

(6;2) Suppose that the group J without elements of finite order is not almost 
P-infinite, that J is of finite rank and that G is a greatest linearly independent subset 
of J. Then G is independent mod pJ for almost every prime number p in P. 

PROOF: Let W be the set of all the prime numbers p in P such that G is not 
independent mod pJ. Then to every prime number p in W there exists an 
element w(p) in J and integers w(p, g) such that 

pw(p) = A w(p, g)g, 0 _ w(p, g) < p, not every w(p, g) = 0. 
g in G 

If W is infinite, then there exists, since G is finite, an element h in G and an 
infinite subset H of W such that w(p, h) # 0 for every p in H. Since w(p, h) 
and p are relatively prime, we can assume without loss of generality that 
w(p, h) = 1 for every p in H. If V is the smallest closed subgroup of J gen- 
erated by the elements $ h in G, then 

pw(p) h 0 0 mod V, 

i.e. J would be almost H-infinite and therefore almost P-infinite and this is 
impossible. Hence W is finite and this proves (6;2). 

THEOREM 6;3: Suppose that F is a group without elements of finite order that 
the set P of all the prime numbers p with pC(p, F) # C(p, F) is infinite and that the 
group J* without elements of finite order is almost P-infinite. Then there exists a 
group A such that F(A) = F, A/F(A) = J* and such that F(A) is not a direct 
summand of A. 

PROOF: By (6;1) there exists an infinite subset W of P and a pair 
S*, T* of subgroups of J* and elements e*(p) for p in W such that 

S* is a closed subgroup of finite rank of T*, 
S* is not almost P-infinite, 
T* is generated by the elements e*(p) and by the elements of S*, 
pe*(p) _ qe*(q) # 0 mod S* for every pair p, q of prime numbers in W. 

Then there exists an element e* in T* such that 

pe*(p) - e* = s*(p) is an element of S*. 

Furthermore there exists to every prime number p in W an element f(p) in C(p, F) 
which is not contained in pC(p, F). 
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Let S be a group isomorphic with S* and let always s and s* correspond under 
this isomorphism. 

T is the group containing the direct sum F + S and elements e(p), e for p in 
W such that 

pe(p) - e = s(p) + f(p). 

This (Abelian) group T satisfies: F(T) = F and T/F(T) = T*. 
Suppose now that F(T) is a direct summand of T. Then T = F(T) + H 

for a suitable subgroup H of T and therefore there exists to every element x in 
S an element g(x) in F and to every p in W an element g(p) in F and an element 
g in F such that x + g(x) and e(p) + g(p), e + g are contained in H. Since S 
and H are subgroups of T it follows that 

g(x + y) = g(x) + g(y) for x and y in S. 

(*) For almost every prime number p in W the relation c(p, (x)) = 0 holds for every 
elemen x in S. 

In order to prove this statement consider a greatest linearly independent 
subset G of S. Since G is finite, there exists only a finite number of prime 
numbers p such that 

c(p, g(h)) # 0 for at least one element h in G. 

Therefore it follows from (6;2) that the set V of all the prime numbers p in W 
satisfying 

c(p, g(h)) = 0 for every element h of G 

and 

G is linearly independent mod pS 

contains almost every prime number of W. 
Let now s be any element in S and p a prime number contained in V. Then 

there exist integers n, d(h) for h in G such that 

nf = E d(h)h 
h inG 

and since G is independent mod pS, it can be assumed without loss of generality 
that n and p are relatively prime. But this relation implies 

nc(p, g(s)) = c(p, ng(s)) = c(p, g(ns)) = , d(h)c(p, g(h)) = 0 
h in G 

and therefore 
c(p, g(s)) = 0 for every p in V. This proves (*), since V contains almost every 
element of W. 
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An obvious consequence of (*) is 
(**) For almost every prime number p in W the relations 

c(p, g(x)) = Ofor every x in S and c(p, g) = O hold. 

Since T = F(T) + H = F + H, it follows that 

p(e(p) + g(p)) - (e + g) = 8(p) + g(s(p)) 
- s(p) + f(p) + pg(p) - g 

or 

f(p) + pg(p) = g(s(p)) + g 

or 

c(Jf(p)) + pc(p, g(p)) = f(p) + pc(p, g(p)) = c(p, g(8(p))) + c(p, g). 

By (**) this implies for almost every p in W: 

f(p) + pc(p, g(p)) = 0 

and this is impossible, since f(p) is contained in C(p, F) but not in pC(p, F). 
Hence F = F(T) is not a direct summand of T. 

The Theorem 6;3 is now an obvious consequence from the statement (4;4). 

7. Sufficient conditions. 
(7;1) Suppose that the 8ubgroup B of the group A 8atisfie8 thefollowing conditions: 

(a) A/B is a group of rank 1 without elements of finite order 
(b) If the orders of the elemenfs of C(p, F(B))/pwC(p, F(B)) are not bounded, then 

A/B is not p-complete; 
(c) If the set P of all the prime numbers p such that C(p, F(B)) 0 pC(p, F(B)) is 

infinite, then A/B is not P-infinite. 
Then to every subgroup B' of B such that B = F(B) + B' there exists7a subgroup 

A' of A such that 

B' < A' and A = F(A) + A'. 

PROOF: There exists a greatest subgroup C of F(B) such that pC = C for 
every prime number p. Furthermore there exists a greatest subgroup H of A 
such that 0 is the only element contained in both the subgroups C and H, and it 
is possible to choose H in such a way that H contains B'. Then as proved in 
(1;1) it follows that A = C + H. If K is the intersection of B and H, then 
B = C + K, and the pair H, K satisfies the conditions (a) - (c) exactly as the 
pair A, B and therefore we can assume without loss of generality: 

6 This condition implies that F(A) = F(B) and that B/F(B) is a closed subgroup of 
A/F(A). 

7This statement is of course vacuous if F(B) is not a direct summand of the group B. 
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(d) If C is any subgroup of F(B) such that pC = C for every prime number p, 
then C = 0. 

Let now x* 0 0 be any element of the group R* = A/B. Condition (c) 
implies that there exists only a finite number of prime numbers p in P such that 
x* is the p-fold of an element in R* and therefore there exists an element e* 0 0 
in R* such that: 
for every prime number p in P either R* is p-complete or e* is not a p-fold. 

There are three classes of prime numbers to distinguish: 
The finite set U of the prime numbers u in P such that R* is u-complete. 
The set V of prime numbers v which are not contained in P such that R* is 
v-complete. 

The set W of prime numbers w which are not contained in P such that R* is not 
v-complete. 
Note that some of these classes may be vacuous and that the prime numbers of 

P which are not contained in U are not attributed to any one of these classes. 
If r is a prime number either in U or in V, then there exist (uniquely deter- 

mined) elements e*(r, i) in R* such that 

e* = e*(r, 0), re*(r, i + 1) = e*(r, i). 

If w is a prime number in W, then there exists a (uniquely determined) ele- 
ment e*(w) and a number h(w) such that 

e*(w) is not a w-fold of an element in R* and satisfies wA(w) e*(w) e*. 

The elements e*, e*(w) and e*(r, i) generate the group R*. 
Now let e, e(w) and e(r, i) be elements contained in the classes e*, e*(w) and 

e*(r, i) of A/B respectively, and since e* - e*(r, 0) we choose e = e(r, 0). Then 

uw9(w) e(w) - e = f(w) + b(w), 

re(r, i + i) - e(r, i) = f(r, i) + b(r, i), 

wheref(w),f(r, i) are uniquely determined elements in F(B), b(w), b(r, i) uniquely 
determined elements in B', (since B = F(B) + B'). 

There exists a subgroup A' of A which contains B' and satisfies A = F(A) + A' 
if, and only if, there exist solutions g, g(w), g(r, i) of the equations 

ur"(w) (e(w) + g(w)) - (e + g) = b(w) 

r(e(r, i + 1) + g(r, i + 1)) - (e(r, i) + g(r, i)) = b(r, i), g(r, 0) = 9, 

in F(B). Equivalent with these equations are the equations: 

w"() g(w)- g = - Aw), 

rg(r, i + 1) - g(r, i) = - f(r, i), g(r, 0) = g. 

If the prime number q is not contained in P, i.e. if q is contained in V or W. 
then C(q, F(B)) = qC(q, F(B)) and therefore by condition (d): C(q, F(B)) = 0, 
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i.e. the orders of all the elements in F(B) are relatively prime to q. Therefore 
there exist to every given element g uniquely determined solutions g(w) and 
g(v, i) in F(B). 

Similarly it follows from the finiteness of U that it is sufficient to solve 
the equations uh(u, i + 1) - h(u, i) =-c(u, f(u, i)), h(u, 0) = h in C(u, F(B)). 

From (b), (d) and (2;1) it follows that the orders of the elements in C(u, F(B)) 
are bounded, i.e. that there exists a number m = m(u) such that ufx = 0 for 
every element x in C(u, F(B)). But then the elements 

h(u, i) = E7-o uic(u, f(u, i + j)) 

are contained in C(u, F(B)) and satisfy: 

uh(u, i + 1) - h(u, i) =-c(u, f(u, i)) 

and this completes the proof of (7;1). 
REMAR1K: By an argument similar to that used mn proving the Theorems 5;3 

and 6;3 it can be shown that the conditions (b) and (c) are also necessary for the 
existence of the direct summands A' containing B' for every possible B'. 

(7;2) Suppose that the group A satisfies the following conditions: 
(a) A/F(A) is countable; 
(b) If the orders of the element9 of C(p, F(A))/puC(p, F(A)) are not bounded, then 

A/F(A) is not almost p-infinite; 
(c) If the set P of all the prime numbers p such that C(p, F(A)) ' pC(p, F(A)) 

is infinite, then A/F(A) is not almost P-infinite. 
Then there exists to every subgroup B of A which exactly represenr a closed sub- 

group of finite rank of A/F(A) a subgroup A' of A such that 

B < A'and A = F(A) + A'. 

PROOF: Let B* be the subgroup of A* = A/F(A) which is represented by the 
elements in B. Then there exists because of condition (a) a sequence B*(i) of 
subgroups of A* such that 

B* = B*(O), 

B*(i) is a closed subgroup of finite rank of A*, 

B*(i) < B* (i + 1), 

B*(i + 1)/B*(i) is a group of rank 1, 

either A* = B*(m) for a certain integer m or A* is the join of all the B*(i). 

Assume that there exist groups A (i) for 0 < i _ k such that B = A (0), A (i) < 
A (i + 1), A(i) represents exactly B*(i). Let B(i) be the subgroup of A which 
contains F(A) and satisfies B(i)/F(A) = B*(i). Then B(k) = F(A) + A (k) and 
it follows from (b), (c) and (7;1) applied on B(k), B(k + 1) and A (k) that there 

' I.e. B contains at most one element of a clase of A/F(A). 
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exists a subgroup A(k + 1) of B(k + 1) such that A(k) < A(k + 1) and 
B(k + 1) = F(A) + A(k + 1). Hence these subgroups A(i) exist for every 
i. If A' is the join of all the A(i), then 

B ? A' and A = F(A) + A'. 

(7;3) Suppose that the group A satisfies the following conditions: 
(a) If the orders of the elements of C(p, F(A))/p'C(p, F(A)) are not bounded, then 

A/F(A) is not almost p-infinite. 
(b) If the set P of all the prime numbers p such that pC(p, F(A)) 0 C(p, F(A)) is 

infinite, then A/F(A) is not almost P-infinite. 
Suppose that the subgroup B of A satisfies the following conditions: 
(c) The intersection of B and F(A) is 0. 
(d) The subgroup B* of A* = A/F(A) which is represented by elements of B is 

closed in A* and of finite rank. 
(e) D(A*/B*) exists.9 

Then there exists a subgroup A' of A such that B ? A' and A = F(A) + A'. 
PROOF: If D(A*/B*) = 1, then A* is countable, since B* is a subgroup of 

finite rank. This case of (7;3) is therefore a consequence of (7;2). Hence we 
can prove (7;3) by complete (transfinite) induction with regard to v = D(A*/B*). 

Since D(A*/B*) exists, there exists a closed subgroup S** of A** = A*/B* of 
finite rank such that A*** - A**/S** is the direct sum of groups A***(w) 
satisfying D(A***(w)) < D(A**) = v. Then let A**(w) be the subgroup of 
A** which contains S** and satisfies A**(w)/S** = A***(w), S* the subgroup 
of A* corresponding to S**, A*(w) the subgroup of A* corresponding to A**(w), 
finally A (w) and S the subgroups of A which contain F(A) and correspond to 
A*(w) and S* respectively. 

Since S* is of finite rank (and therefore countable), there exists from (a), 
(b) and (7;2) a subgroup S' of S such that B ? S' (for B is a subgroup of S) and 
S = F(A) + S'. 

Since A*(w)/S* and A***(w) are isomorphic, D(A*(w)/S* = D(A***(w)) < v 
and there exists therefore by the hypothesis of the induction a subgroup A'(w) 
of A(w) such that S' < A'(w) and A(w) = F(A) + A'(w). 

Let A' be the subgroup of A, generated by the subgroups A'(w). Then every 
class of A/F(A) is represented by elements in A', since A/S is the direct sum of 
the groups A (w)/S. Furthermore every element of A' has the form Ekes x(i) 
where the elements x(i) belong to different groups A'(w). If this element is 
contained in F(A), then X(i) 0 mod S, i.e. x(i) 0 mod S, since A/S 
is the direct sum of the groups A (w)/S. Since x(i) is an element of S and of an 
A'(w), x(i) is an element of S' and therefore S -1X(i) is an element of S'. But 
this implies that X(i) = 0, since the intersection of F(A) and S' is 0, i.e. 
the intersection of A' and F(A) is 0 and therefore A = A' + F(A). Further- 
more B < S' < A' and this completes the proof. 

9 As a consequence of (3;3) it follows from this condition (e) that D(A*) exists and 
satisfies D(A*) ? D(A*/B*). 
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8. Final conclusions. 
THEOREM 8;1: Suppose that F is a group without elements of infinite order, that 

J is a group without elements of finite order and that D(J) exists. Then F(A) is a 
direct summand of every group A such that F(A) = F and A/F(A) = J if, and 
only if, the following two conditions are satisfied: 
(a) If the orders of the elements of C(p, F)/puC(p, F) are not bounded, then J is not 

almost p-infinite. 
(b) If the set P of all the prime numbers p such that C(p, F) 0 pC(p, F) is infinite, 

then J is not almost P-infinite. 
PROOF: The necessity of condition (a) is a consequence of Theorem 5;3 and 

the necessity of condition (b) is a consequence of Theorem 6;3. 
That the conditions are sufficient is a consequence of (7;3), if we choose as the 

subgroup B of A the 0-group which satisfies all the conditions. 
Since the existence of D(J) has not been used in the proof of the necessity of 

the conditions, we have even proved the 
COROLLARY 8;2: If F(A) is a direct summand of every group A such that 

F(A) = F and A/F(A) F J, then the groups F and J satisfy the conditions (a) 
and (b). 

COROLLARY 8;3: Suppose that F is a group without elements of infinite order, 
that the group J is contained in a group J' without elements of finite order 8uch that 
D(J') exists and the pair F, J' satisfies the conditions (a) and (b).10 Then F(A) is 
a direct summand of every group A such that F(A) = F and A/F(A) = J. 

This Corollary is a consequence of the Theorem 8;1 and of (4;4). 
COROLLARY 8;4: Suppose that F is a group without elements of infinite order, 

that J is a group without elements of finite order and that D(J) exista. Then 
C(p, F(A)) is a direct summand of every group A such that F(A) = F and 
A/F(A) = J if, and only if, the condition (a) is satisfied for this particular prime 
number p. 

This is a consequence of the Theorem 8;1 and of (4;5), since for primary 
groups F the condition (b) becomes void. 

THEOREM 8;5: Let F be a group without elements of infinite order. Then F(A) 
is a direct summand of every group A such that F(A) = F if, and only if, 
(1) the orders of the elements of C(p, F)/pwC(p, F) are bounded for every prime 

number p; 
(2) C(p, F) = pC(p, F) for almost every prime number p. 

PROOF: The necessity of the conditions is a consequence of the Corollary 
8;2, since we can choose as a group J the additive group of all the rational num- 
bers. That the conditions are sufficient, is a consequence of the Corollary 8;3, 
since by (3;1) every group J is contained in a complete group J', and since 
complete groups are direct sums of coutable groups, i.e. D(J') < 2. 

THEOREM 8;6: Suppose that J is a group without elements of finite order and 
that D(J) exists. Then F(A) is a direct summand of every group A such that 
A/F(A) = J if, and only if, 

10 This implies that the pair of groups F, J satisfies also the conditions (a) and (b). 
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for every closed subgroup S of J of finite rank all the (closed) subgroups of rank 14 
of JIS are cyclic groups." 

PROOF: It is easily inferred from Theorem 8;1 that F(A) is a direct summand 
of every group A such that A/F(A) = J if, and only if, J is neither almost 
p-infinite for any prime number p nor almost P-infinite for any infinite set P 
of prime numbers. But this condition is clearly equivalent with the condition 
of the Theorem. 

Note that by Corollary 8;2 the condition of the Theorem is also necessary if 
D(J) does not exist. 

THE INSTITUTE FOR ADVANCED STUDY, 
PRINCETON, N. J. 

"It can be proved that this condition together with the existence of D(J) imply that J 
is a direct sum of cyclic groups. But there exist groups which satisfy this condition and 
which are not direct sums of cyclic groups (e.g. the additive group of all the sequences of 
integers) and for these groups the problem whether the condition of the Theorem 8,6 is 
a sufficient one is still unsettled. 
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